A Fast Kernel for Attributed Graphs

Yu Su* Fangqiu Han*

Abstract

As a fundamental technique for graph analysis, graph ker-
nels have been successfully applied to a wide range of prob-
lems. Unfortunately, the high computational complexity of
existing graph kernels is limiting their further applications
to larger-scale graph datasets. In this paper, we propose a
fast graph kernel, the descriptor matching (DM) kernel, for
graphs with both categorical and numerical attributes. The
computation time of the DM kernel is linear with respect
to graph size. On graphs with n nodes and m edges, the
kernel computation for two graphs can be done in O(n +m)
time. Although there are other linear-time graph kernels,
most of them are restricted to graphs with only categorical
attributes; their efficiency mainly comes from the sparseness
of the feature space resulted from the mutually orthogonal
categorical attributes. Extensive experiments on both syn-
thetic and real-world graph datasets show promising perfor-
mance of DM in both accuracy and efficiency.

1 Introduction

Large graph databases are increasingly popular in many
domains such as chemoinformatics [3], bioinformatics [5)
and the web [2]. These graph datasets are characterized
by their rich attribute information. For example,
in chemoinformatics, molecules are often modeled as
graphs, with atoms being nodes and covalent bonds
being edges. Rich attributes are associated with both
nodes and edges: categorical attributes on nodes like
element types, numerical attributes on nodes like their
partial charges and on edges like the spatial distance
between elements. Many interesting questions arise
with these graph datasets, e.g., how to predict the
mutagenicity of a chemical compound by comparing its
graph representation with other chemical compounds
having known functionality?

Graph kernels have been successfully applied to var-
ious graph problems [5, 18]. A graph kernel is basically a
function measuring the similarity of two graphs. A sig-
nificant advantage of the kernel method is that it can de-
couple data representation from the learning machines:
As long as a graph kernel is provided, readily-available
learning machines like SVM [6] or the kernel PCA [20]
become directly applicable.

The large scale and heterogeneous attributes of
modern graph data call for graph kernels which are (1)

Santa Barbara. {ysu, fhan,

*University of California,
xyan }@cs.ucsb.edu.

TU.S. Army Research Lab. richard.e.harang.ctr@mail.mil.

Richard E. Harang'

Xifeng Yan*

efficient to compute and (2) capable of handling the rich
attribute information on nodes and edges. More specifi-
cally, we argue that a linear-time graph kernel that can
handle both categorical and numerical attributes is de-
sired, while being linear-time means the runtime scales
linearly with respect to the graph size n + m, where
n is the number of nodes and m the number of edges.
Few graph kernels proposed so far achieve the two goals
simultaneously. Some graph kernels [25, 15, 8] achieve
linear-time computation. However, they are restricted
to graphs with only categorical attributes since their ef-
ficiency mainly comes from the sparseness of the feature
space resulted from the mutually orthogonal categorical
attributes. A few recent graph kernels [10] try to speed
up computation on graphs with numerical attributes.
Unfortunately, they are not linear-time kernels.

In this work, we propose a linear-time kernel for
graphs with both categorical and numerical attributes.
The proposed kernel, which we denote as the descrip-
tor matching (DM) kernel, is based on a simple idea:
Map each graph into a set of vectors (descriptors), and
then apply a set-of-vectors matching kernel to measure
graph similarity. We first propose a propagation based
algorithm to generate feature vectors on nodes in lin-
ear time. By propagating categorical attributes along
edges, we are able to generate a real vector for each
node which encodes its attributes as well as its neighbor-
hood information. Two nodes with similar attributes
and neighbors will have similar vector representations;
computing the similarity of two graphs therefore resorts
to matching the vectors of their nodes. We then adapt
the well-known Vocabulary-Guided pyramid matching
(VG) kernel [13] to identify an approximately optimal
matching between two vector sets, which is also done in
linear time. We rigorously prove the linear scalability
of the DM kernel. The most related work is the propa-
gation kernel [22], which also propagate attribute infor-
mation. It is initially proposed as a linear-time kernel
for graphs with categorical attributes, and is recently
extended to handle numerical attributes [21]. We will
discuss about the differences later in the paper and also
empirically compare with it.

We empirically experiment on both synthetic
datasets and real-world datasets from chemo- and bioin-
formatics, and compare DM with several state-of-the-

art graph kernels. Experiments on synthetic datasets
confirm the linear scalability of the DM kernel. On
real-world datasets, DM shows competitive performance
in both classification accuracy and efficiency. Particu-
larly, the experiment results demonstrate that DM can
well exploit additional numerical attributes to improve
classification accuracy, as opposed to when only using
categorical attributes. Another salient characteristic of
DM shown by the experiments is that its classification
performance is very stable across different tasks. Even
when its accuracy is not the best on a dataset, the dif-
ference to the best is usually small.

