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ABSTRACT

CX, a network-based computational exchange, is presented.
The system’s design integrates variations of ideas from other
researchers, such as work stealing, non-blocking tasks, ea-
ger scheduling, and space-based coordination. The object-
oriented API is simple, compact, and cleanly separates ap-
plication logic from the logic that supports interprocess com-
munication and fault tolerance. Computations, of course,
run to completion in the presence of computational hosts
that join and leave the ongoing computation. Such hosts,
or producers, use task caching and prefetching to overlap
computation with interprocessor communication. To break
a potential task server bottleneck, a network of task servers
is presented. Even though task servers are envisioned as re-
liable, the self-organizing, scalable network of n servers, de-
scribed as a sibling-connected fat tree, tolerates a sequence
of n — 1 server failures. Tasks are distributed throughout
the server network via a simple “diffusion” process.

CX is intended as a test bed for research on automated
silent auctions, reputation services, authentication services,
and bonding services. CX also provides a test bed for algo-
rithm research into network-based parallel computation.

Categories and Subject Descriptors

C.2.4 |Distributed Systems]: Distributed applications,
Network operating systems; C.4 [Performance of Sys-
tems|: design studies, fault tolerance

General Terms

Design, Experimentation, Performance

Keywords

network computing, Java, parallel processing, robust, scal-
able
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The ocean contains many tons of gold. But, the gold
atoms are too diffuse to extract usefully. Idle cycles on the
Internet, like gold atoms in the ocean, seem too diffuse to ex-
tract usefully. If we could harness effectively the vast quan-
tities of idle cycles, we could greatly accelerate our acqui-
sition of scientific knowledge, successfully undertake grand
challenge computations, and reap the rewards in physics,
chemistry, bioinformatics, and medicine, among other fields
of knowledge.

Several trends, when combined, point to an opportunity:

e The number of networked computing devices is in-
creasing: Computation is getting faster and cheaper:
The number of unused cycles per second is growing
rapidly

e Bandwidth is increasing and getting cheaper
e Communication latency is not decreasing
e Humans are getting neither faster nor cheaper.

These trends and other technological advances lead to op-
portunities whose surface we have barely scratched. It now
is technically feasible to undertake “Internet computations”
that are technically infeasible for a network of supercomput-
ers in the same time frame. The maximum feasible problem
size for “Internet computations” is growing more rapidly
than that for supercomputer networks. The SETI@Qhome
project discloses an emerging global computational organ-
ism, bringing “life” to Sun Microsystem’s phrase “The net-
work is the computer”. The underlying concept holds the
promise of a huge computational capacity, in which users
pay only for the computational capacity actually used, in-
creasing the utilization of existing computers.

1.1 Project Goals

In the CX project, we are designing an open, extensible
Computation eXchange that can be instantiated privately,
within a single organization (e.g., a university, distributed
set of researchers, or corporation), or publicly as part of a
market in computation, including charitable computations
(e.g., AIDS or cancer research, SETI). Application-specific
computation services constitute one kind of extension, in
which computational consumers directly contact specialized
computational producers, which provide computational sup-
port for particular applications.

The system must enable application programmers to de-
sign, implement, and deploy large computations, using com-
puters on the Internet. It must reduce human administrative
costs, such as costs associated with:



e downloading and executing a program on heteroge-
neous sets of machines and operating systems

e distributing software component upgrades.
It should reduce application design costs by:

e giving the application programmer a simple but gen-
eral programming abstraction

e freeing the application programmer from the non-application

concerns of interprocessor communication and fault
tolerance.

System performance must scale both up and down, de-
spite communication latency, to a set of computation pro-
ducers whose size varies widely even within the execution
of a single computation. It must serve several consumers
concurrently, associating different consumers with different
priorities. It should support computations of widely varying
lifetimes, from a few minutes to several months. Producers
must be secure from the code they execute. Discriminating
among consumers is supported, both for security and pri-
vacy, and for prioritizing the allocation of resources, such as
compute producers.

After initial installation of system software, no human in-
tervention is required to upgrade those components. The

computational model must enable general task [de]composition.

Communication and fault tolerance must be transparent to
the user. Producers’ interests must be aligned with their
consumer’s interests: computations are completed accord-
ing to how highly they are valued.

