
Karsten M. Borgwardt: GRAPH KERNELS, Page 1

GRAPH KERNELS
Karsten M. Borgwardt

kb@dbs.ifi.lmu.de

Lehrstuhl für Datenbanksysteme,
Ludwig-Maximilians-Universität München

Graphs are everywhere...

Karsten M. Borgwardt: GRAPH KERNELS, Page 2

Graphs in Reality
Graphs model objects and their relationships.
Also referred to as networks.
All common data structures can be modeled as graphs.

Graphs in Bioinformatics
Molecular Biology studies relationship between molecu-
lar components.
Graphs are ideal to model these:

Molecules
Protein-protein interaction networks
Metabolic networks

Central Questions

Karsten M. Borgwardt: GRAPH KERNELS, Page 3

How similar are two graphs?
Graph similarity is the central problem for all learning
tasks such as clustering and classification on graphs.

Applications
Function prediction for molecules, in particular proteins
Comparison of protein-protein interaction networks

Challenges
Subgraph isomorphism is NP-complete.
Comparing graphs via isomorphism checking is thus
prohibitively expensive!
Graph kernels offer a faster, yet principled alternative.

From the beginning...

Karsten M. Borgwardt: GRAPH KERNELS, Page 4

Definition of a Graph
A graph G is a set of nodes (or vertices) V and edges E,
where E ⊂ V 2.
An attributed graph is a graph with labels on nodes
and/or edges; we refer to labels as attributes.
The adjacency matrix A of G is defined as

[A]ij =

{
1 if (vi, vj) ∈ E,
0 otherwise ,

where vi and vj are nodes in G.
A walk w of length k − 1 in a graph is a sequence of
nodes w = (v1, v2, · · · , vk) where (vi−1, vi) ∈ E for 1 ≤
i ≤ k.
w is a path if vi 6= vj for i 6= j.

Graph Isomorphism

Karsten M. Borgwardt: GRAPH KERNELS, Page 5

Graph isomorphism (cp Skiena, 1998)
Find a mapping f of the vertices of G1 to the vertices
of G2 such that G1 and G2 are identical; i.e. (x, y) is an
edge of G1 iff (f (x), f(y)) is an edge of G2. Then f is an
isomorphism, and G1 and G2 are called isomorphic.
No polynomial-time algorithm is known for graph isomor-
phism
Neither is it known to be NP-complete

Subgraph isomorphism
Subgraph isomorphism asks if there is a subset of
edges and vertices of G1 that is isomorphic to a smaller
graph G2.
Subgraph isomorphism is NP-complete

Subgraph Isomorphism

Karsten M. Borgwardt: GRAPH KERNELS, Page 6

NP-completeness
A decision problem C is NP-complete, iff
C is in NP
C is NP-hard, i.e. every other problem in NP is reducible
to it.

Problems for the practitioner
Excessive runtime in worst case
Runtime may grow exponentially with number of nodes
For large graphs with many nodes, and
For large datasets of graphs
this is an enormous problem

Wanted Polynomial-time similarity measure for graphs

Polynomial alternatives

Karsten M. Borgwardt: GRAPH KERNELS, Page 7

Graph kernels
Compare substructures of graphs that are computable
in polynomial time
Examples: walks, paths, cyclic patterns, trees

Criteria for a good graph kernel
Expressive
Efficient to compute
Positive definite
Applicable to wide range of graphs

Random Walks

Karsten M. Borgwardt: GRAPH KERNELS, Page 8

Principle
Compare walks in two input graphs (Kashima et al.,
2003; Gärtner et al., 2003)
Walks are sequences of nodes that allow repetitions of
nodes

Important trick
Walks of length k can be computed by taking the adja-
cency matrix A to the power of k

Ak(i, j) = c means that c walks of length k exist between
vertex i and vertex j

Product Graph

Karsten M. Borgwardt: GRAPH KERNELS, Page 9

How to find common walks in two graphs?
Another trick: Use the Product Graph of G1 and G2

