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Frequent Subgraph Mining and Graph Kernels

� Frequent Subgraph Mining seeks to find patterns in a dataset of 
graphs = pattern miningpattern miningpattern miningpattern mining.

� Graph Kernels aim at computing similarity scores between graphs in a 
dataset = graph comparisongraph comparisongraph comparisongraph comparison

� Link: Patterns can be used as features for graph comparison 
(Deshpande et al., 2005)
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Graph Comparison

Definition 1 (Graph Comparison Problem) Given two graphs G and G′

from the space of graphs G. The problem of graph comparison is to find a
mapping

s : G ×G → R

such that s(G,G′) quantifies the similarity (or dissimilarity) of G und G′.

G G´
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Applications of Graph Comparison

� Function prediction of chemical compounds

� Structural comparison and function prediction of protein structures

� Comparison of social networks

� Analysis of semantic structures in Natural Language Processing

� Comparison of UML diagrams
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Graph Isomorphism

Graph isomorphismGraph isomorphismGraph isomorphismGraph isomorphism

� Find a mapping f of the vertices of G1 to the vertices of G2 such that 
G1 and G2 are identical; i.e. (x,y)  is an edge of G1 iff (f(x),f(y)) is an 
edge of G2. Then f  is an isomorphism, and G1 and G2 are called 
isomorphic

� No polynomial-time algorithm is known for graph isomorphism

� Neither is it known to be NP-complete

Subgraph isomorphismSubgraph isomorphismSubgraph isomorphismSubgraph isomorphism

� Subgraph isomorphism asks if there is a subset of edges and vertices 
of G1 that is isomorphic to a smaller graph G2

� Subgraph isomorphism is NP-complete
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Subgraph Isomorphism

NPNPNPNP----completenesscompletenesscompletenesscompleteness
� A decision problem C is NP-complete iff
� C is in NP
� C is NP-hard, i.e. every other problem in NP is reducible to it.

Problems for the practitionerProblems for the practitionerProblems for the practitionerProblems for the practitioner
� Excessive runtime in worst case
� Runtime may grow exponentially with the number of nodes
� For larger graphs with many nodes and for large datasets of graphs, 

this is an enormous problem

WantedWantedWantedWanted
� Polynomial-time similarity measure for graphs
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Graph Edit Distances

PrinciplePrinciplePrinciplePrinciple
� Count operations that are necessary to transform G1 into G2

� Assign costs to different types of operations (edge/node 
insertion/deletion, modification of labels)

AdvantagesAdvantagesAdvantagesAdvantages
� Captures partial similarities between graphs
� Allows for noise in the nodes, edges and their labels
� Flexible way of assigning costs to different operations

DisadvantagesDisadvantagesDisadvantagesDisadvantages
� Contains subgraph isomorphism check as one intermediate step
� Choosing cost function for different operations is difficult 
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Topological Descriptors

PrinciplePrinciplePrinciplePrinciple
� Map each graph to a feature vector
� Use distances and metrics on vectors for learning on graphs

AdvantagesAdvantagesAdvantagesAdvantages
� Reuses known and efficient tools for feature vectors

DisadvantagesDisadvantagesDisadvantagesDisadvantages
� Efficiency comes at a price: feature vector transformation leads to loss 

of topological information (or includes subgraph isomorphism as one 
step)
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Polynomial Alternatives

Graph kernelsGraph kernelsGraph kernelsGraph kernels
� Compare substructures of graphs that are computable in polynomial 

time.

Criteria for a good graph kernelCriteria for a good graph kernelCriteria for a good graph kernelCriteria for a good graph kernel
� Expressive
� Efficient to compute
� Positive definite
� Applicable to wide range of graphs
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What is a Kernel?

• Map two objects x and x′ via mapping φ into feature space H.

• Measure their similarity in H as 〈φ(x), φ(x′)〉.

• Kernel Trick: Compute inner product in H as kernel in input space
k(x, x′) = 〈φ(x), φ(x′)〉.
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What is a Graph Kernel?

Instance of R-convolution kernels by Haussler (1999) 

• Kernels on pairs of graphs
(not pairs of nodes, though this is a common use in the literature)

• Convolution kernels compare all pairs of decompositions of two structured
objects; a new type of decomposition results in a new graph kernel.