1.2 Some Fundamental |ssues

It is a challenge to achieve the goals of this system with
respect to performance, correctness, ease of use, incentive
to participate, security, and privacy. Although this paper
does not focus on security and privacy, the Java security
model [12] and, in particular, the Java 2 RMI API for net-
work security [19] (covering authentication, confidentiality,
and integrity) clearly are intended to support such concerns.
Our choice of the Java programming system reflects these
benefits implicitly.

In this paper, we present the Production Network service
subsystem of CX, focusing on its design with respect to ap-
plication programming complexity, administrative complex-
ity, and performance. Application programming complexity
is managed by presenting the programmer with a simple,
compact, general API, briefly presented in the next section.
Administrative complexity is managed by using the Java
programming system: Its virtual machine provides a homo-
geneous platform on top of otherwise heterogeneous sets of
machines and operating systems. We use a small set of in-
terrelated Jini clients and services to further simplify the
administration of system components, such as the distri-
bution of software component upgrades. The Production
Network is a Jini service that interfaces with every other
CX Jini client and service. We however focus in this paper
on the Task Server (a Jini service) and the Producer and
Consumer, which are Jini clients.

Performance issues can be decomposed into several sub-
issues.

Heterogeneity of machines and OS: The goal is to over-
come the administrative complexity associated with

multiple hardware platforms and operating systems,
incurring an acceptable loss of execution performance.
The tradeoff is between the efficiency of native machine
code vs. the universality of virtual machine code. For
the applications targeted (not, e.g., real-time appli-
cations) the benefits of Java JITs reduce the benefits
of native machine code: Java wins by reducing ap-
plication programming complexity and administrative
complexity, whose costs are not declining as fast as
execution times.

Communication latency: There is little reason to believe
that technological advances will significantly decrease
communication latency. Hiding latency, to the extent
that it is possible, thus is central to our design.

Scalability: The architecture must scale to a higher de-
gree than existing multiprocessor architectures, such
as workstation clusters.

Robustness: An architecture that scales to thousands of
computational producers must tolerate faults, partic-
ularly when participating machines, in addition to fail-
ing, can dynamically disassociate from an ongoing com-
putation.

1.2.1 Easeof use

The computation consumer distributes code/data to a
heterogeneous set of machines/OSs. This motivates using a
virtual machine, in particular, the JVM. Computational pro-
ducers must download/install/upgrade system software (not
just application code). Use of a screensaver/daemon obvi-
ates the need for human administration beyond the one-time
installation of producer software. The screensaver/daemon
is a wrapper for a Jini client, which downloads a “task
server” service proxy every time it starts, automatically dis-
tributing system software upgrades.

1.3 Paper Organization

In the next section, we discuss related work, particularly
noting those ideas of others that we have incorporated into
CX. In section 3, we introduce the API. In section 4, we
describe CX’s architecture. In section 5, we present results
from preliminary experiments. The Conclusion summarizes
our contributions and some directions for future work.

2. RELATED WORK

Legion [13] and Condor [8] were early successes in network
computing. They predate Java, hence are not Java-centric,
and indeed do not use a virtual machine to overcome the
portability /interoperability problem associated with hetero-
geneous machines and OSs. The use of a virtual machine
is a significant difference between Java-centric and previ-
ous systems. Charlotte [2] was the first research project, to
our knowledge, that was Java-centric. Charlotte used eager
scheduling, introduced by the Charlotte team, and imple-
mented a full distributed shared memory. Globus [10] is a
metacomputing or umbrella project. It consequently is not
Java-centric, and indeed must be language-neutral. CX is
intended to fit under Globus’s umbrella via a portal [20].
Javelin [16, 17, 6] is Java-centric, implements eager schedul-
ing, and has a host/broker/client architecture.



More recently, several systems have emerged for distributed
computations on the Internet. Wendelborn et al. [22] de-
scribe an ongoing project to develop a geographical informa-
tion system (PAGIS) for defining and implementing process-
ing networks on diverse computational and data resources.
Hawick et al. [14] describe an environment for service-based
meta-computing. Fink et al. [9] describe Amica, a meta-
computing system to support the development of coarse
grained location-transparent applications for distributed sys-
tems on the Internet, and includes a memory subsystem.

