
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
DeepAssist: Deep Knowledge Grounding for Factual and Conversational Natural Language
Interfaces

Permalink
https://escholarship.org/uc/item/5gv1v2h0

Author
Yavuz, Semih

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5gv1v2h0
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

DeepAssist: Deep Knowledge Grounding for

Factual and Conversational

Natural Language Interfaces

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Semih Yavuz

Committee in charge:

Professor Xifeng Yan, Chair
Professor Amr El-Abbadi
Professor William Yang Wang

September 2019

The Dissertation of Semih Yavuz is approved.

Professor Amr El-Abbadi

Professor William Yang Wang

Professor Xifeng Yan, Committee Chair

September 2019

DeepAssist: Deep Knowledge Grounding for

Factual and Conversational

Natural Language Interfaces

Copyright c© 2019

by

Semih Yavuz

iii

To my parents and Aybike, for their unconditional love and

endless support.

iv

Acknowledgements

I would like to thank my advisor, Xifeng Yan, for his support and expertise. It was

his foresight that got me into the area of deep learning and natural language processing,

which I enjoy and ambitiously conduct research on. I am sincerely grateful for his gen-

erous guidance and support over the five years of a quite intensive PhD life. He taught

and always encouraged me to be curious, genuine, and resilient towards research. I will

try to adhere to these core values for the rest of my professional and personal life.

I am also quite grateful to my committee members, Amr El-Abbadi and William

Yang Wang for their invaluable feedbacks throughout my graduate studies.

I would like to thank my mentors; Dilek Hakkani-Tur, Arvind Neelekantan, Chung-

Cheng Chiu, Patrick Nguyen, Yonghui Wu, Abhinav Rastogi, Olya Gurevich, Abdullah

Akce, and all my collaborators; Ben Goodrich, Daniel Duckworth, Naveen Arivazhagan,

Colin Cherry, Wolfgang Macherey, Colin Raffel, Chinnadhurai Sankar, Guan-lin Chao,

Mudhakar Srivatsa, Jindong Chen, Ian Lane, Izzeddin Gur, Yu Su, Honglei Liu, Huan

Sun, Keqian Li, Hanwen Zha, Shiyang Li.

I would like to express my deepest gratitude to my wife, Aybike, for her endless

support and unconditional love. She has always been there to share both the happy and

stressful moments of the PhD life. I also thank my parents and sister for their constant

love and support.

The research in this dissertation is funded in part by the Army Research Labora-

tory under cooperative agreements W911NF09-2-0053, NSF IIS 1528175, and NSF CCF

1548848, and Google AI.

v

Curriculum Vitæ
Semih Yavuz

Education

2014 - 2019 Ph.D. in Computer Science, University of California, Santa Barbara.

2008 - 2013 B.S. in Mathematics, Bilkent University.

2011 - 2012 Education Abroad Program, University of California, Los Angeles.

Experience

11/2018 - 6/2019 Student Researcher, Google Brain, Mountain View.

6/2018 - 9/2018 Research Intern, Google AI, Mountain View.

6/2017 - 9/2017 Research Intern, Google Brain, Mountain View.

6/2016 - 9/2016 Software Engineering Intern, Apple Siri, San Francisco.

6/2015 - 9/2015 Software Engineering Intern, Google Search, Mountain View.

9/2015 - 7/2019 Research Assistant, University of California, Santa Barbara.

9/2014 - 6/2015 Teaching Assistant, University of California, Santa Barbara.

6/2012 - 8/2012 Summer Undergraduate Research Fellow (SURF), California Insti-
tute of Technology.

Selected Publications

SIGDIAL 2019 Semih Yavuz, Abhinav Rastogi, Guan-Lin Chao and Dilek Hakkani-
Tur. DeepCopy: Grounded Response Generation with Hierarchical
Pointer Networks.

SIGDIAL 2019 Guan-Lin Chao, Abhinav Rastogi, Semih Yavuz, Dilek Hakkani-
Tur, Jindong Chen and Ian Lane. Learning Question-Guided Video
Representation for Multi-Turn Video Question Answering.

ACL 2019 Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-
Cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, Colin Raffel.
Monotonic Infinite Lookback Attention for Simultaneous Machine
Translation.

EMNLP 2019 Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind
Neelakantan, Ben Goodrich, Daniel Duckworth, Semih Yavuz, Amit
Dubey, Kyu-Young Kim and Andy Cedilnik. TaskMaster Dialog
Corpus: Toward a Realistic and Diverse Dataset.

ICDM 2019 Keqian Li, Shiyang Li, Semih Yavuz, Hanwen Zha, Yu Su, and
Xifeng Yan. HierCon: Hierarchical Organization of Technical Doc-
uments based on Concepts.

vi

EMNLP 2018 Semih Yavuz, Chung-Cheng Chiu, Patrick Nguyen, Yonghui Wu.
CaLCS: Continuously Approximating Longest Common Subsequence
for Sequence Level Optimization.

EMNLP 2018 Semih Yavuz, Izzeddin Gur, Yu Su, Xifeng Yan. What It Takes to
Achieve 100% Condition Accuracy on WikiSQL.

ACL 2018 Izzeddin Gur, Semih Yavuz, Yu Su, Xifeng Yan. DialSQL: Dialogue
Based Structured Query Generation.

NAACL 2018 Yu Su, Honglei, Liu, Semih Yavuz, Izzeddin Gur, Huan Sun, Xifeng
Yan. Global Relation Embedding for Relation Extraction.

EMNLP 2017 Semih Yavuz, Izzeddin Gur, Yu Su, Xifeng Yan. Recovering Ques-
tion Answering Errors via Query Revision.

EMNLP 2016 Semih Yavuz, Izzeddin Gur, Yu Su, Mudhakar Srivatsa, Xifeng Yan.
Improving Semantic Parsing via Answer Type Inference.

ITW 2013 Batuhan Karagoz, Semih Yavuz, Tracey Ho, Michelle Effros. Ca-
pacity Region of multi-resolution streaming in peer-to-peer net-
works.

Awards and Honors

2019 SIGDIAL 2019 Travel Award, ISCA

2018 Best Paper Award, 2nd Conversational AI Workshop at NeurIPS

2013 CSE Department Fellowship, University of California San Diego

2013 Outstanding Graduate Award, awarded to the top graduating stu-
dent of Faculty of Science

2012 Summer Undergraduate Research Fellowship (SURF), California In-
stitute of Technology

2008 - 2013 TUBITAK Fellow, The Scientific and Technological Research Coun-
cil of Turkey

2008 - 2013 Full Scholarship, awarded by Bilkent University for the entire period
of undergraduate study

2008 Bronze Medalist, International Mathematical Olympiad (IMO)

2008 Silver Medalist, Balkan Mathematical Olympiad (BMO)

2008 Gold Medalist, International Silk Road Mathematical Olympiad

2007 Bronze Medalist, International Mathematical Olympiad (IMO)

2007 Bronze Medalist, Balkan Mathematical Olympiad (BMO)

2006 Bronze Medalist, National Mathematical Olympiad

2005 Gold Medalist, National Akdeniz University Mathematical Olympiad

2004 Silver Medalist, National Junior Mathematical Olympiad

vii

Abstract

DeepAssist: Deep Knowledge Grounding for

Factual and Conversational

Natural Language Interfaces

by

Semih Yavuz

Enabling humans to use natural language to interact with computers towards achiev-

ing certain goals such accessing factual information, finding restaurants, holding engaging

conversations with an AI agent has been one of the central goals of Artificial Intelligence.

Many people use natural language interfaces (NLIs) such as Siri, Google Assistant, and

Alexa in their daily life. Furthermore, there are several more equally promising, but less

explored domains such as health, law, customer service, etc. Hence, developing more

reliable, capable, and extendible NLIs has the potential to lead to the next generation

human computer interaction technologies. Although several promising results have been

achieved in both academia and industry, there are still several challenges to tackle to-

wards realizing such NLIs in full fledge. This thesis tackles the problem of building

reliable NLIs by addressing the central challenges confronted with.

The contributions of this thesis are presented in three main parts. The first part is

covered by the first three chapters and focuses on factual (single-turn) NLIs that aim

to generate a concise answer for factual user queries such as ”Who is the president of

Canada?”. We discuss how our proposed approaches for answer type inference and query

revision of factual queries over a large knowledge base can help improve the performance

of the state-of-the-art NLIs for factoid question answering task. In the third chapter,

we present an in-depth analysis towards better understanding the kinds of language

viii

understanding capabilities required to solve current benchmarks.

In the second part, we investigate conversational NLIs that can generate responses

to user queries in a multi-turn fashion. With the goal of making these responses more

informative and engaging for users, the main contribution of this study is to introduce

principled neural architecture that can generate responses grounded on a relevant external

knowledge by hierarchical attention and copy mechanisms.

Learning to generate coherent and engaging natural language from data is one of the

most crucial capabilities for the next generation NLIs that can speak with users. In the

last part of this thesis, we focus on a more foundational line of research where we propose

and discuss a novel training objective for conditional language generation models.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Introduction 1
1.1 Factual Natural Language Interfaces . 2
1.2 Conversational Natural Language Interfaces 4
1.3 Novel Training Objective for Improved Neural Conditional Language Gen-

eration . 6

2 Improving Semantic Parsing via Answer Type Inference 8
2.1 Introduction . 8
2.2 Related Work . 10
2.3 Background . 12
2.4 Question Abstraction . 12
2.5 Conversion to Statement Form . 16
2.6 Answer Type Prediction . 18
2.7 Reranking by Answer Type . 20
2.8 Experiments . 21
2.9 Conclusion . 27

3 Recovering Question Answering Errors via Query Revision 28
3.1 Introduction . 28
3.2 Question Revisions . 30
3.3 Model . 32
3.4 Alternative Solutions . 34
3.5 Experiments . 35
3.6 Related Work . 39
3.7 Conclusion . 40

x

4 What It Takes to Achieve 100% Condition Accuracy on WikiSQL 41
4.1 Introduction . 41
4.2 Background . 43
4.3 WikiSQL Data Analysis . 44
4.4 Our Solutions . 47
4.5 Experiments . 55
4.6 Related Work . 59
4.7 Conclusion . 61

5 Grounded Response Generation with Hierarchical Pointer Networks 62
5.1 Introduction . 62
5.2 Related Work . 64
5.3 Model . 65
5.4 Experiments . 73
5.5 Conclusion . 81

6 Improved Sequence-Level Optimization with CaLcs 83
6.1 Introduction . 83
6.2 Continuously Approximating Longest Common Subsequence Metric . . . 86
6.3 Model . 95
6.4 Experiments . 98
6.5 Related Work . 101
6.6 Conclusion . 103

7 Conclusion and Future Directions 104
7.1 Conclusion . 104
7.2 Future Directions . 106

Bibliography 108

xi

Chapter 1

Introduction

Over the past decades, the amount of digital data has been exponentially growing. Large

amount of worlds information is now digitally available and stored in various kinds of

digital forms including structured databases, semi-structured web tables, and unstruc-

tured text articles. As a simple example, while the number of English Wikipedia articles

was around 20,000 in 2002, this number is now close to 6,000,000 based on the last

publicly available report by Wikipedia. Although the growth of digital data is a quite

beneficial step for the development of modern society, massive scale and heterogeneity

of the data prevent non-expert users to effectively access the information for problem

solving and decision making. This becomes an even more serious problem and puts a

huge barrier between non-expert users and data especially in the scenarios where even

accessing the information requires learning specific query languages and programming,

hence an extensive and costly training. As a step towards removing this huge barrier

between non-expert users and data, this thesis investigates natural language interfaces

(NLIs), a research direction that aims to enhance user experience by enabling humans to

use natural language to interact with computers and data.

Enabling humans to use natural language to interact with computers towards achiev-

1

Introduction Chapter 1

ing certain goals such accessing factual information, booking flights or finding restaurants,

holding engaging conversations with an AI agent has been one of the most central and

elusive goals of Artificial Intelligence research. Many people use natural language inter-

faces (NLIs) such as Siri, Google Assistant, and Alexa in their daily life. Furthermore,

there are many more equally promising and impactful, but relatively less explored do-

mains such as health, real estate, customer service, etc. Hence, developing more reliable,

capable, and extendible natural language interfaces has the potential to lead to the next

generation human computer interaction technologies through applications like question

answering and dialogue systems. Although several promising results have been achieved

in both academia and industry, there are still several challenges and open research prob-

lems including population, representation, and better incorporation of knowledge towards

realizing such natural language interfaces in full fledge. This thesis tackles the problem

of knowledge grounding for building reliable natural language interfaces by addressing

the central challenges induced.

In this thesis, we study deep knowledge grounding for natural language interfaces,

a class of natural language grounding models built on top of deep neural networks.

These neural models have proven to perform better than traditional rule-based or hand-

crafted feature-based models on various modern language understanding benchmarks.

The contributions of this thesis are presented in three main parts. As introduced in more

detail below, the first two parts are more application-oriented while the last part is more

foundational line of study.

1.1 Factual Natural Language Interfaces

In Chapters 2-4, we focus on factual (single-turn) NLIs that aim to generate a concise

answer for factual user queries such as ”Who is the president of United States?”. Our

2

Introduction Chapter 1

common goal throughout these chapters is to better understand the challenges posed

by this problem, identify key bottlenecks of the existing approaches, and propose viable

solutions that bridge these gaps leading to more accurate and reliable models. In par-

ticular, in the second and third chapters, we discuss how our proposed approaches for

answer type inference and query revision of factual queries over a large knowledge base

(KB) can help improve the performance of the best available NLIs for factoid question

answering task. In the fourth chapter, on the other hand, we begin our study with a

comprehensive analysis over a recent benchmark to provide a more holistic overview of

the kinds of language understanding capabilities required for solving natural language to

structured query translation. Subsequently, we propose several alternative approaches to

overcome the identified challenges along with a discussion on the extent to which some

of these bottlenecks for successful translation are addressed.

In Chapter 2, we show the possibility of inferring the answer type before solving

a factoid question and leveraging the type information to improve semantic parsing.

By replacing the topic entity in a question with its type, we are able to generate an

abstract form of the question, whose answer corresponds to the answer type of the original

question. A bidirectional LSTM model is built to train over the abstract form of questions

and infer their answer types. Using the predicted type information to rerank the logical

forms returned by AgendaIL [1], one of the leading semantic parsers, we are able to

improve the F1-score from 49.7% to 52.6% on the WebQuestions benchmark.

In Chapter 3, we start by observing that existing factoid QA systems often lack a

post-inspection component that can help models recover from their own mistakes. Hence,

in this study [2], we propose to cross-check the corresponding KB relations behind the

predicted answers and identify potential inconsistencies. Instead of developing a new

model that accepts evidences collected from these relations, we choose to plug them

back to the original questions directly and check if the revised question makes sense or

3

Introduction Chapter 1

not. A bidirectional LSTM is applied to encode revised questions. We develop a scoring

mechanism over the revised question encodings to refine the predictions of a base QA

system. This approach can improve the F1 score of Stagg [3], one of the leading QA

systems, from 52.5% to 53.9% on WebQuestions benchmark.

In Chapter 4, we present an in-depth analysis [4] towards better understanding the

depth and kinds of language understanding capabilities required to solve current bench-

mark NLI tasks. More precisely, we investigate WikiSQL benchmark, a newly released

dataset for studying the natural language sequence to SQL translation problem. The

SQL queries in WikiSQL are simple: Each involves one relation and does not have any

join operation. Despite of its simplicity, none of the publicly reported structured query

generation models can achieve a satisfactory enough performance to be reliably put in

a practical use. In this study, we ask two questions, “Why is the accuracy still low for

such simple queries?” and “What does it take to achieve 100% accuracy on WikiSQL?”

To limit the scope of our study, we focus on the WHERE clause in SQL. The answers will

help us gain insights about the directions we should explore in order to further improve

the translation accuracy. We will then investigate alternative solutions to realize the

potential ceiling performance on WikiSQL. Our proposed solution can reach up to 88.6%

condition accuracy on the WikiSQL dataset.

1.2 Conversational Natural Language Interfaces

A large portion of tasks that humans may desire to complete through an interaction

with an agent requires the capability of holding coherent and engaging enough conver-

sation with users. Some more concrete examples of tasks in this setting include booking

flights, finding restaurants, having a casual or intellectual conversation with an AI agent.

To this end, in the second part of this thesis, we turn our attention to conversational

4

Introduction Chapter 1

natural language interfaces that can generate responses to user queries in a multi-turn

fashion. More specifically, we focus on addressing commonly observed key problems of

model generated responses lacking factual information, hence resulting in short and dull

turns. With the goal of making these responses more informative and engaging for users,

the main contribution of this study is to introduce principled neural architecture that can

generate responses grounded on a relevant external knowledge by hierarchical attention

and copy mechanisms.

Recent advances in neural sequence-to-sequence models have led to promising results

for several language generation-based tasks, including dialogue response generation, sum-

marization, and machine translation. However, these models are known to have several

problems, especially in the context of chit-chat based dialogue systems: they tend to

generate short and dull responses that are often too generic. Furthermore, these models

do not ground conversational responses on knowledge and facts, resulting in turns that

are not accurate, informative and engaging for the users. In Chapter 5, we propose and

experiment with a series of response generation models that aim to serve in the gen-

eral scenario where in addition to the dialogue context, relevant unstructured external

knowledge in the form of text is also assumed to be available for models to harness. Our

proposed approach extends pointer-generator networks [5] by allowing the decoder to hi-

erarchically attend and copy from external knowledge in addition to the dialogue context.

We empirically show the effectiveness of the proposed model compared to several base-

lines including [6, 7] through both automatic evaluation metrics and human evaluation

on ConvAi2 dataset.

5

Introduction Chapter 1

1.3 Novel Training Objective for Improved Neural

Conditional Language Generation

Learning to generate coherent and engaging natural language from data is one of

the most crucial capabilities for the next generation NLIs that can speak with users.

This capability becomes particularly important for the conversational settings, where

the user experience relies completely on their interaction with the computer using the

natural language. Hence, the quality of model generated response in natural language

plays a significant role in determining whether these models can be put in a real use.

Contributions to advance the field of conditional language generation have also great

impacts on several other downstream tasks such machine translation, text summarization,

and image captioning, which can eventually become a part of a more advanced NLI

system equipped with such capabilities. Although neural sequence-to-sequence models

are shown to be very promising approaches for conditional text generation, they are

reported to still suffer from the discrepancy between their training and inference time

objectives that leads to particular drawbacks. Toward addressing these shortcomings,

in Chapter 6 of this thesis, we focus on a more foundational line of research where we

propose and discuss a novel training objective for neural conditional language generation

models.

Maximum-likelihood estimation (MLE) is one of the most widely used approaches for

training structured prediction models for text-generation based natural language process-

ing applications. However, besides exposure bias, models trained with MLE suffer from

wrong objective problem where they are trained to maximize the word-level correct next

step prediction, but are evaluated with respect to sequence-level discrete metrics such as

ROUGE and BLEU. Several variants of policy-gradient methods address some of these

problems by optimizing for final discrete evaluation metrics and showing improvements

6

Introduction Chapter 1

over MLE training for downstream tasks like text summarization and machine transla-

tion. However, policy-gradient methods suffers from high sample variance, making the

training process very difficult and unstable. In this study, we present an alternative direc-

tion towards mitigating this problem by introducing a new objective (CaLcs) based on

a differentiable surrogate of longest common subsequence (LCS) measure that captures

sequence-level structure similarity. Experimental results on abstractive summarization

and machine translation validate the effectiveness of the proposed approach.

7

Chapter 2

Improving Semantic Parsing via

Answer Type Inference

2.1 Introduction

Large scale knowledge bases (KB) like Freebase [8], DBpedia [9], and YAGO [10] that

store the world’s factual information in a structured fashion have become substantial

resources for people to solve questions. KB-based factoid question answering (KB-QA)

that attempts to find exact answers to natural language questions has gained much

attention recently. KB-QA is a challenging task due to the representation variety between

natural language and structural knowledge in KBs.

As one of the promising KB-QA techniques, semantic parsing maps a natural language

question into its semantic representation (e.g., logical forms). It uses a logical language

with predicates closely related to KB schema, and constructs a dictionary that maps

relations to KB predicates. The problem then reduces to generating candidate logical

forms, ranking them, and selecting one to derive the final answer.

In this work, we propose an answer type prediction model that can improve the rank-

8

Improving Semantic Parsing via Answer Type Inference Chapter 2

Ranking F1 # Improved Qs

AgendaIL 49.7 -
w/ Oracle Types@10 57.3 +234
w/ Oracle Types@20 58.7 +282
w/ Oracle Types@50 60.1 +331
w/ Oracle Types@All 60.5 +345

Table 2.1: What if the correct answer type is enforced? On WebQuestions, we remove
those with incorrect answer types in the top-k logical forms returned by AgendaIL
[1], a leading semantic parsing system, and report the new average F1 score as well
as the number of questions with an improved F1 score.

ing of the candidate logical forms generated by semantic parsing. The type of an entity,

e.g., person, organization, location, carries very useful information for various down-

stream natural language processing tasks such as co-reference resolution [11], knowledge

base population [12], relation extraction [13, 14], and question answering [15]. Although

the potential clues for answer type from the question has been employed in the recent

work AgendaIL [1] at the lexical level, Table 2.1 suggests that there is yet a large room for

further improvement by explicitly enforcing answer type. Inspired by this observation,

we aim to directly predict the KB type of the answer from the question. In contrast

to a small set of pre-defined types as used in previous answer type prediction methods

(e.g., [16]), KBs could have thousands of fine-grained types. Take “When did Shaq come

into the NBA?” as a running example. We aim to predict the KB type of its answer as

SportsLeagueDraft.1

The value of typing answers in a fine granularity can be appreciated from two per-

spectives: (1) Since each entity in a KB like Freebase has a few types, answer type could

help prune answer candidates, (2) since each predicate in the KB has a unique type

schema, answer type can help rank logical forms.

The key challenge of using answer types to re-rank logic forms and hence their corre-

sponding answers, is that it shall be done before the answer is found. Otherwise, there

1KB type of answer (“1992 NBA Draft”) in the context.

9

Improving Semantic Parsing via Answer Type Inference Chapter 2

is no need to further infer its type. Inspired by the observation that the answer type of

a question is invariant as long as the type of the topic entity (Shaq) remains the same

(DraftedAthlete), we define abstract question as the question where the topic entity

mention is replaced by its corresponding KB type. For the aforementioned example, the

best candidate abstract question is “When did DraftedAthlete come into the NBA?”

and the answer to this question is SportsLeagueDraft. Hence, we can reduce the answer

type prediction task to abstract question answering.

The first step in our method is question abstraction, in which we generate candidate

abstract questions based on the context of question and its candidate topic entities. We

build a bidirectional LSTM network over the question that recursively computes vector

representations for the past and future contexts of an entity mention. Based on these

context representations, we predict the right type of the entity mention. Next, in order

to better utilize the syntactic features of the question, we convert the question form into

a normal statement form by using dependency tree of the question. For the running ex-

ample, after performing the conversion, the abstract question becomes “DraftedAthlete

come when into the NBA?” We then construct a bidirectional LSTM neural network over

this final representation of the question and predict the type of the answer. Using the

inferred answer type, we are able to improve the result of AgendaIL [1] on WebQuestions

[17] from 49.7% to 52.6%.

2.2 Related Work

Freebase QA has been studied from two different perspectives: grounded QA systems

that work directly on KBs and general purpose ungrounded QA systems. [18] generates

KB agnostic intermediary CCG parses of questions which are grounded afterwards given

a KB. [19] uses a vector space embedding approach to measure the semantic similarity

10

Improving Semantic Parsing via Answer Type Inference Chapter 2

between question and answers. [20], [21] and [3] exploit a graph centric approach where

a grounded subgraph query is generated from question and then executed against a KB.

