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ABSTRACT
Tree-based ensembles are widely used for document ranking but

supporting such a method efficiently under a privacy-preserving

constraint on the cloud is an open research problem. The main

challenge is that letting the cloud server perform ranking computa-

tion may unsafely reveal privacy-sensitive information. To address

privacy with tree-based server-side ranking, this paper proposes

to reduce the learning-to-rank model dependence on composite

features as a trade-off, and develops comparison-preserving map-

ping to hide feature values and tree thresholds. To justify the above

approach, the presented analysis shows that a decision tree with

simplifiable composite features can be transformed into another

tree using raw features without increasing the training accuracy

loss. This paper analyzes the privacy properties of the proposed

scheme, and compares the relevance of gradient boosting regression

trees, LambdaMART, and random forests using raw features for

several test data sets under the privacy consideration, and assesses

the competitiveness of a hybrid model based on these algorithms.
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1 INTRODUCTION
As sensitive information is increasingly stored on the cloud, privacy

concerns have been a critical factor for users to adopt cloud-based

information services [53]. In offering a service, a server can ob-

serve the client-initiated query processing flow, and reason about

client’s data even it is encrypted. Unencrypted feature values and

statistic information about index can lead to privacy attacks [10].

To address the emerging need of privacy on the cloud, searchable

encryption [11–14, 18, 28, 32–34, 50] has been proposed to identify

documents that match a user query from the encrypted index, but

has not considered ranking. Recent research has proposed privacy-

aware ranking with linear additive scoring in [2, 9, 51, 56], but

the work of [9, 51, 56] can only be applicable for small datasets

while the solution in [2] is targeted for modest-sized datasets since

its ranking partially relies on client computation and client-server

communication can become a bottleneck for a very large dataset. It
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is an open problem to develop a server-side privacy-aware rank-

ing solution for a large dataset, especially using nonlinear tree

ensembles.

Ensemble trees derivedwithmachine learning techniques such as

Gradient Boosted Regression Trees (GBRT)[22, 40], LambdaMART

[8] are popular for feature vector classification and have been

proven to be very effective, outperforming a linear additive for-

mula for ranking with web-scale document collections in han-

dling dynamic queries. For example, in the Yahoo! learning-to-rank

challenge [15], all winners have used some forms of tree ensem-

bles. Recently, random forests by bagging with GBRT and Lamb-

daMART [26] have been shown to be competitive.

The main challenge in developing privacy-aware techniques

for server-side nonlinear tree-based ranking is that such compu-

tation involves not only query-dependent arithmetic calculations

in organizing features, but also numerical comparison to navigate

decision trees. While fully homomorphic encryption [23] can sup-

port server-side addition and multiplication over encrypted data

without decrypting such data, such a scheme is not computationally

scalable. For example, a fast implementation of fully homomorphic

encryption [25] takes more than 320 seconds for adding 1024 en-

crypted integers. Partially homomorphic encryption can improve

time efficiency in a limited degree, and still has other limitations,

for example, results computed are not comparable at the server

side [42]. Order-preserving encryption techniques [1, 5, 43, 44] let a

server compare the encrypted results but do not support arithmetic

computation on encrypted numbers.

The contribution of this paper is an efficient privacy-aware

server-side ranking scheme with tree ensembles and to the best

of our knowledge, this is the first effort to address such a prob-

lem by exploiting a relevance and privacy trade-off. Our key idea

is to reduce the dependence of tree ensembles on composite fea-
tures that require dynamic query-based calculation as a trade-off

(e.g. BM25), and rely more on raw features to train tree ensembles

(e.g. document term frequency). To justify the above approach, we

show that decision trees with certain composite features can be

transformed into ones with raw features, without increasing regres-

sion or entropy-based loss. Based on such a setting, we propose

comparison-preserving mapping that hides document feature val-

ues while supporting minimum and maximum feature composition.

With participation of more raw features, the model training be-

comes hybrid with a query length specific selection of the base

algorithms and feature mixing.

The rest of the paper is organized as follows. Section 2 defines the

problems and Section 3 reviews the related work. Section 4 gives an

overview of our design considerations and approach. Section 5 ana-

lyzes the change of learning accuracy loss when transforming a tree

with composite features. Section 6 presents a mapping to hide docu-

ment features and tree thresholds, and provides the leakage profile

and privacy properties. Section 7 presents the evaluation results.

Section 8 concludes our paper. All proofs are listed in Appendix A.
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2 PROBLEM DEFINITION
Privacy assumptions and requirements. A client owns all data

and wants to outsource the search service to a cloud server which is

honest-but-curious, i.e., the server will honestly follow the client’s

protocol, but will also try to learn any private information from

the client data. The client builds an encrypted but searchable index

and lets a server host such index. This paper does not consider the

dynamic addition of new documents to the existing index, assuming

the client can periodically overwrite the index in a cloud host server

to include new content.

To conduct a search query, the client sends several encrypted

keywords and related information to the server. We adopt the pre-

vious work on searchable encryption and assume that a server

is able to conduct privacy-aware query processing that identifies

encrypted documents matching a client query [2, 11, 18, 32] and

assume that a server can access a set of encrypted raw features for

each matched document. Notice certain information is still leaked

during matching, for example, query word statistical information

after launching many queries and partial leakage of the posting

length of query words. Details on the leakage profile can be found

in [2].

How to encrypt these features by the client while the server can

conduct tree-ensemble based ranking without knowing these values

is the problem we focus on. We emphasize the proposed solution

is privacy aware to preserve privacy as much as possible and the

server does not learn non-trivial information about documents.

Certain information is still leaked, for example, relative rank order

of documents, and tree structure. We should provide a leakage

profile of the proposed scheme.

Raw and composite features. A rank feature is called raw if

it is explicitly stored in the index and it is called composite if it is
computed dynamically based on raw features. Often a composite

feature computation is query dependent. An example is BM25 or

TFIDF [31] which is the summation of term frequency based raw

features and it is query-dependent, and thus cannot be precomputed

and stored in the index.

