Towards Effective Partition Management for Large Graphs

Shenggqi Yang

Xifeng Yan

Bo Zong Arijit Khan

Department of Computer Science
University of California at Santa Barbara
Santa Barbara, CA 93106-5110, USA
{sqyang, xyan, bzong, arijitkhan}@cs.ucsb.edu

ABSTRACT

Searching and mining large graphs today is critical to a vari-
ety of application domains, ranging from community detec-
tion in social networks, to de novo genome sequence assem-
bly. Scalable processing of large graphs requires careful par-
titioning and distribution of graphs across clusters. In this
paper, we investigate the problem of managing large-scale
graphs in clusters and study access characteristics of local
graph queries such as breadth-first search, random walk, and
SPARQL queries, which are popular in real applications.
These queries exhibit strong access locality, and therefore
require specific data partitioning strategies. In this work,
we propose a Self Evolving Distributed Graph Management
Environment (Sedge), to minimize inter-machine communi-
cation during graph query processing in multiple machines.
In order to improve query response time and throughput,
Sedge introduces a two-level partition management archi-
tecture with complimentary primary partitions and dynamic
secondary partitions. These two kinds of partitions are able
to adapt in real time to changes in query workload. Sedge
also includes a set of workload analyzing algorithms whose
time complexity is linear or sublinear to graph size. Empir-
ical results show that it significantly improves distributed
graph processing on today’s commodity clusters.

Source Code: http://wuw.cs.ucsb.edu/ " xyan/Sedge

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]|:

Graph and tree search strategies; H.2.4 [Database Man-
agement|: Systems

General Terms

Algorithms, Performance

Keywords

Graph, Partitioning, Graph Query Processing, RDF, Dis-
tributed Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’12, May 20-24, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

1. INTRODUCTION

Large scale, highly interconnected networks pervade both
our society and the information world around us [24, 30].
Online social networks capture complex relationships among
millions of users. HT'TP links connect billions of documents
on the Web. Synthesized graphs are available from genome
sequence alignment and program traces. The graphs of in-
terest are often massive with millions, even billions of ver-
tices, making common graph operations computationally in-
tensive. In the presence of data objects associated with ver-
tices, it is clear that graph data can easily scale up to ter-
abytes in size. Moreover, with the advance of the Semantic
Web, efficient management of massive RDF data is becom-
ing increasingly important as Semantic Web technology is
applied to real-world applications [1, 3]. The recent Linked
Open Data project has published more then 20 billion RDF
triples [15]. Although the RDF data is generally represented
in triples, the data inherently presents graph structure and
is therefore interlinked. Not surprisingly, the scale and the
flexibility rise to the major challenges to the RDF graph
management.

The massive scale of graph data easily overwhelms mem-
ory and computation resources on commodity servers. Yet
online services must answer user queries on these graphs in
near real time. In these cases, achieving fast query response
time and high throughput requires partitioning/distributing
and parallel processing of graph data across large clusters of
servers. An appealing solution is to divide a graph into
smaller partitions that have minimum connections between
them, as adopted by Pregel [28] and SPAR [33]. As long as
the graph is clustered to similar-size partitions, the work-
load of machines holding these partitions will be quite bal-
anced. However, the assumption becomes invalid for local
graph queries when they are concentrated on a subset of ver-
tices (hotspots), e.g., find/aggregate the attributes of h-hop
neighbors around a vertex, calculate personalized PageRank
[19], perform a random walk starting at a vertex, and cal-
culate hitting time. When these queries are not uniformly
distributed or hitting partition boundaries, we will either
have an imbalance of workload or intensive inter-machine
communications. A good graph partition management pol-
icy should consider these situations and adapt dynamically
to changing workload.

There could be three kinds of query workload in graphs.
For random access or complete traversal of an entire graph
shown in Figure 1(a), a static balanced partition scheme
might be the best solution. For queries whose access is
bounded by partition boundaries, as shown in Figure 1(b),

<
-

(a) random/complete

=

(b) internal (c) cross-partition

Figure 1: Query Access Pattern

they shall be served efficiently by the balanced partition
scheme too. However, if there are many graph queries cross-
ing the partition boundaries shown in Figure 1(c), the static
partition scheme might fail due to inter-machine commu-
nications. One partition scheme cannot fit all. Instead,
one shall generate multiple partitions with complementary
boundaries or new partitions on-the-fly so that these queries
can be answered efficiently.

Graph partitioning is a hard and old problem, which has
been extensively studied in various communities since 1970s
[23, 17, 32, 21]. Graph partitioning is also widely used in
parallel computing (e.g., [16]). The best approaches often
depend on the properties of the graphs and the structure of
the access patterns. Much of the previous work has focused
on graphs arising from scientific applications (meshes [13],
etc) that have a different structure than social networks and
RDFs focused in this study, where well-defined partitions
often do not exist [26]. In this study, our focus is not to de-
sign new graph partition algorithms, but to adjust partitions
to serve queries efficiently. We design a Self Evolving Dis-
tributed Graph Management Environment (Sedge). While
Sedge adopts the same computation model and program-
ming APIs of Pregel [28], it emphasizes graph partition
management, which is the key to query performance. It
adds important functions to support overlapping partitions,
with the goal of minimizing inter-machine communication
and increasing parallelism by dynamically adapting graph
partitions to query workload change.

Our Contributions. A major contribution of this study
is an examination of an increasingly important data man-
agement problem in large-scale graphs and the proposal of a
graph partition management strategy that supports overlap-
ping partitions and replicates for fast graph query process-
ing. Dynamic graph partitioning and overlap graph parti-
tioning were widely investigated before (e.g., [37]). However,
few methods study how to adapt partitions to satisfy dy-
namic query workload in social and information networks.
We addressed this issue and proposed Sedge, a workload
driven method to manage partitions in large graphs. We
eliminate a constraint in Pregel [28] that does not allow du-
plicate vertices in partitions. This constraint makes it diffi-
cult to handle skewed query workload. It is able to replicate
some regions of a graph and distribute them in multiple
machines to serve queries in parallel. For this goal, we de-
velop three techniques in Sedge: (1) Complementary Par-
titioning; (2) Partition Replication; and (3) Dynamic Par-
titioning. Complementary Partitioning is to find multiple
partition schemes such that their partition boundaries are
different from one another. Partition replication is to repli-
cate the same partitions in multiple machines to share the
workload on these partitions. Dynamic Partitioning is to

construct new partitions to serve cross-partition queries lo-
cally. In order to perform dynamic partitioning efficiently,
we propose an innovative technique to profile graph queries.
As manifested later, it is too expensive to log all of the ver-
tices accessed by each query. We introduced the concept
of color-blocks and coverage envelope to bound the portion
of a graph that has been accessed by a query. An effi-
cient algorithm to merging these envelopes to formulate new
partitions is thus developed. The partition replication and
dynamic partitioning are together termed on-demand par-
titioning since the two techniques are primarily employed
during the runtime of the system to adapt evolving queries.
Additionally, a two-level partition architecture is developed
to connect newly generated partitions with primary parti-
tions.

We implement Sedge based on Pregel. However, the con-
cepts proposed and verified in this work are also valid to
other systems. The performance of Sedge is validated with
several large graph datasets as well as a public SPARQL per-
formance benchmark. The experimental results show that
the proposed partitioning approaches significantly outper-
form the existing approach and demonstrate superior scaling
properties.