• A graph kernel makes the whole family of kernel methods applicable to
graphs.
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Hardness Results on Graph Kernels

Link to graph isomorphism (Link to graph isomorphism (Link to graph isomorphism (Link to graph isomorphism (GaertnerGaertnerGaertnerGaertner, , , , FlachFlachFlachFlach, , , , WrobelWrobelWrobelWrobel, COLT 2003) , COLT 2003) , COLT 2003) , COLT 2003) 

� Let k(G,G’) = 〈φ(G), φ(G’)〉 be a graph kernel. 
� If φ is injective, k is called a complete graph kernel.

Proposition 1 Computing any complete graph kernel is at least as hard as
deciding whether two graphs are isomorphic.

Proof As φ is injective, k(G,G)−2k(G,G′)+k(G′, G′) = 〈φ(G)−φ(G′), φ(G)−
φ(G′)〉 = ‖φ(G)− φ(G′)‖ = 0 if and only if G is isomorphic to G′.
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Random Walks

Principle (Kashima et al., ICML 2003, Principle (Kashima et al., ICML 2003, Principle (Kashima et al., ICML 2003, Principle (Kashima et al., ICML 2003, GaertnerGaertnerGaertnerGaertner et al., COLT 2003)et al., COLT 2003)et al., COLT 2003)et al., COLT 2003)�
� Compare walks in two input graphs G and G’
� Walks are sequences of nodes that allow repetitions of nodes

Elegant computationElegant computationElegant computationElegant computation
� Walks of length k can be computed by looking at the k-th power of 

the adjacency matrix 
� Construct direct product graph of G and G’
� Count walks in this product graph G×=(V×,E×) 
� Each walk in the product graph corresponds to one walk in G and G’
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Random Walks – Direct Product Graph

1

2 3

1′ 2′X

1, 1′ 1, 2′

2, 1′ 2, 2′

3, 1′ 3, 2′
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Setbacks of Random Walk Kernels

DisadvantagesDisadvantagesDisadvantagesDisadvantages

� Runtime in O(n6)

� Tottering

� ’Halting’

Potential solutionsPotential solutionsPotential solutionsPotential solutions

� Fast computation of random walk graph kernels (Vishwanathan et al., 
NIPS 2006)

� Label enrichment and preventing tottering (Mahe et al., ICML 2004)

� Graph kernels based on shortest paths (B. and Kriegel, ICDM 2005)
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Runtime

Direct computation: O(nDirect computation: O(nDirect computation: O(nDirect computation: O(n6666))))

SolutionSolutionSolutionSolution
� Cast computation of random walk kernel as Sylvester Equation 

(Vishwanathan et al., NIPS 2006)
� These can be solved in O(n3) 



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part II: Graph Kernels  |17

Vec-Operator and Kronecker Products

VecVecVecVec----OperatorOperatorOperatorOperator
� vec flattens an n x n matrix A into an n2 x 1 vector vec(A).
� It stacks the columns of the matrix on top of each other, 

from left to right.

KroneckerKroneckerKroneckerKronecker ProductProductProductProduct
� Product of two matrices A and B
� Each element of A is multiplied with the full matrix B:

A⊗ B :=






A1,1B A1,2B . . . A1,nB
...

...
...

...
An,1B An,2B . . . An,mB





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Sylvester Equations

• Equations of the form

X = SXT +X0

• Given three n× n matrices S, T , and X0.

• We want to determine X.

• Solvable in O(n3).

• We show how to turn Sylvester equations into graph kernels.
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From Sylvester Equations to Random Walk Kernels

• We rewrite the Sylvester equation as

vec(X) = vec(SXT ) + vec(X0)

• We exploit the well-known fact

vec(SXT ) = (T⊤ ⊗ S) vec(X)

to rewrite the above question as

(I−T⊤ ⊗ S) vec(X) = vec(X0).

• Now we have to solve

vec(X) = (I−T⊤ ⊗ S)−1 vec(X0).

• We multiply both sides by vec(X0)
⊤

vec(X0)
⊤ vec(X) = vec(X0)

⊤(I−T⊤ ⊗ S)−1 vec(X0).
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From Sylvester Equations to Random Walk Kernels

• In

vec(X0)
⊤ vec(X) = vec(X0)

⊤(I−T⊤ ⊗ S)−1 vec(X0)

we substitute

X0 = e e⊤

T = λA(G)⊤

S = A(G′)

and obtain

e⊤ vec(X) = e⊤(I−λA(G)⊗ A(G′))−1 e

= e⊤(I−λA×)−1 e .
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Further Speed-ups for Sparse Graphs

• Vec-Trick

— Let S and T be sparse.

— We can efficiently compute (T⊤⊗S) vecX for each X as vec(SXT ).