In general a document that matches a query is represented by

a raw feature vector ( f1, · · · , fm ) where m may depend on the

length of a query. The standard learning-to-rank process for a tree-

ensemble model such as GBRT [36], LambdaMART [8], and random

forests [26, 27] uses document feature vectors of a fixed length, inde-

pendent of the query length. The server has to compute composite

features such as BM25 and proximity from raw features and then

form a feature vector of a fixed length including some of raw fea-

tures. Examples of raw features directly used for tree ensemble

derivation include query specific features such as document-query

click through rate and document specific features such as freshness

and document quality.

Tree ensembles for document ranking.A learning algorithm

for tree ensembles produces a set of decision trees Ti , 1 ≤ i ≤ n.
Given document d represented by a feature vector with a fixed

length after computing composite features aggregating some of raw

features, each tree in a learned ensemble gives a score prediction

Ti (d ). The final ranking score is defined as
∑n
i=1 αi ·Ti (d ),where αi

is a weight associated to the i-th tree. In GBRT and LambdaMART,

weight αi is learned based on the boosting effect of trees from T1,
· · · , Ti−1 while in a random forest approach [26, 27], an ensemble

with multiple trees is learned first given a random selection of fea-

tures, and then multiple ensembles are additively combined. Thus

the weights for combining multiple trees depend on how trees are

ensembled and each decision tree has the following characteristics:

• Each non-leaf node has a predicate in the form f ≥ t , where f
is a feature value and t is a trained threshold. When this node

is reached during ranking, if the predicate is satisfied by the

feature value f of a document, the right subtree is further visited.

Otherwise the left subtree is visited.

• Each leaf has a score value. When the leaf is finally reached

during ranking, this value is used as a score contribution Ti (d )
from this i-th tree.

3 RELATEDWORK
GBRT uses a point-based cost with the squared prediction error

as the loss function. LambdaMART [8] is list-based by updating

the parameters using on the NDCG metric in revising the opti-

mization target of next iteration. Once the optimization parameters

are determined at each learning iteration, LambdaMART derives

a regression tree using the point-based squared error as the loss

function. A random forest scheme employs many decision trees to

predict a value using a bagging or boosting manner [35]. Each de-

cision tree in a random forest is derived using a squared regression

loss function or based on information gain theory.

Searchable symmetric encryption (SSE) has been studied in [11,

12, 18, 34]. Curtmola et al. [18] formalized the notion of SSE as a

Structured Encryption [16], and Cash et al. [12] gave the first prov-

ably secure (up to some presumed leakage) SSE scheme that sup-

ports conjunctive search over encrypted inverted index, which has

been recently extended to disjunctive multiword queries also [32].

The work in [9, 41, 51, 56, 60] studies TFIDF-based additive ranking

with private similarity computation through matrix transformation

and as shown in [2], such a scheme does not scale well. More ef-

ficient method is proposed in [2] for a modest sized dataset while

ranking is conducted partially at the server side. Our work will

be focused on complete server-side ranking with nonlinear tree

ensembles.

Private decision tree research for classification tasks is conducted

in [6, 29, 55] which only considers to give a classification score for

a given feature vector. It does not consider ranking, and thus does

not support query-dependent feature composition or server-side

ordering among scored vectors. For making tree computation pri-

vate, research in [6, 55] uses computationally-heavy cryptographic

techniques including homomorphic encryption[42], garbled circuit

[58] and oblivious transfer [47]. The cost of computing a score for

a single document through a small number of trees is at a level of

seconds, and will not be scalable for handling a query with many

matched documents. There is also a line of work perturbing the

feature values to protect user privacy [29, 37] for classification tasks.

Our method is orthogonal to these since our goal is to preserve the

exact ranking model.

Order preserving encryption (OPE) has been studied in database

and cryptography communities [1, 5, 60]. As the core of OPE, order

preserving mapping (OPM) has been used to convert one set of

numbers into another set while preserving the order [5, 54, 60] and

the decryption is not supported. OPE cannot support arithmetic
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computation on encrypted numbers. Zhang et al. [60] proposed

an OPM that can support addition, i.e., the sum of two values’

OPM results is also an OPM result of the sum of these two values.

However this construction often yields a mapping which is almost

linear and thus not private enough as an attack can be formed to

discover this approximated linear mapping function.

4 DESIGN CONSIDERATION AND OVERVIEW
Privacy-aware feature selection and composition. Since it is
too expensive to use homomorphic encryption to support server-

side computation within a reasonable response time, our first design

strategy is to restrict the type of arithmetic operations supported at

the server side in feature composition to seek a trade-off in ranking

accuracy.

Particularly, we will support the minimum and maximum based

composition among raw features. An example of using min/max

feature composition is to leverage the minimum distance among

two query words that appear in a document [52, 61]. This design

does not intend to support other types of feature composition op-

erators including multiplications and addition. For static query-

independent coefficients involved in a ranking formula, we may

embed them in raw features stored in the index if possible. In gen-

eral, to compensate the loss of composite signals, we propose to di-

rectly use raw features if they can serve as partial relevance signals

without feature composition. That may lead to a possible degrada-

tion of ranking accuracy, and in next section, we will provide an

analytic result to justify this approach.