2 Related Work

We summarize existing graph kernels with an emphasis
on computational complexity. The computation of a
graph kernel is often done in two steps: (1) decomposing
each graph into a set of features, and (2) comparing
feature sets. In order to achieve overall linear scalability,
a graph kernel has to be linearly scalable in both steps.
For the first step, many graph kernels choose to
exhaustively enumerate a certain type of features in
a graph, such as random walks [12, 16], paths [1],
shortest paths [4, 10], subtrees [19], etc. Although
algorithms have been proposed to reduce the effect
of combinatorial explosion, due to their exhaustive
nature, these kernels are still inefficient and hard to be
applied to large graphs with hundreds or more nodes.
A few recently proposed graph kernels achieve linear
scalability in the first step by limiting the size of their
feature space [25, 15, 8]. Our kernel follows the same
strategy: A graph is decomposed into a set of vectors on
nodes. The idea of propagating categorical attributes
to get local feature vectors is also employed by some
other kernels [22, 27, 21], where a random walk based
propagation scheme is used. However, as we show
in Appendix A, the random walk based propagation
process, if run for enough iterations, will end up with
feature vectors irrelevant to the initial labeling of the
nodes and their neighbors. Our propagation scheme,
as we will present soon, generate feature vectors well
encoding the labeling and neighborhood information.
The linear scalability in the second step is harder
to achieve. Comparing all possible feature pairs in two
sets results in a quadratic time complexity. Linear-time
comparison becomes possible when graphs have only
categorical attributes, which yields a sparse discrete
feature space [25, 15, 8]. Take [25] for example. It
decomposes a graph into a set of size-limited subtrees,
hashes each subtree into a string, and then counts
common strings via string equality check. However,
for graphs with numerical features this strategy fails,
as we have to take the similarity of the continuous

features into account, other than merely making a
binary decision of whether two features are the same.
[22, 21] try to tackle this problem via locality sensitive
hashing, which is basically putting feature vectors into
some uniform bins and then count. We employ a
different approach. From a geometric point of view,
our method identifies where the feature vectors really
reside in the feature space and divide the space into
non-uniform bins based on the real data distribution.

Our kernel seeks for a one-to-one matching between
two sets of features, for which an efficient solution exists.
The graph kernels proposed in [11] and [27] try to find
an optimal one-to-one matching for their specific type
of features. Unfortunately, they are not efficient and are
not positive semi-definite kernels [29]. Our kernel effi-
ciently identifies an approximately optimal correspon-
dence between two feature sets by employing an exist-
ing set-of-vectors matching kernel, the VG kernel [13],
whose computational complexity is linear with respect
to the set size with mild adaptation.

3 Preliminaries

Following convention, we define an undirected graph G
as a 4-tuple (V, E, L., L), where V is the set of nodes,
FE the set of edges, and L. and L, the labeling function
for categorical and numerical attributes, respectively.
L. 'V — X, where ¥ = [y,...,l; is the alphabet
of categorical attributes. The labeling function for
numerical attributes £,, : V — R¥ assigns K numerical
attributes to each node. For simplicity, we will work
on a graph dataset with N graphs, and each graph
has n nodes and m edges. We define graph size as
n + m, and call a graph kernel a linear-time kernel if
its runtime complexity is linear to graph size. N (v) is
the neighborhood of node v, which is the set of nodes
directly connected to v.

Throughout the paper, we will use the term set
to denote a multiset which allows duplicate elements.
Given two sets X and Y where n; = |X|, na = [Y],
and n; < no, a one-to-one correspondence or a match-
ing M(X,Y;7) = {(x4,¥x,)]1 < i < ng} matches
every element in X to some unique element in Y.
T = [m1,...,7n,],1 < 7 < ng is a permutation of in-
dices where m; specifies a match (x;,yx,), for 1 <i < mnj.
We will use the terms one-to-one correspondence and
matching interchangeably in the rest of the paper. We
will also use the terms attribute and label interchange-
ably. We follow the kernel foundation in [24].

DEFINITION 3.1. (GRAM MATRIX) Let X be a
nonempty set. Given a function k : X2 — R and
elements x1,...,x;m € X, the m x m matrix K with
elements K;; == k(x;,x;) is called the gram matrix (or

kernel matrix) of k with respect to x1,...,%m. A gram
matriz is p.s.d. if it is a positive semi-definite matriz.

DEFINITION 3.2. ((VALID) KERNEL) Let X be a
nonempty set. A function k on X x X which for all
m € N and all z1,...,2,, € X gives rise to a p.s.d.
gram matriz 1s called a valid kernel, or a p.s.d. kernel.
We will simply refer to it as a kernel.

It is easy to construct new kernels from existing
ones. Given two kernels ki and ks, and ag,as > 0,
a1ky + agks is still a kernel, and the pointwise product
k1ky defined as (k1ka)(z1, z2) = ki(x1,x2)ke (21, 22) is
also a kernel [24].

4 Descriptor Matching Kernel

4.1 Local Descriptor. We first introduce a concept,
local descriptor. A local descriptor (or simply descrip-
tor) is a fixed-length real-valued vector associated with
a node. It encodes the labeling information of the node,
as well as the topological and labeling information in its
neighborhood, thus serving as the identity of the node:
Similar nodes should have similar descriptors. Descrip-
tor similarity is defined based on their Euclidean dis-
tance, while node similarity is defined in a recursive
manner: Two nodes are more similar if their attributes
and neighborhood are more similar. With this property,
it becomes meaningful to measure graph similarity by
matching their node descriptors. A descriptor generator
f is a function mapping a node v to a descriptor f(v) €
RP, where D = | f(v)]. F(G) = {f(w)lv € V(G)} is
the descriptor set of a graph G.

Now we define our descriptor generator. The ba-
sic idea is to capture the labeling and neighborhood
information about a node by propagating categorical
attributes. The outcome of the propagation process is
a series of feature vectors for each node. The contin-
uous features are the key for incorporating numerical
attributes. Since the features are continuous, numeri-
cal attributes can be directly appended to the feature
vectors. The idea is that the numerical attributes of
a node, such as the partial charge value of an atom
in a molecule, are a direct part of the node’s identity.
Other linear-time graph kernels like [25, 15, 8] are hard
to incorporate numerical attributes because their fea-
tures are discrete.