2. RELATED WORK

Graph partitioning is an important problem with exten-
sive applications in many areas, including circuit placement,
parallel computing and scientific simulation. Large-scale
graph partitioning tools are available, e.g. METIS [21],
Chaco [17], and SCOTCH [32], just to name a few. This
study is not to propose a new graph partitioning algorithm.
Instead, it is focused on a workload driven method to man-
age partitions in large graphs.

Distributed memory systems in super-computing is able
to process large-scale linked data, e.g., [22, 29]. These sys-
tems could map shared data into the address space of mul-
tiple processors. They are usually very general, support-
ing random memory access that has less locality than the
graph queries introduced in this work, thus could not benefit
from query locality. Malewicz et al. [28] introduced Pregel,
which could run graph algorithms in a distributed and fault-
tolerant manner. Logothetis et al. [27] introduced a gen-
eralized architecture for continuous bulk processing (CBP)
that is good for building incremental applications in large
datasets including graphs. Najork proposed the scalable hy-
perlink store, SHS [29]. SHS studied several key issues in
large graph processing: real-time response, graph compres-
sion, fault tolerance, etc. Our study touches another aspect
on managing partitions to fit workload changes. Kang et al.
[20] developed a peta-scale graph mining system, PEGA-
SUS, built on the top of the Hadoop platform. PEGASUS
proposed and optimized iterative matrix-vector multiplica-
tion operators. The difference between Pregel and MapRe-
duce can be referred to [28]. In this work, we implement
and leverage the computing environment provided by Pregel,
but focus on graph partition management, not optimization
techniques for specific algorithms. COSI [6] is a framework
that is able to partition very large social networks according
to query history. Such work is optimized for static query
workload and hence cannot be readily applied to dynamic
query workload. Pujol et al. [33] developed a social parti-
tioning and replication middle-ware, SPAR, to achieve data
locality while minimizing replication. SPAR aims to opti-

Pregel Pregel Pregel

=l EINElEE
NS STl
(%]
1993
(Ve H ot (][] I 4
Partitioning
\ ~ J N ~ J

Master Workers

Figure 2: Sedge: System Architecture

mize performance based on social network structures, e.g.,
communities, while our system develops partitioning tech-
niques that adapt to query workload change. As discussed
before, network structures might not reflect actual query
workload. In addition to in-memory solutions, Nodine et al.
[31] considered the problem of using disk blocks efficiently
in searching graphs that are too large to fit in memory. The
idea of using redundant blocks is related to complementary
partitioning proposed in Sedge.

Distributed query processing has also been studied on
semistructured data [36, 8], relational data [11] and RDF
[18]. The key technique is minimizing data movement by
partial evaluation, hybrid shipping, two-phase optimization
and replication (see [25] for a survey). Additionally, as the
emerging of Semantic Web, more and more data sources on
the Web are organized in the RDF model and linked to-
gether. With the observation of the heterogeneity and scal-
ability challenges existing in the management of RDF data,
innovative data schemas have been proposed. One of the
widely used techniques has been termed the property table
[7, 38]. The technique is to cluster subjects sharing similar
properties/predicates. Another technique, vertical table [1],
is to vertically partition the schemas on property value. Ef-
ficient RDF data management is still an open problem and
has not been addressed thoroughly.

3. SYSTEM DESIGN

Many applications [33, 11] employ graph partitioning meth-
ods for distributed processing. Unfortunately, real life net-
works such as social networks might not have well-defined
clusters [26], indicating that many cross-partition edges could
exist for any kind of balanced partitions. For queries that
visit these edges, the inter-machine communication latency
will affect query response time significantly. To alleviate
this problem, we propose Sedge, which is based on multi
partition sets (Figure 2).

Sedge is designed to eliminate the inter-machine commu-
nication as much as possible. As shown in Figure 2, the
offline part first partitions the input graph in a distributed
manner and distributes them to multiple workers. It creates
multiple partition sets so that each set runs independently.
Pregel [28] is a scalable distributed graph processing frame-
work that works in a bulk synchronous mode. Pregel is
used as a computing platform that is able to execute local
graph queries. There are various kinds of local graph queries
including breadth-first search, random walk, and SPARQL
queries. Unlike many graph algorithms, a local query usually
starts at one vertex and only involves a limited number of

\
&;\\

(b) S, : Complementary
partition set of S,

(a) Partition set S,

Figure 3: Complementary Partitioning: e is a cross
partition edge in S; but not in Ss.

vertices (termed active vertice). In each iteration, a Pregel
instance only accesses active vertices, thus eliminating many
synchronous steps. Section 6 will discuss synchronization for
the queries with writes and updates.

The online part collects statistical information from work-
ers and actively generates and removes partitions to accom-
modate the changing workload. Therefore the set of online
techniques built in Sedge must be very efficient to minimize
overhead. Our study is focused on partition management.
For fault-tolerance and live partition migration with ACID
properties, detailed explorations of these issues are given
in [28, 12] and similar techniques can be applied here. In
the following discussion, we overview major components in-
cluding complementary partitioning, on-demand partition-
ing, the mechanism to connect primary and secondary par-
titions, the meta-data to facilitate query routing and perfor-
mance optimizer.

3.1 Graph Partitioning

DEFINITION 1 (GRAPH PARTITIONING). Given a graph
G = (V, E), graph partitioning, C, is to divide V into parti-
tions {P1, Ps,..., Py} such that U;P;, =V, and P,NP; =0
for any i # j. The edge cut set F. is the set of edges whose
vertices belong to different partitions.

Graph partitioning needs to achieve dual goals. On the
one hand, in order to achieve the minimum response time,
the best partitioning strategy is to split the graph using
the minimum cut. On the other hand, taking the system
throughput into consideration, the partitions should be as
balanced as possible. This is exactly what the normalized
cut algorithm can do [21]. Techniques derived from graph
compression, e.g., [?] can also be applied here. However,
partitioning a graph using a random hash function might
not work very well.

Complementary Partitioning is to repartition a graph
such that the original cross-partition edges become inter-
nal ones. Figure 3(b) shows an example of complementary
graph partitions of Figure 3(a). In the new partition set, the
queries (shaded area R) on original cross-partition edge, e,
will be served within the same partition. Therefore, the new
partition set can handle graph queries that have trouble in
the original partition set. If there is room to hold both S:
and Sy in clusters, for a query @ visiting the shaded area
R in Sy, the system shall route it to Sz to eliminate com-
munication cost. Meanwhile, the new partition set can also
share the workload with original partition set. This comple-
mentary partitioning idea can be applied multiple times to
generate a series of partition sets. We call each partition set

'*::;m
e S

S - --~"(b) overlapping

Primary Partitions Secondary Partitions

Figure 4: Two-Level Partition Architecture: Sec-
ondary partition B’ on the top-right is a replicate of
primary partition B. Secondary partition E covers
the shaded region that crosses primary partition A,
C and D.

a “primary partition set.” Each primary partition set is self
complete, where a Pregel instance can run independently.

Primary partition set can serve queries that are uniformly
distributed in the graph. However, they are not good at
dealing with unbalanced query workload: queries that are
concentrated in one part of the graph. It will be necessary
to either create a replicated partition (Figure 4(a)) or gen-
erate a new overlapping partition (Figure 4(b)) in an idle
machine so that the workload can be shared appropriately.
This strategy, called On-demand Partitioning, will gen-
erate new partitions online. These add-on partitions, called
“secondary partitions”, could last until their corresponding
workload diminishes.