We illustrate how to represent BM25 [39, 48] using raw fea-

tures. Given query Q , the original BM25 formula is Σti ∈Q (k1 +

1)
t f (ti ,d ) (k1+1)
K+t f (ti ,d )

log
N
dfi

t f (ti ,Q ) (k3+1)
k3+t f (ti ,Q ) where t f (ti ,d ) is the occur-

rence count of term ti in document d , d fi is the number of doc-

uments that term ti appears, and N is the number of documents

in the whole collection. K = k1 ((1 − b) + b · dl/avdl ) where dl
is the document length and avdl is the average document length

for the whole collection. k1,k3, and b are constants. This formula

is modified in [38] by dropping the query-dependent coefficient

t f (ti ,Q ) (k3+1)
k3+t f (ti ,Q ) for better accuracy and this modification fits better

for our scheme which does not support server-side dynamic multi-

plication. Then we use (k1 + 1)
t f (ti ,d ) (k1+1)
K+t f (ti ,d )

log
N
dfi

as individual

raw features to participate in the tree buildup.

For proximity features, traditional inverted index stores word

positions explicitly [3] and online ranking computes composite

proximity features based on word positions through arithmetic

calculation, e.g. position difference in computing query word spans.

We can avoid that by following the previous work that uses word-

pair or n-gram based features as a substitute [4, 21, 61]. For ex-

ample,

∑
q1,q2∈Q

1

dist (q1,q2,d )2
where dist (t1, t2,d ) is the minimum

distance of these two terms within document d . We can let raw fea-

tures
1

dist (q1,q2,d )2
directly participate in the tree learning, or use

maxq1,q2∈Q
1

dist (q1,q2,d )2
[4] as one supported composite feature.

Query length specific training with hybrid tree ensemble
model selection. Since the total number of individual raw features

(e.g. introduced for BM25 or TF-IDF) depends on the query length,

we have to partition the training dataset and derive an ensemble

model separately for each query length. The average number of

query words is known to vary between 2 and 3 based on several

studies from search engine logs [30, 49]. In practice, the length of

queries to be processed in a document search system can be limited

by a constant (e.g. 10) and queries with an excessive number of

query words may be trimmed. Thus only a relatively small number

of tree ensembles needs to be trained for different query lengths.

Different algorithms behave differently in terms of validation or

test accuracy. Training a tree ensemble model for each query length

also yields an opportunity that we can use a different learning-to-

rank algorithm for each different query length. Also raw features

and corresponding min and/or max features can be complementary,

letting them co-exist in the training process leads to extra choices

of the model selection. Thus a hybrid approach can train a different

model for a different setting by choosing the smallest validation

error given options of multiple tree algorithms and choices of raw

and composite features.

Hiding feature values and tree thresholds. To hide feature

values and node thresholds used to compare these values in decision

trees, one option is to use an order preserving mapping function

called OPM from [5, 54, 60]. Let F denote the set of all the possible

feature values that can be compared with certain thresholds in

decision trees, andT denote the set of such thresholds. Then anOPM

function ensures that ∀v1,v2 ∈ (F ∪ T ),v1 > v2 ↔ OPM (v1) >
OPM (v2), and v1 = v2 ↔ OPM (v1) = OPM (v2).

Notice that OPM allows all of features in F to be compared with

each other which is not necessary in our targeted problem as we

only need support a feature in F be comparable with a threshold in

T . With this in mind, we propose a feature encoding method called

comparison-preserving mapping that is sufficient to preserve the

correctness of decision branching in tree ensembles, but reveals

much less information to the server compared to OPM.

Finally, we also need to hide the leaf values of trees as much as

possible. Motivated by [2], we adopt a random offset method by

adding a random offset Ri to every leaf value. Suppose for the i-th
tree, a leaf value is chosen as Ti (d ). When computing the ranking

score ofN trees, the new ranking score will be

∑N
i=1 αi (Ti (d )+Ri ) =∑N

i=1 αiTi (d ) +
∑N
i=1 αiRi , where αi is the weight of the i-th tree.

Note that

∑N
i=1 αiTi (d ) is the true ranking score, and

∑N
i=1 αiRi is

a fixed offset. Hence the relative rank order among documents is

preserved. The above random offset method leaks leaf rank value

differencewithin each tree. Given the server knows the relative rank

score order of matched documents, such a leakage is considered to

be acceptable.

5 TREE ACCURACYWITH RAW FEATURES
While we expect some relevance degradation by restricting the

type of composite feature computation, we are investigating this

impact by assessing the tree accuracy measured by the training

loss function for trees that use raw features instead of composite

features.

Given a composition functionд() usingk raw features f1, · · · , fk ,
we call this function inequality-simplifiable if we fix any k − 1

features of these k raw features with constants in the inequality

д( f1, f2, · · · , fk ) ≥ t , where t is a constant threshold, then this

inequality can be transformed into an equivalent form fi ≥ t ′

where t ′ is another constant threshold, and fi is the one of these
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k raw features which is not fixed with a constant. A composite

feature is inequality-simplifiable if it uses an inequality-simplifiable

composition function. For example, let д( f1, f2) = 2f1 + 3f2, it
is inequality-simplifiable because д(c1, f2) ≥ t and д( f1, c2) ≥ t ,
where c1 and c2 are constants, can be transformed as f2 ≥ (t−2c1)/3
and f1 ≥ (t − 3c2)/2, respectively. Other examples of inequality-

simplifiable functions include: f1 log f2 and
1

1+e−f1−f2
. The compo-

sition features used in our evaluation are all inequality-simplifiable.

We believe a large percentage of composite features used in the

previous work and in practice fall into such a category.

Nowwe show that each decision tree that uses inequality-simplifiable
composite features can be transformed into another tree using raw

features only without training loss degradation when the loss func-

tion is the squared regression error or entropy gain. To illustrate

this concept, Fig. 1 gives an example of transforming a tree using a

sum-based composite feature into another tree using raw features

only. There are 8 training instances marked as 3 white circles with

relevance label 0 and 5 black circles with relevance label 1. The new

tree can separate white and black circles as accurate as the old tree

and the regression error of both trees is 0. The composite feature

example f1 + f2 is inequality-simplifiable.

Figure 1: (a) A tree using composite feature f1 + f2 is trans-
formed into another tree using raw features f1 and f2. (b)
The regression lines corresponding to two trees separate 8
training instances in white and black circles.