For better presentation, we first leave out numerical
attributes. Because of the recursive nature of the
node similarity definition, it is natural to generate
descriptors via an iterative process in which nodes
exchange information with their neighborhood. We
therefore define the Stochastic Cascade (SC) descriptor
generator. The SC descriptor of a node v, fs.(v) =
(A1(v),...,Ar(v)), is a vector of length L, with the ith

component A;(v) indicating the strength of association
between the categorical attribute [; and the node.
Intuitively, the more nodes with attribute [; there are
in M (v), the stronger the association will be. Let
n € [0,1] be a scalar, h be the number of iterations, we
model this intuition via the following iterative process,
which generates a sequence of descriptors fs(g)(v) =
(Agr)(v), . .,Ag)(v)),o <r < h for v:
(1) Initialization:

A(O) (v) = 1 if Lo(v) =1,
‘ o otherwise;

(2) Updating:

1 if A" (v) =1,

(rt1)(y _
AW =01 T 1-94"@w) otherwise,
wEN (v)

fori=1...,L,0<r<h.

To understand the above process, let’s focus on
the attribute [;. In the beginning of iteration r,
the strength of association AY)(U) is regarded as the
probability of v propagating I; to all of its neighbors.
Here 7 is a decay factor, or can be thought as the
loss ratio of propagation. Initially, A§°) (v) is set
to 1 if [; is v’s categorical attribute, and otherwise
0. In each iteration k, AYH)(U) is updated to the
probability of the node receiving at least one l; from its
neighborhood: the probability of the neighboring node
u not propagating l; to v in iteration r is 1 — nA(lr)(u),
so the probability of v not receiving any I; from N (v)
is [Tuenrw (1 — nAgr)(u)), therefore we end up with the
above updating rule.

A competitor of our SC descriptor generator is a
descriptor generator based on a random walk on graphs,
which, although termed differently, has been exploited
in some way in [22, 27, 21]. But we prove in Appendix A
that it does not have the descriptor property, i.e., similar
nodes should have similar descriptors. Two nodes in a
graph, as long as they have the same degree, will always
end up with the same descriptors irrelevant to the initial
labeling of the nodes and their neighborhoods!.

THEOREM 4.1. The SC descriptors for N graphs can be
computed in time O(NLhm).

Proof. In each iteration, each categorical attribute in
> will be propagated for at most 2m times, and each
propagation will incur an O(1) number of operations,

I[21] suggested that, pragmatically, random walk based prop-

agation can stop early without getting into the stationary states.
We apply this strategy in evaluation.

so the overall runtime complexity of computing SC
descriptors for N graphs and h iterations is O(NhmL).

Numerical attributes are directly appended to the
descriptors defined above. We normalize each numerical
attributes to [0, 1].

4.2 Descriptor Matching Kernel.

DEFINITION 4.1. (DESCRIPTOR MATCHING KERNEL)
Given a base kernel k defined on sets of vectors, if we
denote the set of SC descriptors of graph G in the rth
iteration as F()(G), the descriptor matching kernel
kgm on two graphs G1 and Ga is defined as:

h
KOG, Go) = S k(FT(G), F(Ga)).

r=0

THEOREM 4.2. For any h € N, ksz
definite (p.s.d.) if k is p.s.d.

1§ positive semi-

Proof. This follows directly from the fact that p.s.d.
kernels are closed under addition.

The next step is to find a base kernel defined for
two sets of vectors. There are three requirements for
the base kernel: (1) Its computation must be efficient.
More specifically, its time complexity should be linear
with respect to graph size. (2) It should measure
the similarity of two sets of vectors in an intuitive
manner. (3) It is able to handle high-dimensional
vectors. Putting all these requirements together, we
choose the VG kernel [13] from computer vision. It
identifies a one-to-one correspondence between two sets
of vectors via non-uniform quantification, which makes
it suitable for high-dimensional vectors since it can
locate where the vectors really reside in the high-
dimensional space and divide the space accordingly.
Although the original VG kernel did not claim to
be linearly scalable, we show next that with mild
modification, its time complexity becomes linear with
respect to graph size.

4.3 VG Kernel. Given a descriptor generator f and
two graphs G; and G5, we now discuss how to define
a kernel k to efficiently measure the similarity of their
corresponding descriptor sets F(G1) and F(G2). Sup-
pose F(G1) = {x1,...,%Xn, },» F(G2) = {y1,-- s ¥na }»
ny < ng and M(F(G1),F(Gz);7) is a matching from
F(G1) to F(G>), a set-of-vectors matching kernel k is
defined as follow:

ny

K(F(G1), F(Ga)) = Y w(lxi —yaxll2),

=1

where w(-) is a weighting function. Note that under this
definition k is not necessarily p.s.d.