3.2 Two-Level Partition Management

Given many primary/secondary partitions, it is natural
to inquire how to manage these partitions. Here we propose
the concept of Two-Level Partition Management. Fig-
ure 4 depicts one example, where there are intensive work-
loads on two shaded areas. Based on a primary partition
set, {A, B,C, D}, two secondary partitions, B’ and E, are
created to share the unbalanced workload on primary parti-
tions. Since the vertices in secondary partitions are the du-
plicates of vertices in primary partitions, some of the vertices
might connect to the vertices in primary partitions. There-
fore it is necessary to maintain the linkage between vertices
in secondary partitions and those in primary partitions. In
our design, the linkage is only recorded in secondary parti-
tions. It is not necessary to maintain such links in primary
partitions. For example, for partition B’, it has to main-
tain the linkage to A and C'. While for A and C, they only
maintain links to B, but not to B’.

During the runtime, each primary partition set and the

corresponding secondary partitions are maintained by a Pregel

instance that is running on a set of worker machines as in-
dicated in Figure 2. Multiple isolated independent Pregel
instances are coordinated by meta-data management.

3.3 Meta-data Management

Meta-data is maintained by both the master and the Pregel
instances. As in Figure 2, the meta-data manager in
the master node maintains the information about each live
Pregel instance and a fine-grained table mapping vertices to
the Pregel instances. An index mapping vertices to parti-
tions is also maintained by each live Pregel instance. This
two-level indexing strategy is used to facilitate fast query
routing. Specifically, when a query is issued to the system,

the routing component first checks the vertex table main-
tained by the master. The index entry maps the vertex id
to the Pregel instance which can most efficiently execute
the query. After the query is routed to a particular Pregel
instance, it is the duty of the vertex index maintained by
the Pregel instance to decide to which partition the query
should be forwarded. The detailed techniques of indexing
vertices and routing queries will be discussed in Section 6.

In order to facilitate different kinds of queries, in addi-
tion to vertex index, it is desirable to design indices for
the attributes of vertices and edges. Efficient decentral-
ized /distributed indexing techniques, such as [35], have come
to the fore in recent years. However, this topic is beyond the
scope of this work.

3.4 Performance Optimizer

The Performance Optimizer continuously collects run-
time information from all the Pregel instances via daemon
processes and characterizes the execution of the query work-
load, such as vertex access times of each partition, and
the number of cross-machine messages/queries. The opti-
mizer can update the meta-data maintained by the master
and evoke on-demand partitioning routine as the workload
varies. It is notable that although we depict the on-demand
partitioning as a component on the master side in Figure 2,
the routine is actually executed by the Pregel instance on the
worker side in a distributed manner. Therefore the overhead
of on-demand partitioning will be isolated and not affect the
performance of other Pregel instances.

4. COMPLEMENTARY PARTITIONING

Complementary partitioning is to find multiple partition
sets such that their partition boundaries do not overlap. For-
mally, we define the problem as:

Given a partition set {Py, Pa,..., Pt} on G and the cut
edges E. = {e1,e2,...,e;}. The problem is to partition G
into a new partition set {P[, P;, ..., P.} satisfying the same
partitioning criteria (e.g., minimum cut) such that the new
cut edges do not overlap with E..

If we want to exclude more edges, E. could be expanded
to include edges near the original cut edges. Without loss
of generality, we assume G is an undirected graph with unit
edge weight. X is an n X k matrix, defined as follows,

o 1 U¢€V(Pj),
710 otherwise.

X gives a k-partition set of G. Furthermore, we define the
following constraints on X: (1) full coverage and disjoint:
X1 =1, where 1 is a all-ones vector with appropriate size;
(2) balance: X1 < m, where m; = (1 +0)[2]. m; is a
rough bound of partition size; o controls the size balance.
(3) edge constraint: tr XTWX = 0, where W = (w;;) is
defined as an edge restrictive n x n Laplacian matrix. Given
the edge set E., if e;; € E., w;; = —1, otherwise w;; =
0. Additionally, wi; = —3 ., wij. The complementary
partitioning problem can be described below:

minimize %tr xX"rx (1)
s.t. X is binary
X1=1,X"1<m
tr XWX =0

where £ = (l;5) is a n X n Laplacian matrix. By definition, if
€ij € E(G), lij = —1, otherwise lij =0andl; = — Zj;ﬁi llj
The objective function gives the overall cost of the cut edges
with respect to a particular assignment of X.

The above problem is a nonconvex quadratically constrained

quadratic integer program (QCQIP). We rewrite the prob-

lem formulation so that we can reuse the existing balanced

partitioning algorithms:

tr XT(L+IW)X (2)

s.t. X is binary
X1=1,X"1<m

minimize

This new definition drops edge constraint in (1) and incor-
porate it into the objective function using a weighting factor
A on the cut edges. By changing the value of)\, we are able
to control the overlap of the existing edge cut and the new
edge cut generated by the complementary partition set. It
also provides a scalable solution: Given the cut edges of the
existing partition sets, we increase their weight by A and
then run balanced partitioning algorithms such as METIS
[21] to perform graph partitioning.

The value of A plays a critical role. Let the edge cut of the
complementary partition set be E.. If its value is small, the
partitioning algorithm can not distinct the cut edges with
the others. On the other hand, if the value is too large,
the algorithm might have to cut significantly more edges in
order to completely avoid the existing edge cut. That is, E.
might be much larger than E., which is not good too. In our
implementation, we set A = 2¥ and experiment different k
with a set of simulated graph queries. For each k, we check

the ratio 8 = % It was observed that when k = 4
and B < 0.1, the obtained partition set can achieve good
performance.

Another possible technique for complementary partition-
ing is to delete all the edges in E. first and then run classic
partitioning algorithm. We argue that this approach doesn’t
work since (1) edge deletion destroys the structure of the
graph, and thus the new result may probably not reflect the
real connections among the graph partitions; (2) in order
to preserve a good partition schema, i.e., minimum cut, in
complementary partitioning, some of the edges should be
included in the edge cut repeatedly.

The heuristic algorithm can be applied multiple times to
generate a series of complementary partition sets, each of
which try to partition the graph such that the boundary
edges in one partition set will be internal edges in another
partition set. With multiple partition sets, for each vertex
u, there could be several partitions Pi, Pa,..., P, to han-
dle queries submitted to u. Queries should be routed to
a partition where u is far away from partition boundaries.
We define such a partition as a safe partition for vertex wu.
As soon as a new complementary partition set is generated,
we can obtain the safe partitions for the vertices, especially
those on the boundary of the original partitions.

Remark. There are some extreme cases, e.g., complete
graph, where no complementary partition schema exists.
However, for large graphs with small dense substructures,
we can continuously perform complementary partitioning.
In reality, due to space limitation, we can only afford a few
sets of complementary partitions, and resort to on-demand
partitioning algorithms to handle skewed query workloads
that target some hotspots.

S. ON-DEMAND PARTITIONING

In the processing of many graph queries, primary parti-
tions could have hotspots that are frequently visited. The
queries heading to these partitions will suffer longer response
time. There are two kinds of query hotspots: (1) internal
hotspots that are located in one partition; (2) cross-partition
hotspots that are on the boundary of multiple partitions. We
developed two partitioning techniques, partition replication
and dynamic partitioning, to generate secondary partitions
on demand to handle hotspots.

5.1 Partition Replication

DEFINITION 2 (PARTITION WORKLOAD). Given a graph
G, a partition P C G, and a query set Q = {q1,q2,...,qm},
the query set of P, written W (P), is the queries that have
accessed at least one vertex in P. The internal query set of
P, written Wiyt (P), is the set of queries that only accessed
vertices in P. The external (cross-partition) query set of P,
written Weqt(P), is equal to W (P) — Win (P).