In this work, we propose a neural answer type inference method that can be incorporated

in existing grounded semantic parsers as a complementary feature to improve ranking of

the candidate logical forms.

[1] uses lambda DCS logical language with predicates from Freebase. In their ap-

proach, types are included as a part of unary lexicon for building the logical forms from

natural language questions. However, no explicit type inference is exploited. We show

that such information could indeed be useful for selecting logical forms.

There have been a series of studies investigating the expected answer type of a ques-

tion in different contexts such as [16], [22], and [23]. Most of these approaches classify

the questions into a small set of types. Even when the set of classes is more fine-grained,

e.g., 50 classes in [16], they cannot be used for our purpose as it would require nontrivial

mapping between these categories and a much larger number of KB types. Furthermore,

these methods often rely on a rich set of hand crafted features and external resources.

[24] uses Freebase types to learn the relevance of candidate answers to a given question

via an association model. Their model directly ranks the answer candidates by utilizing

types, whereas ours ranks the logical forms via predicting answer type. In this sense, we

are able to take advantage of both logical form and type inference. [25] exploits answer

typing to facilitate knowledge graph search, but their input is graph query instead of

natural language question. They predict answer types using additional relevance feedback

for graph queries, while our algorithm directly infers answer types from input questions.

On the question abstraction side, our work is related to a recent study [26] which classifies

entity mentions into 22 types derived from DBpedia. They use a multilayer perceptron

over a fixed size window and a recurrent neural network for the representations of context

and entity mention, respectively.

11

Improving Semantic Parsing via Answer Type Inference Chapter 2

2.3 Background

The knowledge base we work with consists of triples in subject-predicate-object form.

It can be represented as K = {(e1, p, e2) : e1, e2 ∈ E , p ∈ P}, where E denotes the

set of entities (e.g., ShaquilleOneal), and P denotes the set of binary predicates (e.g.,

Drafted). A knowledge base in this format can be visualized as a graph where entities

are nodes, and predicates are directed edges between entities. Freebase is used in this

work as the knowledge base. It has more than 41M entities, 596M facts, and 24K types.

Types are an integral part of the Freebase schema. Each entity e in Freebase has a set

of categories (types) it belongs to, and this information can be obtained by checking the

out-going predicates (Type.Object.Type) from e. For example, ShaquilleOneal has 20

Freebase types including Person, BasketballPlayer, DraftedAthlete, Celebrity, and

FilmActor. For a specific question involving ShaquilleOneal, among these types, only

a few will be relevant.

Each predicate in Freebase is from a subject entity to an object entity, and has a

type signature. It has a unique expected types for its subject and object, independent

of the individual subject and object entities themselves. For example, the predicate

People.Person.Profession expects its subject to be of Person type and its object to

be of Profession type.

2.4 Question Abstraction

The type of the topic entity rather than the entity itself is essential for inferring the

answer type, which is invariant as the topic entity changes within the same class. For

example, independent of which NBA player (with DraftedAthlete type) is the topic

entity of this question “When did Shaq come into the NBA”, the type of the answer is

12

Improving Semantic Parsing via Answer Type Inference Chapter 2

always going to be SportsLeagueDraft in Freebase. Predicting this distinct type among

the large number of candidate types in Freebase is a challenging task. We propose a

two-step solution for this problem. In the first step, we compute a confidence score for

each possible KB type for a given topic entity using a bidirectional LSTM network. The

second step prunes candidate types using the entity type information in Freebase.

2.4.1 Formulation

Given a natural language question and its topic entity mention, question abstraction is

to predict types of the mention in the question context. Formally, let q = (x1, x2, . . . , xL)

denote the question, m be the topic entity mention in q, and T = {t1, t2, . . . , tK} the set

of all types in KB. Given q and m, we compute a probability distribution o ∈ RK×1 over

T , where ok denotes the likelihood of tk being the correct type of m in q.

2.4.2 Scoring Topic Entity Types with LSTM

Model. We formulate question abstraction as a classification problem. A bidirec-

tional LSTM network is built over q whose output is computed from the nodes that

correspond to the words of m. Fig. 2.1 illustrates the model for the question “When did

Shaq come into the NBA?”

Let u(x) ∈ RD×1 denote the vector space embedding of word x. Forward and back-

ward outputs
−→
h l,
←−
h l ∈ RDh×1 of bidirectional LSTM are recursively computed by

−→
h l,
−→c l = LSTM(u(xl),

−→
h l−1,

−→c l−1) (2.1)

←−
h l,
←−c l = LSTM(u(xl),

←−
h l+1,

←−c l+1) (2.2)

as described in [27], where −→cl ,←−cl ∈ RDh×1 stand for LSTM cell states.

13

Improving Semantic Parsing via Answer Type Inference Chapter 2

Figure 2.1: Bi-directional LSTM model for question abstraction. Green circles repre-
sent the forward sequence’s hidden vectors, while the red circles denote the backward
sequence’s. shaq (the topic entity mention) is the single output node of the network.

To encode the context of m to the final output, we apply an AVERAGE pooling layer

when computing the output. For each output node r ∈ [i, j] (i and j correspond to the

starting and ending indices of m in q), we compute final forward and backward outputs

by

−→vr = AV G(
−→
h1, . . . ,

−→
hr) (2.3)

←−vr = AV G(
←−
hr , . . . ,

←−
hn), (2.4)

where AV G stands for average pooling.

14

Improving Semantic Parsing via Answer Type Inference Chapter 2

We take the average of outputs at each output node

−→v = AV G(−→vi , . . . ,−→vj) (2.5)

←−v = AV G(←−vi , . . . ,←−vj) (2.6)

as the forward and backward outputs of the whole network. The final representation v

of the network is obtained by concatenating −→v and ←−v .

For question q, the probability distribution o over types is computed by

s(q) = Whyv (2.7)

o(q) = softmax(s(q)), (2.8)

where Why ∈ RK×(2Dh) since v is the concatenation of two vectors of dimension Dh, where

Dh is the hidden vector dimension.

Objective Function and Learning. Given an input question q with a topic entity

mention m, LSTM network computes the probability distribution o(q) ∈ RK×1 as in (2.8).

Let y(q) ∈ RK×1 denote the true target distribution over T for q, where yk(q) = 1/n if

tk is a correct type, yk(q) = 0 otherwise, and n is the number of correct types. We use

the cross-entropy loss function between y(q) and o(q), and define the objective function

over all training data as

J(θ) = −
∑
q

K∑
k=1

yk(q) log ok(q) +
λ

2
‖θ‖2 ,

where λ denotes the regularization parameter, and θ represents the set of all model

parameters to be learned. We use stochastic gradient descent with RMSProp [28] for

minimizing the objective function.

15

Improving Semantic Parsing via Answer Type Inference Chapter 2

2.4.3 Pruning

Let Te represent the set of KB types for entity e. We define the set of candidate types

for entity mention m as

Cm =
⋃
e

Te,

where e is a possible match of m in KB. We only need to score the types in Cm. Once the

hidden representation v is computed by LSTM, we use submatrix Why[Cm] that consists

of rows of Why corresponding to the types in Cm as the scoring matrix in (2.7). This

returns the final scores for candidate types in Cm.

2.5 Conversion to Statement Form

The objective of the conversion is to canonicalize question form into declarative state-

ment (subject-relation-object) form. We use a simple pattern-based method that relies

on dependency tree2 [29]. It decides whether the sub-trees of the root need reordering

based on their dependency relations3.

Before obtaining the dependency tree, we retrieve named entity (NER) tags of the

question tokens. We replace a group of question tokens corresponding a named entity

with a special token, ENTITY, to simplify the parse tree. In Figure 2.2, the question

is first transformed to “what boarding school did ENTITY go to?” Each question is

represented by the root’s dependency relations to its sub-trees in the original order, e.g.,

(dep, aux, nsubj, nmod). We cluster all these sequences and detect the patterns that

appear at least 5 times in the training data. These patterns are then manually mapped

to their corresponding conversion (pattern vs. mapping in Figure 2.2).

2We use Stanford CoreNLP dependency parser
3http://universaldependencies.org

16

Improving Semantic Parsing via Answer Type Inference Chapter 2

Figure 2.2: Conversion: red relations form the input pattern

Once the recomposition order of the sub-trees is determined by the conversion map-

ping, we finalize the reordering of the question tokens by keeping the order of words

within the sub-trees same as the original order in the question. The example in Figure

2.2 becomes “ENTITY go to what boarding school” with its corresponding sub-tree con-

version mapping (nsubj, root, nmod, dep). If no mapping is created for a pattern, we

keep the order of the words exactly as they occur in the original question form.

The motivation behind conversion is to overcome the potential semantic confusion

stemming from varities in syntactic structures. To exemplify, consider two hypothetical

questions “who plays X in Y?” and “who does Z play in Y?”, where X is a FilmCharacter,

Y is a Film, and Z is a FilmActor, with answer types FilmActor and FilmCharacter,

respectively. With conversion, we aim to transform second question into “Z play who in

17

Improving Semantic Parsing via Answer Type Inference Chapter 2

Pattern Conversion

(cop, nsubj) (nsubj, root, cop)
who was anakin skywalker? anakin skywalker was who
(dobj, aux, nsubj) (nsubj, root, dobj)
what language does australians speak? australians speak what language
(dobj, aux, nsubj, nmod) (nsubj, root, dobj, nmod)
what did edward jenner do for a living? edward jenner do what for a living
(nsubj, dobj) (nsubj, root, dobj)
who played bilbo baggins? who played bilbo baggins
(advmod, aux, nsubj) (nsubj, root, advmod)
where did benjamin franklin died? benjamin franklin died where

Table 2.2: Top-5 most common patterns with mappings.

Y”, while leaving the first one as it is. Noting that the order of words affects the output

of our answer type inference network, our intuition is to let the model distinguish better

between such questions using their syntactic structure in this way.

2.6 Answer Type Prediction

Given a reordered question with topic entity mention m, and a topic entity type

te ∈ T , our task is to predict a probability distribution o ∈ RK×1 over the answer types.

A topic entity type te ∈ T is described as a set of words, {xi}. Let u(xi) ∈ RD×1

represent the vector space embedding of xi, the representation of te is computed by the

average encoding,

u(te) =
1

|{xi}|
∑
xi

u(xi). (2.9)

As the first step, we replace the words of entity mention m with topic entity type

te, and obtain a new input word sequence r. te is treated as one word and encoded

by Eq. 2.9. We construct a bidirectional LSTM network over this input sequence r,

whose output node corresponds to the question word. The output of the network is

18

Improving Semantic Parsing via Answer Type Inference Chapter 2

Figure 2.3: Bi-directional LSTM model over the final representation of the question.
Green and red circles are corresponding to forward and backward hidden vectors,
respectively. The output node is when.

a probability distribution over types denoting the likelihood of being the answer type.

Figure 2.3 shows how the network is constructed for the running example. The same

average pooling described in Section 2.4.2 is applied to obtain the final forward and

backward output vectors −→v and←−v from the output node (this time, single output node)

of network. The final output vector v for prediction is obtained by concatenating −→v ,

and ←−v . The distribution o is computed by a standard softmax layer. The learning is

performed by the same cross-entropy loss and objective function described in Section

2.4.2.

19

Improving Semantic Parsing via Answer Type Inference Chapter 2

2.7 Reranking by Answer Type

We now describe how to rerank logical forms based on our answer type predictions.

Reranking Model. Let l1, l2, . . . , lN be the logical forms generated for question q by

a semantic parser, e.g., AgendaIL. Each logical form has a score from the semantic parser.

Meanwhile, our answer type prediction model generates a score for the answer type of

each logical form. Therefore, we can represent each logical form li using a pair of scores:

the score from semantic parser and the score from our type prediction model. Suppose

we know which logical forms are “correct”, using the two scores as input, we train a

logistic regression model with cross-entropy loss to learn a binary classifier for predicting

the correct logical forms. We rerank the top-k logical forms using their probability

computed by the trained logistic regression model, and select the one with the highest

probability. Finally, we run the selected logical form against KB to retrieve the answer.

We select the optimal value of k from [1, N] using the training data. For AgendaIL on

WebQuestions, we find that k = 80 gives the best result.

Training Data Selection. We now discuss which logical forms are “correct”, i.e.,

how to select the positive examples to train the logistic regression model. Because a

question can have more than one answer, we use the F1 score, the harmonic mean of

precision and recall, to evaluate logical forms. We select all the logical forms with F1 > 0

as the set of positive examples. However, taking all the logical forms with F1 = 0 as

negative examples will not work well. Even though the F1 score of a logical form is 0,

its answer type could still be correct. Therefore, we use the following trick: If there is a

positive example with answer type t, we do not treat any other logical form with answer

type t as negative example. The logical forms having F1 = 0, with the aforementioned

exception, are then selected as the final set of negative examples. Our empirical study

shows this trick works well.

20

Improving Semantic Parsing via Answer Type Inference Chapter 2

2.8 Experiments

In this section, we describe the datasets, model training, and experimental results.

2.8.1 Dataset and Evaluation Metrics

Datasets. To evaluate our method, we use the WebQuestions dataset [17], which

contains 5,810 questions crawled via Google Suggest API. The answers to these questions

are annotated from Freebase using Amazon Mechanical Turk. The data is split into

training and test sets of size 3,778 and 2,032 questions, respectively. This dataset has

been popularly used in question answering and semantic parsing.

The SimpleQuestions [30] contains 108,442 questions written in natural language by

English-speaking human annotators. This dataset is a collection of question/Freebase-

fact pairs rather than question/answer pairs. The data4 is split and provided as train-

ing(75,910), test(21,687), and validation(10,845) sets. Each question is mapped to the

subject, relation, and object of the corresponding Freebase fact. This dataset is only

used for training the question abstraction model.

Training Data Preparation. Since WebQuestions only provides question-answer

pairs along with annotated topic entities, we need to figure out the type information,

which can be used as training data. We obtain simulated types as follows: We retrieve

1-hop and 2-hop predicates r from/to annotated topic entity e in Freebase. For each

relation r, we query (e, r, ?) and (?, r, e) against Freebase and retrieve the candidate

answers ra. The F1 value of each candidate answer ra is computed with respect to the

annotated answer. The subject and object types of the relation r with the highest F1

value is selected as the simulated type for the topic entity and the answer. When there are

multiple such relations, we obtain multiple simulated types for topic entity and answer,

4http://fb.ai/babi.

21

Improving Semantic Parsing via Answer Type Inference Chapter 2

one from each relation. We treat each of them as correct with equal probability.

Candidate Logical Forms for Evaluation. To obtain candidate logical forms,

we train AgendaIL [1] on WebQuestions with beam size 200 using the publicly available

code5 by the authors.

Evaluation Metric. We report average F1 score of the reranked logical forms using

the predicted answer types as the main evaluation metric. It is a common performance

measure in question answering as questions might have multiple answers.

2.8.2 Experimental Setup

We use 50 dimensional word embeddings, which are initialized by the 50 dimensional

pre-trained word vectors6 from GloVe [31], and updated in the training process. Hyper-

parameters are tuned on the development set. The size of the LSTM hidden layer is set

at 50. We use RMSProp [28] with a learning rate of 0.005 and mini-batch size of 32 for

the optimization. We use a dropout layer with probability 0.5 for regularization. We

implemented the LSTM networks using Theano [32].

Identifying Topic Entity. We use Stanford NER tagger [29] to identify topic

entity span for both training and test data. For entity linking, annotated mention span

is mapped to a ranked list of candidate Freebase entities using Freebase Search API for

the test data. For the training data, we use the gold Freebase topic entity linkings of

each question provided by WebQuestions, coming from its question generation process.

Question Abstraction. We first pre-train the LSTM model described in Section

2.4.2 on the SimpleQuestions dataset. Then, we update the pre-trained model on the

training portion of WebQuestions data where the simulated topic entity types are used

as true labels. We use the detected topic entity mentions to obtain candidate matching

5https://github.com/percyliang/sempre
6http://nlp.stanford.edu/projects/glove/

22

Improving Semantic Parsing via Answer Type Inference Chapter 2

Model F1

[17] 35.7
[33] 33.0
[34] 39.9
[35] 37.5
[19] 39.2
[36] 41.3
[37] 40.8
[38] 44.3
AgendaIl [1] 49.7
Stagg [3] 52.5
[39] 50.3
[40] 53.3
Stagg [3] (w/ Freebase API) 48.4
Stagg [3] (w/o ClueWeb) 50.9
[40] (w/o Wikipedia) 47.1
Our Approach (w/o SimpleQuestions) 51.6
Our Approach 52.6

Table 2.3: Comparison of our reranking-by-type system with several existing works
on WebQuestions.

entities in the KB using Freebase Search API. We use top-3 entities returned for the

pruning step of Question Abstraction on the test examples.

Answer Type Prediction. We train Answer Type Prediction model using the

simulated topic entity and answer types for each question. We perform the answer type

prediction on test data using the predicted topic entity type.

2.8.3 Results

Our main result is presented in Table 3.3. Our system adds 2.9% absolute improve-

ment over AgendaIL, and achieves 52.6% in F1 measure. staged-15 achieve 52.5% by

leveraging ClueWeb and S-MART [41], an advanced entity linking system. text-ev-16

achieve 53.3% by leveraging Wikipedia and S-MART. If tested without Clueweb/Wikipedia/S-

MART, their F1 scores are 48.4% and 47.1%, respectively. When our method is tested

23

Improving Semantic Parsing via Answer Type Inference Chapter 2

Question T.E Type Prediction A.T Prediction AgendaIL A.T Gain

who inspired obama? InfluenceNode InfluenceNode UsVicePresident 1.0
what are some books that mark twain wrote? Author WrittenWork InfluenceNode 0.3
who won the league cup in 2002? SportsAwardType SportsAwardWinner SportsLeagueSeason 1.0
what type of government does france use? Country FormOfGovernment Government 1.0
where are the new orleans hornets moving to? SportsTeam SportsFacility Location 1.0
who did australia fight in the first world war? MilitaryCombatant MilitaryCombatant MilitaryCommander 0.4
what guitar does corey taylor play? Musician MusicalInstrument Organization 0.33
what region is turkey considered? Location AdministrativeDivision Beer 0.93
what country does rafael nadal play for? Athlete Country OlympicDiscipline 1.0

Table 2.4: Example questions where our type prediction helps select a better logical
form. Gain column shows the F1 gain: the difference between the F1 score of the
logical form we select and the top ranked logical form from AgendaIL. T.E and A.T
are abbreviations for topic entity and answer type, respectively.

Questions and Selected Logical Forms

1. what are some books that mark twain wrote?
AgendaIL: (MarkTwain - Influence.InfluenceNode.InfluencedBy - ?)
Ours: (MarkTwain - Book.Author.WorksWritten - ?)
2. what guitar does corey taylor play?
AgendaIL: (? - Organization.Organization.Founders - CoreyTaylor)
Ours: (CoreyTaylor - Music.GroupMember.InstrumentsPlayed - ?)
3. what type of government does france use?
AgendaIL: (France - Government.GovernmentalJurisdiction.Government - ?)
Ours: (France - Location.Country.FormOfGovernment - ?)

Table 2.5: Comparison of selected logical forms for some examples. Logical forms
are simplified and canonicalized into (subject - predicate - object) format for better
readibility, where ? corresponds to answer nodes.

without using SimpleQuestions data for pretraining question abstraction module, it at-

tains F1 score of 51.6%.

In Table 2.4, we present some question examples where our method can select a

better logical form. Take the question “who did [australia] fight in the first world war?”

as an example. Our topic entity type prediction module returns MilitaryCombatant,

StatisticalRegion, and Kingdom as the top-3 results for the type of “australia” in this

question, which indicates that it exploits the context of this short question successfully.

The abstract question is “[military combatant] fight who in the first world war?” for which

our system returns MilitaryCombatant, MilitaryConflict, and MilitaryCommander

as answer types with probabilities 0.73, 0.25, and 0.005, respectively, MilitaryCombatant

24

Improving Semantic Parsing via Answer Type Inference Chapter 2

Method F1 Gain Loss

Base 50.3 69 47
Base + Conv 50.5 96 56
Base + Abs 52.2 184 87
Base + Abs + Conv 52.6 203 93
AgendaIL 49.7 - -

Table 2.6: Ablation analysis of modules of our method. Gain/Loss columns denote
the number of questions where the F1 score of our selected logical form is greater/less
than that of the top ranked logical forms from AgendaIL.

is indeed the right answer type. This example shows the effect of abstraction in channeling

the context in the most relevant direction to find the right answer type. In Table 2.5, we

provide a comparison of the selected logical forms based on AgendaIL rankings and our

rankings.

2.8.4 Ablation Analysis

In this section, we evaluate the effect of individual components of our model. Note

that the answer type prediction model described in Section 2.6 can work independently

from question abstraction and form conversion. We develop the following variants i)

Base, ii) Base + Conversion, iii) Base + Abstraction, iv) Base + Abstraction + Con-

version, where Base corresponds to a model that infers answer types without employing

abstraction or form conversion. We train/test each variant separately. Table 2.6 shows

each component contributes and question abstraction does help boost the performance.

Suppose we perform answer type prediction without question abstraction, and feed

“[australia] fight who in the first world war?” into the answer type prediction model

(Base + Conversion). The predicted answer type is Location. Unfortunately, there

is neither a 1-hop or 2-hop correct relation from/to Australia with the expected type

Location nor a correct (with positive F1) candidate logical form with the answer type

Location. This shows that through question abstraction, a better logical form is selected

25

Improving Semantic Parsing via Answer Type Inference Chapter 2

for this question.

To exemplify another benefit of question abstraction, consider the question “where

does [marta] play soccer?” The top 3 entity linkings via Freebase Search API for

“marta” are MetropolitanAtlantaRapidTransitAuthority, Marta, and SantaMarta,

where the correct entity is the second one. Our question abstraction system returns

FootballPlayer as the top topic entity type prediction that is indeed corresponding to

the correct entity. Utilizing the context via question abstraction we are able to recover

useful information when the entity linking is uncertain.

Table 2.6 also shows that the conversion to statement form also helps, especially to-

gether with Abstraction. In the above example, the model without Conversion (Base +

Abs) predicts the answer type for ”where does [football player] play soccer” as SportsFacility,

whereas the full model, considering Conversion as well, finds the answer type for ”[foot-

ball player] play soccer where” as SportsTeam which is the better type in this case.

2.8.5 Error Analysis

We present a further analysis of our approach by classifying the type inference errors

made on randomly sampled 100 questions. 9% of the errors are due to inference at

incorrect granularity (e.g., City instead of Location). 12% of the errors are the result

of incorrect answer labels (hence incorrect answer types) or question ambiguity (e.g.,

“where is dwight howard now?”). 11% of them are incorrect, but acceptable inferences,

e.g., BookWrittenWork instead of BookEdition for question “what dawkins book to read

first?” 39% of the errors are due to the sparsity problem: They are made on questions

whose answer type appears less than 5 times in the training data (e.g., DayOfYear).

The remaining 29% of them are due to incorrect question abstraction. In most of the

question abstraction errors, the predicted topic entity type is semantically close to the

26

Improving Semantic Parsing via Answer Type Inference Chapter 2

correct type. In other cases such as “what did joey jordison play in slipknot?” where we

predict FilmActor as the topic entity type while Musician is the correct one. In these

cases, the answer type inference is not able to correct the abstraction error. These 29%

of errors also contain the entity linking errors.