— How to exploit this fact?

• Fix-Point Iteration (FP)

— Determine a fix point (Kashima et. al, 2003):

vecXk+1 = e+(T⊤ ⊗ S) vecXk

• Conjugate Gradient (GC)

— Use conjugate gradient solver to compute X in
(I−T⊤ ⊗ S) vecX = e.

— Requires computation of (T⊤⊗S) vecXk for the residuum R in each
step.



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part II: Graph Kernels  |22

Impact on Runtime for Kernel Computation
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Tottering (Mahe et al., ICML 2004)

PhenomenonPhenomenonPhenomenonPhenomenon of of of of totteringtotteringtotteringtottering

� Walks allow for repetitions of nodes

� A walk can visit the same cycle of nodes all over again

� Kernel measures similarity in terms of common walks

� Hence a small structural similarity can cause a huge kernel value

A

B

A

B

G G‘

Tottering
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Preventing Tottering

• Explicitly forbid tottering between 2 nodes, that is any walk (v1, . . . , vl)
such that vi = vi+2 for any i ∈ {1, . . . , l − 2}.

• Special transformation of each of the input graphs G = (V,E) allows for
this modification:

— Create a new graph GT with VT = V ∪ E and ET = {(v, (v, t))|v ∈
V, (v, t) ∈ E} ∪ {((u, v), (v, t))|(u, v), (v, t) ∈ E, u �= t}

— The node set of GT is the set of vertices and edges of G

— In GT , there are directed edges between each node from G and each
adjacent edge, and between edges from G that share exactly one node
(that is target node in one edge, and source node in the other)
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Preventing Tottering

• Walks in GT correspond to walks in G, but it is not possible to totter
between 2 nodes

Limitations

— Modification increases graph size from O(n) to O(n2) with adverse
effects on kernel computation runtime

— Experimental evidence does not show a uniform improvement of clas-
sification accuracy
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Label Enrichment: Morgan Index (1965)

� Size of product graph affects runtime of kernel computation
� The more node labels, the smaller the product graph
� Trick: Introduce new artificial node labels
� Topological descriptors of nodes are natural extra labels
� For instance, the Morgan Index that counts k-th order neighbours of a 

node:

Original graph

2 2

22

2 2

22

3 3

1st order 
Morgan Index

4 4

55

5 5

44

7 7

2nd order 
Morgan Index
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Replacing Walks by Paths

UnderlyingUnderlyingUnderlyingUnderlying ideaideaideaidea
� Paths do not suffer from tottering
� Define a graph kernel based on paths

SetbacksSetbacksSetbacksSetbacks
� All paths are NP-hard to compute
� Longest paths are NP-hard to compute
� But shortest paths are computable in O(n3)!

PitfallPitfallPitfallPitfall
� Number of shortest paths in a graph may be exponential in the

number of nodes (in pathological cases)

WorkaroundWorkaroundWorkaroundWorkaround
� Shortest paths need not be unique, but shortest path distances are
� Define graph kernel based on shortest path distances
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Shortest-Path Kernel on Graphs  (B. and Kriegel, ICDM 2005)

• Compute all-pairs-shortest-paths for G and G′ via Floyd-Warshall

• Define a kernel by comparing all pairs of shortest path lengths from G and
G′:

k(G,G′) =
∑

vi,vj∈G

∑

v′
k
,v′
l
∈G′

klength(d(vi, vj), d(v
′
k, v

′
l))

• d(vi, vj) is the length of the shortest path between node vi and vj

• klength is a kernel that compares the lengths of two shortest paths, for
instance,

— a linear kernel k(d(vi, vj), d(v
′
k, v

′
l)) = d(vi, vj) ∗ d(v

′
k, v

′
l), or

— a delta kernel k(d(vi, vj), d(v
′
k, v

′
l)) =

{
1 if d(vi, vj) = d(v′k, v

′
l)

0 otherwise



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part II: Graph Kernels  |30

Link to Wiener Index (Wiener, 1947)

Definition 1 (Wiener Index) Let G = (V,E) be a graph. Then the Wiener
Index W (G) of G is defined as

W (G) =
∑

vi∈G

∑

vj∈G

d(vi, vj), (1)

where d(vi, vj) is defined as the length of the shortest path between nodes vi and
vj from G.
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Link to Wiener Index

• Compute the product of the Wiener Indices W (G) and W (G′) as

W (G) ∗W (G′) = (
∑

vi∈G

∑

vj∈G

d(vi, vj))(
∑

v′
k
∈G′

∑

v′
l
∈G′

d(v′k, v
′
l))

