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Graphs Are Everywhere
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Part I: Graph Mining – from a pattern discovery perspective

Graph Pattern Mining

� Frequent graph patterns

� Pattern summarization

� Optimal graph patterns

� Graph patterns with constraints

� Approximate graph patterns

Graph Classification

� Pattern-based approach

� Decision tree

� Decision stumps

Graph Compression

Other important topics (graph model, laws, graph dynamics, 

social network analysis, visualization, summarization, graph 

clustering, link analysis, …)
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Applications of Graph Patterns 

� Mining biochemical structures

� Finding biological conserved subnetworks

� Finding functional modules

� Program control flow analysis

� Intrusion network analysis

� Mining communication networks

� Anomaly detection

� Mining XML structures

� Building blocks for graph classification, clustering, compression, 

comparison, correlation analysis, and indexing

� …
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Graph Pattern Mining

multiple graphs setting
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Graph Patterns

Interestingness measures / Objective functions

• Frequency: frequent graph pattern

• Discriminative: information gain,  Fisher score

• Significance: G-test

• …
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Frequent Graph Pattern
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Example: Frequent Subgraphs

(a) caffeine (b) diurobromine (c) viagra

CHEMICAL COMPOUNDS

FREQUENT SUBGRAPH

…
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Example (cont.)
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PROGRAM CALL GRAPHS

FREQUENT SUBGRAPHS
(MIN SUPPORT IS 2)



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part I: Graph Mining10

Graph Mining Algorithms

Inductive Logic Programming (WARMR, King et al. 2001)

– Graphs are represented by Datalog facts

Graph Based Approaches

� Apriori-based approach

– AGM/AcGM: Inokuchi, et al. (PKDD’00)

– FSG: Kuramochi and Karypis (ICDM’01)

– PATH#: Vanetik and Gudes (ICDM’02, ICDM’04)

– FFSM: Huan, et al. (ICDM’03) and SPIN: Huan et al. (KDD’04)

– FTOSM: Horvath et al. (KDD’06)

� Pattern growth approach

– Subdue: Holder et al. (KDD’94)

– MoFa: Borgelt and Berthold (ICDM’02)

– gSpan: Yan and Han (ICDM’02)

– Gaston: Nijssen and Kok (KDD’04)

– CMTreeMiner: Chi et al. (TKDE’05)

– LEAP: Yan et al. (SIGMOD’08)



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part I: Graph Mining11

If a graph is frequent, all of its subgraphs are frequent.

…
heuristics

Apriori Property 
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Cost Analysis

isomorphism 
checking

number of candidates
•frequent

•infrequent (X)
•duplicate (X) data 
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Properties of Graph Mining Algorithms

Search Order

� breadth vs. depth

� complete vs. incomplete

Generation of Candidate Patterns

� apriori vs. pattern growth

Discovery Order of Patterns

� DFS order

� path � tree � graph

Elimination of Duplicate Subgraphs

� passive vs. active

Support Calculation

� embedding store or not
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Generation of Candidate Patterns

…

G

G1

G2

Gn

k-edge
(k+1)

Q

P

join

Apriori-Based Approach

…

G

G1

G2

G’1k-edge

(k+1)

grow

Pattern-Growth Approach

(k+2)

G’2

…

VS.
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22 new graphs

6 edges

…

7 edges

Discovery Order: Free Extension
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depth-first search

4 new graphs

7 edges

right-most pathstart end

Discovery Order: Right-Most Extension 
(Yan and Han ICDM’02)
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Duplicates Elimination

Option 1
� Check graph isomorphism of       with each graph (slow)

Option 2
� Transform each graph to a canonical label, create a hash value for this 

canonical label, and check if there is a match with       (faster)

Option 3
� Build a canonical order and generate graph patterns in that order 

(fastest)

Existing patterns

Newly discovered pattern
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Performance: Run Time (Wörlein et al. PKDD’05)

Minimum support (in %)
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The AIDS antiviral screen compound dataset from NCI/NIH
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Performance: Memory Usage (Wörlein et al. PKDD’05)

Minimum support (in %)
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Graph Pattern Explosion Problem

� If a graph is frequent, all of its subgraphs are frequent ─ the Apriori

property

� An n-edge frequent graph may have 2n subgraphs!