2.9 Conclusion

In this section, we present a question answer type inference framework and leverage

it to improve semantic parsing. We define the notion of abstract question as the class of

questions that can be answered by type instead of entity. Question answer type inference

is then reduced to “question abstraction” and “abstract question answering”, both of

which are formulated as classification problems. Question abstraction is performed by

exploiting the topic entity and its context in question via an LSTM network . A separate

neural network is trained to exploit the abstraction to make the final question answer

type inference. Our method improves the ranking of logical forms returned by AgendaIL

on the WEBQUESTIONS dataset. In the future, we would like to investigate how the

abstraction and explicit type inference can be incorporated in the early stage of semantic

parsing for generating better candidate logical forms.

27

Chapter 3

Recovering Question Answering

Errors via Query Revision

3.1 Introduction

With the recent advances in building large scale knowledge bases (KB) like Freebase

[8], DBpedia [9], and YAGO [10] that contain the world’s factual information, KB-based

question answering receives attention of research efforts in this area. Traditional semantic

parsing is one of the most promising approaches that tackles this problem by mapping

questions onto logical forms using logical languages CCG [18, 42, 43, 39], DCS [17, 34, 1],

or directly query graphs [3] with predicates closely related to KB schema. Recently, neural

network based models have been applied to question answering [30, 3, 44, 40].

While these approaches yielded successful results, they often lack a post-inspection

component that can help models recover from their own mistakes. Table 3.1 shows the

potential improvement we can achieve if such a component exists. Can we leverage

textual evidences related to the predicted answers to recover from a prediction error? In

this work, we show it is possible.

28

Recovering Question Answering Errors via Query Revision Chapter 3

Figure 3.1: Sketch of our approach. Elements in solid round rectangles are KB relation
labels. Relation on the left is correct, but the base QA system predicts the one on the
right. Dotted rectangles represent revised questions with relation labels plugged in.
The left revised question looks semantically closer to the original question and itself
is more consistent. Hence, it shall be ranked higher than the right one.

Our strategy is to cross-check the corresponding KB relations behind the predicted an-

swers and identify potential inconsistencies. As an intermediate step, we define question

revision as a tailored transformation of the original question using textual evidences col-

lected from these relations in a knowledge base, and check if the revised questions make

sense or not. Figure 3.1 illustrates the idea over an example question “what did Mary

Wollstonecraft fight for ?” Obviously, “what [area of activism] did [activist] fight for ?”

looks more consistent over “what [profession] did [person] fight for ?” We shall build a

model that prefers the former one. This model shall be specialized for comparing the re-

vised questions and checking which one makes better sense, not for answering the revised

questions. This strategy differentiates our work from many existing QA studies.

Given a question, we first create its revisions with respect to candidate KB relations.

We encode question revisions using a bidirectional LSTM. A scoring mechanism over

these encodings is jointly trained with LSTM parameters with the objective that the

question revised by a correct KB relation has higher score than that of other candidate KB

29

Recovering Question Answering Errors via Query Revision Chapter 3

Refinement F1 # Refined Qs

Stagg 52.5 -
w/ Best Alternative 58.9 639

Table 3.1: What if we know the questions on which the system makes mistakes?
Best alternative is computed by replacing the predictions of incorrectly answered
questions by Stagg with its second top-ranked candidate.

relations by a certain confidence margin. We evaluate our method using Stagg [3] as the

base question answering system. Our approach is able to improve the F1 performance of

Stagg [3] from 52.5% to 53.9% on a benchmark dataset WebQuestions [17]. Certainly,

one can develop specialized LSTMs that directly accommodate text evidences without

revising questions. Towards exploring this direction as an alternative solution, we have

modified Qa-Lstm and Attentive-Lstm [45] accordingly (See Section 3.4). However,

their performance are not as good as the question revision approach.

3.2 Question Revisions

We formalize three kinds of question revisions, namely entity-centric, answer-centric,

and relation-centric that revise the question with respect to evidences from topic entity

type, answer type, and relation description. As illustrated in Figure 3.2, we design

revisions to capture generalizations at different granularities while preserving the question

structure.

Let sr (e.g., Activist) and or (e.g., ActivismIssue) denote the subject and object

types of a KB relation r (e.g., AreaOfActivism), respectively. Let α (type.object.name)

denote a function returning the textual description of a KB element (e.g., relation, entity,

or type). Assuming that a candidate answer set is retrieved by executing a KB relation

r from a topic entity in question, we can uniquely identify the types of topic entity and

answer for the hypothesis by sr and or, respectively. It is also possible that a chain of

30

Recovering Question Answering Errors via Query Revision Chapter 3

Figure 3.2: Illustration of different question revision strategies on the running example
w.r.t KB relation activism.activist.area of activism.

relations r = r1r2 . . . rk is used to retrieve an answer set from a topic entity. When k = 2,

by abuse of notation, we define sr1r2 = sr1 , or1r2 = or2 , and α(r1r2) = concat(α(r1), α(r2)).

Let m : (q, r) 7→ q′ denote a mapping from a given question q = [w1, w2, . . . , wL]

and a KB relation r to revised question q′. We denote the index span of wh-words (e.g.,

“what”) and topic entity (e.g., “Mary Wollstonecraft”) in question q by [is, ie] and [js, je],

respectively.

Entity-Centric (EC). Entity-centric question revision aims a generalization at the

entity level. We construct it by replacing topic entity tokens with its type. For the

running example, it becomes “what did [activist] fight for”. Formally, mEC(q, r) =

[w[1:js−1];α(sr);w[je+1:L]].

Answer-Centric (AC). It is constructed by augmenting the wh-words of entity-centric

question revision with the answer type. The running example is revised to “[what activism

issue] did [activist] fight for”. We formally define it asmAC(q, r) = [w′[1:ie];α(or);w
′
[ie+1:L′]],

where w′i’s are the tokens of entity-centric question revision mEC(q, r) of length L′ with

[is, ie] still denoting the index span of wh-words in w′.

Relation-Centric (RC). Here we augment the wh-words with the relation description

31

Recovering Question Answering Errors via Query Revision Chapter 3

instead of answer type. This form of question revision has the most expressive power in

distinguishing between the KB relations in question context, but it can suffer more from

the training data sparsity. For the running example, it maps to “[what area of activism]

did [activist] fight for”. Formally, it is defined as mRC(q, r) = [w′[1:ie];α(r);w′[ie+1:L′]].

3.3 Model

3.3.1 Task Formulation

Given a question q, we first run an existing QA system to answer q. Suppose it

returns r as the top predicted relation and r′ is a candidate relation that is ranked lower.

Our objective is to decide if there is a need to replace r with r′. We formulate this task

as finding a scoring function s : (q, r) → R and a confidence margin threshold t ∈ R>0

such that the function

replace(r, r′, q)=


1, if s(q, r′)− s(q, r) ≥ t

0, otherwise

(3.1)

makes the replacement decision.

3.3.2 Encoding Question Revisions

Let q′ = (w′1, w
′
2, . . . , w

′
l) denote a question revision. We first encode all the words into

a d-dimensional vector space using an embedding matrix. Let ei denote the embedding

32

Recovering Question Answering Errors via Query Revision Chapter 3

of word w′i. To obtain the contextual embeddings for words, we use bi-directional LSTM

−→
h i = LSTMfwd(

−→
h i−1, ei) (3.2)

←−
h i = LSTMbwd(

←−
h i+1, ei) (3.3)

with
−→
h 0 = 0 and

←−
h l+1 = 0. We combine forward and backward contextual embeddings

by hi = concat(
−→
h i,
←−
h i). We then generate the final encoding of revised question q′ by

enc(q′) = concat(h1,hl).

3.3.3 Training Objective

Score Function. Given a question revision mapping m, a question q, and a relation r,

our scoring function is defined as s(q, r) = wTenc(m(q, r)) wherew is a model parameter

that is jointly learnt with the LSTM parameters.

Loss Function. Let T = {(q, aq)} denote a set of training questions paired with their

true answer set. Let U(q) denote the set of all candidate KB relations for question q.

Let f(q, r) denote the F1 value of an answer set obtained by relation r when compared

to aq. For each candidate relation r ∈ U(q) with a positive F1 value, we define

N(q, r) = {r′ ∈ U(q) : f(q, r) > f(q, r′)} (3.4)

as the set of its negative relations for question q. Similar to a hinge-loss in [19], we define

the objective function J(θ,w,E) as

∑
(q,r,r′)

max(0, δλ(q, r, r
′)− s(q, r) + s(q, r′)) (3.5)

where the sum is taken over all valid {(q, r, r′)} triplets and the penalty margin is defined

33

Recovering Question Answering Errors via Query Revision Chapter 3

as δλ(q, r, r
′) = λ(f(q, r)− f(q, r′)).

We use this loss function because: i) it allows us to exploit partially correct answers

via F1 scores, and ii) training with it updates the model parameters towards putting

a large margin between the scores of correct (r) and incorrect (r′) relations, which is

naturally aligned with our prediction refinement objective defined in Equation 3.1.

3.4 Alternative Solutions

Our approach directly integrates additional textual evidences with the question itself,

which can be processed by any sequence oriented model, and benefit from its future

updates without significant modification. However, we could also design models taking

these textual evidences into specific consideration, without even appealing to question

revision. We have explored this option and tried two methods that closely follow Qa-

Lstm and Attentive-Lstm [45]. The latter model achieves the state-of-the-art for

passage-level question answer matching. Unlike our approach, they encode questions

and evidences for candidate answers in parallel, and measure the semantic similarity

between them using cosine distance. The effectiveness of these architectures has been

shown in other studies [46, 47, 48, 49] as well.

We adopt these models in our setting as follows: (1) Textual evidences α(sr) (equiv.

of EC revision), α(or) (equiv. of AC revision) or α(r) (equiv. of RC revision) of a

candidate KB relation r is used in place of a candidate answer a in the original model,

(2) We replace the entity mention with a universal #entity# token as in [3] because

individual entities are rare and uninformative for semantic similarity, (3) We train the

score function sim(q, r) using the objective defined in Eq. 3.5. Further details of the

alternative solutions can be found in Appendix A.

34

Recovering Question Answering Errors via Query Revision Chapter 3

3.5 Experiments

In this section, we discuss the details of experiments conducted in this study including

data preprocessing, the specifics of implementations, and their results.

3.5.1 Datasets and Preprocessing

Datasets. For evaluation, we use the WebQuestions [17], a benchmark dataset for QA

on Freebase. It contains 5,810 questions whose answers are annotated from Freebase using

Amazon Mechanical Turk. We also use SimpleQuestions [30], a collection of 108,442

question/Freebase-fact pairs, for training data augmentation in some of our experiments,

which is denoted by +SimpleQ. in results.

Training Data Preparation. WebQuestions only provides question-answer pairs

along with annotated topic entities. We generate candidates U(q) for each question q by

retrieving 1-hop and 2-hop KB relations r from annotated topic entity e in Freebase. For

each relation r, we query (e, r, ?) against Freebase and retrieve the candidate answers ra.

Then, we compute f(q, r) by comparing the answer set ra with the annotated answers.

3.5.2 Implementation Details

Proposed Approach. Word embeddings are initialized with pretrained GloVe [31] vec-

tors1, and updated during the training. We take the dimension of word embeddings and

the size of LSTM hidden layer equal and experiment with values in {50, 100, 200, 300}.

We apply dropout regularization on both input and output of LSTM encoder with prob-

ability 0.5. We hand tuned penalty margin scalar λ as 1. The model parameters are

optimized using Adam [50] with batch size of 32. We implemented our models in tensor-

flow [51].

1http://nlp.stanford.edu/projects/glove/

35

Recovering Question Answering Errors via Query Revision Chapter 3

Question Side Answer Side Model Name

what did #entity# fight for activist Alt.-(equiv EC)
what did #entity# fight for activism issue Alt.-(equiv AC)
what did #entity# fight for area of activism Alt.-(equiv RC)

Table 3.2: Question (q) and answer (a) sides used for alternative (e.g., Alt.) solutions
Qa-Lstm and Attentive-Lstm.

To refine predictions r of a base QA system, we take its second top ranked prediction

as the refinement candidate r′, and employ replace(r, r′, q) in Eq. 3.1. Confidence margin

threshold t is tuned by grid search on the training data after the score function is trained.

QuesRev-AC + RC model is obtained by a linear combination of QuesRev-AC and

QuesRev-RC, which is formally defined in Appendix B. To evaluate the alternative

solutions for prediction refinement, we apply the same decision mechanism in Eq. 3.1

with the trained sim(q, r) in Section 3.4 as the score function.

We use a dictionary2 to identify wh-words in a question. We find topic entity spans

using Stanford NER tagger [29]. If there are multiple matches, we use the first matching

span for both.

Alternative Solutions. Following [45], we use the same bidirectional LSTM for both

questions and textual evidences. For the attentive model, we apply the attention mech-

anism on the question side because our objective is to match textual evidences to the

question context unlike the original model. We use average pooling for both models and

compute the general attention via a bilinear term that has been shown effective in [52].

For the model and training parameters, we follow the strategy described in Section

5.1 with a difference that λ is tuned to be 0.2 in this setting. This intuitively makes sense

because the score sim(q, r) is in [−1, 1]. In Table 3.2, we further clarify the question and

answer sides for the alternative models over the running example.

2what, who, where, which, when, how

36

Recovering Question Answering Errors via Query Revision Chapter 3

Model F1

[37] 40.8
[38] 44.3
[1] 49.7
Stagg [3] 52.5
[39] 50.3
[40] 53.3
[44] 53.8

QuesRev on Stagg 53.9

Ensemble Model
Stagg-Rank [53] 54.0
QuesRev on Stagg-Rank 54.3

Table 3.3: Comparison of our question revision approach (QuesRev) on Stagg with
variety of recent KB-QA works.

3.5.3 Results

Table 3.3 presents the main result of our prediction refinement model using Stagg’s

results. Our approach improves the performance of a strong base QA system by 1.4% and

achieves 53.9% in F1 measure, which is slightly better than the state-of-the-art KB-QA

system [44]. However, it is important to note here that [44] uses DBPedia knowledge

base in addition to Freebase and the Wikipedia corpus that we do not utilize. Moreover,

applying our approach on the Stagg predictions reranked by [53], referred as Stagg-

Rank in Table 3.3, leads to a further improvement over a strong ensemble baseline.

These suggest that our system captures orthogonal signals to the ones exploited in the

base QA models. Improvements of QuesRev over both Stagg and Stagg-Rank are

statistically significant.

In Table 3.4, we present variants of our approach. We observe that AC model yields

to best refinement results when trained only on WebQuestions data (e.g., WebQ.

column). This empirical observation is intuitively expected because it has more gen-

eralization power than RC, which might make AC more robust to the training data

37

Recovering Question Answering Errors via Query Revision Chapter 3

Refinement Model WebQ. + SimpleQ.

Qa-Lstm-(equiv EC) 51.9 52.5
Qa-Lstm-(equiv AC) 52.4 52.9
Qa-Lstm-(equiv RC) 52.6 53.0
Attentive-Lstm-(equiv EC) 52.2 52.6
Attentive-Lstm-(equiv AC) 52.7 53.0
Attentive-Lstm-(equiv RC) 52.9 53.1

QuesRev-EC 52.9 52.8
QuesRev-AC 53.5 53.6
QuesRev-RC 53.2 53.8

QuesRev-AC + RC 53.3 53.9

Table 3.4: F1 performance of variants of our model QuesRev and alternative solutions
on base QA system Stagg.

sparsity. This intuition is further justified by observing that augmenting the training

data with SimpleQuestions improves the performance of RC model most as it has

more expressive power.

Although both Qa-Lstm and Attentive-Lstm lead to successful prediction re-

finements on Stagg, question revision approach consistently outperforms both of the

alternative solutions. This suggests that our way of incorporating the new textual evi-

dences by naturally blending them in the question context leads to a better mechanism

for checking the consistency of KB relations with the question. It is possible to argue

that part of the improvements of refinement models over Stagg in Table 3.4 may be

due to model ensembling. However, the performance gap between QuesRev and the

alternative solutions enables us to isolate this effect for query revision approach.

In Table 3.5, we present qualitative results including example improvements made

possible by the proposed QuesRev approach. The proposed post-inspection is able

to identify inconsistencies such as profession/fight for, place of birth/executed, river

mouth/start. These example improvements further verify our initial motivation for study-

ing question revision approach, which is designed to fix wrong KB relation predictions

38

Recovering Question Answering Errors via Query Revision Chapter 3

Example Predictions and Replacements

1. What position did vince lombardi play in college ?
Stagg: person.education / education.institution (2-hop)
- what position did person play in college
QuesRev-EC: football player.position s
- what position did american football player play in college

2. What did mary wollstonecraft fight for ?
Stagg: person.profession
- what profession did person fight for
QuesRev-AC: activist.area of activism
- what activism issue did activist fight for

3. Where was anne boleyn executed ?
Stagg: person.place of birth
- where place of birth was person executed
QuesRev-RC: deceased person.place of death
- where place of death was deceased person executed

4. Where does the zambezi river start ?
Stagg: river.mouth
- where mouth does the river start
QuesRev-RC: river.origin
- where origin does the river start

Table 3.5: Example predictions of Stagg [3] and replacements proposed by variants
of QuesRev, followed by their corresponding question revisions. The colors red and
blue indicate wrong and correct, respectively. Domain names of KB relations are
dropped for brevity.

through deeper clues obtained by inserting them back in question context.

3.6 Related Work

One of the promising approaches for KB-QA is semantic parsing, which uses logical

language CCG [18, 42, 43] or DCS [17] for finding the right grounding of the natural

language on knowledge base. Another major line of work [19, 3, 40] exploit vector space

embedding approach to directly measure the semantic similarity between questions and

candidate answer subgraphs in KB. In this work, we propose a post-inspection step that

39

Recovering Question Answering Errors via Query Revision Chapter 3

can help existing KB-QA systems recover from answer prediction errors.

Our work is conceptually related to traditional query expansion, a well-explored tech-

nique [54, 55, 56, 57, 58, 59, 60] in information retrieval area. The intuition behind query

expansion is to reformulate the original query to improve retrieval performance. Our ap-

proach revises questions using candidate answers already retrieved by a base QA system.

Revised questions are then used for reasoning about the corresponding predictions them-

selves, not for retrieving more candidates. Hence, it is specialized rather as a reasoning

component than a retrieval one.

Hypothesis generation steps in [61] and [62] are related to our question revision pro-

cess. However, hypotheses in these approaches need to be further compared against

supporting paragraphs for reasoning. This limits the applicability of them in KB-QA

setting due to lack of supporting texts. Our approach modifies the appropriate parts of

the question using different KB evidences behind candidate answers that are more infor-

mative and generalizable. This enables us to make reasoning about candidate predictions

directly via revised questions without relying on any supporting texts.

3.7 Conclusion

We present a prediction refinement approach for question answering over knowledge

bases. We introduce question revision as a tailored augmentation of the question via

various textual evidences from KB relations. We exploit revised questions as a way to re-

examine the consistency of candidate KB relations with the question itself. We show that

our method improves the quality of answers produced by Stagg on the WebQuestions

dataset.

40

Chapter 4

What It Takes to Achieve 100%

Condition Accuracy on WikiSQL

4.1 Introduction

A large amount of world’s data is stored in relational databases, which require users to

master structured query languages such as SQL to query data. It might not be convenient

for many users who do not have programming background. Towards removing this huge

barrier between non-expert users and data, building reliable natural language interfaces

to databases has been a long-standing open problem [63, 64, 65].

Recently, there is a renewed interest in natural language interfaces to databases due

to the advance in deep learning and the new release of large-scale annotated data such as

WikiSQL [66]. WikiSQL includes a large collection of questions and their corresponding

SQL queries. While the queries in WikiSQL are quite simple: Each involves one relation

and does not have join operations, none of the publicly reported SQL generation models

[66, 67] can achieve an accuracy beyond 62%, which is far from enough for practical

use. It is not clear yet what level of parsing capabilities are needed to achieve high

41

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Which award has the category of the best
direction of a musical?

Table Question:

1986 Tony Award Best Musical Best Musical Nominated

1986 Tony Award Best Direction of a Musical Bob Fosse Nominated

1986 Tony Award Best Choreography Bob Fosse Won

1986
Drama Desk

Award
Outstanding Actor in a

Musical
Cleavant
Derricks

Nominated

1986
Drama Desk

Award
Outstanding Director of a

Musical
Bob Fosse Nominated

1986
Drama Desk

Award
Outstanding Choreography Bob Fosse Won

Correct SQL:

SELECT award
WHERE category = best direction of a musical

SQLNet Prediction:

SELECT award
WHERE category = the best direction award a musical

Figure 4.1: An example from WikiSQL. SQLNet makes a wrong prediction on the
condition value of the WHERE clause.

performance, ideally close to 100% accuracy, on this task.

In this chapter, we aim to figure out the level of language understanding required to

perform well on the WikiSQL task. Specifically, we focus on the WHERE clause generation,

which is the most challenging part of this task as reported in [67]: The accuracies for

other clauses like SELECT and AGGREGATE are over 90% whereas the accuracy for WHERE

is only around 70%. We aim to conduct the following two studies: (i) Understanding the

difficulties of the task and (ii) Investigating alternative solutions to realize the potential

ceiling performance.

To this end, we first conduct a careful analysis on a subset of the WikiSQL data to

identify the main challenges. This analysis leads to two important observations: (i) ∼17%

of the questions are either too ambiguous (hard) or require external knowledge to answer,

(ii) ∼68% of the questions can be answered by exact match or simple paraphrasing,

however we surprisingly find that the current best system [67] can only get less than

80% accuracy on such simple questions. Deeper analysis on the second observation leads

to the conclusion that most of the errors in this category are due to wrongly generated

condition values as shown by the example in Figure 4.1. One can resort to soft/hard look-

up based approaches over table content as in previous work [68, 69] or user interaction

(which is also applicable to the first observation) to more accurately recognize the entities

42

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

in questions for better condition value generation.

As a second contribution, we propose to use table content as additional data source to

address the aforementioned wrongly generated condition value problem, and investigate

solutions to realize the potential performance limit (upper bound) on WikiSQL. Note

that neither Seq2SQL [66] nor SQLNet [67] utilize table content. However, we show that

it is not straightforward to achieve a high accuracy even in the scenario where table

content is available as an optimal external knowledge through our model ablation results

and error analysis. We demonstrate that our proposed solutions can reach up to 88.6%

WHERE condition accuracy, almost matching the performance on SELECT and AGGREGATE.

4.2 Background

The WikiSQL dataset introduced in [66] is created from a large number of tables

extracted from Wikipedia, employing Amazon Mechanical Turk for annotation. An ex-

ample from the dataset is provided in Figure 4.1: It consists of a table t, a SQL query s,

and its corresponding natural language question q. There can be multiple conditions in

the WHERE clause of a SQL query, each of which consists of a table column, an operator

(=, <,>, etc.), and a condition value.

Instead of asking annotators to write SQL queries for given questions and tables,

the authors [66] facilitate the annotation process by paraphrasing generated questions.

This raises concerns that the resulting dataset is limited to only simple queries. We

acknowledge this concern. However, it is still a large, valuable dataset towards the goal

of building ultimate natural language interfaces to databases. If the existing or newly

proposed solutions can not solve this task with high accuracy, how can we advance to

more complicated ones? Any insight and solution to this task can help us build more

advanced SQL synthesis algorithms in future.

43

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Category Question Pseudo SQL Query Columns

Exact match In what state was the
electorate fowler?

SELECT state
WHERE
electorate EQL fowler

member,
party, state,
electorate,
term in office

Paraphrase What was the date
of the game after
week 5 against the
Houston Oilers?

SELECT date
WHERE
week GT 5

AND
opponent EQL houston oilers

week,
date,
opponent,
result,
attendance

Partial clue Who had the most
points in the game
on March 7?

SELECT high points
WHERE
date EQL march 7

high points,
game, date,
team, score,
...

External-
knowledge

Name the callback
date for amway
arena

SELECT callback date
WHERE
audition venue EQL amway

arena

audition
venue, au-
dition city,
callback
date, ...