Given a partition P, when its internal workload (Win¢(P))
becomes intensive, it will saturate the CPU cycles of the
machine that holds P. One natural solution is to replicate
P to P’. If there is an idle machine with free memory space,
Sedge will send P’ to that machine. Otherwise, it will find
a slack partition and replace it with P’. A slack partition
is a secondary partition with low query workload on it. By
routing queries to P’, the workload on P could be reduced.

5.2 Cross-partition Hotspots

When cross-partition hotspots exist, primary partitions
have to communicate with each other frequently to answer
cross-partition queries. Instead of replicating multiple parti-
tions, it is better to generate new partitions that only cover
cross-partition hotspots. The new partitions will not only
share heavy workload, but also reduce communication over-
head, thus improving query response time.

Hotspot Analysis. Before assembling a new partition,

we need to find cross-partition hotspots first. Given a parti-
[Weat (P)]

: : Wit (P)|+1Weat (P)]

to a hypothesis testing method to detect abnormal cross-

partition query workload.

If a query is uniformly and randomly distributed over a
partition P, we can calculate the probability of observing
a cross-partition query in P by either doing a simulation
or approximating it using the following external edge ratio,
p = %, where |Eez¢(P)| is the number of
cross-partition edges between P and other partitions, and
| Eint (P)| is the number of internal edges. If r is significantly
higher than p, it could be reasonably assumed that there are
cross-partition hotspots in P. Let n = |Wini(P)|+|Wezt (P)]
and k = |[Wez(P)|. The chance to have > k cross-partition
queries is

and resort

tion, we calculate a ratio r = I

Prz>k) = <T;>pi(1 -p)" "

i=k
When Pr(z > k) is very small (e.g., 0.01), it means there is
an abnormal large number of cross-partition queries in P.
5.3 Track Cross-partition Queries

Besides detecting cross-partition hotspots, we need a method
to track the trail of cross-partition queries and pack them

to form a new partition. It is intuitive to record each query
in the form of its exact search path. However, it is not only
space and time consuming for profiling, but also difficult
to generalize. Instead we mark the search path of a cross-
partition query with coarse-granularity units, color-blocks.

A color-block is a set of vertices V; C V where they are
assigned with a unique color ¢;. For any vertex v € V, it
has one and only one color. Using color-blocks, we are able
to coarsen a graph with a much smaller number of units. To
form color-blocks, we experimented on several algorithms,
i.e., nearest-k neighbors, neighbors within k-hops, etc, and
found that neighbors within 1-hop outperforms the others.
Disjointed 1-hop color-blocks could be generated as follows:
(1) randomly select one vertex, find its 1-hop neighbors, and
form a color-block; (2) delete the vertices of this color-block;
(3) repeat (1) and (2) until no vertex is left.

5.4 Dynamic Partitioning

[Query Profiling] Given a set C = {c1,¢2,...,cn} of
color-blocks, we track the trail of a query with a subset of
color-blocks, L; = {c¢j,,¢j,, ..., cj, }. Since these color-blocks
will be grouped together later, it is not necessary to record
the visiting order of color-blocks. L; is termed an envelope

of the query.

S

(b) Envelop Collection

o

(a) Color Block and Query Trace

Figure 5: Color-block and Envelop Collection

By tracking cross-partition queries using color-blocks, each
query can be profiled as an envelope. Figure 5 shows the re-
lation among partitions, color-blocks and envelopes. Given
a set of candidate envelopes, a partition cannot assemble all
of them due to its space constraint. Herein we formulate the
problem as an enwvelopes collection problem.

[Envelopes Collection] Given a partition with the stor-
age capacity M, there are aset L = {Ly, ..., L, } of envelopes
and a set U?:l Lj of m colors, each envelope L; encapsu-
lates a set L; = {ci;,Ciy, ..., ¢, } Of colors and the size of
color ¢ is wg. If D C L and R = ULJED Lj, the objective is
to find such a set D that maximizes |D| with the constraint
> e crWr < M, where M is the default partition size.

Elcnvelopes collection is reminiscent of the Set- Union Knap-
sack Problem, which is a classic NP-complete problem. We
propose a greedy algorithm based on the intuition that com-
bining similar envelopes consumes less space than combining
non-similar ones. Given two envelopes L; and L, the over-
lap of their color-block sets is measured as the Jaccard coef-

ficient Sim(L;, L;) = 1228211
ing pair-wise similarity Corr;parison is a procedure running
in O(n?). To cope with this challenge, we employ a hash-
based algorithm, called Locality Sensitive Hashing (LSH)[14]
to perform similarity search in a provably sublinear time.
LSH is a probabilistic method that hashes items so that
similar items can be mapped to the same buckets with high

Given n envelopes, perform-

Algorithm 1 Similarity-Based Greedy Clustering Algo-
rithm

Input: Envelope set L = {L;}

Output: New partition P

1: Initialize hash functions

2: for each L; € L do

3: hash value = h(L;)

4 add Lz to Ch,ash,value

5: end for

6: C = {Chash,value} for each Ohash,’value # 0

7: for each cluster C; in C' do

8 pli] = [W(Ci)|/|Cil
9
10
11
12

: end for

: Sort clusters on p in descending order

: cluster set P =)

: Add clusters to P as many as possible, s.t., size(P) < M

probability [14]. In our case, we adopt a LSH scheme called
Min-Hash [10]. The basic idea of Min-Hash is to randomly
permute the involved set of color-blocks and for each en-
velope L; we compute its hash value h(L;) as the index of
the first color-block under the permutation that belongs to
L;. It has been shown in [10] that if we randomly choose
a permutation that is uniformly distributed, the probabil-
ity that two envelopes will be mapped to the same cluster
is exactly equal to their similarity. We use Min-Hash as
a probabilistic clustering method that assigns a pair of en-
velopes to the same bucket with a probability proportional
to the similarity between them. Each bucket is considered
as a cluster and the envelopes within the same bucket are
combined together.

[Partition Generation] After obtaining a set of inde-
pendent clusters, each cluster is assigned with a benefit

score, p = IV“/é?)I7 to measure the quality of the cluster.

Here |W(C)| is the number of cross-partition queries de-
noted by all the envelopes in the cluster C' (more accurately,
the times of the color-blocks in C' are accessed) and |C] is
the size of the cluster. We create an empty partition and
iteratively assemble the cluster with the highest p at each
step as long as the total size is no greater than the default
partition size M.

Scalability issues. The greedy algorithm is outlined
in Algorithm 1. For n envelopes, the complexity of Min-
Hash clustering is O(n) (lines 1-5) and the sorting runs in
O(mlog(m)) (line 9) where m is the number of the clusters
generated (line 6). In the worst case, combining the clus-
ters needs O(nm) (line 12). In total, the complexity of this
greedy algorithm is O(nm). There is still a concern that if
n and m are large, this algorithm would lead to poor scal-
ability. To cope with this challenge, we limit the growth of
n and m in the following way. On one hand, we use a sam-
pling method to constrain the size of n. For example, when
the dynamic partitioning procedure is triggered, among a
set of cross-partition queries we randomly select a number
of queries as a sample to generate the new partition. On
the other hand, we could coarsen the size of color-blocks by
increasing the number of vertices included in these blocks.
This will result in a color set much smaller than the ver-
tex set. In the experiment, we show that these two methods
collectively guarantee that the dynamic partitioning method
works in an efficient way.