=
∑

vi∈G

∑

vj∈G

∑

vk∈G′

∑

vl∈G′

d(vi, vj)d(v
′
k, v

′
l)

=
∑

vi,vj∈G

∑

v′
k
,v′
l
∈G′

klinear(d(vi, vj), d(v
′
k, v

′
l))

= kshortest path(G,G′)
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Properties of Shortest-Path Kernel

AdvantagesAdvantagesAdvantagesAdvantages

� No tottering, better accuracy on classification benchmarks

� Runtime is in O(n4) and includes
–Computing all-pairs-shortest-paths for G and for G‘: O(n3)

–Comparing all pairs of shortest paths from G and G‘: O(n4)

� Empirically faster than (fast) random walk kernels (probably due to 
graph size)

DisadvantagesDisadvantagesDisadvantagesDisadvantages

� O(n4) too slow for large graphs

� Dense matrix representation for connected graphs, may lead to 
memory problems on large graphs
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Optimal Assignment Kernel (Froehlich et al., ICML 2005)

• G and G′ are graphs

• {x1, . . . , x|G|} are substructures of G, e.g. nodes

• {y1, . . . , y|G′|} are substructures of G′, e.g. nodes

• k1 is a non-negative kernel comparing substructures

• π is a permutation of the natural numbers {1, . . . ,min(|G|, |G′|)}

• Then

kA(G,G′) :=

{
maxπ

∑|G|
i=1 k1(xi, yπ(i)), if |G′| ≥ |G|

maxπ
∑|G′|

j=1 k1(xπ(j), yj), otherwise

is the optimal assignment kernel (Froehlich et al, ICML 2005)

• Not positive definite in general (Vert, 2008)
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Weighted Decomposition Kernel (Menchetti et al., ICML 2005)

• G = (V,E) and G′ = (V ′, E′) are graphs

• Idea is to define two different types of substructures

• s is a subgraph of G called a selector, with associated kernel δ

• z = (z1, ..., zD) is a tuple of subgraphs of G called the contexts of oc-
currence of s in x, with associated kernel κ

• Then

k(G,G′) :=
∑

(s,z)∈R−1(G),(s′,z′)∈R−1(G′)

δ(s, s′)

D∑

d=1

κ(zd, z
′
d) (1)

is the weighted decomposition kernel (Menchetti et al., ICML 2005)

• Example: s can be a node and z the neighbourhood of s in G
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Edit-Distance Kernel (Neuhaus and Bunke, 2006)

PrinciplePrinciplePrinciplePrinciple

� Tries to combine the power of graph kernels and edit distances

� Random walk kernel that uses a modified product graph:

� It only contains pairs of nodes that were matched by a graph edit-

distance beforehand

Advantage Advantage Advantage Advantage 

� Edit-distance kernels outperform random walks and edit distances in 

their experimental evaluation

DisadvantageDisadvantageDisadvantageDisadvantage

� These edit-distance kernels are not positive definite in general
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Subtree Kernel (Ramon and Gaertner, 2004)

PrinciplePrinciplePrinciplePrinciple
� Compare subtree-like patterns in two graphs
� Subtree-like pattern is a subtree that allows for repetitions of nodes

and edges (similar to walk versus path)
� For all pairs of nodes v from G and u from G‘:

–Compare u and v via a kernel function

–Recursively compare all sets of neighbours of u and v via a kernel
function

AdvantagesAdvantagesAdvantagesAdvantages
� Richer representation of graph structure than walk-based approach

DisadvantagesDisadvantagesDisadvantagesDisadvantages
� Runtime grows exponentially with the recursion depth of the subtree-

like patterns
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Cyclic Pattern Kernel (Horvath et al., KDD 2004)

PrinciplePrinciplePrinciplePrinciple
� Compare simple cycles in two graphs (paths where start node equals

end node)
� Number of simple cycles is exponential in the number n of vertices in 

worst case
� Define canonical string representation of each simple cycle, referred to 

as a cyclic pattern

AdvantagesAdvantagesAdvantagesAdvantages
� Interesting alternative to walk-based kernels

DisadvantagesDisadvantagesDisadvantagesDisadvantages
� Cyclic pattern kernel on general graphs is NP-hard to compute
� Restrict their attention to scenarios where the number of simple cycles

in a graph dataset is bounded by a constant
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Graphlet Kernel (B., Petri, et al., MLG 2007)

