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Graphs are everywhere...
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Graphs in Reality
Graphs model objects and their relationships.
Also referred to as networks.
All common data structures can be modeled as graphs.

Graphs in Bioinformatics
Molecular Biology studies relationship between molecu-
lar components.
Graphs are ideal to model these:

Molecules
Protein-protein interaction networks
Metabolic networks



Central Questions
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How similar are two graphs?
Graph similarity is the central problem for all learning
tasks such as clustering and classification on graphs.

Applications
Function prediction for molecules, in particular proteins
Comparison of protein-protein interaction networks

Challenges
Subgraph isomorphism is NP-complete.
Comparing graphs via isomorphism checking is thus
prohibitively expensive!
Graph kernels offer a faster, yet principled alternative.



From the beginning...

Karsten M. Borgwardt: GRAPH KERNELS, Page 4

Definition of a Graph
A graph G is a set of nodes (or vertices) V and edges E,
where E ⊂ V 2.
An attributed graph is a graph with labels on nodes
and/or edges; we refer to labels as attributes.
The adjacency matrix A of G is defined as

[A]ij =

{
1 if (vi, vj) ∈ E,
0 otherwise ,

where vi and vj are nodes in G.
A walk w of length k − 1 in a graph is a sequence of
nodes w = (v1, v2, · · · , vk) where (vi−1, vi) ∈ E for 1 ≤
i ≤ k.
w is a path if vi 6= vj for i 6= j.



Graph Isomorphism
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Graph isomorphism (cp Skiena, 1998)
Find a mapping f of the vertices of G1 to the vertices
of G2 such that G1 and G2 are identical; i.e. (x, y) is an
edge of G1 iff (f (x), f(y)) is an edge of G2. Then f is an
isomorphism, and G1 and G2 are called isomorphic.
No polynomial-time algorithm is known for graph isomor-
phism
Neither is it known to be NP-complete

Subgraph isomorphism
Subgraph isomorphism asks if there is a subset of
edges and vertices of G1 that is isomorphic to a smaller
graph G2.
Subgraph isomorphism is NP-complete



Subgraph Isomorphism
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NP-completeness
A decision problem C is NP-complete, iff
C is in NP
C is NP-hard, i.e. every other problem in NP is reducible
to it.

Problems for the practitioner
Excessive runtime in worst case
Runtime may grow exponentially with number of nodes
For large graphs with many nodes, and
For large datasets of graphs
this is an enormous problem

Wanted Polynomial-time similarity measure for graphs



Polynomial alternatives
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Graph kernels
Compare substructures of graphs that are computable
in polynomial time
Examples: walks, paths, cyclic patterns, trees

Criteria for a good graph kernel
Expressive
Efficient to compute
Positive definite
Applicable to wide range of graphs



Random Walks
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Principle
Compare walks in two input graphs (Kashima et al.,
2003; Gärtner et al., 2003)
Walks are sequences of nodes that allow repetitions of
nodes

Important trick
Walks of length k can be computed by taking the adja-
cency matrix A to the power of k

Ak(i, j) = c means that c walks of length k exist between
vertex i and vertex j



Product Graph
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How to find common walks in two graphs?
Another trick: Use the Product Graph of G1 and G2

Definition
G× = (V×, E×), defined via

V ×(G1 ×G2) = {(v1, w1) ∈ V1 × V2 :
label(v1) = label(w1)}

E×(G1 ×G2) = {((v1, w1), (v2, w2)) ∈ V 2(G1 ×G2) :
(v1, v2) ∈ E1 ∧ (w1, w2) ∈ E2

∧(label(v1, v2) = label(w1, w2))}
Meaning

Product graph consists of pairs of identically labeled
nodes and edges from G1 and G2



Random walk kernel
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The trick
Common walks can now be computed from Ak

×

Definition of random walk kernel

k×(G1, G2) =

|V×|∑
i,j=1

[

∞∑
n=0

λnAn
×]ij = e>(I−λA×)−1 e

Meaning
Random walk kernel counts all pairs of matching walks
λ is decaying factor for the sum to converge



Runtime of random walk kernels
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Notation
given two graphs G1 and G2

n is the number of nodes in G1 and G2

Computing product graph
requires comparison of all pairs of edges in G1 and G2

runtime O(n4)