Now the problem boils down to finding an appropri-
ate matching. The most intuitive way is to find the opti-
mal matching that maximizes k(F(G1), F(G2)), which
can be formulated as the classic maximum weighted bi-
partite matching problem and solved by prominent algo-
rithms such as the Hungarian algorithm [11, 27]. How-
ever, it is not favorable for two reasons: (1) The com-
putational complexity is rather high (cubic), and (2) it
results in a kernel which is not p.s.d. [29]. Another so-
lution is discretization [22]. The idea is to map a vector
into a 1-d histogram, and efficiently match vectors based
on whether they fall into the same bin. It scales linearly,
but the main problems are: (1) Bins are unweighted, or
in other word, w is a constant function; (2) bins are or-
thogonal, so vectors in different bins are never matched.
Nevertheless, the linear computational complexity is ap-
pealing. We choose the Vocabulary-Guided (VG) pyra-
mid matching kernel, which is based on a somewhat sim-
ilar idea, but in a more sophisticated manner. It aims
to efficiently find an approzimately optimal matching,
and elegantly solves both of the problems via replacing
the 1-d histogram by a data-dependent multi-resolution
histogram with non-uniformly shaped bins. We next
reformulate it in a way suitable for our descriptor sets,
and adapt it to ensure its linear scalability.

Pyramid construction. Suppose G is a set of
N graphs and F(G) = {f(v)|v € G,G € G}. The VG
kernel starts off by partitioning the descriptor space into
a pyramid of non-uniformly shaped regions/bins, which
is built by performing hierarchical clustering on F(G).
The pyramid structure is controlled by two hyper-
parameters, the number of levels ¢, and the branching
factor b. The jth bin at the ith level is denoted as
B](-Z) = (Xy),cg-l),sg-l)), where cy) is its center, st

J
Y = max{||x1 — xa|[x1,x2 € X\},

and X;i) C F(G) the set of descriptors in the bin. Then

the pyramid is denoted as {B‘gl)}ogigt_LlSiji, and is
constructed as in Algorithm 1.

Lines 4, 9, and 10 compute bin diameters, i.e.,
the maximum distance between any two descriptors
in the bin. The original VG kernel will compute the
distance between each pair of descriptors and find the
maximum, which results in a quadratic time complexity.
We approximate it by two upper bounds, the doubled
maximum distance from any descriptor in the bin to
the center of the bin, and the diameter of the parent
bin, as shown at line 9 and 10, respectively. This
grants us linear scalability. Bin diameters are critical
and will be used to compute bin weights. Later in §5
we empirically demonstrate that the DM kernel built

its

diameter with s

Algorithm 1 Pyramid construction

1: Initialization:
2 X% « F(g)

(0) 1
3 ¢’ 2 X =gy Y oxer(g) X

0 0
4: sg) maxye r(g)||x — cg al
5. fori=0tot—2do
6: for j =1 to b’ do _
7: run k-means clustering to partition B](-Z)

into b child bins {B]E;i—i_l)}(jfl)bJrlSk:Sjb
8: for k=(j—1)b+1to jbdo
(i+1) (i+1)
2 : —

9 Sk, — 2 x m@xxexwl) [x —c;. |l
10: s,(;H) “— min(s,(fﬂ), sgz))

on the approximated VG kernel achieves promising
performance in both efficiency and accuracy.

Multi-resolution histogram construction.
Given a graph G and its descriptor set F(G), a
multi-resolution histogram is constructed according to
the pyramid structure. The multi-resolution histogram
is defined as ¥(G) = [H(G),..., H*Y(G)], where
HO(G) = [Hfi)7...,H¥)] is a 1-d histogram with b’
bins at the ith level, 0 < ¢ <t — 1. Algorithm 2 shows
how to construct ¥(G) by walking each descriptor
through the pyramid and identifying its bin member-
ships along the way, where p = (po, ..., pi—1) is a vector
with p; being the index of the bin where the descriptor
is located at level 4, 0 <i<t—1,1 <p; < b,

Algorithm 2 Multi-resolution histogram construction
1. for x € F(G) do

2: po 1

3: Hl(o) (—H1(0)+1

4: fori=1tot—1do

5: Di argminchy) —x|,(pic1 —1)b+1<
J<pi1b

6: Hy) « HY) +1

Matching multi-resolution histograms. The
matching process goes from the finest level (i = ¢ — 1)
to the coarsest level (i = 0). In this way, we will
first consider matching the closest descriptors (at level
t — 1), and as we climb to the higher levels in the
pyramid, increasingly further descriptors are allowed
to be matched. Given two multi-resolution histograms
U(G;) and ¥(Gs), the number of matches found in B](»z)
is derived via bin intersection:

IV = min(H (Gy), H (G2)).
The number of new matches found in a bin is computed
by subtracting the number of matches found in all

its child bins from Ij@, which is the ¢rue number of
descriptors matched in this bin:

o _ T,
Ji = J(i) b (i+1)
;" = Xh=g-vpn I

We give an example in Appendix B to illustrate
the above process. The VG kernel is defined as follow,

t=t—1;
0<i<t—2.

where w;; = Tlgﬂ is the weight of Bj(-i) measuring how

much a match found in the bin contributes to the overall
similarity:

DEFINITION 4.2. (VG KERNEL) Given two descriptor
sets F(G1) and F(G2), and the corresponding multi-
resolution histograms ¥(G1) and W(G2), the VG kernel
kg is defined as:

t—1 b*

kog (F(G1), F(G2) = 3 wiy 7.

i=0 j=1

(4.1)

THEOREM 4.3. kg is p.s.d.