Ambiguous List the branding for
krca-tv

SELECT branding
WHERE
callsign EQL krca-tv

branding,
power (kw),
callsign,
channel, ...

Table 4.1: Representative examples for each category. EQL and GT correspond to
the = and > operators. Columns include the corresponding table’s column names.
Highlighted parts of the question, pseudo SQL query, and columns are provided to
indicate clues for the category.

4.3 WikiSQL Data Analysis

In this section, we aim to deliver a thorough analysis of the WikiSQL dataset. [66,

67] made an assumption that only table schema is available to the model, and table

content (i.e., table cell values) is not available. We want to answer the following question:

As the dataset creation process involves several heuristics and pre-defined templates to

simplify the annotation task, what kind of capabilities does it still require to answer the

resulting questions successfully? To this end, we randomly sample 100 examples from

the development set of WikiSQL for analysis.

44

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Category # Questions Percentage

Exact match 59 54.1%
Paraphrase 16 14.7%
Partial clue 15 13.8%
External knowledge 11 10.1%
Ambiguous 8 7.3%

Table 4.2: Number of examples in different categories.

4.3.1 Categorization

We manually categorize these 100 examples in terms of the capability needed to

predict the correct WHERE clause as described below. We also provide illustrative examples

for each category in Table 4.1. If an example belongs to multiple categories, we include it

in all the categories that apply. In Table 4.2, we present the break down of the examples

over these categories.

Exact match. For each condition in the SQL query, its column name appears in the

question near the neighborhood of its condition value with exactly the same surface form.

Paraphrase. For at least one of the conditions in the SQL query, its column name is

paraphrased in the question. So, the inference requires certain paraphrasing capabilities.

Partial clue. For at least one of the conditions in the SQL query, its column name is

not explicitly mentioned in the question, not even in paraphrased form. However, there

are still partial semantic clues for inference.

External knowledge. For at least one of the conditions in the SQL query, there is

no clue in the question to infer its column name. Inferring this column name from the

question requires external knowledge regarding the type of its condition value that can

be detected from the question.

Ambiguous. For this category, even with the external knowledge it is almost impossible

(even for humans) to confidently infer the correct condition column from the question.

45

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Category Seq2set+CA Seq2set+CA+WE

Exact match 67.8% 72.9%
Paraphrase 75.0% 68.8%
Partial clue 80.0% 80.0%
External knowledge 54.6% 45.5%
Ambiguous 37.5% 37.5%
Total 67.0% 67.9%

Table 4.3: Accuracy breakdown of SQLNet.

4.3.2 Performance Breakdown of SQLNet

In Table 4.3, we show the performance breakdown of SQLNet [67], the state-of-

the-art model for WikiSQL, on the selected 100 examples. It has two variants with

comparable performance, so we show both of them. As expected, both variants of SQLNet

perform poorly on examples that are either too ambiguous or require external knowledge.

However, it is surprising that the accuracy on examples that need only exact matching

or simple paraphrasing is also not very high, especially considering the paraphrasing

capabilities of deep learning models gained from distributed representations. We find

that most of these errors are due to wrongly generated condition values as illustrated in

Figure 4.1, where SQLNet fails to even produce a valid phrase. This is indeed important

prior knowledge that can be effectively outsourced by resorting to soft/hard look-up

based approaches [68, 69] instead of fully relying on models to precisely generate it.

The above observations exhibit an opportunity to incorporate external knowledge in

the condition generation process. We opt to use the table content as the knowledge

source to address the wrong condition value problem, which is not used in the existing

models [66, 67]. Next we will show that it is not trivial to leverage table content.

46

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

4.4 Our Solutions

As motivated in the previous sections, our main objective here is to investigate so-

lutions to realize the potential ceiling performance on WikiSQL when using the table

content as an additional knowledge source. We first describe an attentional RNN-based

model that serves as our baseline, and propose several variants for WHERE clause genera-

tion, each addressing a specific weakness.

4.4.1 Task Formulation

Given a question q and a table t, our objective is to generate the WHERE clause of

the SQL query corresponding to the question. In addition, we assume that the table t

can be queried while generating the WHERE clause. Each condition in the WHERE clause

is represented as a triple of (COLUMN, OP, VALUE). SQLNet [67] generates each of these

individual components by first predicting COLUMN and OP, and then generating VALUE

using pointer networks [70]. In contrast, we propose a two step approach to tackle this

problem in the reverse way, taking advantage of the content of table t as additional

knowledge: (i) Generate the condition VALUE from the question, and (ii) predict which

COLUMN and OP apply to this VALUE.

Candidate Generation

Our objective in candidate generation process is to produce a set of (COLUMN, VALUE)

pairs from question q and table t, where VALUE is an n-gram in q and COLUMN is a column

in t. Similar to prior work [66, 67], we assume that VALUE occurs in the question.

As illustrated in Figure 4.2, we first generate the set N of all n-grams from the

question. Then, for each candidate v ∈ N and each column c ∈ t, we query table t

to check whether value v is contained in any row of column c. Then, we create a set

47

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Figure 4.2: Candidate generation.

C = {(c, v) : v ∈ c} of (COLUMN, VALUE) pairs as our final candidates for the WHERE clause.

We note here that VALUE may not necessarily be an n-gram in question for other potential

external knowledge or NLIDB tasks. In such scenarios, we can alternatively resort to soft

look-up based approaches like the ones proposed in [68, 30].

Condition Prediction

Given a question q, SQL table t, and a set C of (COLUMN, VALUE) pair as candidates

for WHERE clause, our objective is to learn two mappings:

fcond :(q, c, v) 7→ {0, 1} (4.1)

fop :(q, c, v) 7→ {=, >,<} (4.2)

where fcond determines whether to select (c, v) ∈ C as a condition in WHERE clause and fop

predicts the operator OP ∈ {=, >,<}. These two mappings together can fully determine

the final WHERE clause. Note that there can be multiple conditions in the WHERE clause.

48

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

4.4.2 Model Overview

We design a neural network model (Figure 4.3) to instantiate the mappings fcond and

fop. We first describe the general structure of the model, consisting of the following steps:

Value Context. We define value context as the context of a value v, a span in a longer

utterance q. Later the question encoder will condition on this information to make

predictions. We will investigate different options for value context in Section 4.4.3. For

now, we define it as a transformation gcontext which maps each (q, v) to its value context.

Value Abstraction. Inspired by [53], we define value abstraction as a transformation

gabstract that replaces the surface form of VALUE in the question with a single token ENTITY.

For the running example in Figure 4.1, applying value abstraction maps the question to

“Which award has the category of the ENTITY?” It further informs the question encoder

regarding the location of the VALUE in the question.

Encoding. Given question q = (q1, q2, . . . , qm), column c = (c1, c2, . . . , cn), and value

v = (v1, v2, . . . , vk). Before encoding, we first apply the aforementioned textual transfor-

mations and obtain value context

q′ = (q′1, q
′
2, . . . , q

′
l) = gcontext ◦ gabstract(q, v).

We first encode all the words into a vector space using an embedding matrix E ∈

Rd×|V|, where V denotes the vocabulary and d is the embedding dimension. Let q′i denote

the embedding of word q′i. To obtain the contextual embeddings, we use a bi-directional

LSTM with hidden unit size h:

−→
hq

i = LSTMq
fwd(
−→
hq

i−1,q
′
i) (4.3)

←−
hq

i = LSTMq
bwd(
←−
hq

i+1,q
′
i) (4.4)

49

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Figure 4.3: Model overview.

with
−→
h 0 = 0 and

←−
h l+1 = 0. We combine forward and backward contextual embeddings

for each word in the question to obtain hq
i = concat(

−→
hq

i,
←−
hq

i) ∈ R2h.

Similarly, we obtain the contextual embedding hcol
j ∈ R2h for each word cj in column

c with another bi-directional LSTM but shared word embedding matrix.

Distilled Attention. The objective of this step is to distill the most relevant information

from both the value context and the column for the final prediction. We first compute

the attention score of each word cj ∈ c on the words q′i ∈ q′:

S
(col→q)
j,i = hcol

j W(col→q)hq
i (4.5)

P
(col→q)
j = softmaxi S

(col→q)
j,i (4.6)

where W(col→q) ∈ R2h×2h is a model parameter to be learned and P
(col→q)
j ∈ Rl represents

an attention probability distribution of word cj over the words of value context q′. Let

P (col→q) ∈ Rn×l denote the column-wise concatenation of P
(col→q)
j indicating the unified

representation of attention matrix from column words onto value context. Similarly, we

compute the attention from value context (question) to column and get P (q→col) ∈ Rl×n.

The intuition behind distilled attention is to allow two-way comparison to clean up

the attention weights. To exemplify this point better, consider a scenario where a word

cj ∈ c attends on a word q′i ∈ q′ with high probability, but q′i is much more relevant

50

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

to another word cj′ ∈ c. We leverage reverse attention P (q→col) to distill the attention

weights of column words on the value context. To this end, we define distilled attention

weights as

P = (P (q→col))> � P (col→q) (4.7)

where P ∈ Rn×l becomes our final attention weights and � is the Hadamard product.

Value Context and Column Representations. Having defined how the encodings

and attention weights are computed, we now describe the final value context and column

representations. First, we compute a value context vector for each word cj ∈ c using the

distilled attention weights by

h
(q→col)
j =

l∑
i=1

Pj,i hq
i (4.8)

and fuse it with the corresponding column context vector by

hcond
j = tanh(Wcond

0 hcol
j + Wcond

1 h
(q→col)
j) (4.9)

hop
j = tanh(Wop

0 hcol
j + Wop

1 h
(q→col)
j) (4.10)

where Wcond
0 ,Wcond

1 ,Wop
0 ,W

op
1 ∈ R2h×2h are trainable model parameters. Finally, we

apply a pooling layer to obtain fixed-size representations

hcond =
1

n

∑
j

hcond
j and hop =

1

n

∑
j

hop
j (4.11)

for condition and operator predictions.

Prediction. So far we have obtained two different representations hcond ∈ R2h and

hop ∈ R2h as the latent unified representations of question, column, and value triple

51

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

(q, c, v). We than use these representations to make the final predictions:

pcond = softmax(Ucond hcond) ∈ R2 (4.12)

pop = softmax(Uop hop) ∈ R3 (4.13)

where Ucond ∈ R2×2h and Uop ∈ R3×2h are model parameters. The final prediction

mappings are then defined as:

fcond(q, c, v) =i pcond
i (4.14)

fop(q, c, v) =i pop
i (4.15)

Training Objective. Let T = {(q, c, v, l, o)} denote a set of training tuples where

l ∈ {0, 1} denotes whether to include a condition with (c, v) as (COLUMN, VALUE) pair

and if so, o ∈ {=, >,<} indicates which OP to apply. Our loss function consists of two

components:

J(Θ) = Jcond(Θ) + l Jop(Θ) (4.16)

where Jcond(Θ) = − log(pcond
l) and Jop(Θ) = − log(pop

o) are simply negative log-likelihood

losses for condition and operator predictions.

Inference. We also employ an inference schema where we make a simple assumption

that a condition value v may be a part of only one condition. Hence, we group candidate

{(c, v)} pairs by value v, and create a candidate column set Cv : {c : (c, v)} for each unique

candidate value v. Based on the probabilities pcond(c, v) computed by the trained model,

we select the column c ∈ Cv with the maximum probability for each candidate value v,

hence form the set of (COLUMN, VALUE) pairs to be included in condition this way.

52

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

4.4.3 Model Variants

In this section, we discuss variants of our model with different choices for the value

context. Consider the running example in Figure 4.1 and assume hypothetically that

award is a candidate condition column for value best direction of a musical. When we

use the whole question as the value context, eliminating award from being a condition

COLUMN for this VALUE becomes very challenging for the model as it is not informed enough

regarding the finer context of the value.

Base Model:

The base model simply uses identity mapping for value context. More precisely, we use

the whole question as the context for the candidate condition VALUE. So, gcontext(q, v) = q.

Window-based model:

The objective of window-based model is to get value contexts that can provide more

clean context information by leveraging the context window around the candidate value.

In this case, we first identify the span [start, end] for value v in the question q. Based on

its span and a predetermined context window size w, we define

gcontext(q, v) = (qstart−w, . . . , qstart, . . . , qend, . . . , qend+w)

Parse tree-based model:

We also analyze a simple parse tree based model that hierarchically split up the value

context into multiple contexts based on the constituency parse tree of the question. To

motivate this, consider the question in Figure 4.4. Window-based value context for 0.5 is

“a large end smaller than ENTITY” and candidate table columns to apply this value are

53

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

p1’ = smaller than 0.5

p2’ = a large end QPs3

p3’ = has NP

s2

s1

Figure 4.4: Partial view of parse tree for question “Which taper/ft that has a Large
end smaller than 0.5” illustrating parse tree based value contexts.

“large end” and “small end”. Based on this context, a model will likely assign a higher

probability to “large end” than “small end”. The syntactic structure of the question can

potentially help reduce such ambiguities.

Parse tree-based value contexts. As highlighted in Figure 4.4, we use nested phrase-

level subtrees that contain the candidate VALUE. Moreover, to better inform the model

regarding the type of phrases, we use phrase level constituent tags of subtrees in two

ways: (i) to inform the parent tree with the type of its subtree containing candidate

VALUE, (ii) to apply a tag-specific affine transformation on phrase representations. To

this end, we first select the r-lowest subtrees s1 ⊂ s2 ⊂ . . . ⊂ sr of the question’s parse

tree containing VALUE along with their corresponding phrase-level constituency tags1

1We use the Penn treebank annotation conventions that are described in bies95penntreebank at
http://languagelog.ldc.upenn.edu/myl/PennTreebank1995.pdf

54

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

t1, t2, . . . , tr, respectively. We then iteratively form multiple values contexts as nested

phrases of p′1, p
′
2, . . . , p

′
r shown in Figure 4.4 as follows: (i) p′1 is equal to the phrase

formed by the words at the leaf nodes of subtree s1, and then (ii) iteratively form p′i as

the phrase formed by the words under subtree si by replacing its subphrase corresponding

to subtree si−1 with its constituency tag ti−1 for i > 1.

Modifications to General Model. We now describe how the general model defined in

Section 4.4.2 is adapted to accommodate the multiple nested value contexts of different

types. In this process, we aim to capture two types of important information: (i) syntactic

phrase-level types of value contexts, and (ii) their distance to VALUE.

We first compute a value context vector h
(q→col)
j,k ∈ R2h for each word cj ∈ c and

each value context p′k as in Eq. 4.8 using the same encoding and attention mechanisms.

However, we replace the affine transformation layers defined in Eq. 4.9 and 4.10 with tag

and distance specific ones as follows:

hcond
j = tanh(Wcond

0 hcol
j +

1

r

r∑
k=1

Wcond
k,tk

h
(q→col)
j,k) (4.17)

hop
j = tanh(Wop

0 hcol
j +

1

r

r∑
k=1

Wop
k,tk

h
(q→col)
j,k) (4.18)

where Wcond
0 ,Wcond

k,tk
,Wop

0 ,W
op
k,tk
∈ Rd×2h for k = 1, 2, . . . , r are model parameters. It is

important to note here that k determines the distance of value context to VALUE and tk

indicates its tag, effectively making the fusion layers above tag and distance specific. The

rest of the model exactly follows the Eq. from 4.11 through 4.15 with the same training

objective and inference schemes.

4.5 Experiments

In this section, we discuss the details of the experiments and present our main findings.

55

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

4.5.1 Training Details

For training our neural networks, we only keep the words appearing at least 3 times

in the whole training data and the rest of the words are replaced with UNK token. Word

embeddings are initialized with pretrained GloVe [31] vectors2, and updated during the

training. We take the dimension of word embeddings and the size of LSTM hidden layer

both equal to 100. The model parameters are optimized using Adam [50] with batch size

of 32 and a decaying learning rate starting with 0.001. We apply gradient clipping to 5

when its norm exceeds this value. We use early stopping based on the model accuracy

on the development set. We report our results with a model snapshot achieving the best

accuracy on the development set. Our models are implemented in tensorflow [51].

For candidate generation, we use n-gram size of 10. For window-based model, we

experiment with window size of w ∈ {2, 3, 4, 5, 6} and report results with w = 4 that per-

forms best on the development set. We use Stanford CoreNLP tool [29] for tokenization

and parse-tree generation.

4.5.2 Main Results

In Table 4.4, we present our main results in comparison with the related works. Base-

line refers to a baseline for our models where the WHERE clause accuracy is computed by

assuming that each candidate (COLUMN, VALUE) pair is included with corresponding OP be-

ing equality. On the other hand, UpperBound accuracy is computed by assuming fcond

and fop makes 100% correct mapping of whether to include a candidate (COLUMN, VALUE)

pair and which OP to apply on this condition. In other words, errors in UpperBound

exist due to wrong candidate generation.

As shown in Table 4.4, our models surpass the previous results by a large margin as

2More specifically, we use 100D vectors from http://nlp.stanford.edu/data/glove.6B.zip

56

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Model Dev Test

No External Knowledge

Seq2Sql [66] 62.1% 60.2%
SqlNet-(Seq2Set + CA) 72.1% 70.0%
SqlNet-(Seq2Set + CA + WE) 74.1% 71.9%
SqlNet*-(Seq2Set + CA) 72.3% 70.9%
SqlNet*-(Seq2Set + CA + WE) 73.8% 71.7%

In Our Scenario

SqlNet*-(Seq2Set + CA) 82.2% 80.9%
SqlNet*-(Seq2Set + CA + WE) 83.5% 81.8%
Stamp + RL [71] 77.3% 76.3%
TypeSql + TC (w/ Freebase) [72] 92.8% 87.9%

Our Baseline 77.2% 77.1%
SqlMaster 84.8% 83.9%
SqlMaster + VA 86.2% 86.1%
SqlMaster (Window-Based) 87.4% 87.1%
SqlMaster (Window-Based) + VA 87.9% 87.6%
SqlMaster (Tree-Based) 88.7% 88.3%
SqlMaster (Tree-Based) + VA 88.9% 88.6%
Our UpperBound 92.1% 91.4%

Table 4.4: WHERE clause accuracy. +VA denotes that Value Abstraction is applied.
SqlNet* refers to our reimplementation of SQLNet. SqlMaster refers to our pro-
posed models. Only TypeSql + TC leverages Freebase on top of table content
among the models reported in our scenario. WHERE clause accuracy of TypeSql
(w/o Freebase) is not reported.

well as its variants improving upon each other. A portion of these improvements defi-

nitely come from assuming and using the table itself as the optimal external knowledge.

Acknowledging this fact, we make the following more important conclusions from Table

4.4, 4.5, and 4.6: (i) Comparison of the performance results across scenarios (SqlNet

vs. SqlMaster or TypeSQL) reveals that there is a large room for improvement when

an external knowledge base is used, (ii) Comparison of our own models with its variants

demonstrates that each component/extension incorporated brings a considerable perfor-

mance improvement, justifying its potential power to be used in other related NLP tasks,

57

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Model Dev Test
SqlNet [67] 63.2% 61.3%
DialSql [73] 70.9% 69.0%
TypeSql (w/o Freebase) [72] 66.5% 64.9%
TypeSql + TC (w/ Freebase) [72] 79.2% 75.4%
SqlMaster (Ours, w/o Freebase) 73.1% 72.4%

Table 4.5: Full query-match (QM) accuracy. For SqlMaster, we combine our
WHERE clause predictions with the SELECT and AGGREGATE clause predictions
of SQLNet. QM result for TypeSql + TC (w/o Freebase) is not reported.

Category SqlNet SqlMaster

Exact match 72.9% 86.4%
Paraphrase 68.8% 93.8%
Partial clue 80.0% 93.3%
External knowledge 45.5% 90.9%
Ambiguous 37.5% 75.0%
Total 67.9% 88.1%

Table 4.6: Accuracy breakdown of SqlNet compared to SqlMaster over the cate-
gories obtained by hand-analysis on the randomly selected examples as explained in
Section 4.3.

(iii) Comparing our models with SqlNet and TypeSql+TC within our scenario pro-

vides further clues/justifications towards effectiveness of our proposed Tree-Based model,

(iv) SqlMaster performs comparably to TypeSql + TC [72] on WHERE condition

predictions despite the fact that we do not use Freebase, which is exploited in [72] to

identify named entities of certain Freebase types (e.g., person, place, country, organi-

zation, sport), (v) Our SqlMaster (Tree-Based) + VA model achieves 88.6% on test

portion of WikiSQL, which almost reaches the upper bound of 91.4%, demonstrating a

great promise for future work in this domain, and finally (vi) When the performance of

our model is compared to SqlNet over the categories as shown in Table 4.6, we observe

that it consistently improves the performance of over all the categories, but most notice-

ably on External Knowledge and Ambiguous ones which were the main categories

inspiring this study and proposed approaches motivated by the analysis in Section 4.3.

58

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

Evaluation in Our Scenario. We adapt SQLNet [67] results to our scenario via a

post-processing step as follows: For each of their predicted condition in WHERE clause, if

column c and operator o are both correct, but value v is wrong, then we replace this value

with the one in our generated candidates that maps to the column c when the mapping

is unique (only one value maps to c).

4.5.3 Error Analysis

In this section, we provide an error analysis of our models to better understand what

are the remaining challenges to achieve UpperBound performance. To this end, we

analyzed 100 randomly sampled examples from development set on which our best model

fails. 41% of these errors are due to our models not being able to perform a good semantic

understanding of the value context. 36% of the errors correspond to ambiguous questions

that lack sufficient information to disambiguate between correct and wrong column. A

good representative example for this category is “Who was the director of king’s speech?”,

where our model predicts “winner and nominees” column for the condition value “king’s

speech” while the correct column is “original title”. The remaining 18% and 5% of the

errors are caused by sparsity of column names and wrong labelling problems, respectively.

4.6 Related Work

Research on natural language interfaces to databases (NLIDBs) and semantic parsing

has spanned several decades. Early rule-based NLIDBs [63, 64, 65] employ carefully

designed rules to map natural language questions to formal representations like SQL

queries. While having a high precision, rule-based systems are brittle when facing with

language variations and usually only admit inputs from a restricted vocabulary. The

rise of statistical models [74, 75, 17] and neural network models [3, 76, 77, 66, 67] has

59

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

enabled NLIDBs that are more robust to language variations. Such systems allow users

to formulate questions with greater flexibility instead of having to probe and adapt to

the boundary of rule-based systems.

Along with the advance in modeling is the development of benchmarks for training

and testing NLIDB models. Early benchmarks are mostly curated by experts [78, 79].

State-of-the-art models [76] have achieved a high accuracy of 80% to 90% on these bench-

marks. In the recent years, a number of large-scale, crowdsourced benchmarks have been

constructed with the goal to train and test NLIDBs in a more real-world setting, notably

WebQuestions [17] and GraphQuestions [80] for knowledge bases, and WikiSQL [66] for

SQL queries to relational databases. The best accuracies on these benchmarks are still

far from enough for real use, typically in the range of 20% to 60%.