Huberman et al. [1] relate anonymity to incentives, in
their application of the “tragedy of the commons” to anony-
mous peer-to-peer networks.

Securing the Jini infrastructure is not a focus of this project;
commercial efforts are under way to do this.

Recent commercial ventures attest to the perception that
unused cycles can be made available in a computationally
meaningful way. Such ventures, while still in their infancy,
include EnFuzion (targeted at intranets), Applied Metacom-
puting (the commercialization of Legion), Distributed Sci-
ence (aka the ProcessTree), Entropia, Parabon Computa-
tion, Popular Power, and United Devices.

The setting for CX is the Internet (or an intranet). It
comprises a set of interrelated Jini services and clients im-
plemented in Java. From a performance point of view, its
goal is somewhat different from both the commercial ven-
tures and the early systems such as Legion and Condor.
These systems are intended primarily to increase system
throughput or utilization of idle cycles. CX is intended to
push the limits of parallel computing in a network setting,
despite long communication latencies. Its architecture in-
corporates ideas from a variety of sources. Briefly, it uses
thread programming model ideas from Cilk [3]; scheduling
ideas from Enterprise [15], Spawn [21], and Cilk; classic de-
coupled communication ideas from Linda [5] (and JavaS-
paces [11], its Java incarnation); eager scheduling ideas for
fault tolerance from Charlotte; and the host/broker/client
architectural ideas from Javelin. To match supply with de-
mand [4] in time and space, the system incorporates the
concept of auctions [7] via a market maker.

This article outlines the rationale for these choices, as they
pertain to the design CX’s ProductionNetwork subsystem.

3. API

The computational model reflects the dominating physical
constraint on networked computation among compute pro-
ducers whose availability may be short-lived: long commu-
nication latency relative to execution speed. Computation
is modeled with a DAG of nonblocking tasks, analogous to
Cilk threads. Such a DAG is illustrated in Fig. 1. Producer
cycles are too precious and volatile to waste in a blocked
state.

In the programming model, the “task server” is the single
abstraction through which applications communicate with
the system. To minimize communication, the application
programmer chooses where [de]composition occurs: the con-
sumer, the producer, even the task server, or some combina-
tion thereof. For communication efficiency, an application
can batch the communication of tasks and computed argu-
ments.

The programmer view is that of a single task server, de-
spite its implementation as a network of servers. The con-
sumer stores a computational task into “the” task server,
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Figure 1: Task DAG for computing the 4th Fi-
bonacci number.

and receives a callback (processResult( Object o ) ) when
the result becomes available. Producers repeatedly take
tasks from “the” task server and compute them. See Fig. 2.
Such computation results in either the creation of new sub-
tasks and/or arguments that are sent to successor tasks.

The application programming methods for communicat-
ing with “the” task server include:

storeTask ( Task t ): store a task on the task server

storeResult( Task t, int argNo, Object value ): store
an argument of a successor task on the task server
(pseudocode: t.inputs[argNo]l = value )

The method processResult ( Object result ) isinvoked
when a result is available. In the JavaSpace specification,
clients cannot compute within the space.This is to prevent
a client from grabbing the space’s computational capacity,
which would reduce its responsiveness to other clients. In
CX, a production network, a particular set of task servers
and their associated producers, executes one computation at
a time. Consequently, the application can execute tasks on a
task server (by setting the Task’s boolean executeOnServer
member to true). (This is in the spirit of the original tuple
space design of the Linda system.). Computed arguments
are stored on the server, using storeResult. Tasks are ready
for execution only after receiving all their arguments, if any.
For communication efficiency, the above methods have a
variant where a set of tasks/arguments is stored.

4. ARCHITECTURE

First, we note several performance constraints. The schedul-
ing mechanisms must be general, subject to the constraint
that scheduling operations are of low time complexity: O(1)
in the number of tasks and producers. The system must be
scalable, high-performance, and tolerate any single compo-
nent failure. Failure of compute producers must be trans-
parent to the progress of the computation. Recovering from
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Figure 2: Process communication abstraction. Illus-
trates the first few tasks of the Fib(5) computation.

a failed server must require no human intervention and com-
plete in a few seconds. After a server failure, restoring the
system’s ability to tolerate another server failure requires no
human intervention, and completes in less than one minute.