A tree algorithm typically uses the squared regression error or

the entropy-based information gain[45, 46] as the loss metric in

tree buildup. Following the formulation [22, 26, 40], we list the loss

metric definition as follows. Given a training instance ti = (xi ,yi )
associated with a query where xi is a feature vector and yi is a
judgment label. Let Leaves (A) be the set of leaf nodes in the tree A.
Given a leaf v in the tree, denote by D (v ) the set of all the training
instances which choose the path from the root to the leafv based on

their feature values. Let D (A) be the set of all the training instances
covered by any of the leaves of the (sub)tree A. The squared error

loss of tree A is: ∑
v ∈Leaves (A)

∑
ti ∈D (v )

(yi − ℓ(v ))
2

where ℓ(v ) denotes the leaf value of v . The information gain of the

tree A is

−

n∑
j=1

P (j ) · log P (j ) − E (A)

where n is the number of target classes, P (j ) is the probability that

a training instance is in the j-th class, and conditional entropy E (A)
is defined as:

E (A) =
∑

v ∈Leaves (A)

|D (v ) |

|D (A) |
·
*.
,
−

n∑
j=1

P (j |v ) · log P (j |v )+/
-
,

where P (j |v ) denotes the conditional probability that a training

instance falling into leaf v is in the j-th class.

The following result can be shown that transforming tree A to

tree B with a decomposition of training instance subsets does not

increase the loss. Notice that the training instance set of a leaf in

tree A is decomposed into disjoint subsets in tree B and each of

these subsets is exactly covered by one leaf in Tree B.

Lemma 5.1. Given two decision trees A and B that satisfy D (A) =
D (B) and ∀u ∈ Leaves (A),∃V ⊂ Leaves (B), D (u) = ∪v ∈VD (v ).
Then the loss of Tree B is no larger than that of tree A when squared
error or entropy-based information gain is used as the loss function.

Lemma 5.2 shows that we can gradually simplify a composi-

tion feature of a tree through tree transformation, which leads to

Theorem 5.3.

Lemma 5.2. A decision tree using an inequality-simplifiable com-
posite feature based on k raw features can be transformed into another
tree using a composite feature based on k-1 raw features with no larger
squared error and no smaller information gain.

Theorem 5.3. A decision tree that uses inequality-simplifiable
composite features can be transformed into another tree using only
raw features with no larger squared error and no smaller information
gain.

The above theorem can be applied to every tree in a multiple-tree

scheme such as gradient boosting regression trees, LambdaMART

trees, and random forests. It should be emphasized that the accuracy

of decision trees without respect to training loss is only a proximity

to the final relevance results. If using the transformation discussed

in the proof of the above lemmas and theorem, the depth of a

transformed tree becomes much larger, which can lead to an over-

fitting situation, and thus we still follow a common practice to limit

the tree size so that each tree acts as a “weak” classifier.

6 FEATURE AND THRESHOLD ENCODING
This section gives an encoding method called comparison preserv-

ing mapping to hide feature values and tree thresholds, and we also

discuss the leakage profile and privacy properties of our method.

6.1 Comparison Preserving Mapping
In deriving the CPM, we associate all distinct raw feature values in

a document collection with comparable thresholds in decision trees

as one group and call it comparable group. Then we can partition

feature values and thresholds into many disjoint groups. Notice

all raw feature values compared using the maximum or minimum

composition should be considered in the same comparable group

because all raw features are compared with the associated tree
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thresholds indirectly through the maximum or minimum operator.

For each comparable group of raw feature values and associated

thresholds in tree ensembles, we derive a comparison preserving

mapping. Then we use such a mapping to encode the feature values

and thresholds of each group.

Let all thresholds of each comparable group be:T = [t1, t2, · · · , tr ]
in a sorted order so that ti ≤ ti+1. F is the set of all associated feature

value comparable with these thresholds, Then define a comparison-

preserving mapping function called CPM as

∀ti ∈ T ,CPM(ti ) = i;

∀f ∈ F ,CPM( f ) =

{
0 ∀ti ∈ T , f < ti ,
arдmaxi {ti ∈ T ∧ ti ≤ f } otherwise.

Example. Figure 2 illustrates the CPM procedures for 3 trees using

3 thresholds with one comparable group. NamelyT = {0.5, 3, 5} and
F = {0.3, 0.8, 1.5, 2.5, 3.8, 5.1} for features f1 and f2 of documents

d1,d2, and d3. Then the CPM of these thresholds is CPM(0.5) = 1,

CPM(3) = 2, CPM(5) = 3. Six feature values are encoded as one of

these 3 values or 0.

The above example illustrates that CPM hides feature values and

thresholds as 6 feature values and 3 thresholds are mapped to 4

values {0, 1, 2, 3} without revealing real values. Also 4 threshold

and feature values { 0.5, 0.8, 1.5, 2.5} are all mapped to the same

new value 1 and the server is not able to distinguish them. We

enumerate the privacy properties in next subsection.

In terms of ensuring the correctness of tree computation for

ranking, the following result shows that CPM retains the correct-

ness of threshold comparison in decision trees for all raw features

and min/max-based composite features.

Theorem 6.1.

∀f ∈ F , ∀t ∈ T , f ≥ t ↔ CPM( f ) ≥ CPM(t ).

∀fi ∈ F ,∀tj ∈ T , we have

max( f1, · · · , fk ) ≥ tj ↔ max(CPM( f1), · · · ,CPM( fk )) ≥ CPM(tj )

and

min( f1, · · · , fk ) ≥ tj ↔ min(CPM( f1), · · · ,CPM( fk )) ≥ CPM(tj ).

Figure 2: An example of CPM in a tree ensemble.