Proof. We re-write Eq. (4.1) as k,(F(G1), F(Ge)) =
Zf;é Z?;l (wij—pij)I;i), where p;; is the weight associ-
ated with the parent bin of Bl§i), and that for B%O) is set
to 0. Since the bin intersection Z is a p.s.d. kernel [23],
and since p.s.d. kernels are closed under addition and
scaling by a positive scalar, k.4 is a valid kernel as long
as w;; >= p;; for all bins. This is guaranteed by (1) w;;
()
. j ’
and (2) s;l) is not bigger than the diameter of its parent
bin, which is guaranteed by the line 10 of Algorithm 1.

is a monotonic decreasing function with respect to s

THEOREM 4.4. Given N graphs and their correspond-
ing descriptor sets, suppose the maximum number of it-
erations for k-means clustering is H, the N-by-N kernel
matriz of kyg can be computed in O(N(Hb+ N)tn).

Proof. Let us examine the time complexity of each step.

First, the pyramid can be built in O(H Nntb). On
one hand, the hierarchical clustering can be performed
in O(HNntb). It takes at most O(Hb) operations to
determine the bin membership for each descriptor at
each level, and there are in total Nn descriptors. On
the other hand, determining all of the bin diameters
can be done in O(Nnt), because at each level, each
descriptor will be accessed exactly once. So the pyramid
construction takes O(H Nntb) time.

Second, the N multi-resolution histograms can be
constructed in O(Nntb). It can be seen from that,
for each of the n descriptor, it takes b comparisons to
determine its bin membership at each level.

Finally, matching all pairs of multi-resolution his-
tograms takes O(N?nt) time. Matching two multi-
resolution histograms can be done in O(nt) time via a
sparse representation of the multi-resolution histograms
which only stores non-empty entries, and there are N2
pairs to match. For implementation details, see [13].

Therefore, the overall time complexity is
O(HNntb+ Nntb+ N?nt) = O(N(Hb+ N)tn).

Theorem 4.4 asserts the linear scalability of the VG
kernel, which paves the way to the proof of the linear
scalability of the DM kernel.

THEOREM 4.5. With kg as the base kernel, kqm on a
pair of graphs can be computed in a linear time with
respect to graph size.

Proof. For N graphs, directly following Theorem 4.1
and Theorem 4.4, kg, can be computed in O(N Lhm +
N(Hb+ N)htn) = O(Nh(Lm + Htbn) + N2htn) time,
where h is the number of iterations, and the amortized
cost for a pair of graphs is O(& (Lm + Htbn) + htn) =
O(% Lhm+ (4 Hb+1)htn), which is linear with respect
to graph size.

5 Evaluation

We compare DM with state-of-the-art graph kernels:
the propagation kernel (PK) [22, 21], the Weisfeiler-
Lehman subtree (WL) kernel [25], the Weisfeiler-
Lehman shortest-path (WLSP) kernel [26], the shortest-
path (SP) kernel [4], the connected subgraph matching
(CSM) kernel [17], and the GraphHopper (GH) ker-
nel [10]. DM, PK, WL, SP, WLSP and GH are im-
plemented in Matlab, VG is implemented in C++, and
CSM is implemented in Java. DM, PK and WL are
linearly scalable while others are not. WL can only be
applied on graphs with categorical attributes, while DM
and PK can handle numerical attributes as well. In DM,
we directly append numerical attributes to descriptors,
while in PK, numerical attribtues are also propagated.

5.1 Runtime Analysis on Synthetic Datasets.
In this experiment, we test graph kernels on randomly
generated graphs with both categorical and numerical
attributes. The main goal is to confirm the linear
scalability of the DM kernel. The results of WL and
PK are similar to DM and are omitted.

Experiment setup. We randomly generate undi-
rected graphs based on two parameters: the number of
graphs N, and the number of nodes n. The default val-
ues are N = 10 and n = 200. Average node degree is
set to 5 so that graph size increases linearly with respect
to n. m nodes are first generated, then edges are ran-
domly inserted until a certain number is reached. We

additionally experiment on graphs with varying density
o= %, and also evaluate DM with varying num-
ber of iterations h. For DM, the default value of h is
10, and ¢ and b are set to 4 and 10, respectively. For
WLSP, the number of iterations h is set to 3. For CSM,
the maximum size of subgraphs k is set to 5. When eval-
uating one parameter, all other parameters are fixed to
the default values. Node categorical and numerical at-
tributes are randomly generated. The total CPU time
to compute the N-by-N kernel matrix is reported.

Result analysis. The results are presented in
Figure 1. Figure 1(a) shows the runtime behavior with
respect to n. DM scales linearly with a small increase
rate, while the runtime of other kernels increases at
least quadratically. Figure 1(b) gives the runtime results
with varying N. DM scales nearly linearly, which shows
that the linear term with respect to N in the overall
time complexity is dominating when N is moderate. In
Figure 1(c), we show how the graph density, namely the
number of edges m when n is fixed, affects the runtime of
DM. As expected, the runtime of DM increases linearly.
The result of CSM is not reported because its extremely
high runtime when graphs are dense. We argue that, on
real-world graphs, especially when graph size is large,
m can rarely get up to O(nz)7 therefore a runtime
complexity in O(m + n) usually scales more elegantly
than O(n?). Finally, Figure 1(d) shows that DM also
scales linearly with respect to h.