The basic entities relevant to the focus of this paper are:

Consumer (C): a process seeking computing resources.

Producer(P): a process offering or hosting computing re-
sources. It is wrapped in a screen saver or unix dae-
mon, depending on its operating system.

Task Server (S): a process that coordinates task distribu-
tion among a set of producers. Servers decouple com-
munication: consumers and producers do not need to
know each other or be active at the same time.

Producer Network (N): A robust network of task servers
and their associated producers, which negotiates as
a single entity with consumers. Networks solve the
dynamic discovery problem between active consumers
and available producers.

Task servers and production networks are Jini services.

Technological trends imply that network computation must
decompose into tasks of sufficient computational complex-
ity to hide communication latency: CX thus is not suitable
for computations with short-latency feedback loops. Also,
we must avoid human operations (e.g., a system requiring a
human to restart a crashed server). They are too slow, too
expensive, and unreliable.

Why use Java? Because computation time is becom-
ing less expensive and labor is becoming more expensive,
it makes sense to use a virtual machine (VM). Each com-
putational “cell” in the global computer speaks the same
language. One might argue that increased complexity as-
sociated with generating and distributing binaries for each
machine type and OS is an up-front, one-time cost, whereas
the increased runtime of a virtual machine is for the entire
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Figure 3: A Task server and its associated set of
Producers.

computation, every time it executes. JITs tend to negate
this argument. For some applications, machine- and OS-
dependent binaries make sense. The cost derivatives (hu-
man vs. computation) suggest that the percentage of such
applications is declining with time. Of the possible VMs,
it also makes sense to leverage the industrial strength Java
VM and its just-in-time (JIT) compiler technology, which
continues to improve. The increase in programmer produc-
tivity from Java technology justifies its use. Finally, many
programmers like to program in Java, a feature that should
be elevated to the set of fundamental considerations, given
the economics of software development.

There are a few relevant design principles that we ad-
here to. The first principle concerns scalability: Each sys-
tem component consumes resources (e.g., bandwidth and
memory) at a rate that must be independent of the num-
ber of system components, consumers, jobs, and tasks. Any
component that violates this principle will become a bottle-
neck when the number of components gets sufficiently large.
Secondly, tasks are pre-fetched in order to hide communi-
cation latency. This implies multi-threaded Producers and
TaskServers. Finally, we batch objects to be communicated,
when possible.

There also is a requirement that is needed to achieve high
performance. To focus producers on job completion, pro-
ducer networks must complete their consumer’s job before
becoming “free agents” again.

The design of the computational part of the system is
briefly elaborated in two steps: 1) the isolated cluster: a
task server with its associated producers, and 2) a producer
network (of clusters). The producer network is used to make
the design scale and be fault tolerant.

41 Theisolated cluster

An isolated cluster (See Fig. 3) supports the DAG-structured
task graph model of computation, and tolerates producer
failure, both node and link. A consumer starts a compu-
tation by putting the “root” task of its computation into



a task server. When a producer registers with a server, it
downloads the server’s proxy. The main proxy method re-
peatedly gets a task, computes it, and, when successfully
completed, removes the task from the server. Since the task
is not removed from the server until completion notification
is given, transactions are unnecessary: A task is reassigned
until some producer successfully completes it. When a pro-
ducer computes a task, it either creates subtasks (or a final
result) and puts them into the server, and/or computes argu-
ments needed by successor subtasks. Putting intermediate
results into the server forms a checkpoint that occurs as a
natural byproduct of the computation’s decomposition into
subtasks. Application logic thus is cleanly separated from
fault tolerance logic. Once the consumer deposits the root
task into the server, it can deactivate until it retrieves the
final result. Fault tolerance of a task server derives from
their replication provided in the network, discussed below.