Besides releasing WikiSQL dataset, the authors of [66] propose an approach (Seq2SQL)

to solve this task. Seq2SQL leverages the pointer-networks [70] to generate linearized

SQL queries token-by-token using the input question and table schema. They report

significant performance improvement over [76], a generic sequence-to-tree approach pro-

posed for semantic parsing. More recently, [67] proposes a sketch-based sequence-to-set

approach (SQLNet) eliminating sequence-to-sequence structure employed in [66], when

the order does not matter. In our work, we provide a careful analysis of SQLNet results

to better understand the limitations of this model on the WikiSQL task. Inspired by this

analysis, we propose novel solutions to realize close to upper-bound condition accuracy

in the scenario where SQL table is available as an optimal external knowledge. Another

recent work [72] also focuses on using external knowledge (Freebase) along with the table

content to generate SQL queries in a type aware fashion. A concurrent line of related

work exploits graph-to-sequence neural models with the aim to better exploit syntactic

information in the input question [81, 82]. On the other hand, [73] takes an orthogonal

approach and introduces a dialogue-based query refinement mechanism where a candi-

60

What It Takes to Achieve 100% Condition Accuracy on WikiSQL Chapter 4

date SQL query (generated by any black-box model) is refined by interactively validating

and updating modular segments of the query with users. The authors show that by hav-

ing successful interactions with users, not only the accuracy of the candidate queries can

be improved but also new insights into limitations of current query generation systems

can be gained.

There are also a number of recent studies on semantic parsing for semi-structured

tables. For example, Pasupat and Liang [83] develop the WikiTableQuestions benchmark,

where the task is to find table cells in HTML table to answer questions, while Jauhar et

al. [84] focuses on multi-choice questions. On the other hand, Sun et al. [77] study how

to answer user questions with table cells from millions of HTML tables. These studies

directly find cells of semi-structured tables as answers, instead of generating SQL queries

for relational databases.

4.7 Conclusion

In this chapter, we thoroughly analyzed the recently released WikiSQL dataset and

the performance breakdown of SQLNet. Through the analysis, we identified an oppor-

tunity/need to further explore the potentials of incorporating external knowledge in the

structured query generation process. In this direction, we developed alternative solu-

tions to explore the potential performance limits for this task in the scenario where table

content can be used. We showed that our proposed systems can reach up to 88.6% ac-

curacy in condition generation and provided a discussion regarding what the remaining

challenges were through an error analysis. We consider solving the WikiSQL task as a

necessary preliminary step towards realizing natural language interfaces to databases in

full fledge.

61

Chapter 5

Grounded Response Generation

with Hierarchical Pointer Networks

5.1 Introduction

Recently, deep neural networks have achieved state-of-the-art results in various tasks

including computer vision, natural language and speech processing. Specifically, neural

sequence-to-sequence models [85, 86] have led to great progress in important downstream

NLP tasks like text summarization [87, 88, 5, 89, 90], machine translation [91, 85, 92,

86, ?], and reading comprehension [93]. However, achieving satisfactory performance on

dialogue still remains an open problem. This is because dialogues can have multiple valid

responses with varying semantic content. This is vastly different from the aforementioned

tasks, where the generation is more conveniently and uniquely constrained by the input

source.

Although neural models appear to generate meaningful responses when trained with

sufficiently large datasets in the chit-chat setting, such generic chit-chat models reveal

several weaknesses that were reported by previous research [94, 95]. Most common prob-

62

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

lems include inconsistency in personality, dull and generic responses, and unawareness

of long-term dialogue context. To alleviate these limitations, we turn our focus on a

different problem setting for dialogue response generation where the model is provided a

set of relevant textual facts (speaker persona descriptions) and is allowed to harness this

knowledge when generating responses in a multi-turn dialogue. To handle the personality

inconsistency issue, we ground our dialogue generation model on external knowledge facts

which are a list of persona descriptions in our application [96, 7]. We explicitly use the

dialogue history as memory for the model to condition on which potentially encourages

a more natural conversation flow. Towards encouraging generation of more specific and

appropriate responses while avoiding generic and dull ones, we use a hierarchical pointer

network in our model such that it can copy content from two sources: current dialogue

history and persona descriptions.

In this work, we propose a novel and general architecture DeepCopy that extends the

attentional sequence-to-sequence model with a hierarchical pointer network that enables

the decoder to jointly attend and copy tokens from any of the facts available as external

knowledge in addition to the dialogue context (encoder input). This is achieved entirely

in an end-to-end fashion through factoring the whole copy mechanism into following

three hierarchies/components: (i) a token-level attention mechanism over the dialogue

context to determine the probability of copying a token from the dialogue context, (ii) A

hierarchical pointer network to determine the probability of copying a token from each

fact, and (iii) An inter-source meta attention over the input sources dialogue context and

external knowledge, which combines the two copying probabilities. Using these compo-

nents, a single copying probability distribution over the unique tokens appearing in the

model input is computed exploiting the well-defined hierarchy among them. In addition,

the model is equipped with a soft switch mechanism between copying and generation

modes similar to [5], which allows us to softly combine the copying probabilities with the

63

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

decoder’s generation probabilities over a fixed vocabulary into a final output probability

distribution over an extended vocabulary. We empirically show the effectiveness of the

proposed DeepCopy model compared to several baselines including [6, 7] on ConvAi2

challenge.

5.2 Related Work

Earlier work on data-driven, end-to-end approaches to conversational response gen-

eration treated the task as statistical machine translation, where the goal is to generate

a response given the previous dialogue turn [97, 95]. While these studies resulted in a

paradigm change compared to earlier work, they do not include mechanisms to repre-

sent conversation context. To tackle this problem and have a better representation of

conversation context as input to generation, [94] proposed hierarchical recurrent encoder-

decoder (HRED) networks. HRED combines two RNNs, one at the token level, modeling

individual turns, and one at the dialogue level, inputting turn representations from the

token-level RNNs. However, utterances generated by such neural response generation

systems are often generic and contentless [95]. To improve the diversity and content

of generated responses, HRED was later extended with a latent variable that aims to

model the higher level aspects (such as topic) of the generated responses, resulting in the

VHRED approach [98].

Another challenge for dialogue response generation is the integration of knowledge

into the generated responses. [99] extracted facts relevant to a dialogue from knowledge

using string matching, named entity recognition and linking, found additional entities

from knowledge that are most relevant to the facts by a neural similarity scorer, and used

these as input context features for the dialogue generation RNN. [6] used end-to-end

memory networks to base the generated responses on knowledge, where an attention over

64

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

the knowledge relevant to the conversation context is estimated, and multiple knowledge

representations are included as input during the decoding of responses. In this work, we

use end-to-end memory networks as a baseline.

Although much research has focused on response generation in a chit-chat setting,

models trained on large datasets of human-human interactions of diverse speaker charac-

teristics often tend to generate responses which are too vague and generic (common for

most speakers) or inconsistent in personality (switching between different speakers’ char-

acteristics). Recently, [7] presented the ConvAi2 challenge containing persona descrip-

tions and over 10K real human chit-chats where speakers were required to converse based

on their assigned persona. [96] learned speaker persona embeddings from a single-speaker

setting (e.g. Twitter posts) or a speaker-address style (human-human conversations) to

generate personalized responses given a single utterance input. Recently, several other

dialogue challenges in both chit-chat [100] and task-oriented [101, 102, 103] settings have

been released, further justifying the increasing research efforts in this domain. Another

related work [104] applies hierarchical memory network for task oriented dialog problem.

In this work, we compare our model with [6] and [7] which use a memory-augmented

sequence-to-sequence response generator grounded on the dialogue history and persona.

5.3 Model

In this section, we first set up the problem, and then briefly revisit the baseline

models using memory networks [105] and pointer-generator networks [5]. Subsequently,

we introduce the proposed DeepCopy model with a hierarchical pointer network and

our training process.

65

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

5.3.1 Problem Setup

Let x = (x1, x2, . . . , xn) denote the tokens in the dialogue history. The dialogue is

accompanied by a set of K relevant supporting facts, where f (i) = (f
(i)
1 , f

(i)
2 , . . . , f

(i)
ni) is

the list of tokens in the i-th fact. Our goal is to generate the response as a sequence of

tokens y = (y1, y2, . . . , ym) using the dialogue history and supporting facts. Note here

that we are not interested in retrieval/ranking based models [106] which rely on a set of

candidate responses. Generative models are essential for this problem because we want

to incorporate content from new facts during inference which may not be present in the

training set. Hence, using a predefined set of candidates may not ensure high coverage.

5.3.2 Baseline Models

In this section, we describe several baseline response generation models including the

ones from existing work [6, 7] and the in-house ones we propose as additional baselines.

Seq2Seq Models

In a sequence-to-sequence model with attention [86], a sequence of input tokens is

encoded using an LSTM encoder. At decoder step t, the decoder state ht, a context vector

ct and the previous decoder output yt−1 are used together to output a distribution over

a fixed vocabulary of tokens obtained from the training set using a non-linear function.

The context vector ct is an attention-weighted combination of the encoder outputs. In

the following baseline models, we use different features as inputs to the encoder. The

underlying model remains the same.

Seq2Seq + NoFact. Only the dialogue context tokens x are used as input to the

encoder.

Seq2Seq + BestFactContext. We select the fact f (c) whose tokens have highest

66

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

unigram tf-idf similarity to the dialogue context tokens. [x||f (c)] is then used as input to

the encoder, where || denotes concatenation.

Seq2Seq + BestFactResponse. We select the fact f (r) whose tokens have highest

unigram tf-idf similarity to the ground truth response. [x||f (r)] is used as input to the

encoder. The aim of this experiment is to have a better understanding of the effect of

fact selection on response generation, since using the ground truth for fact selection is

not fair.

Memory Network Models

Our variations of Seq2Seq models described in Section 5.3.2 incorporate facts by

concatenating them to the dialogue context. Memory networks [6, 7] are a more principled

approach to incorporating external facts. Similar to [6], we use a context encoder to

embed the context tokens x and obtain a list of outputs and final hidden state u ∈ Rd. As

outlined in [6], a fact f (i) is embedded into key and value vectors ki and mi, respectively.

A summary o ∈ Rd of facts is then computed as an attention weighted combination of

(m1,m2, . . . ,mK) by conditioning on u and (k1, k2, . . . , kK). We then combine the two

summaries into û = u+ o, and use it to initialize the decoder state. We report results on

the following variants:

MemNet. This is equivalent to the model used in [6], described above. This is essentially

a sequence to sequence model without attention at every decoder step, except using the

combined summary û to initialize the decoder.

MemNet+ContextAttention. At each decoder step, the decoder state attends over

the encoder outputs and obtains a context vector c
(c)
t . This is equivalent to Seq2Seq

+ NoFact model from Section 5.3.2, except using the fact summary û to initialize the

decoder state.

MemNet+FactAttention. At each decoder step, we use the decoder state to attend

67

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

Figure 5.1: Overview of our proposed approach as described in Section 5.3.3. The
decoder state dt is used to attend over dialogue context and knowledge source to
generate distributions for copying tokens from these sources. The decoder outputs a
distribution over a fixed vocabulary. The three distributions are combined to yield
the final distribution over tokens at each step t.

over the value embeddings (m1,m2, . . . ,mK) corresponding to facts, and obtain a context

vector c
(f)
t . This model is similar to the generative profile memory network [7], where

we apply attention only on facts, and we set the decoder’s initial state to the combined

summary û.

MemNet+FullAttention. This model employs attention over both facts and dialogue

context at each decoder step. The two attention modules are combined by concatenating

c
(c)
t and c

(f)
t [107].

Seq2Seq Models with Copy Mechanism

Seq2seq models can only generate tokens present in a fixed vocabulary obtained

from the training set. Pointer-generator network [5] extends the attentional sequence-to-

sequence model [86] by employing a pointer network [70]. It has two decoding modes,

copying and generating, which are combined via a soft switch mechanism, allowing it to

copy tokens from source in addition to generating from vocabulary. We report the results

for the following additional baselines obtained by equipping the corresponding Seq2Seq

68

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

Figure 5.2: Illustration of hierarchical pointer network. The decoder state dt is used
to attend over tokens for each fact and also over the fact-level context vectors obtained
by weighted average of token-level representations (w.r.t token-level attention weights)
for each fact. The token-level attention weights are then combined with the attention
distribution over facts (Equation 5.11) to generate the probability of copying each
token in all the facts.

model in Section 5.3.2 with copy mechanism: Seq2Seq + NoFact + Copy, Seq2Seq

+ BestFactContext + Copy, Seq2Seq + BestFactResponse + Copy.

5.3.3 DeepCopy with Hierarchical Pointer Networks

In this section, we present our proposed DeepCopy model that extends pointer-

generator network [5] using a novel hierarchical pointer network. Our model allows

copying tokens from multiple input sources (facts f (i), 1 ≤ i ≤ K), besides the encoder

input (dialogue context x).

A high-level overview of the proposed approach is illustrated in Figure 5.1. At decoder

step t, the decoder state ht is used to attend over the dialogue context tokens and fact

tokens to give a distribution over the tokens present in context and facts respectively.

These distributions are then combined with the distribution output by the decoder over

the fixed vocabulary to obtain the overall distribution.

69

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

Encoding a Sequence

Let w = (w1, w2, . . . wn) be a sequence of tokens. We first obtain a trainable embedded

representation of each token in the sequence and then use a LSTM cell to encode the

sequence of embedding vectors. We define e, s = Encode(w), where e denotes the final

state of the LSTM and s = (s1, s2, . . . sn) denotes the outputs of the LSTM cell at all

steps.

Attention

Let u = (u1, u2, . . . un) be a sequence of vectors where ui ∈ Rp, 1 ≤ i ≤ n and v ∈ Rq

be a conditioning vector. The attention module generates a linear combination c of

elements in u by conditioning them on v as defined by the equations below. We define

α, c = Attention(u, v), where αi ∈ Rn is the weight assigned to ui, and c ∈ Rp is a

vector representation of the sequence u conditioned on v. In the equations below, w1

and W2 are parameters of appropriate dimension. In our setup, we use p = q, w1 ∈ Rp,

and W2 ∈ Rp×2p.

ei = wT1 tanh(W2[ui; v]) (5.1)

αi =
exp(ei)∑n
j=1 exp(ej)

(5.2)

c =
n∑
i=1

αiui (5.3)

Copying from Dialogue Context

Similar to our baseline models, we encode the dialogue context tokens x (Equation 5.4)

and apply attention to the encoder outputs at a decoder step t (Equation 5.5). This out-

puts attention weights α
(x)
t and a representation of the entire context c

(x)
t . The attention

weights are aggregated to obtain the distribution over context tokens p
(x)
t (w) (Equation

70

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

5.6) as follows:

e(x), s(x) = Encode(x) (5.4)

α
(x)
t , c

(x)
t = Attention(s(x), ht) (5.5)

p
(x)
t (w) =

∑
{i:xi=w}

α
(x)
t,i (5.6)

Copying from Facts: Hierarchical Pointer Network

We introduce the hierarchical pointer network (Figure 5.2) as a general methodology for

enabling token-level copy mechanism from multiple input sequences or facts. Each fact

f (i) is encoded (Equation 5.7) to obtain token level representations s(f)(i) and overall rep-

resentation e(f)(i). The decoder state ht is used to attend over token level representations

(Equation 5.8) and the overall fact-level representations of each fact (Equation 5.9) by

e(f)(i), s(f)(i) = Encode(f (i)) (5.7)

α
(f)(i)
t , c

(f)(i)
t = Attention(s(f)(i), ht) (5.8)

βt, c
(f)
t = Attention({c(f)(i)

t }Ki=1, ht) (5.9)

to compute the probability of copying a word w from facts as

p
(f)
t (w) =

K∑
j=1

p
(f)
t (f (j)) · p(f)

t (w|f (j))

=
K∑
j=1

βt,j
∑

{l:f (j)
l =w}

α
(f)(j)
t,l (5.10)

Inter-Source Attention Fusion

We now present the mechanism to fuse the two distributions p
(x)
t (w) and p

(f)
t (w) repre-

senting the probabilities of copying tokens from dialogue context and facts respectively.

We use the decoder state ht to attend over dialogue context representation c
(x)
t and overall

fact representation c
(f)
t (Equation 5.11). The resulting attention weight γ′t = [γt, 1 − γt]

71

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

is used to combine the two copying distributions as shown in Equation 5.12.

γt, ct = Attention([c
(x)
t , c

(f)
t], ht) (5.11)

pcopy
t (w) = γt p

(x)
t (w) + (1− γt) p(f)

t (w) (5.12)

Similar to Seq2Seq models, the decoder also outputs a distribution pvocab
t over the fixed

training vocabulary at each decoder step using the overall context vector ct and decoder

state ht. Having defined the copy probabilities pcopy
t for tokens that appear in the model

input, either the dialogue context or the facts in external knowledge source, we combine

pvocab
t and pcopy

t using the mechanism outlined in [5], except we use ct defined in Equation

5.11 as the context vector instead.

To better isolate the effect of copying, a key component of the proposed DeepCopy

model, we also conduct experiments with MultiSeq2Seq model that incorporates the

knowledge facts in the same way (by encoding each fact separately with LSTM, and

attending on each by the decoder as in [107]), but relies completely on generation prob-

abilities without a copy mechanism.

5.3.4 Training

We train all the models described in this section using the same loss function op-

timization. More precisely, given a model M that produces a probability pt(w|y<t) of

generating token w at decoding step t, we train the whole network end-to-end with the

negative log-likelihood loss function of

Jloss(Θ) = − 1

|y|

|y|∑
t=1

log(pt(yt|y<t,x, {f (i)}Ki=1))

for a training sample (x,y, {f (i)}Ki=1) where Θ denotes all the learnable model parame-

ters.

72

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

5.4 Experiments

In this section, we describe the details of dataset, training process, evaluation metrics,

and the performance results of DeepCopy model in comparison to proposed and existing

baselines.

5.4.1 Dataset

We perform experiments for our problem setup on the recently released ConvAi2

conversational AI challenge dataset, which is an extended version of PersonaChat [7].

The conversations in ConvAi2 are obtained by asking a pair of crowdworkers to chat

with each other naturally based on their randomly assigned personas (from a set of 1155

personas) towards getting to know each other. Personas are created by a different set

of crowdworkers, and they consist of ˜5 natural language sentences, each describing an

aspect of a person that can range from common hobbies like ”I like to play basketball”

to very specific facts like ”I have a pet parrot named Tasha”, reflecting a wide range of

different personalities. The dataset contains ˜11000 dialogues with ˜160000 utterances,

and 2000 dialogues with non-overlapping personas are used for validation and test. For

our setting, we use personas as external knowledge sources that models can ground on

while generating responses.

5.4.2 Training and Implementation Details

In all the models explored throughout this study, we set the dialogue context to

concatenation of the last two dialogue turns separated by a special CONCAT token. The

models are supplied with the persona facts of the side generating the response at the

current turn, while the persona of the other side is concealed. We use a vocabulary of

18650 most frequent tokens and all the remaining tokens are replaced with a special UNK

73

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

token. Embeddings of size 100 are randomly initialized and updated during training. We

set the size of LSTM hidden layer to 100 for both encoder and decoder. The encoder

and decoder vocabularies and embeddings are shared. A shared LSTM encoder is used

for encoding both dialogue context and facts of external knowledge source. The model

parameters are optimized using Adam [50] with a batch size of 32, a fixed learning rate

of 0.001. We apply gradient clipping to 5 when its norm exceeds this value. During

inference, we generate responses by employing a beam search of width 4. Our models are

implemented in TensorFlow [51].

5.4.3 Main Results

In this section, we present the experimental results in terms of both automatic mea-

sures and human evaluation.

Automatic Evaluation

In Table 5.1, we present our results in comparison with the existing and proposed

baseline models. We report the performance of each model across several metrics com-

monly used for evaluation of text generation models including perplexity, corpus BLEU

[108], ROUGE-L [109], CIDEr [110].

As expected, Seq2Seq + BestFactResponse model and its +COPY version

outperform all the other models across all the evaluation metrics. This model pinpoints

the importance of selecting the most suitable fact in the persona for the response to be

generated at each turn, justifying our underlying motivation for conducting this experi-

ment as highlighted in Section 5.3.2. However, the most suitable fact for the response is

not available in the real application scenario, where the models are responsible for pick-

ing the useful pieces of information pertaining to the current dialogue turn to generate

meaningful responses. Our proposed Seq2Seq + BestFactContext model and its

74

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

Model PP BLEU R-L CIDEr App.

[M-1] MemNet 61.30 3.07 59.10 10.52 3.14 (0.51)
[M-2] MemNet + ContextAttention 57.37 3.24 59.20 11.79 3.41 (0.54)
[M-3] MemNet + FactAttention 61.50 2.43 59.34 9.65 1.45 (0.25)
[M-4] MemNet + FullAttention 59.64 3.26 59.18 12.25 3.20 (0.49)

[S2S-1] Seq2Seq + NoFact 60.48 3.38 59.46 11.41 3.12 (0.52)
[S2S-2] Seq2Seq + BestFactContext 58.68 3.35 59.13 10.77 3.08 (0.45)
[S2S-3] Seq2Seq + BestFactResponse* 49.74 4.02 60.04 16.15 2.97 (0.51)

[S2SC-1] S2S-1 + Copy 58.84 3.25 59.18 11.15 3.64 (0.54)
[S2SC-2] S2S-2 + Copy 60.25 3.17 59.46 11.17 3.60 (0.51)
[S2SC-3] S2S-3 + Copy* 38.60 4.54 60.96 21.47 3.83 (0.46)

[M-S2S] MultiSeq2Seq (no Copy) 57.94 2.88 59.10 10.92 3.32 (0.44)

DeepCopy† 54.58 4.09 60.30 15.76 3.67 (0.59)

G.Truth N/A N/A N/A N/A 4.40 (0.45)

Table 5.1: Main results on Convai2 dataset. Evaluation metrics on last three columns
are better the higher. Perplexity is lower the better. The results of the proposed
approach are presented in bold. * indicates that the corresponding model should be
considered as a kind of ORACLE because it has access to the fact that is most
relevant to the ground-truth response during the inference/test time as defined in
Section 5.3.2. † indicates that the improvement of DeepCopy in automatic evaluation
metrics over each of the other models (except S2SC-3) is statistically significant with
p-value of less than 0.001 on the paired t-test. PP, R-L, App. are abbreviations for
perplexity and ROUGE-L, appropriateness metrics, respectively.

+COPY version, on the other hand, are valid baselines for this scenario where the best

fact is selected completely based on the dialogue context without relying on the ground-

truth response. This model outperforms the previously proposed memory network based

model MemNet [6] for knowledge grounded response generation on all the evaluation

metrics, demonstrating its effectiveness despite the fact that it does not have access to

all the facts unlike [6]. However, this approach has the following potential weaknesses:

(i) if the best persona fact selected w.r.t dialogue context is wrong (irrelevant) for the

ground-truth response, the generated response might be drastically misinforming, and

furthermore it is difficult for model to recover from this error because it has no access to

other facts, (ii) selecting the best fact w.r.t dialogue context based on tf-idf similarity

may result in poor fact selection when the lexical overlap between context and response

75

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

Diversity Fact-Inclusion Agreement
Model Distinct-2 / 3 / 4 F.Inc F.Per F.Hal F.Inc / F.Per

M-1 .004 / .006 / .010 0.41 0.01 0.40 0.99 / 0.99
M-2 .010 / .019 / .031 0.43 0.01 0.42 0.97 / 0.99
M-3 .001 / .001 / .002 0.06 0.04 0.02 0.99 / 0.99
M-4 .054 / .010 / .156 0.51 0.09 0.42 0.98 / 0.98

S2S-1 .012 / .022 / .036 N/A N/A N/A N/A / N/A
S2S-2 .012 / .022 / .035 0.54 0.04 0.50 0.97 / 0.99
S2S-3 .026 / .043 / .061 0.79 0.16 0.63 0.97 / 0.97

S2SC-1 .039 / .069 / .104 N/A N/A N/A N/A / N/A
S2SC-2 .035 / .067 / .109 0.73 0.36 0.37 0.99 / 0.99
S2SC-3* .058 / .111 / .178 0.73 0.55 0.18 0.98 / 0.96

M-S2S .035 / .065 / .104 0.47 0.05 0.42 0.96 / 0.98
DeepCopy .059 / .121 / .201 0.62 0.23 0.39 0.95 / 0.97

G.Truth 0.35 / 0.66 / 0.84 0.76 0.49 0.27 0.93 / 0.96

Table 5.2: Lexical diversity and fact inclusion analysis results. Model names are ab-
breviated according to Table 5.1. F.Inc denotes the ratio of responses that include
factual information. F.Per and F.Hal denote the ratio of responses where the in-
cluded fact is consistent with the persona or a hallucinated one, respectively. Agree-
ment column corresponds to Cohen’s κ statistic measuring inter-rater agreement on
binary factual evaluation metrics for F.Inc and F.Per. * indicates the ORACLE
model.

is small which might be a common case especially for the ConvAi2 dataset as the focus

of conversation may often change swiftly across the dialogue turns. The latter might be

the reason why copying does not help much for this model since it might end up copying

irrelevant tokens in the scenario mentioned above.