Comparison with OPM. Table 1 gives a detailed comparison of

mapping properties between CPM and OPM. A key difference is

that while OPM strictly preserves the order among features and

thresholds, CPM only guarantees an encoded feature value is com-

parable with an encoded tree node threshold. The server may not

know the order between the CPM-encoded feature values when

these values are the same. Thus CPM reveals less information than

OPM.

Properties (∀v1, v2 ∈ F ) M = CPM M = OPM
v1 > v2 → M (v1) > M (v2) False True

v1 > v2 ← M (v1) > M (v2) True True

v1 = v2 → M (v1) = M (v2) True True

v1 = v2 ← M (v1) = M (v2) False True

Table 1: Mapping difference between CPM and OPM.

Storage space requirement with CPM. The space cost for

storing features with CPM is efficient because each feature value

can be represented with log
2
N bits where N is the number of

distinct thresholds used for one feature value group. A typical

number of trees involved can be up to tens of thousands while each

tree contains tens or few hundred nodes. Thus the total number of

distinct thresholds involved for each feature group is in a level of

thousands or millions. Then log
2
N would typically lead to 2 or 3

bytes for storing each feature value.

6.2 Leakage profile and privacy properties
First we summarize the leakage profile of our scheme as follows.

Namely the following information can be revealed to a server that

hosts the encoded features and tree ensembles.

• Tree ensemble structure information including 1) the number of

trees, 2) the topology of each tree, 3) the membership of each com-

parable feature and threshold group. 4) The score value difference

between every two leaves in a tree.

• The order information among distinct thresholds and feature val-

ues after CPM encoding within each comparable group. Namely,

for any two thresholds t1, t2 in each group, ifCPM(t1) > CPM(t2),
then the server can infer t1 > t2. For any feature f1 and threshold
t1, CPM( f1) ≥ CPM(t1), then the server can infer f1 ≥ t1.
• The order information between feature values in the same com-

parable group if CPM of these features are different. Namely

CPM( f1) > CPM( f2), then the server can infer f1 > f2. But
if CPM( f1) = CPM( f2), then the server cannot be sure that

f1 = f2.
• The number of distinct thresholds, and their distribution infor-

mation at each comparable feature and threshold group. The dis-

tribution of distinct feature values is leaked when for any two dis-

tinct feature values f1, f2, there always exists a threshold t in the

comparable group such that CPM( f1) < CPM(t ) ≤ CPM( f2).

Next we characterize the key privacy properties of our scheme,

namely what information is protected.

• A server cannot well approximate the actual values of feature val-

ues or thresholds, their difference, and their ratios. Theorem 6.2

gives a formal description of this property.

• For feature values and thresholds associated with different com-

parable groups, the server cannot compare them.
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Collection 1 2 3 4 5 Total

Robust04 11 70 140 25 4 250

Robust05 1 19 24 5 1 50

Web09-12 64 70 52 14 0 200

MQ09 98 294 232 53 9 686

Table 2: Number of queries of different query lengths

• For any two features values vi < vj in a comparable group,

if there exist two thresholds t1, t2 associated with this group

such that t1 ≤ vi < vj ≤ t2 and there is no other threshold

in the group between t1 and t2, then we must have CPM(vi ) =
CPM(vj ) and the probability that the server correctly figures out
vj is larger is at most 0.5, i.e., no better than random guess.

Now we formally characterize the first privacy property listed

above. Let CPM(F ,T ) denote the encoded threshold and feature

value group of a dataset. Let vi ∈ F ∪T denote a feature value or

threshold that can be identified as i-th number by the server and

∀vi ,vi ∈ [a,b], but the server does not know about this domain.

A server can only use CPM (F ,T ) to derive an approximation of

value vi ∈ F ∪T or its difference/ratio to other values. The three

properties in Theorem 6.2 below show that in order to approximate

within a specified error bound, this server has to correctly distin-

guish the one from an infinite number of choices with the same

CPM encoding and different domains, but exceeding this bound,

which is highly unlikely.

Theorem 6.2. The following three properties are true.
• P1: Let Av (i,CPM(F ,T )) denote a server algorithm that can ap-
proximate the original i-th value in F ∪ T within error ϵ using
CPM(F ,T ). Namely, for any original i-th feature value vi ∈ F ∪T ,
|Av (i,CPM(F ,T ))−vi | < ϵ . For such algorithmAv , there exist an
infinite number of datasets, where each is denoted as (F̃ , T̃ ), such
that CPM(F̃ , T̃ ) = CPM(F ,T ), and |Av (i,CPM(F̃ , T̃ )) − ṽi | > ϵ .
• P2: Let Ad (i, j,CPM(F ,T )) denote a server algorithm that can
approximate difference vi − vj within error ϵ for any i-th and
j-th values: vi ,vj ∈ F ∪ T . Without loss of generality, assume
vi > vj . Namely, |Ad (i, j,CPM(F ,T )) − (vi − vj ) | < ϵ . For such
algorithm Ad , there exist an infinite number of datasets, where
each is denoted as (F̃ , T̃ ), such that CPM(F̃ , T̃ ) = CPM(F ,T ), and
|Ad (i, j,CPM(F̃ , T̃ )) − (ṽi − ṽj ) | > ϵ .

• P3: Assume all feature values and thresholds in a comparable
group are nonnegative andvmin is the smallest among these nonzero
values. LetAr (i,CPM(F ,T )) denote a server algorithm that can use
CPM(F ,T ) to approximate ratiovi/vmin for anyvi > vmin within
any error ϵ such that 0 < ϵ < vi/vmin − 1, |Ar (i,CPM(F ,T )) −
vi
vmin

| < ϵ . For such algorithm Ar , there exist an infinite number of
datasets, where each is denoted as (F̃ , T̃ ), such that CPM(F̃ , T̃ ) =

CPM(F ,T ), and |Ar (i,CPM(F̃ , T̃ )) − ṽi
ṽmin

| > ϵ .