Definition
G× = (V×, E×), defined via

V ×(G1 ×G2) = {(v1, w1) ∈ V1 × V2 :
label(v1) = label(w1)}

E×(G1 ×G2) = {((v1, w1), (v2, w2)) ∈ V 2(G1 ×G2) :
(v1, v2) ∈ E1 ∧ (w1, w2) ∈ E2

∧(label(v1, v2) = label(w1, w2))}
Meaning

Product graph consists of pairs of identically labeled
nodes and edges from G1 and G2

Random walk kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 10

The trick
Common walks can now be computed from Ak

×

Definition of random walk kernel

k×(G1, G2) =

|V×|∑
i,j=1

[

∞∑
n=0

λnAn
×]ij = e>(I−λA×)−1 e

Meaning
Random walk kernel counts all pairs of matching walks
λ is decaying factor for the sum to converge

Runtime of random walk kernels

Karsten M. Borgwardt: GRAPH KERNELS, Page 11

Notation
given two graphs G1 and G2

n is the number of nodes in G1 and G2

Computing product graph
requires comparison of all pairs of edges in G1 and G2

runtime O(n4)

Powers of adjacency matrix
matrix multiplication or inversion for n2 * n2 matrix
runtime O(n6)

Total runtime
O(n6) - yet this can be sped up to O(n3)! (Vishwanathan
et al., 2006)

Fast kernel computation

Karsten M. Borgwardt: GRAPH KERNELS, Page 12

Notation:
Operator vec flattens a matrix and vec−1 reconstructs it.
The Kronecker product of A and B is written as:

A⊗B :=

 A1,1B A1,2B . . . A1,nB...
An,1B An,2B . . . An,mB


Product Graphs:

Entries in the adjacency graph are 1 iff corresponding
nodes are adjacent in both G1 and G2.
The adjacency matrix of a product graph can be written
as A(G1)⊗ A(G2).

Sylvester Equations

Karsten M. Borgwardt: GRAPH KERNELS, Page 13

Definition:
Equations of the form

M = SMT + U

The matrices S, T and U are given.
We need to solve for M .

Properties:
Also known as discrete-time Lyapunov equation.
Typical solution is O(n3).
We will show how to convert graph kernels to Sylvester
Equations.

Sylvester to Random Walks

Karsten M. Borgwardt: GRAPH KERNELS, Page 14

Gory Maths:
Rewrite the Sylvester equation as

vec(M) = vec(SMT) + vec(U)

Use the well known identity

vec(SMT) = (T> ⊗ S) vec(M),

to rewrite

(I−T> ⊗ S) vec(M) = vec(U).

Now we need to solve

vec(M) = (I−T> ⊗ S)−1 vec(U).

Multiply both sides by vec(U)>

vec(U)> vec(M) = vec(U)>(I−T> ⊗ S)−1 vec(U).

Recovering Graph Kernels

Karsten M. Borgwardt: GRAPH KERNELS, Page 15

Gory Maths Contd . . .:
In the equation

vec(U)> vec(M) = vec(U)>(I−T> ⊗ S)−1 vec(U).

substitute

U = e e>

T = λA(G1)
>

S = A(G2)

to get

e> vec(M) = e>(I−λA(G1)⊗ A(G2))
−1 e

= e>(I−λA×)−1 e .

This is exactly the random walk graph kernel!

Tottering

Karsten M. Borgwardt: GRAPH KERNELS, Page 16

Artificially high similarity scores
Walk kernels allow walks to visit same edges and nodes
multiple times → artificially high similarity scores by re-
peated visiting of same two nodes

Additional node labels
Mahe et al. (2004) add additional node labels to reduce
number of matching nodes → improved classification
accuracy

Forbidding cycles with 2 nodes
Mahe et al. redefine walk kernel to forbid subcycles con-
sisting of two nodes → no practical improvement