� In the AIDS antiviral screen dataset with 400+ compounds, at the support 

level 5%, there are > 1M frequent graph patterns

Conclusions: Many enumeration algorithms are available
AGM, FSG, gSpan, Path-Join, MoFa, FFSM, SPIN, Gaston,      
and so on, but two significant problems exist
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Pattern Summarization (Xin et al., KDD’06, Chen et al. CIKM’08)

� Too many patterns may not lead to more explicit knowledge

� It can confuse users as well as further discovery (e.g., clustering, 

classification, indexing, etc.)

� A small set of “representative” patterns that preserve most of the 

information

relevance
 significance
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Pattern Distance

… …

patterns data

distance

measure 1: pattern based
• pattern containment
• pattern similarity

measure 2: data based
• data similarity

patterns
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Closed and Maximal Graph Pattern

Closed Frequent Graph

� A frequent graph G is closed if there exists no supergraph of G that carries 

the same support as G

� If some of G’s subgraphs have the same support, it is unnecessary to 

output these subgraphs (nonclosed graphs)

� Lossless compression: still ensures that the mining result is complete

Maximal Frequent Graph

� A frequent graph G is maximal if there exists no supergraph of G that is 

frequent
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Number of Patterns: Frequent vs. Closed
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CLOSEGRAPH (Yan and Han, KDD’03)

…

A Pattern-Growth Approach

G

G1

G2

Gn

k-edge

(k+1)-edge

At what condition, can we
stop searching their children
i.e., early termination?

If G and G’ are frequent, G is a 
subgraph of G’.  If in any part 
of graphs in the dataset 
where G occurs, G’ also 
occurs, then we need not grow 
G, since none of G’s children will 
be closed except those of G’.
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Handling Tricky Cases

(graph 1)

a

c

b

d

(pattern 2)

(pattern 1)

(graph 2)
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Maximal Graph Pattern Mining (Huan et al. KDD’04)

Tree-based Equivalence Class
� Trees are sorted in their canonical order
� Graphs are in the same equivalence class if they have the same canomical

spanning tree

Locally Maximal
� A frequent subgraph g is locally maximal if it is maximal in its equivalence 

class, i.e., g has no frequent supergraphs that share the same canonical 
spanning tree as g

� Every maximal graph pattern must be locally maximal
� Reduce enumeration of subgraphs that are not locally maximal
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Graph Pattern with Other Measures
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Challenge: Non Anti-Monotonic

Anti-Monotonic

Non Monotonic

Non-Monotonic: Enumerate all subgraphs, then check their score?

Enumerate subgraphs

: small-size to large-size
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Frequent Pattern Based Mining Framework

Exploratory task

Graph clustering

Graph classification

Graph index

Graph Database Frequent Patterns Graph Patterns 

1. Bottleneck : millions, even billions of patterns

2. No guarantee of quality
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Optimal Graph Pattern
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Direct Pattern Mining Framework

Exploratory task

Graph clustering

Graph classification

Graph index

Graph Database Optimal Patterns

Direct
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Upper-Bound
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Upper-Bound: Anti-Monotonic (cont.)

Rule of Thumb : 
If the frequency difference of a graph pattern in 

the positive dataset and the negative dataset 

increases, the pattern becomes more interesting

We can recycle the existing graph mining algorithms to 

accommodate non-monotonic functions.
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Horizontal Pruning: Structural Proximity 
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Results: NCI Anti-Cancer Screen Datasets

Yeast anti-cancer79,601YEAST

Melanoma39,988UACC257

Colon40,532SW-620

Renal40,004SN12C

Central Nerve System40,271SF-295

Prostate27,509PC-3

Leukemia41,472P388

Ovarian40,516OVCAR-8

Non-Small Cell Lung40,353NCI-H23

Leukemia39,765MOLT-4

Breast27,770MCF-7

Tumor Description# of CompoundsName

Link: http://pubchem.ncbi.nlm.nih.gov

Chemical Compounds:  anti-cancer or not

# of vertices: 10 ~ 200
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LEAP (Yan et al. SIGMOD’08)

Vertical Pruning

Vertical Pruning +
Horizontal Pruning
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Graph Pattern with Topological Constraints
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Constraint-Based Graph Pattern Mining

� Highly connected subgraphs in a large graph usually are not artifacts 
(group, functionality)

� Recurrent patterns discovered in multiple graphs are more robust than the 
patterns mined from a single graph
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No Downward Closure Property

Given two graphs G and G’, if G is a 

subgraph of  G’, it does not imply that the 

connectivity of G’ is less than that of G, and 

vice versa.