We now discuss task caching. It increases performance
by hiding communication latency between producers and
their server. Each producer’s server proxy has a task cache.
Besides caching tasks, proxies copy forward arguments and
tasks to the server, which maintains a ready task heap: The
ordering of ready tasks within the heap is based on 2 com-
ponents: The dominant component is how many times a
task has been assigned. If task A has been assigned fewer
times than Task B, then Task A is higher in the heap than
Task B. Within that, tasks are ordered by DAG level (see
[3]). This minor ordering mechanism is exposed to the ap-
plication programmer: DAG level is the default implemen-
tation of the Task’s boolean isHigherPriority method. For
example, it makes sense to give a Fibonacci task that com-
putes a bigger Fibonacci number a higher priority than a Fi-
bonacci task that computes a smaller number (because the
task that computes the smaller number ultimately spawns
fewer tasks). In this case, the application programmer can
implement the Fibonacci decomposition task’s isHigherPri-
ority method accordingly.

When the number of tasks in a proxy’s task cache falls
below a watermark (see [11]), it pre-fetches a copy of a task[s]
from the server. For each task, the server maintains the
names of the producers whose proxies have a copy of the
task. A pre-fetch request returns the task with the lowest
level (i.e., is earliest in the task DAG) among those that have
been assigned the fewest times. After the task is complete,
the proxy notifies the server which removes the task from
its task heap and from all proxy caches containing it.

The task server also maintains an unready task collection
(of tasks that have not yet received all their input argu-
ments). When a task in this collection receives all its argu-
ments, and hence becomes ready, it is inserted into the ready
task heap, and becomes available for pre-fetching. The pro-
ducer’s task cache is organized similarly, with a ready task
heap and unready task collection.

Although the task graph can be a DAG, the spawn graph
is a tree. In Fig. 1, the sub-graph of solid edges is the
spawn tree. Hence, there is a unique path from the root
task to any subtask. This path is the basis of a unique task
identifier. Using this identifier, the server discards duplicate
tasks. Duplicate computed arguments also are discarded.

The server, in concert with its proxies, balances the task
load among its producers: A task may be concurrently as-
signed to many producers (particularly at the end of a com-
putation, when there are fewer tasks than producers). This

reduces completion time, in the presence of aggressive task
pre-fetching: Producers should not be idle while other pos-
sibly slower producers, have tasks in their cache. Via pre-
fetching, when producers deplete their task cache, they “steal”
tasks spawned by other producers. Each producer thus is
kept supplied with tasks, regardless of differences in pro-
ducer computation rates. Our design goal: producers ex-
perience no communication delay when they request tasks;
there always is a cached copy of a task waiting for them
(Exception: the producer just completed the last task).

4.2 Theproduction network of clusters

The server can service only a bounded number of produc-
ers before becoming a bottleneck. Server networks break this
bottleneck. Each server (and proxy) retains the functional-
ity of the isolated cluster. Additionally, servers balance the
task load (“concentration”) among themselves via a diffu-
sion process: Each server “pings” its immediate neighbors,
conveying its task state. The neighbor server returns tasks
or a task request, based on its own task state relative to the
state of the pinging server. Tasks that are not ready for
execution do not move via this diffusion process. Similarly,
a task that has been downloaded from some server by one
of its producers, no longer moves to other servers. However,
other producers associated with that server can download
it. This policy facilitates task removal, upon completion.
Task diffusion among servers is a “background” pre-fetch
process: It is transparent to their proxies. One design goal:
proxies endure no communication delays from their server
beyond the basic request/receive latency: Each server has
tasks for its proxies, provided there are more tasks in the
server network than servers.

We now impose a special topology, that tolerates a se-
quence of server failures. Servers should have the same
mean time between failure as mission-critical commercial
web servers. However, even these are not available 100%
of the time. We want computation to progress without re-
computation in the presence of a sequence of single server
failures. To tolerate a server failure, its state (tasks and
shared variables) must be recoverable. This information
could be recovered from a transaction log (i.e., logging trans-
actions against the object store, for example, using a per-
sistent implementation of JavaSpaces). It also could be re-
covered if it is replicated on other servers. The first case
suffers from a long recovery time, often requiring the hu-
man intervention. Since humans are getting neither faster
nor cheaper, we omit human-mediated computer/network
administration. The second option can be fully automatic
and faster at the cost of increased design complexity.

We enhance the design via replication of task state, by
organizing the server network as a sibling-connected fat tree
(see Fig. 4) We can define such a tree operationally:

e start with a height-balanced tree;
e add another “root”;
e add edges between siblings;

e add edges so that each node is adjacent to its parent’s
siblings.