Powers of adjacency matrix
matrix multiplication or inversion for n2 * n2 matrix
runtime O(n6)

Total runtime
O(n6) - yet this can be sped up to O(n3)! (Vishwanathan
et al., 2006)



Fast kernel computation
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Notation:
Operator vec flattens a matrix and vec−1 reconstructs it.
The Kronecker product of A and B is written as:

A⊗B :=

 A1,1B A1,2B . . . A1,nB... ... ... ...
An,1B An,2B . . . An,mB


Product Graphs:

Entries in the adjacency graph are 1 iff corresponding
nodes are adjacent in both G1 and G2.
The adjacency matrix of a product graph can be written
as A(G1)⊗ A(G2).



Sylvester Equations

Karsten M. Borgwardt: GRAPH KERNELS, Page 13

Definition:
Equations of the form

M = SMT + U

The matrices S, T and U are given.
We need to solve for M .

Properties:
Also known as discrete-time Lyapunov equation.
Typical solution is O(n3).
We will show how to convert graph kernels to Sylvester
Equations.



Sylvester to Random Walks
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Gory Maths:
Rewrite the Sylvester equation as

vec(M) = vec(SMT ) + vec(U)

Use the well known identity

vec(SMT ) = (T> ⊗ S) vec(M),

to rewrite

(I−T> ⊗ S) vec(M) = vec(U).

Now we need to solve

vec(M) = (I−T> ⊗ S)−1 vec(U).

Multiply both sides by vec(U)>

vec(U)> vec(M) = vec(U)>(I−T> ⊗ S)−1 vec(U).



Recovering Graph Kernels
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Gory Maths Contd . . .:
In the equation

vec(U)> vec(M) = vec(U)>(I−T> ⊗ S)−1 vec(U).

substitute

U = e e>

T = λA(G1)
>

S = A(G2)

to get

e> vec(M) = e>(I−λA(G1)⊗ A(G2))
−1 e

= e>(I−λA×)−1 e .

This is exactly the random walk graph kernel!



Tottering
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Artificially high similarity scores
Walk kernels allow walks to visit same edges and nodes
multiple times → artificially high similarity scores by re-
peated visiting of same two nodes

Additional node labels
Mahe et al. (2004) add additional node labels to reduce
number of matching nodes → improved classification
accuracy

Forbidding cycles with 2 nodes
Mahe et al. redefine walk kernel to forbid subcycles con-
sisting of two nodes → no practical improvement



Graph kernel application
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Random walk kernel application
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Protein function prediction (Borgwardt et al., 2005)
Compare 3D structure of molecules modeled as graphs
Then classify molecules into functional classes
In other terms, predict function from structure

The task
Given protein structures from PDB
A functional classification scheme, e.g. BRENDA, which
defines classes of proteins with similar function
Build a SVM classifier to predict graph class member-
ship of newly discovered proteins from their structure



Protein graph kernel
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Protein graph kernel
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Protein graph kernel
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Limitations of walks
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Different graphs mapped to identical points in walks feature
space (from Ramon and Gaertner, 2003)



Subtree kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 23

Motivation
Compare tree-like substructures of graphs
May distinguish between substructures that walk kernel
deems identical

Algorithmic principle
for all pairs of nodes r from V1(G1) and s from V2(G2)
and a predefined height h of subtrees:
recursively compare neighbors (of neighbors) of r and s

subtree kernel on graphs is sum of subtree kernels on
nodes



Subtree kernel
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Matching of neighborhoods
δ+(r) is the set of nodes adjacent to node r

M(r, s) is the set of all matchings from δ+(r) to δ+(s)

M(r, s) = {R ⊆ δ+(r)× δ+(s)|
(∀(a, b), (c, d) ∈ R : a = c ⇐⇒ b = d)∧
(∀(a, b) ∈ R : label(a) = label(b))}

Kernel computation on pairs of trees
Then kh(r, s) can be computed as

kh(r, s) = λrλs

∑
R∈M(r,s)

∏
(r′,s′)∈R

kh−1(r
′, s′),

where λr and λs are positive scalars.