For Properties P1 and P2, the domain [a,b] of feature and thresh-
old values can include negative values if needed and these properties

hold if a ≥ 0 without any change. Property P3 assumes a ≥ 0. To

extend Property P3 when a < 0, we can consider vmin as the small-

est absolute non-zero value and then can show that a server cannot

approximate |
vi

vmin
| within error ϵ such that 0 < ϵ < | vivmin

| − 1.

7 EVALUATION
Datasets.We use the following datasets with four TREC test col-

lections. 1) Robust04 uses TREC Disks 4 and 5 (excluding Congres-

sional Records) with 0.5M news articles and 250 topic queries from

TREC Robust track 2004. 2) Robust05 uses TREC AQUAINT collec-

tion with 1M news articles and 50 queries from TREC Robust track

2005. 3) Web09-12 uses Clueweb09 Category B with 50M webpages.

The 200 queries are from the TRECWeb Tracks 2009-2012. 4) MQ09

also uses Clueweb09 Category B with 686 queries from Million

Query Track 2009. Since we will conduct query length specific

training, Table 2 lists the length of TREC queries for each dataset

after stop word removal.

Implementation and model training.We follow the work of [2,

13, 32] that can retrieve the matched results and encrypted fea-

tures to build inverted index for the datasets TREC 4&5, AQUAINT

and Clueweb09-Cat-B. For model training, we used RankLib 2.5

[19], which contains LambdaMART, GBRT and random forests (RF),

following 5-fold cross validation, and the hybrid model is an ex-

tension of them by selecting the one with the smallest validation

error under different feature group arrangements. Following other

previous work in relevance evaluation(e.g. [7, 20, 24, 59]), we report

NDCG@20 score of the baseline algorithms and our approach. To

identify an ideal model, we have varied the number of trees size

from 100 to 1000 until no better improvement is found, and also

varied the tree size from 4 to 32 leaves.

Features. We form 4 candidate groups of features for training.

• G0: BM25 for query words that appear in the title, and BM25 for

query words that appear in the body. The minimum, maximum,

and average of the squared min distance reciprocal of query word

pairs in the title or in the body. For Clueweb09, extra features in-

clude PageRank and a binary flag indicating whether a document

is from Wikipedia.

• G1: All features from Group G0 except that BM25 and word-pair

proximity are replaced by their individual raw scores.

• G2: All features from Group G1 plus the maximum and minimum

proximity score in title or body section.

• G3: All features from Group G2 after excluding those individual

raw scores that compose the proximity score.

Tree algorithms. Our evaluation compares the performance of

following approaches: 1) Each of LambdaMART, GBRT and random

forest methods is trained for all queries with G0 group features; As

LambdaMART outperforms GBRT for the Clueweb09 collection and

we use LambdaMART as a base algorithm for random forests where

each tree is configured to use 30% feature sampling rate and each

bag uses 1 tree; 2) Linear additive ranking based on AdaRank [57]

using G0 to show performance difference compared to nonlinear

tree ensembles. 3) Each tree model trained for each query length

using one of G1, G2, and G3. 4) A hybrid model that selects a

configuration from one of the tree algorithms and G1, G2, and G3

feature groups discussed below with best validation performance.

As the training queries in Table 2 are not enough for some of

query lengths for training and testing, we mitigate this query short-

age by adopting two strategies: 1) For single word queries, since the

composite BM25 or proximity feature is the same as an individual

raw feature, we use the best tree model trained by queries of all

lengths. 2) For query length above 4, there are only few queries

available after stop word removal. Thus for each query with length

larger than 4 in Robust04/05 and Web09-12, we only take the first
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4 query words and group them with 4 word queries. Namely all

queries with 4 or more words are ranked by a model trained using

the grouped 4-word queries .

A comparison of overall relevance. Table 3 lists the average

NDCG@20 results with 5-fold validation for queries in Table 2.

This table shows that 1) The overall performance of the hybrid

model is constantly among the best or close to the best across all

datasets compared to other 3 algorithms. The hybrid model achieves

the best performance in Robust04, Web09-12, and MQ09. For Ro-

bust04, RF method does the best, but its advantage is not significant

(less than 0.2%) compared to the hybrid. 2) Compared to the base-

line of 3 tree algorithms using feature group G0 with no privacy

constraints, the performance of our hybrid model is competitive

with a small relevance degradation. For Robust04 and Robust05,

the hybrid model is better by 1%-5.5%. For Web09-12 and MQ09,

the hybrid model is 1%-3.3% worse. Thus the relevance trade-off of

replacing composite features with raw features is reasonable. From

Column 5 of this table, linear additive ranking based on AdaRank

underperforms the tree algorithms as expected, which confirms the

positive value of making tree ranking private.

Relevancewith rawandmin/max features for different query
lengths. To explain why the hybrid model gives more stable results

than other 3 algorithms, Table 4 gives the query length specific

NDCG@20 results in 4 sections of columns. All the results are

within confidence interval ±0.01 with p-value < 0.05. A boldface

number for each algorithm column section represents the best per-

formance among feature groups G1, G2, and G3 under the same

algorithm. We observe that there is no dominating method and

no dominating feature groups when varying QL from 1 to 5, and

the hybrid model selects the best configuration during validation

which typically leads to the highest NDCG test score except a few

cases.

For all single word queries (Rows marked with QL = 1), com-

posite features have the same values as raw features. As we use

the queries in all different lengths to train, the testing results for

single word queries are identical among all groups with the fixed

model under the same algorithm. LambdaMART performs better

for Robust05 and Web09-12 while the random forest method does

better for Robust04 and MQ09. The hybrid model selects the best

configuration among them.

WhenQL ≥ 2, the hybrid model typically retains the best perfor-

mance among all configurations, except a few cases. For example

in dealing with MQ-09 and QL = 4, the hybrid follows GBRT with

G2 having the smallest validation error while the random forest

method with G2 actually has the higher NDCG test score. Similarly

the configuration that the hybrid model selects does not deliver

the highest NDCG for Robust05 with QL = 4. For those cases the

hybrid model does not lead to the highest NDCG, the performance

gap with the best is relatively small.