Our proposed DeepCopy model is designed to effectively address the aforementioned

issues, where it has access to the entire set of persona facts per dialogue from which it is

expected to include the useful pieces of information in the response. DeepCopy model

outperforms all the models reported in Table 5.1 except for Seq2Seq + BestCon-

textResponse models, which we already deem as kind of an upper bound because it

has access to the most relevant fact to the response. This justifies the effectiveness of

76

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

DeepCopy model compared to the existing works [6, 7] and the additional baselines we

explored in this work. On the other hand, MultiSeq2Seq performs considerably worse

than the DeepCopy model despite the fact they both have access to the entire set of

facts and employ the same encoder-decoder architecture except for the copy mechanism.

This further justifies the effectiveness of incorporating the proposed hierarchical pointer

networks in DeepCopy because integrating the external knowledge simply by employ-

ing multi-source attention as in [107] does not yield to a good solution with competitive

results, performing even worse than Seq2Seq + NOFACT on 3 of the metrics.

Human Evaluation

Although automatic metrics provide tangible information regarding the performance

of the models, we augment them with human evaluations for a more comprehensive

analysis of the resulting model generated responses. Towards this end, we randomly

sample 100 examples from test data and ask human raters to evaluate the candidate

model generated responses in terms of appropriateness. Each example is rated by 3

raters, who are shown a dialog history along with a set of persona facts (of the person

in turn), and asked to rate each response based on its appropriateness in the dialogue

context with a score from 1 (worst) to 5 (best).

In Table 5.1, we present the results of human evaluation under the appropriateness

column. Since each response is rated by 3 different human raters, we report the average

rating along with the standard deviation in parenthesis. We observe that DeepCopy

outperforms both the existing memory-network baselines and the proposed sequence-to-

sequence baselines on the appropriateness evaluation. It also achieves a performance

that is close to the oracle model (S2SC-3), which has a leverage of having an access to

the fact that is most relevant to the ground-truth response during the inference time.

Overall, human evaluation of the responses in terms of appropriateness further justifies

77

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

the promise and effectiveness of our proposed DeepCopy model.

Appropriateness scores also demonstrate the advantage of incorporating the soft copy

mechanism. Comparing S2S (and M-S2S) models to their copy-equipped counterparts

(S2SC) (and DeepCopy) in Table 5.1 immediately reveals a significant gain in ap-

propriateness score. Another significant observation to note here is that ground-truth

responses obtain an average appropriateness score of 4.4/5, which reflects both the noise

in ConvAI2 dataset and the difficulty of generating the perfect response even for hu-

mans.

5.4.4 Further Analysis and Discussion

Lexical Diversity Analysis

In Table 5.2, we report the lexical diversity results using the distinctness metric intro-

duced in [111]. distinct-n score corresponds to the number of distinct n-grams divided

by total number of generated n-grams. We can clearly observe that DeepCopy gen-

erates the most diverse responses among all the models including the copy-augmented

oracle model (S2SC-3). Hence, diversity results further show that our proposed model

is promising in addressing the most commonly observed generic response problem more

effectively than existing models by generating more diverse responses.

Fact Inclusion Analysis

We also conduct an analysis on the kinds of factual information included in the model-

generated responses. More precisely, our goal is to understand how often the generated

response includes a factual information (F.Inc), and whether this information is consistent

with the persona facts (F.Per) or a hallucinated one (F.Hal). A good model can naturally

include available facts from the persona and hallucinate others when the conversation

context requires them. Towards this end, we ask 3 human raters to label responses with

78

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

1 (or 0) based on whether a fact is included, and if so, whether this fact is a persona-fact

or not.

In Table 5.2, we present an analysis for the kinds of factual information included

in model generated responses. As can be seen from this analysis, models that have a

copy mechanism include more facts from the persona than the ones that do not. Another

important observation is that the ground-truth responses include facts from persona only

in 49% of the times, which indicates that the provided persona facts remain insufficient

to cover the complexity of the high entropy open-ended person-to-person conversations.

In Table 5.2, we present Cohen’s κ score for each model and fact analysis metric pair

using the scores from 3 raters for each example. We observe for each model and metric

pair a κ statistic of greater than 0.9, which indicates a near perfect agreement among

raters. Note that the ratio of hallucinated facts (F.Hal) is derived directly from human

labels for fact inclusion (F.Inc) and persona-fact (F.Per). That is why, there is no

separate labelling process for hallucinated facts (F.Hal). Hence, there is no κ statistic

for F.Hal in Table 5.2.

Error Analysis

A deeper analysis of the examples where DeepCopy is assigned a worse appropriateness

score than the best performing memory-network based baselines (M-2 and M-4) reveals

the following further insights: (i) Some of these examples are corresponding to the cases

where a generic response (e.g., ”I’ve a dog named radar”, one of the frequent generic

responses, completely independent of persona facts) is rated much higher (5 to 1) than

factual but slightly off (by a single word in this example) responses (e.g., ”I have a dog

for a living.” coming from the persona fact ”I walk dogs for a living.”), (ii) In another

subset of the analyzed examples, DeepCopy model generates a response (e.g., ”yes, but

I want to become a lawyer.”) by incorporating a fact that has already been used in the

previous turn of the dialog whereas M-2 produces a generic response (e.g., ”that’s great.

79

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

Figure 5.3: Example dialogue where the previous two turns from Person1 and Per-
son2 along with the responses generated by the models acting as Person1 are shown
on the right. Persona facts for Person1 are provided on the left, among which the
one in bold is the best fact w.r.t response. MemNet*, Seq2Seq*, Seq2Seq** are
abbreviations for MemNet + FullAttention, Seq2Seq + BestFactResponse,
Seq2Seq + BestFactResponse +COPY models, respectively.

do you have any hobbies?”, again irrelevant to facts) which is rated higher. (iii) And

most of the remaining cases fall into the class of examples where incorporating knowledge

facts breaks the conversation flow, which is a crucial observation specific to this dataset

that can also be supported by the low persona-fact inclusion ratio (49%) of ground-truth

responses.

80

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

5.4.5 Qualitative Observations

In Figure 5.3, we present an example dialogue where DeepCopy model generates a

meaningful and fluent response by effectively mixing copy and generate modes. We can

observe that it is able to attend on the right persona fact by taking the dialogue context

(especially the question at the end of Person2’s turn) into consideration. Furthermore,

attending to the tokens of this fact, it produces a fluent and valid answer to yes/no

question by generating ”yes” and copying the rest (and most) of the tokens from the

fact.

Although it copies most of the tokens from the fact, it is good to observe that it

copies exactly the relevant pieces instead of just copying the entire fact. Seq2Seq +

BestFactResponse + Copy model’s response is also meaningful and fluent although

it may not be as engaging for the continuation of dialog. However, the quality of the

response by Seq2Seq + BestFactResponse quickly degrades compared to its +Copy

version. Although the response is still fluent and relevant to the dialogue context, it

becomes rather irrelevant to the persona as the model seems to have difficulty of picking

the useful information from even the best persona fact it is provided with when the copy

mechanism is disabled. Lastly, the response generated by MemNet+FullAttention

model seems to still suffer from repetition, semantic consistency, and relevancy problems

that were observed and reported by previous work.

5.5 Conclusion

We propose a hierarchical pointer network for knowledge grounded dialogue response

generation. Our approach extends the pointer-generator network to enable the decoder

to simultaneously copy tokens from the available set of relevant external knowledge in

addition to dialogue context. We demonstrate the effectiveness of our approach through

81

Grounded Response Generation with Hierarchical Pointer Networks Chapter 5

various automatic and human evaluations in comparison with several baselines on the

ConvAi2 dataset. Furthermore, we conduct diversity, fact inclusion, and error analysis

providing further insights into model behaviors. In the future, we plan to apply our model

to datasets of the same fashion where the dialogue is accompanied by a much larger set of

knowledge facts (e.g., Wikipedia articles) [112]. This could be done by adding a retrieval

component which identifies a few contextually relevant facts [6] to be used as input to

DeepCopy.

82

Chapter 6

Improved Sequence-Level

Optimization with CaLcs

6.1 Introduction

Recently, deep neural networks have achieved state-of-the-art results in various tasks

including computer vision, natural language processing, and speech processing. Specifi-

cally, neural text generation models, central focus of this work, have led to great progress

in central downstream NLP tasks like text summarization [87, 88, 5], machine translation

[91, 85, 86], reading comprehension [93], and dialogue response generation [94, 98, 6, 113].

For example, the abstractive summarization task, which has previously not been the pop-

ular choice for text summarization due to lack of appropriate text generation methods,

has gained revived attention with the success of neural sequence-to-sequence models.

There has been several recent work with an impressive progress on this task including

[87, 114, 88, 115, 5, 89, 116]. Machine translation is another central field in NLP where

the emergence of neural sequence-to-sequence models has enabled viable alternative ap-

proaches [52, 117, 118, 119, 120] to challenge traditional phrase-based methods [121].

83

Improved Sequence-Level Optimization with CaLcs Chapter 6

Most of the recent existing works on neural text generation are based on variants

of sequence-to-sequence models with attention [86] trained with Maximum-likelihood

estimation (MLE) with teacher forcing. As [122] points out in a previous work, these

models have two major drawbacks. First, they are trained to maximize the probability of

correct next word given the entire sequence of previous ground truth words. While, at test

time, the models need to generate the entire sequence by feeding its own predictions at

previous time steps. This discrepancy is called exposure bias and hurts the performance as

the model is never exposed to its own predictions during training. The second drawback,

called wrong objective, is due yet another discrepancy between training and testing. It

refers to the critique [122] that MLE-trained models tend to have suboptimal performance

as they are trained to maximize a convenient objective (i.e., maximum likelihood of word-

level correct next step prediction) rather than a desirable sequence-level objective that

correlates better with the common discrete evaluation metrics such as ROUGE [109] for

summarization, BLEU [108] for translation, and word error rate for speech recognition,

not log-likelihood. On the other hand, training models that directly optimize for such

discrete metrics as objective is hard due to non-differentiable nature of the corresponding

loss functions [123]. To address these issues, [122] introduces an incremental learning

recipe that uses a hybrid loss function combining REINFORCE [124] and cross-entropy.

Recently, [125] also explored combining maximum-likelihood and policy gradient training

for text summarization.

Towards sequence level optimization, previous works [122, 126, 125] employ reinforce-

ment learning (RL) with a policy-gradient approach which works around the difficulty

of differentiating the reward function by using it as a weight. However, REINFORCE is

known to suffer from high sample variance and credit assignment problems which makes

the training process difficult and unstable besides resulting in models that are hard to

reproduce [127].

84

Improved Sequence-Level Optimization with CaLcs Chapter 6

In this chapter, we propose an alternative approach for sequence-level training with

longest common subsequence (LCS) metric that measures the sequence-level structure

similarity between two sequences. We essentially introduce a continuous approximation to

the discrete LCS metric which can be directly optimized against using standard gradient-

based methods. Our proposed approach has the advantage of being able to directly

optimize for a surrogate reward as opposed to using the exact reward only as a weight as in

RL-inspired works. Hence, it provides a viable alternative perspective to policy-gradient

methods for side stepping the non-differentiability with respect to the exact reward. In

addition, it simultenuously combats the exposure bias problem through exposing the

model to its own predictions while computing our approximation to LCS metric.

To this end, we introduce a new learning recipe that incorporates the aformentioned

continuous approximation to LCS metric (CaLcs) as an additional objective on top

of maximum-likelihood loss in existing neural text generation models. We evaluate the

proposed approach on abstractive text summarization and machine translation tasks.

To this end, we use recently introduced pointer-generator network [5] and transformer

[117] as underlying baselines for summarization and machine translation, respectively.

More precisely, we start from a pre-trained baseline model with cross-entropy loss, and

continue training the model to optimize for the proposed differentiable objective based

on CaLcs. Using this recipe, we conduct various experiments on CNN/Daily Mail

[128, 88] summarization and WMT 2014 English-to-German machine translation tasks.

Experimental results validate the effectiveness of the proposed approach on both tasks.

85

Improved Sequence-Level Optimization with CaLcs Chapter 6

6.2 Continuously Approximating Longest Common

Subsequence Metric

In this work, we explore the potential use of longest common subsequence (LCS)

metric from an algorithmic point of view to address the aforementioned wrong objective

and exposure bias problems. LCS metric measures a sequence-level structure similarity

between discrete sequences by identifying longest co-occurring in sequence n-grams and

it has been shown to correlate well with human judgments for downstream text gen-

eration tasks [109]. To this end, we propose a way to continuously approximate LCS

metric and use this differentiable approximation as the objective to train text genera-

tion models rather than the exact LCS measure, which is hard to optimize for due to

non-differentiability of the corresponding loss function. Although such differentiable ap-

proximation provides a unique advantage from modeling and optimization perspective,

the difficulty of controlling its tightness might be a potential drawback in terms of its

applicability. In this section, we will first introduce our proposed approximation to LCS

metric, and then provide a natural way to control its tightness.

Consider a sequence generation problem conditioned on an input sequence x =

(x1, x2, . . . , xn) and let y = (y1, y2, . . . , ym) denote its corresponding ground-truth output

sequence. Let

f(x,Θ) = z = (z1, z2, . . . , zk)

denote hypothesis sequence obtained by greedy decoding from a generic encoder-decoder

architecture for input sequence x, where Θ represents model parameters. Also, let

p1, p2, . . . , pk be the probability distributions over vocabulary V at decoding time steps

from which z1, z2, . . . , zk are generated via argmax operator, respectively.

86

Improved Sequence-Level Optimization with CaLcs Chapter 6

6.2.1 CaLcs

In this section, we define our approach to continuously approximate the longest com-

mon subsequence measure (LCS), which is an unnormalized version of ROUGE-L metric

[109] that is commonly used for performance evaluation of text summarization models.

The main intuition behind our approach is to relax the common necessity for hard in-

ferences while computing discrete metrics by instead comparing discrete tokens in a soft

way. Towards this end, we start by defining LCS metric.

Definition 1 Given two sequences y and z of tokens, longest common subsequence

LCS(y, z) is defined as the longest sequence of tokens that appear left-to-right (but not

necessarily in a contiguous block) in both sequences.

The most common and intuitive solution for computing longest common subsequence

is via dynamic programming. We will briefly revisit this here as it will be useful in

terms of both recall and notational convenience while describing our surrogate LCS

measure. Let ri,j denote the longest common subsequence between prefix sequences

y[:i] = (y1, y2, . . . , yi) and z[:j] = (z1, z2, . . . , zj) of y and z, respectively. A dynamic

programming solution is given by

ri,j =


0 if i = 0 or j = 0

ri−1,j−1 + 1 if yi = zj

max(ri−1,j, ri,j−1) o/w.

(6.1)

ri,j for all i = 1, 2, . . . ,m and j = 1, 2, . . . , k. It can be computed in mk iterations using

the formula in Eqn 6.1. After computing 2D dynamic programming matrix r, we obtain

LCS(y, z) = rm,k.

Towards removing the dependence on hard inference for computing LCS, we now

define our approximation to longest common subsequence, which we call CaLcs. At

87

Improved Sequence-Level Optimization with CaLcs Chapter 6

high-level, the idea is to continuously relax the original LCS measure. To this end,

we leverage output probability distributions p1, p2, . . . , pk as soft predictions to refine the

dynamic programming formulation for original LCS. More precisely, we recursively define

soft longest common subsequence si,j between prefixes y[:i] and z[:j] in analogous to ri,j

as follows:

si,j = p
(yi)
j (si−1,j−1 + 1) + (1− p(yi)

j) max(si−1,j, si,j−1) (6.2)

for i, j > 0 and si,0 = s0,j = 0, where p
(yi)
j denote the probability of generating yi at j-th

decoding step. Intuitively, CaLcs replaces the hard token comparison 1 [yi = zj] in Eq.

6.1 with the probability p
(yi)
j that appear in Eq. 6.2. Interpreting the probability p

(yi)
j

as a continuous relaxation of discrete comparison operator 1 [yi = zj], si,j establishes a

natural continuous approximation to ri,j. Similar to LCS, after iteratively filling up si,j

matrix, we define

CaLcs(y, z) = sm,k (6.3)

Although the proposed approximation is a natural way of relaxing/extending the

hard binary comparison of discrete tokens, it is not clear how tight the approximation is,

which is established in the next section.

6.2.2 On the Tightness of Approximation

In this section, we first discuss the tightness of the proposed approximation, and then

provide a natural way of controlling it.

Bounding the Approximation Error

We now present a bound on the approximation error of the proposed CaLcs com-

pared to the original LCS measure. Characterization of this bound will enable us to

88

Improved Sequence-Level Optimization with CaLcs Chapter 6

theoretically argue about the feasibilty of using the proposed surrogate reward function

for our objective as well as controlling its tightness.

LCS measure is intrinsically monotonic by definition. We start by a lemma that

establishes a similar monotonicity property for CaLcs.

Lemma 1 [Monotonicity] The following two inequalities

si,j ≤ si,j+1 ≤ si,j + 1

si,j ≤ si+1,j ≤ si,j + 1

hold for all 0 ≤ i < m and 0 ≤ j < k.

Proof: We will prove this lemma by induction on i+ j.

Base Case: i + j = 0. In this case, we have i = j = 0. Since s0,0 = s1,0 = s0,1 = 0

by definition, both s0,0 ≤ s0,1 ≤ s0,0 + 1 and s0,0 ≤ s1,0 ≤ s0,0 + 1 hold.

Inductive Step: Assume for i+ j = l that the following two inequalities hold:

si,j ≤ si,j+1 ≤ si,j + 1 (6.4)

si,j ≤ si+1,j ≤ si,j + 1 (6.5)

We will now prove that the inequalities of inductive hypothesis hold for i+ j = l+ 1.

We will start by showing that si,j+1 ≥ si,j holds. By definition, we have

si,j+1 = p
(yi)
j+1(si−1,j + 1) + (1− p(yi)

j+1) max(si−1,j+1, si,j) (6.6)

≥ p
(yi)
j+1(si−1,j + 1) + (1− p(yi)

j+1)si,j (6.7)

≥ p
(yi)
j+1si,j + (1− pj+1,yi)si,j (6.8)

≥ si,j (6.9)

where inequality 6.7 follows from the definition of max operator, and inequality 6.8

follows from induction assumption 6.4 because (i− 1) + j = l. Hence, final inequality 6.9

89

Improved Sequence-Level Optimization with CaLcs Chapter 6

establishes the proof of si,j+1 ≥ si,j.

Now, we will show that si,j+1 ≤ si,j + 1 holds. Again by definition, we have

si,j+1 = p
(yi)
j+1(si−1,j + 1) + (1− p(yi)

j+1) max(si−1,j+1, si,j) (6.10)

≤ p
(yi)
j+1(si−1,j + 1) + (1− p(yi)

j+1)(si−1,j + 1) (6.11)

≤ si−1,j + 1 (6.12)

≤ si,j + 1 (6.13)

where inequalities 6.11 and 6.13 follow from inequalities 6.4 and 6.5 of inductive step as

(i− 1) + j = l.

Note that 6.9 and 6.13 completes the proof of si,j ≤ si,j+1 ≤ si,j + 1 for i+ j = l+ 1.

Following similar arguments, one can easily establish the correctness of si,j ≤ si+1,j ≤

si,j + 1 for i+ j = l + 1, which completes the proof of Lemma by induction.

Having established a certain monotonicity property for CaLcs, we will discuss its

approximation error to the original LCS measure. Let

δi,j = si,j − ri,j (6.14)

denote the approximation error of CaLcs to LCS measure between generated prefix

sequence y[:i] and the ground-truth prefix z[:j].

Lemma 2 Let Pi,j = {(0, 0), (i1, j1), . . . , (iq−1, jq−1), (iq, jq)} denote the path of dynamic

programming algorithm for LCS ending at (i, j) = (iq, jq) cell of m× k grid. Then,

|δi,j| <
∣∣δiq−1,jq−1

∣∣+ (1−max(pj)) (6.15)

where max(pj) = max{p(1)
j , p

(2)
j , . . . , p

(|V |)
j }.

Proof: We will establish the proof by investigating two cases and combining them.

CASE 1: zj = yi.

90

Improved Sequence-Level Optimization with CaLcs Chapter 6

In this case, we have

ri,j = 1 + ri−1,j−1 (6.16)

(iq−1, jq−1) = (i− 1, j − 1) (6.17)

by 6.1. Using Eq. 6.16, we get

δi,j = si,j − ri,j

=
(

1− p(yi)
j

)
max (si−1,j, si,j−1) + p

(yi)
j (si−1,j−1 + 1)− (1 + ri−1,j−1)

= (si−1,j−1 − ri−1,j−1) +
(

1− p(yi)
j

) [
max(si−1,j, si,j−1)− (1 + si−1,j−1)

]
Using the definition of δ and triangle inequality, we get

|δi,j| ≤ |δi−1,j−1|+
(

1− p(yi)
j

) ∣∣∣ (1 + si−1,j−1)− max (si−1,j, si,j−1)
∣∣∣

≤ |δi−1,j−1|+
(

1− p(yi)
j

)
(6.18)

where inequality 6.18 follows from the monotonicity established by Lemma 1.

Moreover, zj = yi implies p
(yi)
j = max(pj) because z is generated by greedy decoding.

Plugging this in Eq. 6.18 and using Eq. 6.17, we can immediately conclude that

|δi,j| <
∣∣δiq−1,jq−1

∣∣+ (1−max(pj)) (6.19)

CASE 2: zj 6= yi.

By definition 6.1, we have ri,j = max (ri−1,j, ri,j−1). Using this identity, we obtain

δi,j = si,j − ri,j

=
[(

1− p(yi)
j

)
max (si−1,j, si,j−1) + p

(yi)
j (si−1,j−1 + 1)

]
−max (ri−1,j, ri,j−1)

= p
(yi)
j [(1 + si−1,j−1)−max (si−1,j, si,j−1)] + [max (si−1,j, si,j−1)−max (ri−1,j, ri,j−1)]

91

Improved Sequence-Level Optimization with CaLcs Chapter 6

Applying triangle inequality on the last equation above, we get

|δi,j| ≤ p
(yi)
j |(1 + si−1,j−1)−max (si−1,j, si,j−1)|+ |max (si−1,j, si,j−1)−max (ri−1,j, ri,j−1)|

≤ p
(yi)
j |(1 + si−1,j−1)−max (si−1,j, si,j−1)|+ max (|si−1,j − ri−1,j| , |si,j−1 − ri,j−1|)

(6.20)

= p
(yi)
j |(1 + si−1,j−1)−max (si−1,j, si,j−1)|+ max (|δi−1,j| , |δi,j−1|)

≤ p
(yi)
j + max (|δi−1,j| , |δi,j−1|) (6.21)

where inequality 6.21 follows from again the monotonicity of s[·, ·], and inequality 6.20

follows from the following identity that holds true for all real numbers a, b, c, d ≥ 0

|max(a, b)−max(c, d)| ≤ max(|a− c| , |b− d|)

Moreover, since zj 6= yi, we know that p
(yi)
j 6= max(pj), which implies

p
(yi)
j ≤ 1−max(pi). (6.22)

Combining 6.20 and 6.22 completes the proof for this case. Finally, two cases investigated

above together establish the proof of Lemma 2.