Each server has a mirror group: its siblings in the fat tree.
(Since the tree does not need to be complete, it may be that
there exists a parent that has only one child. That child



Figure 4: A sibling-connected fat tree.

uses its parent as its mirror. This is a boundary condition.)
Every state change to a server is mirrored: A server’s task
state is updated if and only if its sibling’s task states are
identically updated. When the task state update transaction
fails:

e The server (or server proxy) that detects the failure
notifies the primary root server (the secondary root, if
the primary root is the failed server).

e Each proxy of the failed server, upon receiving Remo-
teExceptions, contacts a randomly selected member of
the mirror group of the failed server.

e The root directs the most recently added leaf server to
migrate (with its associated Producers) to the failed
server’s position in the network. Its former and new
mirror groups are updated to reflect this change.

Automatically reconfiguring the network after a server fail-
ure requires O(B) time, where B is the maximum degree
of any server, and which is O(1) in the size of the network.
When a server joins a network, it becomes the new right-
most leaf in the network. Insertion thus requires O(B) time,
independent of the network size.

This design scales in the sense that each server is con-
nected to bounded number of servers, independent of the
total number of servers: Port consumption is bounded. The
diameter of the network of n servers (the maximum distance
between any task and any producer) is O(logn). Most im-
portantly, the network repairs itself: the above properties
hold after the failure of a server. Hence, the network can
recover from a sequence of such failures.

The consumer submits the “root” task of a computation to
the primary root task server. The computation begins when
a producer associated with this task server executes this root
task, which undoubtedly spawns other tasks. Diffusion takes
over from there.

4.3 Codedistribution viathe ClassL oader

Omitted from the discussion thus far is our strategy for
distributing code. If we make no special provision, task
class files are downloaded from the Consumer’s codebase.
This clearly is a bottleneck, given the degree of parallelism
we seek from CX. To scale, the code distribution scheme
must have only a bounded number of producers downloading
code from any one location, independent of the total num-
ber of producers. This implies that the number of download
points must increase linearly with the number of produc-
ers. There is a natural way to provide for this: Each task
server becomes a download location for task class files. The
CX class loader downloads task class files to the primary
root task server via the consumer’s class loader. From there
the classes are loaded down through the task server tree.
Each producer loads the class files from its task server. This
scheme achieves our primary objective: code distribution
scales to an arbitrarily large number of producers without a
bottleneck emerging.

5. PRELIMINARY EXPERIMENTS

All experiments were run on our Departmental Linux clus-
ter. Each machine has 2 Intel EtherExpress Pro 100 Mb/s
Ethernet cards, and is running Red Hat Linux 6.0 and JDK
1.2.2_RC3. These machines are all connected to a 100 port
Lucent P550 Cajun Gigabit Switch.

We tested a CX TaskServer cluster on a recursive compu-
tation of the nth Fibonacci number, F(n), augmented with
a synthetic workload. Let T'(n) denote the number of tasks
spawned by computing F'(n). Clearly,

Tn)=Tn—-1)+T(n—2)+2,

with initial conditions 7'(0) = T'(1) = 1. By inspecting the
dags associated with Fibonacci computation, we see that
T(n) = 3F(n) — 2. Thus,

1 1 + \/5 n+1 1— \/5 n+1
Tn)=3|— — - 2.
NG 2 2
This is the total number of tasks for computing F'(n) re-
cursively. The critical path length for F'(n) is 2n — 1.
Tp denotes the time for the application to run with P
Producers. T denotes the time to complete the computa-

tion’s critical path of tasks. Thus, as has been reported in
the Cilk project:

Tp > max{Tos,T1/P}

To ensure that Tp is dominated by the total work and not
the critical path, we thus must have Th /P > T

NG n+1 /3 n+1
(35 (5™ - ()™ -
< 2n —1
For P = 60, this inequality holds for n > 14. Our ex-

periments compute F(n), for n = [13,18]. values of n, total
workload would more clearly dominate the time to complete
F(n)’s critical path.

Traditionally, speedup is measured on a dedicated multi-
processor, where all processors are homogeneous in hardware
and software configuration, and varying workloads between
processors do not exist. Thus, speedup is well defined as
T\ /T)p, where T is the time a program takes on one proces-
sor and 7}, is the time the same program takes on p proces-
SOrs.