PrinciplePrinciplePrinciplePrinciple
� Count subgraphs of limited size k in G and G‘
� These subgraphs are referred to as graphletsgraphletsgraphletsgraphlets (Przulj, Bioinformatics

2007)
� Define graph kernel that counts isomorphic graphlets in two graphs

RuntimeRuntimeRuntimeRuntime problemsproblemsproblemsproblems
� Pairwise test of isomorphism is expensive
� Number of graphlets scales as O(nk)

TwoTwoTwoTwo solutionssolutionssolutionssolutions on on on on unlabeledunlabeledunlabeledunlabeled graphsgraphsgraphsgraphs
� Precompute isomorphisms
� Sample graphlets

DisadvantageDisadvantageDisadvantageDisadvantage
� Same solutions not feasible on labeled graphs
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Graphlet Kernel
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Recent Trends

CombineCombineCombineCombine graphgraphgraphgraph kernels kernels kernels kernels withwithwithwith graphicalgraphicalgraphicalgraphical modelsmodelsmodelsmodels (Bach, ICML 2008)(Bach, ICML 2008)(Bach, ICML 2008)(Bach, ICML 2008)
� Presents a new kernel for 2D or 3D point clouds
� Compares local subsets of the point clouds
� Considers subsets based on subtrees and walks
� Uses a specific factorized form for the local kernels between subtrees.

CombineCombineCombineCombine graphgraphgraphgraph kernels kernels kernels kernels withwithwithwith groupgroupgroupgroup theorytheorytheorytheory (Kondor and B., ICML 2008)(Kondor and B., ICML 2008)(Kondor and B., ICML 2008)(Kondor and B., ICML 2008)

� Represent graph as a function over the symmetric group

� Derive invariants for that function called the skew spectrum
� Use subset of these invariants that is computable in O(n3) as feature

representation of the graph
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Applications: Chemoinformatics (Ralaivola et al., 2005)

Graph kernels Graph kernels Graph kernels Graph kernels inspiredinspiredinspiredinspired bybybyby conceptsconceptsconceptsconcepts fromfromfromfrom chemoinformaticschemoinformaticschemoinformaticschemoinformatics

� Define three new kernels (Tanimoto, MinMax, Hybrid) for function

prediction of chemical compounds

� Based on the idea of molecular fingerprints and  

� Counting labeled paths of depth up to d using depth-first search from

each possible vertex

PropertiesPropertiesPropertiesProperties

� Tailored for applications in chemical informatics, 

� Exploit the small size and

� Low average degree of these molecular graphs.
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Chemical Compound Classification (Wale et al, ICDM 2006)

New kernels and experimental New kernels and experimental New kernels and experimental New kernels and experimental comparisoncomparisoncomparisoncomparison of of of of existingexistingexistingexisting techniquestechniquestechniquestechniques
� Define a kernel that considers graph fragments: Subgraphs with a 

maximum of l edges
� Fragment-based kernels outperform kernels using frequent

subgraphs and walk-based kernels

FourFourFourFour choiceschoiceschoiceschoices in in in in kernelkernelkernelkernel designdesigndesigndesign forforforfor chemicalchemicalchemicalchemical compoundscompoundscompoundscompounds
� Generation of patterns (learnt from dataset versus defined by

expert)
� ‘Preciseness‘ of the patterns (whether subgraph features map to 

the same dimension in feature space)
� Complete coverage (whether the patterns occur in all of the

instances of the dataset)
� Complexity of patterns (walks and cycles versus frequent

subgraphs)
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Applications: Protein Function Prediction (B. et al, ISMB 2005)

� Predict the function of a protein from its structure

� Model protein structure as graph

� Use graph kernels to measure structural similarity and SVM to 

predict functional class

� Reaches competitive results on benchmark datasets



Graph Mining and Graph Kernels

Karsten Borgwardt and Xifeng Yan |  Part II: Graph Kernels  |44

Future Challenges for Graph Kernel Research

DataDataDataData levellevellevellevel
� Larger and more graph data
� More dynamic graph data

AlgorithmicAlgorithmicAlgorithmicAlgorithmic levellevellevellevel
� Feature selection on graphs
� Scalability and efficiency
� Automatic choice of complexity of representation

InterdisciplinaryInterdisciplinaryInterdisciplinaryInterdisciplinary levellevellevellevel
� Link to graph mining, both current research and literature
� Applications in bioinformatics and the Internet  
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THANK YOU!

kmb51 @ cam.ac.uk
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