Lemma 2 leads to the following important corollary.

Corollary 1 Let Pi,j = {(0, 0), (i1, j1), . . . , (iq, jq)} be the path of dynamic programming

algorithm for LCS ending at (i, j) = (iq, jq) cell of m× k grid. Then,

|δi,j| ≤
q∑

w=1

(1−max(pjw)) (6.23)

92

Improved Sequence-Level Optimization with CaLcs Chapter 6

Proof: Applying Lemma 2 iteratively and using δ0,0 = 0, we get

|δi,j| ≤
∣∣δiq−1,jq−1

∣∣+ (1−max(pjq))∣∣δiq−1,jq−1

∣∣ ≤ ∣∣δiq−2,jq−2

∣∣+ (1−max(pjq−1))∣∣δiq−2,jq−2

∣∣ ≤ ∣∣δiq−3,jq−3

∣∣+ (1−max(pjq−2))

...

|δi1,j1| ≤ |δ0,0|+ (1−max(pj1))

|δ0,0| ≤ 0

Summing (q+ 1)-many inequalities above side by side and cancelling out the same terms

appearing on both sides of the resulting inequality establishes the proof of corollary.

Controlling the Tightness of Approximation

Corollary 1 hints for a natural way of controlling the tightness of approximation

CaLcs by exploiting the peakedness of model’s softmax output probability distribu-

tions. More precisely, upper bound on the approximation error is represented as a sum

of 1 − max(pj)’s, hence the more peaked the model’s output probability distributions

on average, the smaller the approximation error we are guaranteed by the established

bounds.

We exploit this property to control the tightness of approximation by making a mod-

ification to computation of the proposed CaLcs measure. Formally, let l1, l2, . . . , lk

denote the unnormalized logits of the model output before applying softmax to obtain

probabilities p1, p2, . . . , pk at decoding time steps, respectively. Hence,

p
(i)
j =

exp(l
(i)
j)∑

i exp(l
(i)
j)

(6.24)

Recall that CaLcs is computed using pj’s. Using peaked softmax, we can obtain more

peaked probability distributions without causing any change in the actual generated

93

Improved Sequence-Level Optimization with CaLcs Chapter 6

sequence z via greedy decoding. This is simply because the order of probabilities for

corresponding vocabulary words will not change, only the probability disribution pj will

get more peaked. So, we define peaked softmax operator with hyperparameter α as

p
(i)
j (α) =

exp(l
(i)
j /α)∑

i exp(l
(i)
j /α)

(6.25)

By Corollary 1, |δi,j| → 0 as α → 0 for CaLcs measure computed with pj(α). One

can further attempt to use Corollary 1 as a guide to pinpoint a range of α values to force

the approximation error within certain desired limits. We will use α as a hyperparameter

in this work.

Corollary 1 is also useful for alternative ways of controlling the tightness of approx-

imation such as incurring penalty for high-entropy output probability distributions or

simply penalizing the maximum output probability values less than a desired threshold

(that explicitly controls the tightness of the approximation). We leave such options of

controlling the approximation error for future work.

With the guidance of Corollary 1 and peaked softmax in Eq. 6.25, we conclude that

CaLcs establishes a promising approximation for LCS measure. In the next section, we

introduce a new objective function using CaLcs as a continuously differentiable reward

to be directly maximized.

6.2.3 Sequence Level Optimization via CaLcs

In this section, we describe how to leverage CaLcs to define a loss function for se-

quence level optimization. For notational consistency, we will use f(x,Θ) to denote an

encoder-decoder architecture that takes an input sequence x and outputs a sequence of

tokens z = (z1, z2, . . . , zm) via greedy decoding from corresponding probability distribu-

tions p1, p2, . . . , pm at each step.

94

Improved Sequence-Level Optimization with CaLcs Chapter 6

For a pair of input sequence x and its corresponding ground-truth output sequence

y, we define

JCaLcs(x,y; Θ) = − log

(
CaLcs(y, f(x,Θ))

|y|

)
(6.26)

as the loss function for a sample (x,y) based on the CaLcs, where |y| denote the length

of sequence y. It is important to note here that while computing probability distribution

pt at decoding step t, we feed model’s own prediction zt−1 at the previous time step to

fight exposure bias.

It is important to observe here that JCaLcs(x,y; Θ) is differentiable in p1, p2, . . . , pk

by definition and each pi is differentiable in model parameters Θ. Hence, JCaLcs(x,y; Θ)

is differentiable in model parameters Θ, which allows us to directly optimize the network

parameters with respect to LCS metric. The bound we established on the approximation

error and our proposed strategy to control it theoretically ensures the feasibility of using

the introduced loss function JCaLcs to optimize for LCS metric.

6.3 Model

In this section, we first briefly revisit the pointer-generator [5] and transformer [117]

networks that are used as the underlying baselines in our experiments. Subsequently,

we describe how the proposed objective function and its variants are used to train new

summarization and machine translation models.

6.3.1 Baseline Models

Pointer-Generator Network. We use pointer-generator network [5] as our baseline

sequence-to-sequence model for text summarization. It is essentially a hybrid between

sequence-to-sequence model with attention [86] and a pointer network [70] that supports

95

Improved Sequence-Level Optimization with CaLcs Chapter 6

two decoding modes, copying and generating, via a soft switch mechanism. This enables

the model to copy a word from the input sequence based on the attention distribution.

On each decoding time step t, the decoder LSTM is fed the word embedding of the

previous word, and computes a decoder state st, an attention distribution at over the

words of input article, and a probability Pvocab(w) of generating word w for summary from

output vocabulary V , which is then softly combined with the copy mode’s probability

distribution Pcopy(w) via soft switch probability pgen ∈ [0, 1] by

p
(w)
t = pgenPvocab(w) + (1− pgen)Pcopy(w)

and

Pcopy(w) =
∑

{i:wi=w}

ati

where ati indicates the attention probability on i-th word of the input article. The whole

network is then trained end-to-end with the negative log-likelihood loss function of

JPg(x,y; Θ) = − 1

|y|

|y|∑
t=1

log(p
(yt)
t)

for a sample article-summary pair (x,y) where Θ denote the learnable model parameters.

It is important to note here that we do not use the coverage mechanism introduced by the

original work [5] to prevent the potential repetition problem in the summaries generated

by the model.

Transformer Network. For machine translation, we use the transformer network [117],

which is a recent model that achieves state-of-the-art results on WMT 2014 English-to-

German MT task with less computational time owing to its highly parallelizable architec-

ture. The core idea behind this model is to use stacked self-attention mechanisms along

with point-wise, fully connected layers for both encoder and decoder to represent its input

and output. For the sake of brevity, we refer the reader to [117] for further details regard-

96

Improved Sequence-Level Optimization with CaLcs Chapter 6

ing the architecture. Similar to previously defined loss functions, let JTf(x,y; Θ) denote

the per-example loss function of transformer networks for an input-output translation

pair (x,y) where Θ is again indicating the learnable model parameters.

6.3.2 Model Variants and Training

Let {(x(l),y(l))}Nl=1 denote the set of training examples, where x(l)’s are input se-

quences, and y(l)’s are their corresponding ground-truth output sequences. Before op-

timizing for the introduced objective JCaLcs, we first train the corresponding baseline

network by minimizing

J{Pg,Tf}(Θ) =
1

N

N∑
l=1

J{Pg,Tf}(x,y; Θ).

Unlike JCaLcs, loss functions J{Pg,Tf} for baseline models are computed by teacher forcing,

feeding the previous ground-truth word at each decoding step. We will denote the baseline

models by PointGen for pointer-generator and Transformer for transformer network.

To optimize for the proposed objective JCaLcs, we initialize the model parameters Θ

from the pre-trained baseline network and continue training the model by minimizing

the joint loss

J(Θ) = λJCaLcs(Θ) + (1− λ)J{Pg,Tf}(Θ) (6.27)

JCaLcs(Θ) =
1

N

N∑
l=1

JCaLcs(x,y; Θ) (6.28)

where λ is a hyperparameter controlling the balance between the two losses. During

the training with the joint loss, we compute JCaLcs(x,y; Θ), by performing |y|-many

decoding steps as a simple strategy to prevent the model from gaming the training

objective by generating longer and longer hypotheses instead of incurring an additional

length penalty. We will refer to the resulting model trained with the loss function in Eq.

6.27 as {PointGen,Transformer}+CaLcs depending on the baseline model.

97

Improved Sequence-Level Optimization with CaLcs Chapter 6

Model ROUGE-1 ROUGE-L

[88] 35.46 32.65
w/o coverage [5] 36.44 33.42
w/ coverage [5] 39.53 36.38
LEAD-3 baseline [5] 40.34 36.57
RL [125] 41.16 39.08
ML + RL [125] 39.87 36.90

Our Models

PointGen* 39.11 26.97**
PointGen*+Ss 39.33 26.94**
PointGen*+Ss+CaLcs 40.37 29.18**

Table 6.1: ROUGE F1 results on CNN/Daily Mail summarization dataset. Our reim-
plementation of PointGen* corresponds to w/o coverage [5]. ** sign near ROUGE-L
results reported for our models indicates a difference in our ROUGE-L evaluation as
explained below.

6.4 Experiments

We numerically evaluate the proposed method on two sequence generation bench-

marks: abstractive document-summarization and machine translation. We compare the

results of the proposed method against the recently proposed strong baseline models [5]

for summarization and and [117] for machine translation tasks. All models are imple-

mented in Tensorflow-Lingvo [129].

6.4.1 Abstractive Summarization

We use a modified version of the CNN/Daily Mail dataset [128] that is first used

for summarization by [88]. However, we follow the processing script provided by [5] to

obtain non-anonymized version of the data that contains 287,226 training pairs, 13,368

validation pairs, and 11,490 test pairs of news articles (781 tokens on average) and their

corresponding ground-truth summaries (56 tokens on average). We refer the reader to

[5] for further details of the difference of their version from [88].

98

Improved Sequence-Level Optimization with CaLcs Chapter 6

For training our baseline model, we use single layer LSTM encoder (bi-directional)

and decoder with hidden dimensions of 512 and 1024, respectively. We use a vocabulary

of 50k words for both source and target. Following the original paper, we also do not

pre-train word embeddings, which are learned with the rest of model parameters during

training. We use the Adam [50] optimizer with a learning rate of 0.00001 for training. We

pre-train the baseline model for 20k steps by applying greedy scheduled sampling [130]

with fixed ground-truth feeding probability of 75%. Once the baseline model training is

complete, we start optimizing for CaLcs objective as described in the previous section.

Also, we set λ = 1.0 and α = 1.0, which are tuned on the development set.

In Table 6.1, we report our main results on the summarization task. PointGen+Ss

refers to the baseline model trained with scheduled sampling. PointGen+Ss+CaLcs

corresponds our model trained with CaLcs starting from PointGen+Ss model. Ex-

perimental results demonstrate that training with our proposed objective provides an

improvement of 2.2 points in ROUGE-L score. This also provides empirical evidence

to justify that our approximate CaLcs effectively captures what the original LCS met-

ric is supposed to measure, recalling ROUGE-L is a normalized LCS. The reason why

ROUGE-L scores of our models are lower than previously reported is that we evaluate

ROUGE-L score by taking the entire summary as a single sequence instead of splitting

it into sentences, which is also the way we compute CaLcs objective during the model

training process. The main motivation behind this approach is to encourage the model

to preserve the sentence order within a summary, and evaluate its performance in the

same way. We consider the capability of preserving the order across produced sentences

as an important attribute a multi-sentence summarization model should have in terms of

readability and fluency of its generated summaries as a whole. When PointGen*+Ss

and PointGen*+Ss+CaLcs are evaluated by splitting the generated summaries into

sentences, their corresponding ROUGE-L scores become 35.38 and 35.12, respectively.

99

Improved Sequence-Level Optimization with CaLcs Chapter 6

Model BLEU

Gnmt [126] 24.61
Gnmt+RL [126] 24.60

Transformer [117] 27.3
Weighted Transformer [131] 28.4

Transformer* 27.6
Transformer*+CaLcs 27.8

Table 6.2: Machine translation results on WMT 2014 English-to-German task.
Transformer* corresponds to our training of the original model in [117].

We also observe a nice side-improvement of 1.0 point in ROUGE-1 score over the base-

line, which achieves a comparable performance with the long-overdue LEAD-3 baseline

score. It might also be comparable to the recently reported state-of-the-art ROUGE-1

result on CNN/DailyMail dataset by [125] as they used a different dataset processing

pipeline, which makes it difficult to directly compare with ours.

6.4.2 Machine Translation

We also evaluate our sequence-level training approach on the WMT 2014 English-to-

German machine translation task, which contains 4.5M pairs of sentences.

To train our baseline transformer model, we closely follow the small model in the

original transformer paper [117]. We use a vocabulary of size 32k. Our encoder and

decoder consist of N = 6 identical layers each. Following the notation in the original

paper, we set the other parameters as dmodel = 512, dff = 2048, h = 8, Pdrop = 0.1. We

set λ = 0.3 and α = 1.0, which are tuned on the development set.

In Table 6.2, we show our empirical results on machine translation task. Our first

observation is that our trained baseline transformer network achieves a better perfor-

mance than the one reported in the original paper [117] by 0.3 BLEU score, which might

be solely due to hyperparameter tuning. More importantly, we observe that training

100

Improved Sequence-Level Optimization with CaLcs Chapter 6

with our proposed CaLcs objective leads to noticeable 0.2 BLEU point improvements

over the baseline, which further reinforces our confidence in effectiveness of our proposed

sequence-level training approach and its applicability to other sequence prediction tasks.

It is also interesting to note that optimizing for LCS metric via its continuous approx-

imation leads to improvements in evaluation with another discrete metric BLEU. On

the other had, optimizing for the exact discrete metric BLEU via reinforcement learning

strategy may not improve the evaluation performance in BLEU as reported by [126].

As a final remark, we would like to note that our proposed approach is orthogonal to

advancements in more expressive and powerful architecture designs. Hence it has the

potential to provide further improvements over the recently proposed models such as

Weighted Transformer [131].

6.5 Related Work

Text Summarization. Before the successful application of neural generative models,

most of the existing works on text summarization [132, 133] have focused on extractive

methods. While some of the early approaches have used a rich set of heuristic rules

or sparse features to select textual units to include in the summary, more recent works

[134, 135] leverage neural models to select words and sentences from the original text.

With the emergence of sequence-to-sequence models [85] and large-scale datasets like

CNN/Daily Mail [128, 88] and NYT [125], abstractive summarization of longer text

have become a more feasible and popular task. Several recent approaches have been

proposed to tackle abstractive summarization problem, where [88] exploits hierarchical

encoders, [5] proposes pointer-generator network and coverage mechanism to overcome

OOV and repetition problems, [89] introduces a graph-based attention mechanism and

hierarchical beam search strategy, and [125] proposes to optimize for ROUGE metric via

101

Improved Sequence-Level Optimization with CaLcs Chapter 6

reinforcement learning. Although impressive progress has been achieved for sentence-

level summarization, efforts in document-level abstractive summarization are still in early

stages where the simple LEAD-3 approach is still a very strong baseline for the task.

Neural Machine Translation. With the recent success of encoder-decoder architec-

tures [85, 86], neural machine translation systems has gained a a lot of attention both

from academia [91, 52, 136] and industry [126, 117, 131] over statistical machine transla-

tion, which has been the dominating translation paradigm for years. Most of these works

has focused more on enhancing the architecture design aspect to tackle with various chal-

lenges such as different attention mechanisms [86, 52], a character-level decoder [137], a

translation coverage mechanism [138], and so on. However, only very recently, a few

works [126, 122, 139, 140, 141, 142, 143] have investigated sequence-level optimization

by training to maximize BLEU score.

Neural Sequence Generation with RL. Most neural sequence generation models

are trained with the objective of maximizing the probability of the next correct word.

However, this results in a major discrepancy between training and test settings of these

models because they are trained with cross-entropy loss at word-level, but evaluated based

on sequence-level discrete metrics such as ROUGE [109] or BLEU [108]. On the other

hand, directly optimizing for such evaluation metrics is hard due to non-differentiable

nature of the exact objective [123]. Recent works [122, 126, 141, ?] address the difficulty

of differentiating with respect to rewards based on such discrete metrics using variants

of reinforcement learning. These methods essentially propose to mitigate the problem

by optimizing the reward weighted log-likelihood of the hypothesis sequences generated

by the model distribution. In this work, we propose an alternative solution to tackle

this problem by introducing a differentiable approximation to exact LCS metric that

can be directly optimized by standard gradient-based methods without RL, while still

addressing the exposure bias problem.

102

Improved Sequence-Level Optimization with CaLcs Chapter 6

6.6 Conclusion

In this chapter, we explored an alternative approach for training text generation

models with sequence-level optimization to combat wrong objective and exposure bias

problems. We introduced a new objective function based on a continuous approximation

of LCS metric that measures sequence-level structure similarity between sentences. We

applied our proposed approach to CNN/Daily Mail dataset for long document summa-

rization and WMT 2014 English-to-German machine translation task. By extending the

objectives of strong neural baseline models with our proposed objective, we empirically

demonstrated its effectiveness on these two tasks. Our proposed approach suggests a

promising alternative to policy-gradient methods to side step the difficulty of differenti-

ating with respect to reward function while directly optimizing for surrogate functions

as approximations to sequence-level discrete metrics.

103

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In this dissertation, we first discussed one of the main obstacles for non-expert users

to leverage the massive amount of digital data: the gap between natural language and the

formal machine executable languages (e.g., SQL) required to even effectively access the

data. We then investigated into natural language interfaces, an important and promis-

ing research direction for enabling human users to use natural language to interact with

computers and data. Towards better understanding and tackling the central challenges

that the modern NLIs face with, in this dissertation, we studied deep knowledge ground-

ing for factual and conversational NLIs, and made key technical contributions to this

field that were categorized into three main parts spanning five chapters: Facutal NLIs,

Conversational NLIs, and Novel Objective for Improved Language Generation.

In Chapter 2, we started by a significant observation showing the potential perfor-

mance improvement of predicting the answer type for factual questions over knowledge

bases. Inspired by this observation, we proposed a neural answer type inference for fac-

tual NLIs over knowledge bases and demonstrated that it can significantly improve the

104

Conclusion and Future Directions Chapter 7

performance of the state-of-the-art systems. As a follow up study, in Chapter 3, we

proposed a novel post-inspection component to cross-check the corresponding KB rela-

tions behind the predicted answers to identify potential inconsistencies, and showed that

it could help models recover from their own mistakes. In Chapter 4, we presented an

in-depth analysis towards better understanding the depth and kinds of language under-

standing capabilities required to solve current benchmark NLI tasks. The answers to

the analyzed questions helped us gain insights about the directions we should explore in

order to further improve the natural language to SQL translation accuracy. Motivated

by this analysis, we then investigated alternative solutions to realize the potential ceiling

performance on WikiSQL benchmark. We showed that our proposed solution could reach

up to 88.6% condition accuracy, further justifying the value of the initial analysis.

In Chapter 5, we studied conversational NLIs that can generate responses to user

queries in a multi-turn fashion. More specifically, we focused on addressing some com-

monly observed issues of model generated responses being short, dull, and too generic.

We proposed and experimented with a series of response generation models that aim to

serve in the general scenario where in addition to the dialogue context, relevant unstruc-

tured external knowledge in the form of text is also assumed to be available. Our main

approach extends pointer-generator networks [5] by allowing the decoder to hierarchically

attend and copy from external knowledge in addition to the dialogue context to make

the response more informative and engaging. We demonstrated the effectiveness of the

proposed approach by both automatic and human evaluation metrics.

In Chapter 6, we studied a more foundational line of research where we proposed a

novel training objective for conditional language generation. We then demonstrated the

effectiveness of the proposed objective on text summarization and machine translation,

two of the most popular benchmark tasks for conditional language generation. This is an

important contribution towards building the next generation NLIs and putting them in

105

Conclusion and Future Directions Chapter 7

real use because natural language generation is among the most crucial attributes that

a modern NLI system should be equipped with to be able to interact with humans.

7.2 Future Directions

There are several exciting and promising directions to pursue for further bridging the

gap between humans and intelligent agents. As a natural extension of the studies covered

in this dissertation, here we discuss the following future directions that we plan to explore

towards building more adaptive, knowledgeable, and flexible intelligent agents.

One of the most interesting and promising future directions is to adapt our proposed

DeepCopy model to task-oriented dialog setting. More precisely, the goal is to develop

a single model that takes conversation history and an external knowledge source as input

and jointly produces both text response and action to be taken by the system via latent

knowledge reasoning without intermediate symbolic states. Thus, the model must learn

to reason on the provided structured knowledge source with weak supervision signal

coming from the text generation and the action prediction tasks, hence removing the

need for belief state annotations. Despite being ambitious, this direction has a great

potential for replacing traditional task-oriented dialog systems designed as pipelines of

several independently trained modules (e.g., user intent classifier, belief state tracker,

dialog act predictor), which not only require collection of very costly human annotations

but also suffer from error propagation across the modules. The proposed direction, on

the other hand, has the promise to address both of these shortcomings of traditional

approaches. Furthermore, reducing the cost of data collection and annotation naturally

facilitates quicker adaptation to new emerging domains. Overall, this is an interesting and

exciting direction that is worth investigating towards building more adaptive intelligent

agents.

106

Another interesting future direction is to explore novel approaches to combine models

developed for chit-chat and task-oriented dialog systems instead of treating them as sep-

arate paradigms. More precisely, rather than treating precise knowledge retrieval from

structured data for dialogue response generation and holding a chit-chat conversation as

separate tasks, it might be worth relaxing these definitions and designing more general

end-to-end conversational agents that are capable of simultaneously consuming and har-

nessing large scales of heterogeneous knowledge sources including structured knowledge

bases (e.g., Frebase and DBpedia), semi-structured web tables, and unstructured free-

form text (e.g., news articles and product reviews). It is plausible to argue that this is one

of the most essential capabilities that the next generation conversational agents must be

equipped with. Furthermore, this goal can be seen as a natural extension of the previous

direction that needs further research and discovery of novel approaches to accommodate

reasoning over heterogeneous knowledge sources. A very simple approach to start the

exploration with could be adding another attention hierarchy in DeepCopy model for

knowledge sources. However, even this approach would require novel revisions to scale

up to several knowledge sources of various types. Despite the challenges, it is a promising

direction to explore for pushing the frontiers of dialogue research and developing more

knowledgeable, flexible, next generation conversational agents.

107

Bibliography

[1] J. Berant and P. Liang, Imitation learning of agenda-based semantic parsers,
Transactions of the Association for Computational Linguistics (TACL) (2015).

[2] S. Yavuz, I. Gur, Y. Su, and X. Yan, Recovering question answering errors via
query revision, in Empirical Methods on Natural Language Processing (EMNLP),
2017.

[3] W. Yih, M.-W. Chang, X. He, and J. Gao, Semantic parsing via staged query
graph generation: Question answering with knowledge base, in Annual Meeting of
the Association for Computational Linguistics (ACL), 2015.

[4] S. Yavuz, I. Gur, Y. Su, and X. Yan, What it takes to achieve 100% condition
accuracy on WikiSQL, in Empirical Methods on Natural Language Processing
(EMNLP), 2018.

[5] A. See, P. J. Liu, and C. D. Manning, Get to the point: Summarization with
pointer-generator networks, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2017.