We now give a definition of speedup for a heterogeneous set
of machines[18]: Let M;,..., M} denote k different proces-
sor types. Let T (¢) denote the time to complete the problem
using 1 processor of type M;. Conventional speedup, using
p processors of type M; can be defined as T4 (3)/Tp(i). To
compute speedup when we have more than one type of pro-
cessor, we generalize this formula. Let a problem be solved
concurrently using k types of processors, where there are
p; processors of type M;: The total number of processors
isp=mp1+---+p&. Let Tp(p1,...,pr) denote the execu-
tion time when using this mix of p processors. We define a
composite base case that reflects this mix of processors:

_ piTi(1) + - -+ puTh (k)

Ti(p1,. .-,
1(p1, -, k) ST
Finally, we define the speedup S as
S="Ti(pr,---,p)/Tp(p1;-- - Pk)-

While this definition does not incorporate machine and net-
work load factors, it does reflect the heterogeneous nature
of the set of machines.

Now, the virtue of having a formula for 7'(n) comes into
play. Clearly, the experiments that take the longest are
those that involve only 1 processor, computing 77 (z) for var-
ious machines types, M;. Let T7'(¢) denote computing F'(n)
(with an augmented load) on 1 processor of type M;. We
model the computation time of F'(n) on a machine of type
M; as a portion of time that is independent of n to start
and stop the program, denoted s, plus an amount of time
that depends on n: §;T(n). That is,

T (i) = a; + 3T (n).

We take actual measurements of T7'(7), for 2 values of n
chosen such that they result in a system of two independent
linear equations. We then solve for a and (. For example,
say Tt (i) = 27 seconds and TY (i) = 66 seconds. Then,

27 = a; + 226 1)
66 = o + 615;. (2)

Solving, we obtain that a; = 5 seconds and 3; = 1 second on
machine type M;. We now estimate 77" (i) = 5+ 17'(n), for
any natural number n. Thus, 2 small experiments minimally
suffice for producing a good estimate of a very large sequen-
tial execution time. We used this technique to compute
the base cases used in the following speedup calculations.
This technique obviates the need for extremely large sequen-
tial executions that otherwise would be needed to calculate
speedups. Large multiprocessor runs require large problem
instances. Computing times for the base cases for such runs
(e.g., 1000 processor experiments) can, in principle, require
many days, even a month of processor time. Thus, using this
technique, we avoid the most computationally extended ex-
periments, which are consequently quite precarious (e.g., a
momentary power loss requires restarting from the begin-
ning).

Table 1 presents the number of processors of each type
that were used in our experiments. Table 2 gives the actual
times for 2 synthetic workloads on the processor types used
in the experiments. We have 3 task types: Decomposition
(D), boundary (B), and composition (C).

We regard Ti/p to be the optimal speedup; T, the actual
speedup. Thus, the ratio of (71 /p)/Tp is less than or equal
to 1. Figure 5 shows the speedup we measured, calculated

Producers Dual 512 34
Dual 1024 | 22
Quad 4
TaskServers | Quad 2

Table 1: The number and processors types for Pro-
ducers and TaskServers.

Dual 512 D B | C
Workload 1 | 41 | 1720 | 41
Workload 2 | 41 | 3650 | 41
Quad D B | C
Workload 1 | 32 | 1377 | 32
Workload 2 | 32 | 2925 | 32

Table 2: Task times, for the 2 processor types. Each
had 2 workloads. The 3 task types are decomposi-
tion (D), boundary (B), and composition (C). Times
are in milliseconds.

according to the above formula. The figure shows execu-
tion times for Fibonacci computations varying from F(13)
to F(18). For F(13), the ratio of optimal speedup over ac-
tual speedup is 0.87. For F(18), the ratio of optimal speedup
over actual speedup is 0.99. CX achieves essentially 0.99%
of optimal speedup using 60 processors on a complex DAG-
structured computation with small tasks (average task time
is 1.8 seconds for Workload 1 and 3.7 seconds for Workload
2). This is encouraging: The tasks do not need to be too
coarse for respectable speedups.