Subtree kernel
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Subtree graph kernel
The subtree graph kernel for fixed height h is

ktree,h(G1, G2) =
∑
r∈V1

∑
s∈V2

kh(r, s).

The subtree graph kernel for h approaching infinity:

ktree(G1, G2) = lim
h→∞

ktree,h(G1, G2),

which will converge for suitable choice of λr and λs.
both versions are positive definite
large choice of h provides good approximation of ktree.



Reminder: Tottering
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Artificially high similarity scores
Walk kernels allow walks to visit same edges and nodes
multiple times → artificially high similarity scores by re-
peated visiting of same two nodes

Subtree kernels suffer from tottering as well!



Cycles instead of walks?
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Idea
Computing kernels based on cyclic and tree patterns
(Horvath, Gärtner, Wrobel, 2005)
Intersection kernel instead of kernel based on counts

Problems
Computation of all general cycles is NP-hard
Remedy: Consider graphs with up to k simple cycles
only
Problem: Cyclic pattern kernel can only be used on
datasets fulfilling this constraint.



Depth-first search paths?
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Idea
Computing kernels based on paths of length up to d
starting from a node r (Swamidass et al., ISMB 2005)
These are determined by Depth-First Search (DFS)
Once diverged, paths may not visit the same node
Path counts are then combined into a kernel on graphs

Problems
does only measure local similarity in structure, not
global
DFS paths exclude edges from graph comparison that
are not on these paths



All-paths kernel?
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Idea
Idea: Determine all paths from two graphs
Compare paths pairwise to yield kernel

Advantage
No tottering

Problem
All-Paths kernel is NP-hard to compute.

Proof
If determining all paths were not NP-hard, then one
could check whether a Hamilton path exists of length
n− 1.
However, finding a Hamilton path is known to be NP-
hard. Hence, determining all paths as well.



Alternatives?
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Longest paths?
Also NP-hard, same reason as for all paths.

Shortest Paths!
computable in O(n3) by the classic Floyd-Warshall algo-
rithm ’all-pairs shortest paths’



Shortest-paths kernel
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Kernel computation (Borgwardt & Kriegel, 2005)
Determine all shortest paths in two input graphs G1 and
G2

Compare all shortest distances in SD(G1) to all shortest
distances in SD(G2)

Sum over kernels on all pairs of shortest distances gives
shortest-path kernel

Kshortest path(G1, G2) =
∑

s1∈SD(G1)

∑
s2∈SD(G2)

k(s1, s2)



Runtime shortest-paths kernel
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Notation
given two graphs G1 and G2

n is the number of nodes in G1 and G2

Kernel computation
Determine shortest paths, in G1 and G2 separately:
O(n3)

Compare these pairwise: O(n4)

Hence: Total runtime complexity O(n4)



Discussion
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Advantages
Compares meaningful features of graphs, namely short-
est paths
Positive definite
No tottering
Works on all graphs (using artificial edge length)
Computable in O(n4) → two magnitudes faster than the
random walk kernel



Discussion
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Disadvantages
Does not exploit sparsity of graphs
Leads to full matrix representations of graphs
Ignores information represented by longer paths
Most meaningful if edge labels represent some type of
distance



Variants
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equal-length shortest paths
if two shortest paths contain a non-identical number of
edges, count them as completely dissimilar

k shortest paths
compare k shortest paths
use algorithm by Yen 1971 for k loopless shortest paths

Yen’s runtime O(kn(m + n ∗ log n))

runtime increases to O(k ∗ n5)

k shortest disjoint paths
simpler approach: iteratively apply Dijkstra’s algorithm
and remove currently shortest path from graph
compare k disjoint shortest paths
worst case total runtime O(k ∗ n4)



Hot topics on graph kernels
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Questions
Are there principled approaches to speed up computa-
tion of graph kernels?
Are there better polynomial algorithms to describe graph
substructures?
Can we employ graph kernels for different tasks in graph
mining?



Applications in Bioinformatics
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Current
comparing structures of proteins
comparing structures of RNA
measuring similarity between metabolic networks
measuring similarity between protein interaction net-
works
measuring similarity between gene regulatory networks

Future
detecting conserved paths in interspecies networks
finding differences in individual or interspecies networks
finding common motifs in biological networks
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