Consistency of relevance scores with the previous work.We

examine the NDCG@20 scores achieved in the previous work in

using the same datasets. For Web09-12, the NDCG@20 score in [20,

59] has reported 0.2273 and 0.2461 with neural network signals and

0.1939 using traditional IR signals. NDCG@20 in [7] is 0.2331 using

features similar to G0, and 100 queries from TREC 2010 and 2011

while we use 200 queries. In comparison, LambdaMART delivers

0.2235 in our evaluation without using neural signals. For MQ09,

NDCG@20 in [7] is 0.2428 using 450 queries while in our evaluation,

LambdaMART delivers 0.2603 using 686 queries. For Robust04,

NDCG@20 is 0.3794 in [20] without neural signals and is 0.4509

with neural signals while it is 0.3982 in [59]. Random forests can

reach 0.4114 in our evaluation. Overall speaking, our scores are

on a par with those in the previous work without using neural

network features, even there is a difference in data preprocessing

and feature choices. Our future work is to integrate or extend our

privacy-aware scheme with the use of neural features.

Space cost for CPM. For two test datasets that use ClubWeb09

Category B, we have used up to 2000 trees and 32 leaves and iden-

tified up to about 40,000 thresholds. The growth of this number

is slow as we increase the tree size or the number of trees. The

number of bits required for CPM is 16 and thus each of document

features and tree thresholds is represented by two bytes. Thus the

space cost of CPM in representing features and thresholds is small.

8 CONCLUSION
The main contribution of this paper is a privacy-aware scheme for

server-side document ranking using tree ensembles with reason-

able relevance. The proposed scheme with comparison-preserving

mapping can scale for large datasets since a server does not involve

time-consuming heavyweight cryptography or additional client

involvement after receiving encrypted search words from a client.

While restricting the computation complexity of feature compo-

sition represents a trade-off of relevancy for privacy, we exploit

characteristics of inequality simplifiable feature composition and

demonstrate that decision trees that replace raw features with such

composition features can still be competitive. The evaluation re-

sults show that the hybrid model trained for each query length can

perform competitively as the best algorithm in each configuration

setting with a small relevance degradation compared to a traditional

tree algorithm.

This paper uses traditional document features for ranking and

future work is to consider the latest development in neural network

based ranking [20, 24, 59]. The proposed feature encoding can

support minimum and maximum operators and an extension for

other types of composition can be considered in the future.
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A PROOFS
Proof of Lemma 5.1 : Part I. When the loss function of single

tree generation is based on the squared error of training instances,

the squared error of each leaf v is minimized when the value of

each leaf is chosen as the mean value

µv =

∑
ti ∈D (v ) yi

|D (v ) |
= argmin

u

∑
ti ∈D (v )

(yi − u)
2.

The squared error loss of entire tree A is:∑
v ∈Leaves (A)

∑
ti ∈D (v )

(yi − µv )
2

=
∑

v ∈Leaves (A)

(
∑

ti ∈D (v )

y2i − 2
∑

ti ∈D (v )

yi µv + |D (v ) |µ2v )

=
∑

v ∈Leaves (A)

(
∑

ti ∈D (v )

y2i − |D (v ) |µ2v )

=
∑

ti ∈D (A)

y2i −
∑

v ∈Leaves (A)

(
∑
ti ∈D (v ) yi )

2

|D (v ) |
.

With all positive constants s1, s2, c1, and c2, knowing (c1s2 −

c2s1)
2 ≥ 0, this inequality is true:

(s1+s2 )2
(c1+c2 )

≤
s2
1

c1 +
s2
2

c2 . This inequality

can be generalized for all positive constants si and ci as

(
∑n
i=1 si )

2∑n
i=1 ci

≤

n∑
i=1

s2i
ci
.

Given D (A) = D (B) and ∀u ∈ Leaves (A),∃V ,V ⊂ Leaves (B) ∧
D (u) = ∪v ∈VD (v ), and a training instance can only uniquely

choose one leaf in each tree,∑
ti ∈D (A)

y2i −
∑

v ∈Leaves (A)

(
∑
ti ∈D (v ) yi )

2

|D (v ) |

≥
∑

ti ∈D (B )

y2i −
∑

v ∈Leaves (B )

(
∑
ti ∈D (v ) yi )

2

|D (v ) |
.

Part II. Now we analyze when the entropy-based information

gain is used as the loss function. Note that by definition the training

instance sets of leaves in treeA are disjoint for different leaves. That

is true also for tree B. Based on the condition of this lemma, for

any leave u of A, the training instance set D (A) is decomposed

into a disjoint subset collection called V in tree B. V exactly covers

instances in D (u). Namely D (u) = ∪v ∈VD (v ) = D (V ). Following
[17], the information gain is always nonnegative. Namely

E (V ) −
∑
w ∈V

|D (w ) |

|D (V ) |
· E (w ) ≥ 0.

Then the conditional entropy of tree A can be compared with the

conditional entropy of tree B as:

E (A) =
∑

v ∈Leaves (A)\u

|D (v ) |

|D (A) |
· E (v ) +

|D (u) |

|D (A) |
· E (u)

≥
∑

v ∈Leaves (A)\u

|D (v ) |

|D (A) |
· E (v ) +

|D (u) |

|D (A) |
·
∑
w ∈V

|D (w ) |

|D (u) |
· E (w )

=
∑

v ∈Leaves (B )\V

|D (v ) |

|D (B) |
· E (v ) +

∑
w ∈V

|D (w ) |

|D (B) |
· E (w )

=E (B).