\

(@) (b)
Figure 6: Duplicate Vertex

Discussion: Duplicate Sensitive Graph Query. As
a design principle, primary partitions are disjointed: each
vertex only has one copy in the partitions. However, when
secondary partitions exist, it is often the case that there are
two copies v and v’ for the same vertex. It might cause a
potential issue, as illustrated in Figure 6. Figure 6(a) shows
the original graph. In Figure 6(b), secondary partition P,
is added and v’ is a duplicate vertex v. Suppose we run
the following algorithm to calculate the number of v’s 2-hop
friends :

[Method 1] Starting at v, we send a message to its 1-hop
friends and these friends send another message to their 1-
hop friends. Each partition reports the number of vertices
who received messages. Sum up the numbers.

The above algorithm works correctly in primary parti-
tions. However, for Figure 6(b), it will produce a wrong
answer. Due to this complication, it is not straightforward
to run queries correctly in secondary partitions. Fortunately,
for many local graph queries, there are implementations that
are not sensitive to overlapping partitions. If we change
Method 1 slightly, it will work correctly.

[Method 2] Starting at v', we send a message to its 1-hop
friends and these friends send another message to their 1-
hop friends. Fach partition reports the vertices who received
messages. Union the results by removing duplicates.

Other graph queries such as random walk, personalized
PageRank, hitting time and neighborhood intersection have
implementations that are not sensitive to duplications. We
call queries that can be correctly answered on overlapping
partitions Duplicate Insensitive Graph Queries. If a dupli-
cate sensitive graph query running on a secondary partition
exceeds the boundary of the partition, the query will be
terminated and restarted in a primary partition. In Sedge,
the query routing component (described in the next section)
maintains a vertex-partition fitness list for the start vertex
of a query. It helps route the query to a partition that can
serve it locally with high probability.

6. RUNTIME OPTIMIZATION
6.1 Query Routing

An incoming query arrives with at least one initial vertex.
The master node dispatches the query to a Pregel instance
according to the initiated vertex. As shown in Figure 3, if
possible, a query shall be routed to a Pregel instance (PI for
short) where its initiated vertex is in the safe region. Here,
we devise a data structure in the master node to coordinate
query routing:

e Instance Workload Table (IWT): I — W (I), where
is the ID of a PI and W (I) is the workload of the PI.

e Vertex-Instance Fitness List (VFL): v — L,{I}, where
L,{I} is an id list of the PIs.

Given a vertex v, the PIs where v is in safe region are
ranked higher in VFL. Since some vertices, such as those
with very high degree, might not be in any safe region, we
assign a random order of PIs to their VFLs. During the
runtime, the IWT is updated by the monitoring routine.
Given a query, the algorithm routes the query to the first
PI in its VFL that is not busy with respect to the IWT.
Once the query is finished, if the query cannot be served
locally in its assigned PI, the query fitness list will shift
the PI to the end of the list. Since the number of Pregel
instances is small, VFL is implemented using bitset. Bit-
set is an array optimized for space allocation: each element
occupies only one bit. For example, it uses only 3 bits to
represent up to 8 PIs. Our experimental results show that
the simple greedy routing strategy can outperform random
query routing significantly.

Vertex-Partition Mapping. In order to process queries,
each Pregel instance needs to maintain the following tables
to map vertices to partitions. All partitions are mapped
onto unique IDs.

e Partition Workload Table (PWT): P — W (P), where
P is the ID of a partition and W (P) is the workload.

e Vertex-Primary Partition Table (VPT): v — P, where
P is a primary partition. Each vertex is mapped to one
and only one primary partition.

e Partition-Replicates Table (PRT): P — {Sgr}, where
{Sr} are the identical replicates of P. For Vv € P, it
may associate with several Sg.

e Vertex-Dynamic Partitions Table (VDT): v — {Sp|v €
Sp}, where {Sp} are the new partitions generated by
the dynamic partitioning method.

Space complexity. Due to the limited number of par-
titions in practice, the size of the PWT and the PRT is
negligible. VPT is O(n), where n is the number of vertices
in G. It only takes several gigabytes to store a VPT table for
billions of vertices. The size of VDT depends on the number
of vertices covered by the secondary partitions. Usually, the
size is far smaller than O(n).

In particular, each secondary partition is associated with
one primary partition set from which it is created. When a
secondary partition is generated or deleted, an entry in PRT
or VDT needs to be updated accordingly. For K Pregel
instances, we maintain their tables separately. That is, we
will have K sets of PWT, VPT, PRT and VDT. These tables
are stored in main memory.

6.2 Partition Workload Monitoring

The workload monitoring component in Sedge is built in
the optimizer module (ref. to Figure 2). Report messages
from all Pregel instances are sent to the master at the end
of each period. Typically a report message from a Pregel
instance I includes the number of the queries served in [
(i.e., Wine(I) and Wegt(I)), the total access times of the
vertices (3_ ey (ry [V (9)]), and the CPU run time of the
machines holding I. These messages encode the workload
information of Pregel instances. The master updates the
IWT accordingly. Analogously, each Pregel instance collects
runtime information of their partitions and calculates the
ratio between the total access times of the vertices and the
size of the partition and sorts the partitions based on the

ratio. Then with respect to the threshold ratio, a partition
can be marked as a hot or a slack one. The information is
maintained in the PWT.

6.3 Partition Replacement

As discussed in Section 5, secondary partitions are gen-
erated to deal with query hotspots. In practice, the space
that can be used to accommodate additional partitions is
often limited. Therefore, it is unlikely to create as many
secondary partitions as possible. At the same time, in real
world applications, query hotspots may become “slack” ones
after a period. This practical issue motivates a partition re-
placement scheme that replaces a slack secondary partition
with a newly generated one. In Sedge, when a replacement
is needed, we simply select the slackest secondary partition
and replace it with the one newly generated.

6.4 Dynamic Update and Synchronization

Real world graphs usually change over time in terms of
insertion and deletion of nodes and edges. Sedge can adapt
to these dynamic changes. Here we take the update on one
Pregel instance as an example. Since the information of a
vertex can be obtained by referring to the vertex-partition
map, edge insertion and deletion can be accomplished di-
rectly. For the insertion/deletion of edge (u,v), find the pri-
mary and secondary partitions of v and v, insert or delete the
edge. To delete vertex v, one can retrieve all of its edges and
delete them, and then retrieve all of partitions containing v
and delete v. For insertion of vertex v and its edges, one
can first locate a primary partition P where the majority of
v’s neighbors are located, and then add v to that partition.
Meanwhile, update all of the replicates of P and then submit
edge insertion requests. For vertex insertion and deletion,
we also need to update the vertex-partition map, i.e., VFL,
VPT and VDT. Note that the update should be applied
to all the Pregel instances. When the insertion of vertices
and the following edge insertions make a primary partition
too big, we need to redo the partitioning from scratch. Ad-
ditionally, when a query changes vertex values during its
execution, the cost of keeping the vertex values in sync is
usually quite high especially when there are many dupli-
cates. In Sedge, we adopt a simple strategy: when a query
changes a vertex value, a new update query is issued to all
the corresponding partitions. An experiment in Section 7.2
demonstrates the efficiency of dynamic update in Sedge.

7. EXPERIMENTAL EVALUATION

The system is programmed in Java. We use a distributed
version of METIS [21] to generate primary partitions. To
evaluate Sedge on a diversified set of graphs and queries, we
test datasets in two categories: RDF benchmarks and real
graph datasets using different sets of graph queries. Our
experiments are going to demonstrate that (1) Sedge is effi-
cient and scalable, in comparison with the situation without
partition management, and (2) the design of each compo-
nent including complementary partitioning and on-demand
partitioning is effective for performance improvement.