Graph kernel application

Karsten M. Borgwardt: GRAPH KERNELS, Page 17

Random walk kernel application

Karsten M. Borgwardt: GRAPH KERNELS, Page 18

Protein function prediction (Borgwardt et al., 2005)
Compare 3D structure of molecules modeled as graphs
Then classify molecules into functional classes
In other terms, predict function from structure

The task
Given protein structures from PDB
A functional classification scheme, e.g. BRENDA, which
defines classes of proteins with similar function
Build a SVM classifier to predict graph class member-
ship of newly discovered proteins from their structure

Protein graph kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 19

Protein graph kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 20

Protein graph kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 21

Limitations of walks

Karsten M. Borgwardt: GRAPH KERNELS, Page 22

Different graphs mapped to identical points in walks feature
space (from Ramon and Gaertner, 2003)

Subtree kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 23

Motivation
Compare tree-like substructures of graphs
May distinguish between substructures that walk kernel
deems identical

Algorithmic principle
for all pairs of nodes r from V1(G1) and s from V2(G2)
and a predefined height h of subtrees:
recursively compare neighbors (of neighbors) of r and s

subtree kernel on graphs is sum of subtree kernels on
nodes

Subtree kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 24

Matching of neighborhoods
δ+(r) is the set of nodes adjacent to node r

M(r, s) is the set of all matchings from δ+(r) to δ+(s)

M(r, s) = {R ⊆ δ+(r)× δ+(s)|
(∀(a, b), (c, d) ∈ R : a = c ⇐⇒ b = d)∧
(∀(a, b) ∈ R : label(a) = label(b))}

Kernel computation on pairs of trees
Then kh(r, s) can be computed as

kh(r, s) = λrλs

∑
R∈M(r,s)

∏
(r′,s′)∈R

kh−1(r
′, s′),

where λr and λs are positive scalars.

Subtree kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 25

Subtree graph kernel
The subtree graph kernel for fixed height h is

ktree,h(G1, G2) =
∑
r∈V1

∑
s∈V2

kh(r, s).

The subtree graph kernel for h approaching infinity:

ktree(G1, G2) = lim
h→∞

ktree,h(G1, G2),

which will converge for suitable choice of λr and λs.
both versions are positive definite
large choice of h provides good approximation of ktree.

Reminder: Tottering

Karsten M. Borgwardt: GRAPH KERNELS, Page 26

Artificially high similarity scores
Walk kernels allow walks to visit same edges and nodes
multiple times → artificially high similarity scores by re-
peated visiting of same two nodes

Subtree kernels suffer from tottering as well!

Cycles instead of walks?

Karsten M. Borgwardt: GRAPH KERNELS, Page 27

Idea
Computing kernels based on cyclic and tree patterns
(Horvath, Gärtner, Wrobel, 2005)
Intersection kernel instead of kernel based on counts

Problems
Computation of all general cycles is NP-hard
Remedy: Consider graphs with up to k simple cycles
only
Problem: Cyclic pattern kernel can only be used on
datasets fulfilling this constraint.

Depth-first search paths?

Karsten M. Borgwardt: GRAPH KERNELS, Page 28

Idea
Computing kernels based on paths of length up to d
starting from a node r (Swamidass et al., ISMB 2005)
These are determined by Depth-First Search (DFS)
Once diverged, paths may not visit the same node
Path counts are then combined into a kernel on graphs

Problems
does only measure local similarity in structure, not
global
DFS paths exclude edges from graph comparison that
are not on these paths

All-paths kernel?

Karsten M. Borgwardt: GRAPH KERNELS, Page 29

Idea
Idea: Determine all paths from two graphs
Compare paths pairwise to yield kernel

Advantage
No tottering

Problem
All-Paths kernel is NP-hard to compute.

Proof
If determining all paths were not NP-hard, then one
could check whether a Hamilton path exists of length
n− 1.
However, finding a Hamilton path is known to be NP-
hard. Hence, determining all paths as well.

Alternatives?

Karsten M. Borgwardt: GRAPH KERNELS, Page 30

Longest paths?
Also NP-hard, same reason as for all paths.