Hence the information gain with tree B is no less than that with

tree A. □



SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang

Department of Computer Science, University of California at Santa Barbara

g(f1,f2,…,fk) ≥ c
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Figure 3: (a) A tree using an inequality-simplifiable compos-
ite feature. (b) Transformed tree.

Proof of Lemma 5.2: Assume that a tree called A contains a

node calledC using a composite feature in inequalityд( f1, · · · , fk ) ≥
c . We transform this tree shown in Figure 3(a) to Tree B shown in

Figure 3(b).

where node C is replaced by a right-deep structure constructed

as follows.

• We partition the training instances of D (C ) based on the values

of their raw feature f1 and assume there are n sorted distinct

values for f1: a1 < a2 < · · · < an . The nodes in this right-deep

structure use sorted inequalities as f1 ≥ a2, f1 ≥ a3, until f1 ≥
an . The left child of condition node f1 ≥ ai+1 uses inequality
д(ai , f2, · · · , fk ) ≥ c composed of k−1 raw features. The left and

right subtrees of this new node are the mirrored left and right

subtrees of C in tree A.
• The training instance subset relationship between treeA and tree

B satisfies:

D (L) = ∪ni=1D (Li ), D (R) = ∪ni=1D (Ri ).

Using Lemma 5.1, the transformed tree has no larger squared

error and no smaller information gain compared to the original one

using composite features. □
Proof of Theorem 5.3: By applying Lemma 5.2 iteratively, any

tree that uses composite features can be transformed into a tree

which only relies on raw features and has no larger squared error

and no smaller information gain. □
Proof of Theorem 6.1. Notice tk is the k-th sorted threshold

in T≥ . Given f ∈ F , when f ≥ tk , CPM( f ) = arдmaxi {1 ≤ i ≤
r ∧ ti ≤ f }, then CPM( f ) ≥ k . Since CPM(tk ) = k , we have

CPM( f ) ≥ CPM(tk ).
When CPM( f ) ≥ CPM(tk ) = k , arдmaxi {1 ≤ i ≤ r ∧ ti ≤ f } ≥

k . then ∀i, 1 ≤ i ≤ k, ti ≤ f . Thus f ≥ tk .
With the above result, we can infer that the server can perform

the minimum and maximum composite operations correctly on

CPM-encoded features

CPM(max( f1, · · · , fk )) = max(CPM( f1), · · · ,CPM( fk )))

CPM(min( f1, · · · , fk )) = min(CPM( f1), · · · ,CPM( fk )))

Namely our mapping does not affect the correctness of the min/max

composite features used in decision trees. □
Proof of Theorem 6.2.
For Property P1, we find another dataset F̃ , T̃ by adding a number

c > 2ϵ to each feature value in F and threshold in T . Namely

ṽi = vi+c and t̃j = tj+c for anyvi ∈ F and tj ∈ T . Thenwe have the

identical CPM encodings:CPM(F̃ ) = CPM(F ),CPM(T̃ ) = CPM(T )
except that the domain of F̃ and T̃ is [a + c,b + c].

Since the approximation algorithm derives the same result from

the same CPM encodings, Av (i,CPM(F̃ , T̃ )) = Av (i,CPM(F ,T )).
Hence Av (i,CPM(F̃ , T̃ )) − ṽi = Av (i,CPM(F ,T )) − (vi + c ) ∈
(−c − ϵ,−c + ϵ ) for any i . Since c > 2ϵ , the absolute error for this
dataset must be larger than ϵ . Note that since there are infinite

choices of c as long as c > 2ϵ , the possible choices of (F̃ , T̃ ) are also
infinite.

For Property P2, we find dataset F̃ , T̃ by multiplying a number

α > 1 + 2ϵ/δ to each feature value in F and threshold in T , where
δ is the minimum absolute difference between any two different

feature values. Thus ṽi = α · vi and t̃j = α · tj for any vi ∈ F and

tj ∈ T . The domain of F̃ and T̃ is [α · a,α · b].
Then ṽi − ṽj = α (vi − vj ). Without loss of generality, assume

vi > vj . Then

Ad (i, j,CPM(F̃ , T̃ )) − (ṽi − ṽj ) = Ad (i, j,CPM(F ,T )) − α (vi −vj )

∈ ((1 − α ) (vi −vj ) − ϵ, (1 − α ) (vi −vj ) + ϵ ).

Since (1 − α ) (vi − vj ) < −2ϵ
vi−vj
δ ≤ −2ϵ , the absolute approxi-

mation error with F̃ and T̃ must be larger than ϵ . Note that since
there are infinite choices of α as long as α > 1 + 2ϵ/δ , the possible
choices of (F̃ , T̃ ) are also infinite.

For Property P3, we construct dataset F̃ , T̃ as follows: 1) all zero

feature/threshold values in F , T are not changed in F̃ , T̃ ; 2) all non-
zero feature/threshold values are subtracted by number c such that

vmin > c > 2vmin/3. The domain of F̃ and T̃ is [max (0,a−c ),b −c],
which is still nonnegative. CPM(F̃ , T̃ ) = CPM(F ,T ). Hence

Ar (i,CPM(F̃ , T̃ )) − ṽi/ṽmin

=Ar (i,CPM(F ,T )) − (vi − c )/(vmin − c )

<Ar (i,CPM(F ,T )) −vi/vmin +vi/vmin −
3vi − 2vmin

vmin

=Ar (i,CPM(F ,T )) −vi/vmin −
2vi − 2vmin

vmin

∈(−ϵ −
2vi − 2vmin

vmin

, ϵ −
2vi − 2vmin

vmin

).

Since ϵ < vi/vmin − 1, we have

ϵ −
2vi − 2vmin

vmin

< −
vi −vmin

vmin

< −ϵ .

Thus the absolute error with F̃ and T̃ must be larger than ϵ . Note that
since there are infinite choices of c as long as vmin > c > 2vmin/3,

the possible choices of (F̃ , T̃ ) are also infinite. □
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