[6] M. Ghazvininejad, C. Brockett, M. Chang, B. Dolan, J. Gao, W. Yih, and
M. Galley, A knowledge-grounded neural conversation model, in AAAI Conference
on Artificial Intelligence (AAAI), 2018.

[7] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston,
Personalizing dialogue agents: I have a dog, do you have pets too?, in Annual
Meeting of the Association for Computational Linguistics (ACL), 2018.

[8] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, Freebase: A
collaboratively created graph database for structuring human knowledge, in ACM
SIGMOD International Conference on Management of Data, 2008.

[9] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, DBpedia:
A nucleus for a web of open data, in International Semantic Web Conference
(ISWC), 2007.

108

[10] F. M. Suchanek, G. Kasneci, and G. Weikum, Yago: A core of semantic
knowledge, in World Wide Web (WWW), 2007.

[11] M. Recasens, M. catherine De Marneffe, and C. Potts, The life and death of
discourse entities: Identifying singleton mentions, Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT) (2013).

[12] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka, Jr., and T. M. Mitchell,
Coupled semi-supervised learning for information extraction, in ACM
International Conference on Web Search and Data mining (WSDM), 2010.

[13] L. Yao, S. Riedel, and A. McCallum, Unsupervised relation discovery with sense
disambiguation, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2012.

[14] Y. Su, H. Liu, S. Yavuz, I. Gür, H. Sun, and X. Yan, Global relation embedding
for relation extraction, in The North American Chapter of the Association for
Computational Linguistics (NAACL), 2018.

[15] T. Lin, Mausam, and O. Etzioni, No noun phrase left behind: Detecting and
typing unlinkable entities, in Empirical Methods on Natural Language Processing
(EMNLP), 2012.

[16] X. Li and D. Roth, Learning question classifiers, in International Conference on
Computational Linguistics (COLING), 2002.

[17] J. Berant, A. Chou, R. Frostig, and P. Liang, Semantic parsing on freebase from
question-answer pairs., in Empirical Methods on Natural Language Processing
(EMNLP), 2013.

[18] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer, Scaling semantic parsers
with on-the-fly ontology matching, in Empirical Methods on Natural Language
Processing (EMNLP), 2013.

[19] A. Bordes, S. Chopra, and J. Weston, Question answering with subgraph
embeddings, ArXiv (2014).

[20] X. Yao and B. Van Durme, Lean question answering over freebase from scratch, in
Annual Meeting of the Association for Computational Linguistics (ACL), 2014.

[21] H. Bast and E. Haussmann, More accurate question answering on freebase, in
ACM International Conference on Information and Knowledge Management
(CIKM), 2015.

109

[22] A. Lally, J. M. Prager, M. C. McCord, B. Boguraev, S. Patwardhan, J. Fan,
P. Fodor, and J. Chu-Carroll, Question analysis: How watson reads a clue, IBM
Journal of Research and Development (2012).

[23] K. Balog and R. Neumayer, Hierarchical target type identification for
entity-oriented queries, in ACM International Conference on Information and
Knowledge Management (CIKM), 2012.

[24] H. Sun, H. Ma, W. Yih, C. Tsai, J. Liu, and M. Chang, Open domain question
answering via semantic enrichment, in World Wide Web (WWW), 2015.

[25] Y. Su, S. Yang, H. Sun, M. Srivatsa, S. Kase, M. Vanni, and X. Yan, Exploiting
relevance feedback in knowledge graph search, in ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD), 2015.

[26] L. Dong, F. Wei, H. Sun, M. Zhou, and K. Xu, A hybrid neural model for type
classification of entity mentions, in International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[27] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks,
pp. 5–13. Springer Berlin Heidelberg, 2012.

[28] T. Tieleman and G. E. Hinton, Lecture 6.5 - RMSProp, COURSERA: Neural
networks for machine learning, Technical Report (2012).

[29] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, The stanford corenlp natural language processing toolkit, in Annual
Meeting of the Association for Computational Linguistics: System
Demonstrations, 2014.

[30] A. Bordes, N. Usunier, S. Chopra, and J. Weston, Large-scale simple question
answering with memory networks, ArXiv (2015).

[31] J. Pennington, R. Socher, and C. D. Manning, Glove: Global vectors for word
representation, in Empirical Methods on Natural Language Processing (EMNLP),
2014.

[32] Theano Development Team, Theano: A Python framework for fast computation
of mathematical expressions, ArXiv (2016).

[33] X. Yao and B. V. Durme, Information extraction over structured data: Question
answering with freebase, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2014.

[34] J. Berant and P. Liang, Semantic parsing via paraphrasing, Annual Meeting of the
Association for Computational Linguistics (ACL) (2014).

110

[35] J. Bao, N. Duan, M. Zhou, and T. Zhao, Knowledge-based question answering as
machine translation, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2014.

[36] M. Yang, N. Duan, M. Zhou, and H. Rim, Joint relational embeddings for
knowledged-based question answering, in Empirical Methods on Natural Language
Processing (EMNLP), 2014.

[37] L. Dong, F. Wei, M. Zhou, and K. Xu, Question answering over freebase with
multi-column convolutional neural networks, in Annual Meeting of the Association
for Computational Linguistics (ACL), 2015.

[38] X. Yao, Lean question answering over freebase from scratch, in The North
American Chapter of the Association for Computational Linguistics (NAACL),
2015.

[39] S. Reddy, O. Täckström, M. Collins, T. Kwiatkowski, D. Das, M. Steedman, and
M. Lapata, Transforming Dependency Structures to Logical Forms for Semantic
Parsing, Transactions of the Association for Computational Linguistics (TACL)
(2016).

[40] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao, Question answering on
freebase via relation extraction and textual evidence, in Annual Meeting of the
Association for Computational Linguistics (ACL), 2016.

[41] Y. Yang and M. Chang, S-mart: Novel tree-based structure learning algorithms
applied to entity linking, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2015.

[42] S. Reddy, M. Lapate, and M. Steedman, Large scale semantic parsing without
question-answer pairs, Transactions of the Association for Computational
Linguistics (TACL) (2014).

[43] E. Choi, T. Kwiatkowski, and L. Zettlemoyer, Scalable semantic parsing with
partial ontologies, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2015.

[44] K. Xu, Y. Feng, S. Huang, and D. Zhao, Hybrid question answering over
knowledge base and free text, in International Conference on Computational
Linguistics (COLING), 2016.

[45] M. Tan, C. dos Santos, B. Xiang, and B. Zhou, Improved representation learning
for question answer matching, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2016.

111

[46] P. Neculoiu, M. Versteegh, and M. Rotaru, Learning text similarity with siamese
recurrent networks, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2016.

[47] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,
and P. Blunsom, Teaching machines to read and comprehend, in Advances in
Neural Information Processing Systems (NIPS), 2015.

[48] D. Chen, J. Bolton, and C. D. Manning, A thorough examination of the cnn/daily
mail reading comprehension task, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2016.

[49] J. Mueller and A. Thyagarajan, Siamese recurrent architectures for learning
sentence similarity, in AAAI Conference on Artificial Intelligence (AAAI), 2016.

[50] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2015.

[51] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, Tensorflow: A system for large-scale machine learning, in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), 2016.

[52] M.-T. Luong, H. Pham, and C. D. Manning, Effective approaches to
attention-based neural machine translation, in Empirical Methods on Natural
Language Processing (EMNLP), 2015.

[53] S. Yavuz, I. Gur, Y. Su, M. Srivatsa, and X. Yan, Improving semantic parsing via
answer type inference, in Empirical Methods on Natural Language Processing
(EMNLP), 2016.

[54] Y. Qiu and H. Frei, Concept based query expansion, 1993.

[55] M. Mitra, A. Singhal, and C. Buckley, Improving automatic query expansion,
1998.

[56] R. Navigli and P. Velardi, An analysis of ontology-based query expansion
strategies, 2003.

[57] S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and Y. Liu, Statistical
machine translation for query expansion in answer retrieval, in Annual Meeting of
the Association for Computational Linguistics (ACL), 2007.

[58] H. Fang, A re-examination of query expansion using lexical resources, in Annual
Meeting of the Association for Computational Linguistics (ACL), 2008.

112

[59] A. Sordoni, Y. Bengio, and J.-Y. Nie, Learning concept embeddings for query
expansion by quantum entropy minimization, in AAAI Conference on Artificial
Intelligence (AAAI), 2014.

[60] F. Diaz, B. Mitra, and N. Craswell, Query expansion with locally-trained word
embeddings, in Annual Meeting of the Association for Computational Linguistics
(ACL), 2016.

[61] A. Téllez-Valero, M. Montes-y Gómez, L. Villaseñor-Pineda, and A. Peñas,
Improving question answering by combining multiple systems via answer
validation, 2008.

[62] A. Trischler, Z. Ye, X. Yuan, and K. Suleman, Natural language comprehension
with epireader, in Empirical Methods on Natural Language Processing (EMNLP),
2016.

[63] W. A. Woods, Progress in natural language understanding: an application to
lunar geology, in Proceedings of the American Federation of Information
Processing Societies Conference, 1973.

[64] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, Natural language interfaces
to databases–an introduction, Natural language engineering 1 (1995), no. 1 29–81.

[65] A.-M. Popescu, O. Etzioni, and H. Kautz, Towards a theory of natural language
interfaces to databases, in Proceedings of the 8th international conference on
Intelligent user interfaces, pp. 149–157, ACM, 2003.

[66] V. Zhong, C. Xiong, and R. Socher, Seq2sql: Generating structured queries from
natural language using reinforcement learning, arXiv preprint arXiv:1709.00103
(2017).

[67] X. Xu, C. Liu, and D. Song, Sqlnet: Generating structured queries from natural
language without reinforcement learning, arXiv preprint arXiv:1711.04436.

[68] L. Mou, Z. Lu, H. Li, and Z. Jin, Coupling distributed and symbolic execution for
natural language queries, in International Conference on Machine Learning
(ICML), 2017.

[69] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer, Learning a
neural semantic parser from user feedback, in Annual Meeting of the Association
for Computational Linguistics (ACL), 2017.

[70] O. Vinyals, M. Fortunato, and N. Jaitly, Pointer networks, in Advances in Neural
Information Processing Systems (NIPS).

113

[71] Y. Sun, D. Tang, N. Duan, J. Ji, G. Cao, X. Feng, B. Qin, T. Liu, and M. Zhou,
Semantic parsing with syntax- and table-aware sql generation, in Annual Meeting
of the Association for Computational Linguistics (ACL), 2018.

[72] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev, Typesql: Knowledge-based
type-aware neural text-to-sql generation, in Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), 2018.

[73] I. Gur, S. Yavuz, Y. Su, and X. Yan, Dialsql: Dialogue based structured query
generation, in Annual Meeting of the Association for Computational Linguistics
(ACL), 2018.

[74] L. S. Zettlemoyer and M. Collins, Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars, 2005.

[75] R. J. Kate, Y. W. Wong, and R. J. Mooney, Learning to transform natural to
formal languages, in AAAI Conference on Artificial Intelligence (AAAI), 2005.

[76] L. Dong and M. Lapata, Language to logical form with neural attention, in
Annual Meeting of the Association for Computational Linguistics (ACL), 2016.

[77] H. Sun, H. Ma, X. He, W.-t. Yih, Y. Su, and X. Yan, Table cell search for
question answering, in World Wide Web (WWW), 2016.

[78] J. M. Zelle and M. Ray, Learning to parse database queries using inductive logic
programming, in Proceedings of the AAAI Conference on Artificial Intelligence,
1996.

[79] L. Zettlemoyer and M. Collins, Online learning of relaxed ccg grammars for
parsing to logical form, in Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), 2007.

[80] Y. Su, H. Sun, B. Sadler, M. Srivatsa, I. Gur, Z. Yan, and X. Yan, On generating
characteristic-rich question sets for qa evaluation, in Empirical Methods on
Natural Language Processing (EMNLP), 2016.

[81] K. Xu, L. Wu, Z. Wang, and V. Sheinin, Graph2seq: Graph to sequence learning
with attention-based neural networks, arXiv preprint arXiv:1804.00823 (2018).

[82] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, Exploiting rich
syntactic information for semantic parsing with graph-to-sequence model, in
Empirical Methods on Natural Language Processing (EMNLP), 2018.

114

[83] P. Pasupat and P. Liang, Compositional semantic parsing on semi-structured
tables, in Annual Meeting of the Association for Computational Linguistics
(ACL), 2015.

[84] S. K. Jauhar, P. Turney, and E. Hovy, Tables as semi-structured knowledge for
question answering, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2016.

[85] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural
networks, in Advances in Neural Information Processing Systems (NIPS), 2014.

[86] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly
learning to align and translate, 2015.

[87] M. A. Rush, S. Chopra, and J. Weston, A neural attention model for abstractive
sentence summarization, in Empirical Methods on Natural Language Processing
(EMNLP), 2015.

[88] R. Nallapati, B. Zhou, C. d. Santos, C. Gulcehre, and B. Xiang, Abstractive text
summarization using sequence-to-sequence rnns and beyond, 2016.

[89] J. Tan, X. Wan, and J. Xiao, Abstractive document summarization with a
graph-based attentional neural model, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2017.

[90] S. Yavuz, C.-C. Chiu, P. Nguyen, and Y. Wu, CaLcs: Continuously
approximating longest common subsequence for sequence level optimization, in
Empirical Methods on Natural Language Processing (EMNLP), 2018.

[91] K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.-.
Schwenk, and Y. Bengi, Learning phrase representations using rnn
encoder-decoder for statistical machine translation, arXiv preprint
arXiv:1406.1078 (2014).

[92] M. Luong, H. Pham, and C. D. Manning, Effective approaches to attention-based
neural machine translation, in Empirical Methods on Natural Language Processing
(EMNLP), 2015.

[93] C. Xiong, V. Zhong, and R. Socher, Dynamic coattention networks for question
answering, 2017.

[94] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau, Building
end-to-end dialogue systems using generative hierarchical neural network models.,
in AAAI Conference on Artificial Intelligence (AAAI), 2016.

[95] O. Vinyals and Q. Le, A neural conversational model, arXiv preprint
arXiv:1506.05869 (2015).

115

[96] J. Li, M. Galley, C. Brockett, G. Spithourakis, J. Gao, and B. Dolan, A
persona-based neural conversation model, in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 994–1003, Association for Computational Linguistics, 2016.

[97] A. Ritter, C. Cherry, and W. B. Dolan, Data-driven response generation in social
media, in Proceedings of the conference on empirical methods in natural language
processing, pp. 583–593, Association for Computational Linguistics, 2011.

[98] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville, and
Y. Bengio, A hierarchical latent variable encoder-decoder model for generating
dialogues., in AAAI Conference on Artificial Intelligence (AAAI), 2017.

[99] S. Liu, H. Chen, Z. Ren, Y. Feng, Q. Liu, and D. Yin, Knowledge diffusion for
neural dialogue generation, in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1489–1498, Association for Computational Linguistics, 2018.

[100] E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston, Wizard of
wikipedia: Knowledge-powered conversational agents, 2019.

[101] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan,
and M. Gašić, MultiWOZ - a large-scale multi-domain wizard-of-Oz dataset for
task-oriented dialogue modelling, in Empirical Methods on Natural Language
Processing (EMNLP), 2018.

[102] M. Eric, R. Goel, S. Paul, A. Sethi, S. Agarwal, S. Gao, and D. Hakkani-Tür,
Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking
baselines, CoRR (2019) [arXiv:1907.0166].

[103] B. Byrne, K. Krishnamoorthi, C. Sankar, A. Neelakantan, D. Duckworth,
S. Yavuz, B. Goodrich, A. Dubey, A. Cedilnik, and K.-Y. Kim, Taskmaster-1:
Toward a realistic and diverse dialog dataset, 2019.

[104] D. Raghu, N. Gupta, and Mausam, Hierarchical pointer-generator network for
task oriented dialog, arXiv preprint arXiv:1805.01216 (2018).

[105] S. Sukhbaatar, A. Szlam, J. Weston, and F. Rob, End-to-end memory networks,
in Advances in Neural Information Processing Systems (NIPS), 2014.

[106] J. Weston, E. Dinan, and A. H. Miller, Retrieve and refine: Improved sequence
generation models for dialogue, arXiv preprint arXiv:1808.04776v2 (2018).

[107] B. Zoph and K. Knight, Multi-source neural translation, in The North American
Chapter of the Association for Computational Linguistics (NAACL), 2016.

116

http://xxx.lanl.gov/abs/1907.0166

[108] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, Bleu: A method for automatic
evaluation of machine translation, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2002.

[109] C. Lin and F. J. Och, Automatic evaluation of machine translation quality using
longest common subsequence and skip-bigram statistics, in Annual Meeting of the
Association for Computational Linguistics (ACL), 2004.

[110] R. Vedantam, C. L. Zitnick, and D. Parikh, Cider: Consensus-based image
description evaluation, arXiv preprint arXiv:1411.5726 (2014).

[111] J. Li, M. Galley, J. Brockett, Chris ad Gao, and B. Dolan, A diversity-promoting
objective function for neural conversation models, in The North American
Chapter of the Association for Computational Linguistics (NAACL), 2016.

[112] M. Galley, C. Brockett, X. Gao, B. Dolan, and J. Gao, “End-to-end conversation
modeling: Moving beyond chitchat.”
http://workshop.colips.org/dstc7/proposals/DSTC7-MSR_end2end.pdf,
2018. Online; accessed 23 October 2018.

[113] S. Yavuz, A. Rastogi, G.-L. Chao, and D. Hakkani-Tur, Deepcopy: Grounded
response generation with hierarchical pointer networks, in Annual Meeting of the
Special Interest Group on Discourse and Dialogue (SIGDIAL), 2019.

[114] S. Chopra, M. Auli, and M. A. Rush, Abstractive sentence summarization with
attentive recurrent neural networks., in The North American Chapter of the
Association for Computational Linguistics (NAACL), 2016.

[115] Y. Miao and P. Blunsom, Discrete generative models for sentence compression, in
Empirical Methods on Natural Language Processing (EMNLP), 2016.

[116] Q. Zhou, N. Yang, F. Wei, and M. Zhou, Selective encoding for abstractive
sentence summarization, in Annual Meeting of the Association for Computational
Linguistics (ACL), 2017.

[117] A. Vaswani, S. Noam, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, Attention is all you need, in Advances in Neural Information
Processing Systems (NIPS), 2017.

[118] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in The North American
Chapter of the Association for Computational Linguistics (NAACL), 2019.

[119] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, Mass: Masked sequence to
sequence pre-training for language generation, arXiv preprint arXiv:1905.02450
(2019).

117

http://workshop.colips.org/dstc7/proposals/DSTC7-MSR_end2end.pdf

[120] N. Arivazhagan, C. Cherry, W. Macherey, C.-C. Chiu, S. Yavuz, R. Pang, W. Li,
and C. Raffel, Monotonic infinite lookback attention for simultaneous machine
translation, in Annual Meeting of the Association for Computational Linguistics
(ACL), 2019.

[121] P. Koehn, F. J. Och, and D. Marcu, Statistical phrase-based translation, in
Annual Meeting of the Association for Computational Linguistics (ACL), 2003.

[122] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, Sequence level training with
recurrent neural networks, 2016.

[123] A.-V. I. Rosti, B. Zhang, S. Matsoukas, and R. Schwartz, Expected bleu training
for graphs: Bbn system description for wmt11 system combination task, in
Proceedings of the Sixth Workshop on Statistical Machine Translation, 2011.

[124] R. J. Williams, Simple statistical gradient-following algorithms for connectionist
reinforcement learning, Machine Learning (1992).

[125] R. Paulus, C. Xiong, and R. Socher, A deep reinforced model for abstractive
summarization, 2018.

[126] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, N. Mohammad, W. Macherey,
M. Krikun, C. Yuan, Q. Gao, and e. a. Macherey, Klaus, Googles neural machine
translation system: Bridging the gap between human and machine translation,
arXiv preprint arXiv:1609.08144 (2016).

[127] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, Deep
reinforcement learning that matters, in AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[128] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,
and P. Blunsom, Teaching machines to read and comprehend, in Advances in
Neural Information Processing Systems (NIPS), 2015.

[129] J. Shen, P. Nguyen, Y. Wu, Z. Chen, et. al., Lingvo: a modular and scalable
framework for sequence-to-sequence modeling, 2019.

[130] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, Scheduled sampling for sequence
prediction with recurrent neural networks, in Advances in Neural Information
Processing Systems (NIPS), 2015.

[131] K. Ahmed, N. S. Keskar, and R. Socher, Weighted transformer network for
machine translation, 2018.

[132] B. Dorr, D. Zajic, and R. Schwartz, Hedge trimmer: A parse-and-trim approach
to headline generation, in Proceedings of the HLT-NAACL 03 on Text
Summarization Workshop - Volume 5, 2003.

118

[133] G. Durrett, T. Berg-Kirkpatrick, and D. Klein, Learning-based single-document
summarization with compression and anaphoricity constraints, in Annual Meeting
of the Association for Computational Linguistics (ACL), 2016.

[134] J. Cheng and M. Lapata, Neural summarization by extracting sentences and
words, in Annual Meeting of the Association for Computational Linguistics
(ACL), 2016.

[135] R. Nallapati, F. Zhai, and B. Zhou, Summarunner: A recurrent neural network
based sequence model for extractive summarization of documents, in AAAI
Conference on Artificial Intelligence (AAAI), 2017.

[136] M. Luong and C. D. Manning, A hybrid Word-Character approach to open
vocabulary neural machine translation, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2016.

[137] J. Chung, K. Cho, , and Y. Bengio, A character-level decoder without explicit
segmentation for neural machine translation, arXiv preprint arXiv:1603.06147
(2016).

[138] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, Coverage-based neural machine
translation, in Annual Meeting of the Association for Computational Linguistics
(ACL), 2016.

[139] M. Norouzi, S. Bengio, Z. Chen, N. Jaitly, M. Schuster, Y. Wu, and
D. Schuurmans, Reward augmented maximum likelihood for neural structured
prediction, in Advances in Neural Information Processing Systems (NIPS), 2016.

[140] S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu, Minimum risk
training for neural machine translation, in Annual Meeting of the Association for
Computational Linguistics (ACL), 2016.

[141] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. C. Courville,
and Y. Bengi, An Actor-Critic algorithm for sequence prediction, 2017.

[142] V. Zhukov and M. Kretov, Differentiable lower bound for expected BLEU score, in
NIPS Workshop on Conversational AI, 2017.

[143] N. Casas, M. R. Costa-juss, and J. R. Fonollosa, A differentiable bleu loss.
analysis and first results, Workshop of the 6th International Conference on
Learning Representations (2018).

119

	Curriculum Vitae
	Abstract
	Introduction
	Factual Natural Language Interfaces
	Conversational Natural Language Interfaces
	Novel Training Objective for Improved Neural Conditional Language Generation

	Improving Semantic Parsing via Answer Type Inference
	Introduction
	Related Work
	Background
	Question Abstraction
	Conversion to Statement Form
	Answer Type Prediction
	Reranking by Answer Type
	Experiments
	Conclusion

	Recovering Question Answering Errors via Query Revision
	Introduction
	Question Revisions
	Model
	Alternative Solutions
	Experiments
	Related Work
	Conclusion

	What It Takes to Achieve 100% Condition Accuracy on WikiSQL
	Introduction
	Background
	WikiSQL Data Analysis
	Our Solutions
	Experiments
	Related Work
	Conclusion

	Grounded Response Generation with Hierarchical Pointer Networks
	Introduction
	Related Work
	Model
	Experiments
	Conclusion

	Improved Sequence-Level Optimization with CaLcs
	Introduction
	Continuously Approximating Longest Common Subsequence Metric
	Model
	Experiments
	Related Work
	Conclusion

	Conclusion and Future Directions
	Conclusion
	Future Directions

	Bibliography