5.2 Classification Performance on Real-world
Datasets. We experiment with 11 well-accepted
benchmark datasets from chemo- and bioinformatics.
MUTAG [9] is a set of 188 chemical compounds la-
beled according to whether or not they have a muta-
genic effect on a bacterium. ENZYMES [5] comprises
of 600 enzymes represented by their secondary struc-
ture elements (SSEs), and the task is to classify each
enzyme into one of the 6 EC top level classes. D&D
is a datasets consisting of 1178 proteins where amino
acids are modeled as nodes. The graphs are therefore
much larger. The task is to predict whether a protein
is an enzyme. The PTC [14] dataset contains chemical
compounds labeled according to their carcinogenicity to
rodents. Four datasets, mice (MM), female mice (FM),
male rats (MR), and female rats (FR), are developed
according to their effect on different rodents. We ac-
quired the dataset from ChemDB [7]. We obtained four
more chemical compound datasets from [28]: COX-2
is a dataset of 467 cyclooxygenase-2 inhibitors, BZR a
dataset of 405 ligands for the benzodiazepine receptor,
DHFR a dataset of 756 inhibitors of dihydrofolate re-
ductase, and ER a dataset of 1,009 estrogen receptors.
The task is to predict a chemical compound as active or

n

=)

[3))

Runtime in seconds
o
(9]
%]
=

Runtime in seconds

7 1
0 _ e
200 400 600 800 1000 o 150 1m0 240 300

(b) Number of graphs N

(a) Number of nodes n

600

o

- oW
] 500 GH]
5 * WLSP s4
8 400 8
8 o SP 3 ,
£ 300 £3
Q (o]
£ 200 £
S S2
= 100E o

0 | 1

02 04 06 08 2 4 6 8 10

(¢) Graph density o (d) Number of iterations h

Figure 1: Runtime behavior on synthetic datasets.

Table 1: Statistics of the benchmark datasets

‘ Dataset ‘ MUTAG ‘ ENZYMES ‘ D&D ‘ FR ‘ FM ‘ MR ‘ MM ‘ COX-2 ‘ BZR ‘ DHFR ‘ ER ‘
graphs 188 600 1178 | 344 351 336 349 303 306 393 446
positive 125 691 121 143 152 129 148 157 126 181
categorical attributes 8 3 82 19 19 21 7 8 7 10
Avg. # nodes 26.03 32.63 284 | 25.56 | 26.08 | 25.05 | 25.25 | 41.56 | 35.04 | 41.58 | 41.96
Max. # nodes 28 126 5748 | 109 109 109 109 56 57 71 93
Avg. # edges 27.89 62.14 716 | 25.96 | 26.53 | 254 | 25.62 43.8 37.5 | 43.71 | 43.96

inactive in a certain reaction.

All datasets have categorical attributes on nodes.
MUTAG, MM, FM, MR and FR have a node numerical
attribute, the partial charge of atoms. COX-2, BZR,
DHFR and ER come with the 3D coordinates of atoms,
based on which we compute the spatial distance between
atoms, and use it as a numerical attribute on edges. We
choose the 3D-length of the SSEs as a node numerical
attribute for ENZYMES. The dataset statistics are
reported in Table 1.

Evaluation scheme. We perform 10-fold nested
cross-validation of C-Support Vector Machine provided
by LIBSVM [6]. In each fold, all hyper-parameters are
optimized by an extra 9-fold cross-validation on the
training data only. The whole process is repeated for
10 times, and the mean and standard deviation of the
classification accuracy over the 10 runs are reported.
The reported runtime is obtained by running each ker-
nel with the hyper-parameters most frequently selected
by the model selection process. The initialization time
for each kernel is included. The “one-against-one” strat-
egy is adopted for the multi-class classification on EN-
ZYMES. See Appendix C for the detailed configuration.

Graphs with only categorical attributes. We
first experiment on graphs with only categorical at-
tributes. The results are shown in Table 3. A method
is bold-faced in the table if it achieves the highest ac-
curacy, or is not significantly worse than the highest
according to the student t test at p = 0.05. The results
show that our DM kernel achieves comparable accuracy
with other kernels. It is in top 3 on all the datasets
except COX-2, and achieves the highest accuracy on

MUTAG and D&D.

In terms of efficiency, among the linear-time kernels,
DM is comparable with WL while in general slower than
PK. For the other kernels, GH and CSM are less efficient
than DM. Because WLSP and SP utilize the hash-and-
check-equality strategy (cf. §2), they are quite efficient
on datasets with small graphs like MUTAG, COX-2,
BZR, DHFR, and ER. However, these non-linear-time
kernels are hard to scale to larger graphs, such as those
in D&D. As a result, WLSP and CSM cannot finish
within 2 days on D&D, SP takes over 4 hours, and GH
takes 3 days. The reason why DM takes more time on
D&D than WL is that the runtime of DM grows linearly
with respect to L, the number of categorical attributes,
while the time complexity of WL is not dependent on L,
and L = 82 on D&D. Nevertheless, we can safely draw
the conclusion that DM can scale to large graphs with a
moderate number of categorical attributes, which is the
common case in many applications.

Graphs with numerical attributes. We now
test on graphs with additional numerical attributes,
which are the main targets of this work. WL is not
applicable in this case. Table 3 shows the experiment
results. In terms of classification accuracy, DM is among
the best on 9 out of the 10 datasets, and achieves
the highest accuracy on 6 of them. The only kernel
which is comparable in terms of overall classification
performance is WLSP. PK, SP and GH are in general
less competitive, while CSM can compete on several
datasets. In terms of efficiency, since the incorporation
of numerical attributes fails the hash-and-equality-check
strategy, SP and WLSP become much slower. We

Table 2: Experiment results on graphs with only categorical attributes.