The experiments are conducted on a cluster with 31 com-
puting nodes: each has 4 GB RAM, two quad-core 2.60GHz
Xeon Processors and a 160 GB hard drive. Among these
nodes, one serves as the master and the rest as workers.
The cluster is connected by a gigabit ethernet. In each ex-

" I CP, ICP, [CP, [CP, [0P,

10
10

107

Number of cross partition queries

Q2 Q7 Q8

Q4 Q6
Query Type

Figure 7: Number of cross-partition queries. The
missing bars for the CP, and CPs of Q2 , the CPs of
Q4 and the CPs of Q6 correspond to the value of 0,
i.e., the cross-partition query vanishes.

periment, we perform three cold runs over the same experi-
mental setting and report the average performance.

For each graph in the following experiments, we generate
5 complementary partition sets beforehand. We use C'P; to
denote the performance when only using the first primary
partition set while C P, CPs;, CPy and CPs to denote the
performance when using 2, 3, 4 and 5 partition sets, respec-
tively. Each primary partition set consists of 12 primary
partitions, which fill in 6 workers.

7.1 Evaluation with a SPARQL Benchmark

We first evaluate the system performance of Sedge on a
SPARQL benchmark graph. SPARQL is an emerging stan-
dard for RDF. Efficient storage techniques for large scale
RDF data and evaluation strategies for SPARQL are cur-
rently under exploration in the database community [34, 3].
In this experiment, we will illustrate that our partitioning
techniques can improve SPARQL query execution signifi-
cantly.

The SP?Bench Benchmark [34] chooses the DBLP library
as its simulation basis. It can generate arbitrary large RDF
test data which mirrors vital real-world distributions found
in the original DBLP data. Using the generator provided by
[34], we create an RDF graph with 100M edges (11.24GB).
It is a heterogenous graph with the subjects/objects as the
vertices and the predicates as the links.

SP?Bench provides 12 query templates, Q1,Q2, ..., Q12
that are delicately designed to capture all key features of
the SPARQL query language. In this work, we select five
categories in which the existing SPARQL engines have dif-
ficulties. These queries are listed in the Appendiz. From
the view of query operation, @6 and Q7 encode the opera-
tions of OPTIONAL (akin to left outer joins) with FILTER
and BOUND; from the view of access pattern, Q2 and Q4
contain two distinctive graph patterns, “long path chains”
and “bushy patterns” [34]; Q8, extracting the Erdos Number
of the authors, showcases the queries that concentrate on a
“hotspot”. We map the queries against specific vertices as
the query starts and thereafter match the variables to the
nodes or edges during the query execution.

In order to validate the complementary partitioning ap-
proach, we generate a workload with 10,000 queries, which
are the equal mixture of the 5 query types with randomly
selected starts. The queries are routed automatically to the
corresponding partitions with the assistance of the query
routing module. We compare the performance by varying

—-CPx5 _w CP, _ACP,+DP

Workload cost (sec)
B o (2] ~ @ ©
o O © o o o

w
(=]

4 5 6 7 8 9 10
Timestep

(a) Lifetime. = 2

[,
N F
w

—4—CP x5 —=—CP, —A_CP,+DP

g o N ® ©
© © o © o

Workload cost (sec)
S
o

w
o

1 2 3 4 5 6 7 8 9 10
Timestep

(b) Lifetime, =5

Figure 8: System performance with complementary
partitioning and on-demand partitioning for evolv-
ing queries.

the number of the used primary partition sets. Figure 7
shows the effect of the approach. Note that the Y-axis is
plotted in logarithmic scale to accommodate the significant
differences in the number of queries that access at least two
partitions. It is observed that by adding more complemen-
tary partition sets, the number of cross-partition queries can
be dramatically reduced. It vanishes for Queries 2, Q4 and
Q6 when 4 or more complementary partition sets are used.
A close look at the difference in the performance between
the variants of query types reveals that 92, Q4 and Q6 ex-
hibit high locality. In contrast, Q7 and @8 exhibit more
complex access pattern. Figure 7 shows for the queries of
Q7 and @8, C'Ps outperforms C'P; by up to almost one order
of magnitude. The result suggests that our complementary
partitioning is an effective way in response to cross-partition
queries of various types. Figure 7 also shows, with respect
to different queries, how the percentage of vertices in safe
partitions changes when the number of complementary par-
tition sets increases. For example, for Q7, the percentage of
vertices in safe partitions increases from 50.9% (1 partition
set) to 94.7% (5 complementary partition sets); and for @8,
it increases from 81.4% to 97.6%.

To demonstrate how Sedge responds to skewed workloads,
we generate a synthetic evolving workload which contains 10
timesteps. In each timestep, the workload consists of 10, 000
queries which are the mixture of the 5 query types with equal
number. To control the evolution of the workload, each
query is assigned with a lifetime value. If the query is inter-
nal (finished within a partition), it has lifetime, lifetimer;
otherwise, it has lifetime, li fetimec. When a query expires,
it will restart in the next timestep with a new lifetime and a
randomly selected start. Since random internal queries do
not contribute to a skewed workload, we set lifetime; = 1
for simplicity and vary the value of lifetimec in the follow-
ing experiments. Note that when lifetimec > lifetimer,
the number of cross-partition queries will increase gradually

because more internal queries will become cross-partition
queries than the reverse along the time.

We compare the approaches from two perspectives: com-
plementary partitioning and on-demand partitioning. C'P; x
5 uses 5 static replicates of the first partition set (i.e., run five
Pregel’s independently, each with 1/5 workload), and CPs
uses all the 5 complementary partition sets. Both of the two
approaches use up 30 worker space. Note that we run these
two settings only using Pregel instances where no query pro-
filing (on-demand partitioning) is applied. CPs + DP uses
4 complementary partition sets and employs the rest worker
space for on-demand partitioning. To maintain a fair com-
parison, the number of secondary partitions can not exceed
12, the size of one partition set in our experiments.

Figure 8 reports the accumulated time cost of the query
workload at each timestep with respect to the three ap-
proaches. The overhead of on-demand partitioning is also
included in the workload cost. Figure 8(a) shows the per-
formance of these approaches when lifetimec = 2. The
curve of CPs illustrates that the complementary partition-
ing technique significantly outperforms the static replication
(CPy x5). The advantage becomes more obvious along with
the accumulation of the cross-partition queries. It can also
be seen that due to the generation of new secondary parti-
tions, C' Py + DP outperforms C'Ps after timestep 3. When
lifetimec = 5, Figure 8(b) shows a similar result of the
comparison between CP; x 5 and CPs as in Figure 8(a).
However, in Figure 8(a), CPy + DP outperforms CPs no-
ticeably after timestep 3 and the time cost almost remains
steady. This is because when lifetimec = 2, due to the dy-
namics of the queries, the system invokes on-demand parti-
tioning more frequently (6 times) than that when li fetimec =
5 (3 times).

7.2 Evaluation with Real Graph Datasets

Next, we evaluate the design of Sedge by testing the effec-
tiveness of each component. We use another set of graphs
and queries to show the broad usage of Sedge. Nevertheless,
the same test can be conducted on SP2Bench and similar
results will be observed.

Web graph. It is a uk-2007-05 web graph data from
http://webgraph.dsi.unimi.it [5, 4], which is a collection of
UK websites. After preprocessing, the graph contains 30M
vertices and 956M edges.