G G’
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Pruning Patterns vs. Data (Zhu et al. PAKDD’07)
P
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Data Space

…

…
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Mining Gene Co-expression Networks

~9000 genes 150 x ~(9000 x 9000) = 12 billion edges

...
...

...

transform graph mining

Patterns discovered in multiple graphs are more reliable and significant 

frequent 
dense 

subgraph
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Summary Graph

...

M graphs ONE summary graph

overlap clustering

Scale Down
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Vertexlet (Yan et al. ISMB’07)
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Approximate Graph Patterns 
(Kelley et al. PNAS’03, Sharan et al. PNAS’05)

Conserved clusters within the protein interaction networks 
of yeast, worm, and fly

PathBlast

NetworkBlast

Greedy Algrotihm

� Exhaustive search: the highest-scoring paths with four nodes are identified

� Local search: start from high-scoring seeds, refine them, and expand them

� Filter overlapping graph patterns
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Graph Classification

Structure-based Approach

– Local structures in a graph, e.g., neighbors surrounding a vertex, paths with fixed length

Pattern-based Approach

� Subgraph patterns from domain knowledge or from graph mining
� Decision Tree (Fan et al. KDD’08)

� Boosting (Kudo et al. NIPS’04)

� LAR-LASSO (Tsuda, ICML’07)

Kernel-based Approach 

� Random walk (Gärtner ’02, Kashima et al. ’02, ICML’03, Mahé et al. 

ICML’04)

� Optimal local assignment (Fröhlich et al. ICML’05)

� Many others (see Part II)
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Structure/Pattern-based Classification

Basic Idea 

� Transform each graph in the dataset into a feature vector, 

where is the frequency of the i-th structure/pattern in       .  Each vector is 

associated with a class label.   Classify these vectors in a vector space

Structure Features 

� Local structures in a graph, e.g., neighbors surrounding a vertex, paths with 

fixed length

� Subgraph patterns from domain knowledge

– Molecular descriptors

� Subgraph patterns from data mining 

Enumerate all of the subgraphs and select the best features?
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Graph Patterns from Data Mining

� Sequence patterns (De Raedt and Kramer IJCAI’01)

� Frequent subgraphs (Deshpande et al, ICDM’03)

� Coherent frequent subgraphs (Huan et al. RECOMB’04)

– A graph G is coherent if the mutual information between G and each of its own subgraphs is 

above some threshold

� Closed frequent subgraphs (Liu et al. SDM’05)

� Acyclic Subgraphs (Wale and Karypis, technical report ’06)
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Decision-Tree (Fan et al. KDD’08)

Basic Idea 
� Partition the data in a top-down manner and construct the tree using the 

best feature at each step according to some criterion
� Partition the data set into two subsets, one containing this feature and the 

other does not

Optimal graph pattern mining
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Boosting in Graph Classification (Kudo et al. NIPS’04)

Simple classifiers: A rule is a tuple . 

If a molecule contains substructure     ,  it is classified as  .

� Gain

� Applying boosting Optimal graph pattern mining

New Development: Graph in LAR-LASSO (Tsuda, ICML’07)
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Graph Classification for Bug Isolation
(Chao et al. FSE’05, SDM’06)

Input Output

Instrument

Program Flow Graph

Correct Runs Faulty Runs

… …

correct outputs crash / incorrect outputs

Change Input

Program
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Graph Classification for Malware Detection

Input Output

Instrument

System Call Graph

Malicious Behavior

… …

Benign Programs Malicious Programs

Change Program

Benign Behavior

Program
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Graph Compression (Holder et al., KDD’94)

Extract common subgraphs and simplify graphs by condensing these 
subgraphs into nodes
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Conclusions

Graph mining from a pattern discovery perspective

� Graph Pattern Mining

� Graph Classification

� Graph Compression

Other Interesting Topics

� Graph Model, Laws, and Generators

� Graph Dynamics

� Social Network Analysis

� Graph Summarization

� Graph Visualization

� Graph Clustering

� Link Analysis

� …



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part I: Graph Mining56

Thank You

www.xifengyan.net
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