Method MUTAG ENZYMES D&D COX-2 BZR DHFR ER
DM accuracy | 87.89+1.88 | 59.48+0.89 | 79.69+0.64 | 73.97£1.80 75.80£1.10 | 80.54+0.94 | 83.61+1.17
runtime 4’ 27" 1h10’ 29” 317 27" 1’27
PK accuracy | 84.22+1.47 | 46.43£1.26 | 79.27+0.33 | 75.33£2.34 | 76.60£1.77 | 80.51+1.66 | 81.91+0.78
runtime 0.2” 2.9” 627 1.57 0.6” 4.27 0.5”
WL accuracy | 86.61+£1.40 | 53.22£1.30 79.01+£0.43 | 76.13+1.74 | 78.17+1.60 | 81.03+0.82 | 82.52+0.86
runtime 7 28” 8477 17 15” 227 1’107
sp accuracy | 85.94+1.94 | 43.20£1.21 78.26+0.76 73.97£2.33 72.83+1.87 75.18+0.97 76.93+£1.22
runtime 0.4” 37 4h27 1.47 17 27 27
GH accuracy | 82.89+1.69 37.98+1.57 75.80+0.46 71.90£2.15 72.93+1.46 74.00£1.40 78.36+£1.02
runtime 37 12’117 3d20h 4247 3’337 6°50” 9
WILSP |accuracy 85.72+1.96 | 60.92+0.90 - 72.474+1.35 | 77.17+1.51 | 78.95£1.29 | 83.80+0.91
runtime 3’ 1'26” > 2 days 8” 7 127 147
CQM |Accuracy 85.61+1.95 58.68+1.03 - 77.274£0.68 | 71.43+1.91 78.87+0.82 78.80+0.92
runtime 6’5" 8h24’ > 2 days 554" 22°45” 24°31” 4h9’

Table 3: Experiment results on graphs with numerical attributes.

Method MUTAG ENZYMES COX-2 BZR DHFR
DM accuracy | 90.09+1.87 | 70.37+1.57 | 76.17+2.01 | 78.83+1.31 | 80.92+0.94
runtime 11”7 447 19”7 527 327
PK accuracy 83.56+1.15 55.38+1.21 74.80+2.55 72.004+2.41 79.674+1.23
runtime 0.2” 3.3” 0.6” 0.9” 3.47
Sp accuracy 87.11+£1.73 70.90+0.83 72.03+1.17 74.6042.35 77.28+1.14
runtime 2257 19207 6'25” 4’157 8’407
GH accuracy | 85.78+2.50 62.33+1.07 71.2742.87 73.10+£1.76 74.084+1.21
runtime 297 9’ 4’447 3’427 714”7
WLSp |accuracy 89.06j:.1.98 71.38:|:Q.36 74.87+2.74 77.7Q:i:1.84 78.544+1.07
runtime 730”7 32°6” 13 18’55” 43’
cSM | Accuracy 90.61i?.39 68.91iq.92 75.03+1.63 74.37.i2.20 79.72+1.66
runtime 625" 1°45” 6’417 19’167 35'35”
Method ER FR FM MR MM
DM accuracy | 83.77+1.17 | 66.83+1.26 | 61.94+1.34 | 60.79+1.59 | 65.09+1.74
runtime 1’107 57 13”7 57 6”
PK accuracy 78.574+0.93 65.49+1.54 61.03+2.61 58.714+2.10 66.76+1.36
runtime 3.3” 0.5” 1.17 0.7” 0.3”
Sp accuracy 80.89+1.08 64.66+1.21 59.85+1.32 60.44+1.38 65.244+1.04
runtime 13’ 5'18” 5’5" 5 4’407
GH accuracy | 78.48+0.84 63.57+1.70 59.68+1.71 58.62+1.29 60.27+1.54
runtime 939”7 2’527 2’407 2’427 2’33”
WLSP accuracy | 83.73+0.97 66.09:|:?.19 62.62.:|:?.00 59.8§i1.53 67.03+1.41
runtime 49°50” 14°20” 13’46” 13’38” 12’477
cSM | Accuracy 80.16+0.79 | 66.49+1.49 | 60.71+1.77 58.244+2.37 | 65.94+2.45
runtime 41 1’53” 2’507 13’577 14°20”

compute the average ratio between the runtime of each
method and the runtime of DM over all the datasets.
DM is 29 times faster than SP, 18 times faster than
GH, 80 times faster than WLSP, and 53 times faster
than CSM. The other linear-time kernel, PK, is more
efficient than DM because of its simplicity. However, it
is less competitive in accuracy, being among the best
in only two datasets. If we consider all the 17 datasets
in both Table 2 and Table 3, DM is significantly better
than PK on 11 datasets, while PK wins on 2 datasets
(under student t test at p = 0.05).

Comparing the results on the 6 common datasets
(MUTAG, ENZYMES, COX-2, BZR, DBFR, and ER)
in Table 2 and Table 3 shows each kernel’s capability

of exploiting numerical attributes. Particularly, we see
that the accuracy of DM increases on each dataset after
incorporating numerical attributes. On the contrary,
on 5 of the 6 datasets, the accuracy of PK actually
decreases?. This may imply that directly appending the
numerical attributes to the SC descriptors is an effective
way of exploiting numerical attributes. A more in-depth
analysis is of interest for future study.