Shortest Paths!
computable in O(n3) by the classic Floyd-Warshall algo-
rithm ’all-pairs shortest paths’

Shortest-paths kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 31

Kernel computation (Borgwardt & Kriegel, 2005)
Determine all shortest paths in two input graphs G1 and
G2

Compare all shortest distances in SD(G1) to all shortest
distances in SD(G2)

Sum over kernels on all pairs of shortest distances gives
shortest-path kernel

Kshortest path(G1, G2) =
∑

s1∈SD(G1)

∑
s2∈SD(G2)

k(s1, s2)

Runtime shortest-paths kernel

Karsten M. Borgwardt: GRAPH KERNELS, Page 32

Notation
given two graphs G1 and G2

n is the number of nodes in G1 and G2

Kernel computation
Determine shortest paths, in G1 and G2 separately:
O(n3)

Compare these pairwise: O(n4)

Hence: Total runtime complexity O(n4)

Discussion

Karsten M. Borgwardt: GRAPH KERNELS, Page 33

Advantages
Compares meaningful features of graphs, namely short-
est paths
Positive definite
No tottering
Works on all graphs (using artificial edge length)
Computable in O(n4) → two magnitudes faster than the
random walk kernel

Discussion

Karsten M. Borgwardt: GRAPH KERNELS, Page 34

Disadvantages
Does not exploit sparsity of graphs
Leads to full matrix representations of graphs
Ignores information represented by longer paths
Most meaningful if edge labels represent some type of
distance

Variants

Karsten M. Borgwardt: GRAPH KERNELS, Page 35

equal-length shortest paths
if two shortest paths contain a non-identical number of
edges, count them as completely dissimilar

k shortest paths
compare k shortest paths
use algorithm by Yen 1971 for k loopless shortest paths

Yen’s runtime O(kn(m + n ∗ log n))

runtime increases to O(k ∗ n5)

k shortest disjoint paths
simpler approach: iteratively apply Dijkstra’s algorithm
and remove currently shortest path from graph
compare k disjoint shortest paths
worst case total runtime O(k ∗ n4)

Hot topics on graph kernels

Karsten M. Borgwardt: GRAPH KERNELS, Page 36

Questions
Are there principled approaches to speed up computa-
tion of graph kernels?
Are there better polynomial algorithms to describe graph
substructures?
Can we employ graph kernels for different tasks in graph
mining?

Applications in Bioinformatics

Karsten M. Borgwardt: GRAPH KERNELS, Page 37

Current
comparing structures of proteins
comparing structures of RNA
measuring similarity between metabolic networks
measuring similarity between protein interaction net-
works
measuring similarity between gene regulatory networks

Future
detecting conserved paths in interspecies networks
finding differences in individual or interspecies networks
finding common motifs in biological networks

	
	blueGRAPH KERNELSblack
	redOutlineblack
	redGraphs are everywhere...black
	redCentral Questionsblack
	redFrom the beginning...black
	redGraph Isomorphismblack
	redSubgraph Isomorphismblack
	redPolynomial alternativesblack
	redRandom Walksblack
	redProduct Graphblack
	redRandom walk kernelblack
	redRuntime of random walk kernelsblack
	redFast kernel computationblack
	redSylvester Equationsblack
	redSylvester to Random Walksblack
	redRecovering Graph Kernelsblack
	redTotteringblack
	redGraph kernel applicationblack
	redRandom walk kernel applicationblack
	redProtein graph kernelblack
	redProtein graph kernelblack
	redProtein graph kernelblack
	redLimitations of walksblack
	redSubtree kernelblack
	redSubtree kernelblack
	redSubtree kernelblack
	redReminder: Totteringblack
	redCycles instead of walks?black
	redDepth-first search paths?black
	redAll-paths kernel?black
	redAlternatives?black
	redShortest-paths kernelblack
	redRuntime shortest-paths kernelblack
	redDiscussionblack
	redDiscussionblack
	redVariantsblack
	redHot topics on graph kernelsblack
	redApplications in Bioinformaticsblack