Figure 6 shows what percentage of idle time was spent
during the transient parts of the computation: The initial
transient is when the computation begins, and most pro-
cessors are starving for tasks; the termination transient is
when the computation is winding down, and most proces-
sors again are starving for tasks. These inevitable transients
account for 25% of idle cycles, when the system is achieving
0.99 of optimal speedup. In particular, the idleness due to
in initial transient in that case is 0.1% of idle cycles. This
suggests that tasks are distributed to the 60 processors with
extreme rapidity.

We also performed experiments (on 16 processors) to mea-
sure the effect of pre-fetching. For small computations (few
tasks and/or short tasks) and fast communication, perfor-
mance gain via pre-fetching is minimal. As the number of
tasks increase and/or the task time increases and/or the
communication times increase, pre-fetching helps more and
more. Since our cluster has fast communication, we did not
obtain data for the case of communications with relatively
long latencies. Specifically, for F(11), speedup with pre-
fetching was 0.51 of optimal; whereas without pre-fetching,
speedup was 0.54. However, for F'(15), speedup with pre-
fetching was 0.93 of optimal; whereas without pre-fetching,
speedup was 0.80. We believe that as the number of tasks
increases and/or the task sizes increase and/or communica-
tion latencies increase, the benefits of pre-fetching increase
commensurately.

6. CONCLUSION

CX is a network-based computational exchange. It can
be used in a variety of environments, from a small labora-
tory within a single department of a university, to a corpo-
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Figure 5: Speedups for computing F(n),n =
13,14,15,16,17,18 under 2 workloads.

rate producer network, to millions of independent producers
spontaneously organized into a giant producer network.

We have chosen Java for CX because Java increases appli-
cation programmer productivity (e.g., is object-oriented, yet
serializes objects for communication), reduces application
portability and interoperability problems, enables mobile
code, will support a high level security API (RMI), and does
all this with an acceptable and decreasing penalty vis a vis
native machine execution. Jini further reduces CX’s admin-
istrative complexity to distribute system software compo-
nent upgrades, and recover from system components whose
availability is intermittent.

We believe that our contributions to networked-based,
object-oriented parallel computing include:

e The novel combination of variations on ideas by other
researchers, including work stealing of non-blocking
tasks, eager task scheduling, and space-based coordi-
nation.

e A simple, compact API that enables the expression of
object-oriented, task-level parallelism. It cleanly sep-
arates application logic from the logic that supports
interprocess communication and fault tolerance.

e The sibling-connected, fat tree of servers, a recursive,
short-diameter, scalable network of task servers that
self-repairs in the face of a sequence of faults: The net-
work gracefully degrades from n servers to one server,
provided that the failures occur sequentially.

e A simple diffusion process for distributing tasks among
the network of task servers. Since in the diameter of
the network is O(logn), the number of edges between
any task and any producer is no more than 2logn:
Using only local information, task “concentrations”
rapidly diffuse into the network.

e The use of task caching/replication and two levels of
pre-fetching (including inter-server task diffusion) to
hide the large communication latency that is intrinsic
to networks.
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Figure 6: Percentage of idle cycles that are

due to start and stop transients, for F(n),n =
13,14,15,16,17,18 under 2 workloads.

e A load generator, using the F(n) computation, that
strenuously exercises the DAG model of computation:
It spawns many tasks that require synchronization of
predecessor tasks. This load generator is versatile be-
cause it augments the F'(n) computation with a pa-
rameterized synthetic load. The technique for accu-
rately estimating long sequential execution times, based
on 2 short executions, obviates the need for the most
time-consuming experiments, saving days of experi-
mental work.

e Providing a test bed for a variety of research topics,
such as automated trading, reputation services, au-
thentication services, and bonding services. CX also
provides a test bed for algorithm research into network-
based parallel computation.

The API can serve as a target for a higher level notation
for the object-oriented expression of parallel algorithms. As
future work, we are working on an extension to Java, an
object-oriented analog to Cilk’s extensions to C. The exten-
sions (which, when elided, leave a valid single JVM Java pro-
gram) could be preprocessed into another Java program—
one that exploits the algorithm’s task-level parallelism when
run on CX’s network computing system. We would like to
more deeply analyze and experiment with diffusion, mod-
elling task servers and producers as adaptive controllers.

We also would like to experiment with various trading
strategies, and program applications for CX that have value
to the scientific community.
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