Twitter graph. The Twitter graph is crawled from
Twitter, consisting of 40.1M users. There are 1.4B edges
(including multi-edges) in this dataset. For simplicity, we
aggregated the multi-edges and the associated attributes as
one edge which represents several messages sent from one
user to another at different time.

Bio graph. The Bio graph is a de Bruijn Graph built
from a sample of mRNA. In this graph, vertices represent
sub-sequences of DNA symbols with length of twenty one
(a.k.a. k-mer length) and edges represent the adjacent re-
lationships between vertices: the two vertices differ by a
single symbol [39]. We collect 50M vertices and construct
68M edges. The resulting de Bruijn graph is like a tree.

Synthetic scale-free graph. The graph is generated
based on R-MAT [9]. It consists of 0.2 billion vertices and
1.0 billion edges. The graph matches “pow-law” behaviors
and naturally exhibits “community” structure.

Table 1 summarizes the size of the graphs, the time cost
of building one primary (complementary) partition set, the

Table 1: Graph Datasets

Graph | Size (GB) | Partition (s) | VFL (MB) | VPT (MB)
Web 14.8 120 81.5 35.3
Twitter 24 180 109.0 45.4
Bio 13 40 135.9 55.3
Syn. 17 800 543.7 205

size of the vertex-instance fitness list (VFL), and the size
of the vertex-partition table (VPT). It can be seen that the
auxiliary meta-data is much smaller than the graph it serves,
only 0.5% — 5% of its size.

We use three classic local graph queries to experiment the
performance: (1) h-hop Neighbor Search (h-NS): the query
starts from a vertex v and does a breath-first search for all
the vertices within h hops of v; (2) h-step Random Walk
(h-RW): the query starts at a vertex and at each following
step jumps to one of its neighbors with equal probability.
The query counsists of h steps; (3) h-step Random Walk with
Restart (h-RWR): it is a h-step random walk query; but at
each step it may return to its start vertex with p probability.
We set p = 10% by default. For global graph algorithms
like single-source shortest distance, Sedge could also support
them. However, they are not the focus of this work.

We test the effectiveness of our proposed algorithms: com-
plementary partitioning, partition replication and dynamic
partitioning. Due to the space limitation, we first show the
experiments on the Web graph with different test settings.
For the other datasets, we get quite similar results. We will
then give an evaluation of the system on the scalability, us-
ing all of the four graphs.

7.2.1 Complementary Partitioning

Figure 9 shows the effect of complementary partitioning in
reducing the communication cost. In this experiment, we use
C'P; as the baseline (the result will not change if we replicate
CP; five times) and test 10,000 h-RWR queries using differ-
ent number of complementary partition sets. By varying the
step of the h-RWR, it can be seen that the complementary
partitioning method can reduce the inter-machine messages.
As to queries with longer random walk, the performance of
Sedge degrades. However, with more complementary parti-
tions, e.g., C Py and CPs, Sedge can still achieve good per-
formance in message reduction.

7.2.2 Partition Replication

To evaluate the performance of partition replication on
unbalanced workload, we randomly generate a workload with
mixed queries, i.e., 3-NS, 5-RW, 5-RWR, on a specific graph
partition (denoted as P;) and continuously increase the num-
ber of queries from 10,000 to 50,000. We run this changing
workload under 3 different settings: (1) C'P; (the baseline);
(2) CP; and 1 replicate of Py (ref. as CPi + Ps); (3) CPy
and 2 replicates of Py (ref. as C'P;+ Ps x2). Figure 10 shows
the number of queries can be served per second (through-
put) for each setting. It is observed that the throughput
by using partition replication significantly outperforms that
of no replication one. This is because the query workload
on P1 is distributed and processed in parallel among the
primary partition and its replicates.

7.2.3 Dynamic Partitioning

To test the performance of dynamic partitioning, we fo-

—Q—CP2 +CP3 —.‘.—CP4 +CP5

Reduction of cross messages

Figure 9: Complementary Partitioning: reduction
of cross-partition messages. The x-axis shows the
value of h, the number of walk steps.

—4-CP, —=m-CP +Pg —A-CP +P x2
’83000

[}
0 2500
>

BN
a o
o o

———— 40— H——¢

500

Throughput (quer
5
3

1(9.000 20,000 30,000 40,000 50,000
Number of queries

Figure 10: Partition replication: throughput

cus on queries that access multiple partitions. We randomly
generate mixed cross-partition queries (3-NS, 5-RW and 5-
RWR) and test the system performance by varying the num-
ber of queries from 10,000 to 50,000. We run Sedge with
only one primary partition set (CP1) as well as with one
primary partition set and on-demand generated secondary
partitions (C'P; + DP), respectively.

Figure 11 shows the runtime cost of dynamic partition-
ing. It measures the run time of each stage to finish a dy-
namic partitioning process: query profiling, envelopes col-
lection and new partition generation. The figure shows the
cost per query by varying the number of cross-partition
queries. For all the three stages, it is observed that the
cost remains almost constant. Therefore the dynamic par-
titioning method is scalable with respect to the number of
cross-partition queries.

Il Query Profiling [_]Envelopes Collection [lllPartition Creation
4

w

Run time per query (ms)
= N

0 10,000 20,000 30,000 40,000 50,000
of cross—partition queries

Figure 11: Dynamic Partitioning: runtime cost.

We next use the same query workload to test the effect of
dynamic partitioning. Figure 12 shows the average response
time by varying the number of cross-partition queries. Note
that the response time here only indicates the query answer-
ing time. From the figure, we can observe the query response

—4-CP, —m CP +DP

=
N o ® o

Avg. Response Time (ms)
N,

1(9000 20,000 30,000 40,000 50,000
Number of cross—partition queries

Figure 12: Dynamic partitioning: response time

time is significantly improved compared to the static parti-
tioning method. This also explains that our algorithms are
effective for serving cross-partition queries. In the above ex-
periments, Sedge uses slightly larger space with secondary
partitions.

7.2.4 Scalability Evaluation

Additionally, we test the capability of Sedge to handle
intensive cross-partition queries. We generate five sets of
query workload, each of which contains 100,000 random
queries and set the percentage of the cross-partition queries
as 0%, 256%, 50%, 75% and 100%, respectively. For this ex-
periment, we use C'P; as the baseline and demonstrate the
performance of CP; + DP, where DP denotes secondary
partitions generated by dynamic partitioning on demand.
We employ 6 machines to hold CP; and assign additional
machines gradually to accommodate the new partitions.

—4—Web —®-Twitter —#&—Bio —¥—Syn.

ime

50%

40%

30%

20%

10%

25% 50% . 75% 1005
% of cross—partition queries in the workload

Improvement in avg. response fi

Figure 13: Cross-partition queries vs. Improvement
ratio in avg. response time

Figure 13 shows the improvement ratio in average re-
sponse time. In this figure, we plot the lift of the average
response time by using on-demand partitioning compared
with the baseline. The response time includes both the
query answering time and the overhead of on-demand par-
titioning. As we increase the percentage of cross-partition
queries, it can be seen that for all the four datasets, there
is a significant improvement in average response time. In
detail, however, we observe different improvement perfor-
mance with respect to the changing workload. For the Twit-
ter graph and Synthetic graph, the ratio increases constantly.
This can be explained as follows. In these two graphs, there
are many tightly connected substructures (communities). If
these substructures are divided among multiple partitions,
the cross-partition queries on them will visit these partitions
frequently and as a result produce much inter-machine com-
munication. In this case, by collecting the hot substructures
together, our system can dramatically improve the efficiency.