Another salient characteristic of DM regarding ac-
curacy is that, while the accuracy of other kernels vary

20n COX-2, BZR, DHFR and ER, we run two experiments
for PK: One uses the the inverse of the 3D-distance as edge
weight; the other uses the 3D coordinates as node attributes. PK
performed much worse in the former. We report the latter.

from dataset to dataset, DM consistently gives good ac-
curacy. Even on COX-2 and BZR in Table 2 where DM
seems to fall short, the difference between the accuracy
of DM and the highest is small (3.3% at most).

6 Conclusions

We introduced a linear-time graph kernel which can
handle graphs with both categorical and numerical at-
tributes. From experiments on both synthetic and real-
world datasets, the proposed kernel showed promising
performance in accuracy and efficiency. The proposed
kernel is a good alternative to existing kernels for tasks
involving small graphs. Moreover, it is among the first
kernels applicable to large graphs with rich attributes.

References

[1] A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Gin-
ter, and T. Salakoski. All-paths graph kernel for
protein-protein interaction extraction with evaluation
of cross-corpus learning. BMC' bioinformatics, 9(Suppl
11):S2, 2008.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data
- the story so far, 2009.

[3] D.D. Bonchev and D. H. Rouvray. Chemical graph the-
ory: introduction and fundamentals, volume 1. 1991.

[4] K. Borgwardt and H. Kriegel. Shortest-path kernels on
graphs. In ICDM, 2005.

[5] K. Borgwardt, C. S. Ong, S. Schonauer, S. V. N.
Vishwanathan, A. J. Smola, and H. Kriegel. Protein
function prediction via graph kernels. Bioinformatics,
21(suppl 1):147-i56, 2005.

[6] C. Chang and C. Lin. Libsvm: a library for support
vector machines. TIST, 2(3):27, 2011.

[7] J. H. Chen, E. Linstead, S. J. Swamidass, D. Wang,
and P. Baldi. ChemDB update — full-text search and
virtual chemical space. Bioinformatics, 23(17):2348—
2351, 2007.

[8] F. Costa and K. D. Grave. Fast neighborhood sub-
graph pairwise distance kernel. In JCML, 2010.

[9] A.K. Debnath, R. L. Lopez de Compadre, G. Debnath,
A. J. Shusterman, and C. Hansch. Structure-activity
relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital
energies and hydrophobicity. Journal of Medicinal
Chemistry, 34(2):786-797, 1991.

[10] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne,
and K. Borgwardt. Scalable kernels for graphs with
continuous attributes. In NIPS, 2013.

[11] H. Frohlich, J. K. Wegner, F. Sieker, and A. Zell.
Optimal assignment kernels for attributed molecular
graphs. In ICML, 2005.

[12] T. Gértner, P. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In Learning

Theory and Kernel Machines, pages 129-143. 2003.
[13] K. Grauman and T. Darrell. Approximate correspon-

dences in high dimensions. In NIPS, 2006.

[14] C. Helma, R. D. King, S. Kramer, and A. Srinivasan.
The predictive toxicology challenge 2000-2001. Bioin-
formatics, 17(1):107-108, 2001.

[15] S. Hido and H. Kashima. A linear-time graph kernel.
In ICDM, 2009.

[16] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized
kernels between labeled graphs. In ICML, 2003.

[17] N. Kriege and P. Mutzel. Subgraph matching kernels
for attributed graphs. In ICML, 2012.

[18] U. Losch, S. Bloehdorn, and A. Rettinger. Graph
kernels for rdf data. In the Semantic Web: Research
and Applications, pages 134—148. Springer, 2012.

[19] P. Mahé and J. Vert. Graph kernels based on tree
patterns for molecules. Machine Learning, 75(1):3-35,
2009.

[20] S. Mika, B. Scholkopf, A. J. Smola, KR Miiller,
M. Scholz, and G. Rétsch. Kernel PCA and de-noising
in feature spaces. In NIPS, 1998.

[21] M. Neumann, R. Garnett, C. Bauckhage, and K. Ker-
sting. Propagation kernels: efficient graph kernels from
propagated information. Machine Learning, pages 1—
37, 2015.

[22] M. Neumann, N. Patricia, R. Garnett, and K. Kersting.
Efficient graph kernels by randomization. In Machine
Learning and Knowledge Discovery in Databases, pages
378-393. 2012.

[23] F. Odone, A. Barla, and A. Verri. Building kernels
from binary strings for image matching. IEEE Trans.
on Image Processing, 14(2):169-180, 2005.

[24] B. Scholkopf and A. J. Smola. Learning with kernels.
The MIT Press, 2002.

[25] N. Shervashidze and K. Borgwardt.
kernels on graphs. In NIPS, 2009.

[26] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen,
K. Mehlhorn, and K. Borgwardt. Weisfeiler-lehman
graph kernels. the Journal of Machine Learning Re-
search, 12:2539-2561, 2011.

[27] A. Smalter, J. Huan, Y. Jia, and G. Lushington. GPD:
a graph pattern diffusion kernel for accurate graph clas-
sification with applications in cheminformatics. TCBB,
7(2):197-207, 2010.

[28] J. J. Sutherland, Lee A. O’Brien, and D. F. Weaver.
Spline-fitting with a genetic algorithm: A method
for developing classification structure-activity relation-
ships. Journal of Chemical Information and Computer
Sciences, 43(6):1906-1915, 2003.

[29] J. Vert. The optimal assignment kernel is not positive
definite. arXiv preprint arXiv:0801.4061, 2008.

Fast subtree

