

Constraint	strong P-antimonotone	weak P-antimonotone	pattern-separable D-antimonotone	pattern-inseparable D-antimonotone
$Min \ Degree(P) \geq \delta$	No	No	No	Yes
$\frac{Min_Degree(P) < \delta}{Min_Degree(P) < \delta}$	No	Yes	No	Yes
$Max_Degree(P) > \delta$	No	No	Yes	Yes
$Max_Degree(P) \leq \delta$	Yes	Yes	No	Yes
$Density_Ratio(P) \ge \delta$	No	Yes	No	Yes
$Density_Ratio(P) \leq \delta$	No	Yes	No	Yes
$Density(P) \ge \delta$	No	No	No	Yes
$Density(P) \leq \delta$	No	Yes	No	Yes
$Size(P) \ge \delta$	No	Yes	Yes	Yes
$Size(P) \le \delta$	Yes	Yes	No	Yes
$Diameter(P) \ge \delta$	No	Yes	No	Yes
$Diameter(P) \leq \delta$	No	No	No	Yes
$EdgeConnectivity(P) \ge \delta$	No	No	No	Yes
$EdgeConnectivity(P) \leq \delta$	No	Yes	No	Yes
$VertexConnectivity(P) \ge \delta$	No	No	No	Yes
$VertexConnectivity(P) \le \delta$	No	Yes	No	Yes
P contains a benzene ring	No	Yes	Yes	Yes
odoes not contain a benzene ring	Yes	Yes	No	Yes

SEARCH OPTIMIZATION

Given a graph Q=(V, E), a partition of G is a set of subgraphs $\{f_1, f_2, ..., f_m\}$ such that $V(f_i) \subseteq V \text{ and } V(f_i) \cap V(f_j) = \emptyset$ for any i! = j. Given a graph G, optimize $P_{opt(Q,G)} = \arg \max_P \sum_{i=1}^m d(f_i, G)$