As for the Bio graph, it is a tree-like structure. Hence, the
cross-partition query does not visit many partitions and the
improvement in query response time is not remarkable when
compared with the baseline method. The characteristics of
the Web graph are between these two types.

—#-Vertex Addition —4—Vertex Deletion

o
©

Cost per vertex (ms)

100 100 100 100 10° 10° 10
Number of Vertices

Figure 14: Dynamic Update/Synchronization Cost

7.2.5 Dynamic Updates and Synchronization

To test the performance of dynamic update/synchronization,
we experiment on vertex addition and deletion on the large
Synthetic graph. To assure updates are indeed executed
globally, 5 primary (complementary) partition sets are ini-
tially loaded and runs in parallel. In the experiment of ver-
tex addition, we generate new vertices with respect to the
degree distribution of the graph, which is a “power-law” dis-
tribution with v = 2.43 (a.k.a scaling parameter, [2]). New
edges are constructed according to preferential attachment.
As to the experiment of vertex deletion, we randomly select
vertices in the graph to delete. Figure 14 shows the aver-
age run time for each vertex addition/deletion operation by
varying the number of vertices. It is observed that the addi-
tion and deletion operation per vertex can be accomplished
in about 0.2ms and 0.4ms respectively and the time is almost
constant with respect to the number of updated vertices.

8. CONCLUSIONS

We introduced an emerging data management problem
in large-scale social and information networks. In order to
process graph queries in parallel, these networks need to be
partitioned and distributed across clusters. How to gener-
ate and manage partitions becomes an important issue. We
illustrated that, for graph queries which have strong locality
and skewed workload, static partition scheme does not work
well. Thus, we proposed two partitioning techniques, com-
plementary partitioning and on-demand partitioning. Based
on these techniques, we introduced an architecture with a
two-level partition structure, primary and secondary par-
titions, to handle graph queries with changing workload.
The experiments demonstrated the developed system can ef-
fectively minimize inter-machine communication during dis-
tributed graph query processing. For future work, it is in-
teresting to explore efficient RDF storage mechanisms and
distributed metadata indexing solutions.

9. ACKNOWLEDGEMENTS

This research was sponsored in part by the U.S. National
Science Foundation under grant 11S-0847925, ARO No. DFR
3A-8-447850-23002, and the Army Research Laboratory un-
der Cooperative Agreement Number W911NF-09-2-0053 (NS-

CTA). The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstand-
ing any copyright notation here on.

10 REFERENCES
. Abadi, A. Marcus, S. Madden, and K. Hollenbach.

Scalable semantic web data management using vertical
partitioning. In VLDB, pages 411-422, 2007.

[2] R. Albert and A.-L. Barabasi. Emergence of scaling in
random networks. Science, 286:509-512, 1999.

[3] M. Arenas and J. Pérez. Querying semantic web data with
sparql. In PODS, 2011.

[4] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In WWW, 2011.

[5] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, pages 595-601, 2004.

[6] M. Brocheler, A. Pugliese, V. P. Bucci, and V. S.
Subrahmanian. COSI: Cloud oriented subgraph
identification in massive social networks. In ASONAM,
pages 248-255, 2010.

[7] J. Broekstra, A. Kampman, and F. V. Harmelen. Sesame:
A generic architecture for storing and querying rdf and rdf
schema. In ISWC, pages 54-68, 2002.

[8] P. Buneman, G. Cong, and W. Fan. Using partial
evaluation in distributed query evaluation. In VLDB, pages
211-222, 2006.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In SDM, 2004.

[10] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. Syst. Sci.,
55(3):441-453, 1997.

[11] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
workload-driven approach to database replication and
partitioning. In VLDB, pages 48-57, 2010.

[12] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Zephyr:
Live migration in shared nothing databases for elastic cloud
platforms. In SIGMOD, pages 301-312, 2011.

[13] J. Gilbert, G. Miller, and S.-H. Teng. Geometric mesh
partitioning: implementation and experiments. STAM J.
Sci. Comput., 19:2091-2110, 1998.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, pages 518-529,
1999.

[15] T. Heath and C. Bizer. Linked Data: Evolving the Web
into a Global Data Space. Morgan & Claypool, 2011.

[16] B. Hendrickson and T. G. Kolda. Graph partitioning
models for parallel computing. Parallel Computing,
26(12):1519-1534, 2000.

[17] B. Hendrickson and R. Leland. A multilevel algorithm for
partitioning graphs. In Proc. of Supercomputing, 1995.

[18] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql
querying of large rdf graphs. In VLDB, 2011.

[19] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271-279, 2003.

[20] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system. In ICDM, pages 229-238,
2009.

[21] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput., 20(1):359 — 392, 1999.

[22] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In
ISCA, pages 13—21, 1992.

[23] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell system
technical journal, 49(1):291-307, 1970.

[24] J. Kleinberg. Navigation in a small world. Nature, 406:845,
2000.

[25] D. Kossmann. The state of the art in distributed query
processing. ACM Trans. Database Syst., 32(4):422-469,
2000.

[26] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29-123, 2009.

[27] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful bulk processing for incremental
algorithms. In SOCC, pages 51-62, 2010.

[28] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, pages 135—146,
2010.

[29] M. Najork. The scalable hyperlink store. In Hypertexzt,
pages 89-98, 2009.

[30] M. Newman, A. L. Barabasi, and D. J. Watts. The
Structure and Dynamics of Networks. Princeton University
Press, 2006.

[31] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking
for external graph searching. Algorithmica, 16(2):181-214,
1996.

[32] F. Pellegrini and J. Roman. SCOTCH: A software package
for static mapping by dual recursive bipartitioning of
process and architecture graphs. In HPCN, pages 493-498,
1996.

[33] J.-M. Pujol, V. Erramilli, G. Siganos, X. Yang,

N. Laoutaris, P. Chhabra, and P. Rodriguez. The little
engine(s) that could: Scaling online social networks. In
SIGCOMM, pages 375386, 2010.

[34] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP?Bench: A sparql performance benchmark. In ICDE,
pages 222-233, 2009.

[35] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, pages
149-160, 2001.

[36] D. Suciu. Distributed query evaluation on semistructured
data. ACM Trans. Database Syst., 27(1):1-62, 2002.

[37] C. Walshaw, M. Cross, and M. Everett. Parallel dynamic
graph partitioning for adaptive unstructured meshes. J. of
Parallel and Distributed Computing, 47(2):102-108, 1997.

[38] K. Wilkinson and K. Wilkinson. Jena property table
implementation. In SSW.S, 2006.

[39] D. R. Zerbino and E. Birney. Velvet: Algorithms for de
novo short read assembly using de bruijn graphs. Genome
Res., 18(5):821-829, 2008.

Appendix: The SP2Bench Benchmark Queries

The queries used in the evaluation on the SP2Bench Benchmark
[34] are listed as follows.

Q2 Given an inproceeding, extract all the properties of the inpro-
ceeding, e.g., the title, the pages, the authors, the proceeding
and the reference list.

Q4 Given a journal, select all distinct pairs of article author
names for authors that have published in the journal.

Q6 Given a proceeding and a specific year, return the set of the
inproceedings authored by persons that have not published
in years before.

Q7 Given a reference list, return the titles of the papers in the
list that have been cited at least once, but not by any paper
that has not been cited itself.

@8 Given an author, return the “collaborative distance” between
the author and mathematician Paul Erdos (The distance is
also known as Erdos Number).

