Privacy-aware Ranking with Tree Ensembles on the Cloud

Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang Department of Computer Science University of California at Santa Barbara

Motivation for Private Search

 Client uploads data to the cloud, utilizing its computing power Query Client Cloud

Doc id

- Server is honest-but-curious: correctly executes protocols but observes/infers private information
 - Plain text leakage occurs due to various such as accidents, misconfiguration, or employee misuse
 - "Dropbox Security Bug Made Passwords **Optional For Four Hours**". June 2011
 - Even feature leakage such as TFIDF may cause partial document leakage.

Privacy Requirement for Top K Search

- Given a set of documents feature vectors
 - Each document *d* has encrypted feature *i* denoted as E(*f*^{*d*}_{*i*})
- Indexing and top K search scheme so that
 - Server can access encrypted document features
 - Rank them within a reasonable response time without knowing underlying feature values
 - E.g. RankScore($E(f_1^{d1}), E(f_2^{d1})$) vs RankScore($E(f_1^{d2}), E(f_2^{d2})$)

Privacy Challenges in Feature Composition and Rank Computation

- Ranking requires arithmetic computation and comparison
 - Feature composition: e.g. TF-IDF, BM25, word distance.
 - Linear/nonlinear rank computation and comparison:
- Computation and comparability of encrypted features
 - Compose $E(f_1^d + f_2^d)$ from $E(f_1^d)$ and $E(f_2^d)$ securely?
 - Compare $E(f_1^{d_1} + f_2^{d_1})$ and $E(f_1^{d_2} + f_2^{d_2})$ securely?
 - Fully Homomorphic encryption [Gentry STOC09]: inefficient
- No publication on private learning-to-rank tree ensembles

Previous work on searchable encryption & private search

- Searchable encryption [Cash et al. Crypto13, Curtmola et al. Crypto13, Kamara12]– does not address ranking
- **Private decision trees** e.g. [Bost et al. NDSS15]
 - Use computation-heavy cryptographic techniques (e.g. Homomorphic encryption), not scalable.
- Order Preserving Encryption [Boldyreva et al. Crypto11] does not support arithmetic operations
- Leakage abuse attack of search index, features, [Cash et al. CCS15, Wang et al. S&P17]
- Existing research on private additive ranking:
 - [Cao et al. TPDS14, Xia et. al. TPDS16] works for small database size.
 - [Agun et al. WWW18] relies on client-server collaborative ranking.

Overview of Proposed Private Tree Ranking Scheme (PTR)

- 1. Restrict computation operators and rely on more raw features
- 2. Query-length-specific training
- 3. Hide feature values and tree thresholds with comparison-preserved mapping
- Prove tree ensemble training can be competitive using raw features with restricted feature composition.
- Derive leakage profile and privacy property on what is protected.
- Evaluate relevance competiveness of PTR using TREC Datasets

Proposed PTR: Restrict computation operators and rely on more raw features

- More composition operation types supported → less secure
- Strategy:
 - Restrict type of arithmetic operations in feature and rank computation. Only support min/max based composition from raw features
 - Rely on raw features more with tree branching composition
- For **BM25**, use individual raw features (Avoid addition)
- For **proximity**, use word pair or n-gram scores as basis. Avoid addition, or derivation from word positions

Proposed PTR: Query-length-specific training

- Number of raw features is query-dependent.
- Query-length specific training with hybrid tree ensemble

Allow a different algorithm to be used for a different query length with a different combination of raw/composite features

Proposed PTR: Hide feature values and tree thresholds with comparison-preserved mapping

- Objective: Hide feature values and tree thresholds for better privacy
- Option 1: OPM
 - Order preserved mapping [Boldyreva et al. Cryoto11]
 - $v_1 > v_2 \Leftrightarrow OPM(v_1) > OPM(v_2)$
 - $v_1 = v_2 \Leftrightarrow OPM(v_1) = OPM(v_2)$

• Option 2: CPM (Comparison preserved mapping) Feature value/threshold mapping only preserves correctness of decision tree branching Leak less: $v_1 \ge v_2$ CPM(v_1) \ge CPM(v_2)

Can tree ensemble training be competitive using raw features with restricted feature composition?

Definition:

- Composition function g(f₁, ..., f_k) is inequalitysimplifiable if any inequality g(f₁, ..., f_k) ≥ t can be transformed as f_i ≥ t' given fixed k-1 features except f_i.
- Example: $2f_1 + 3f_2$, $f_1 \log f_2$, $\frac{1}{1 + e^{-f_1 f_2}}$

Theorem: A decision tree that uses inequalitysimplifiable composite features can be transformed into another tree using raw features only without training loss degradation in terms of squared error or entropybased information gain

Example of tree transformation by removing sum operators

 Transform a tree with a sum-based composite feature into another tree using raw features only.

Sum is inequality-simplifiable

 The new tree can separate white and black circles as accurate as the old tree

Tree ransformation with inequalitysimplifiable composite features Inequality-simplifable composition using k raw features can be transformed, using at most k-1 raw features without loss in terms of squared error or information gain.

CPM: Comparison Preservering Mapping

f₁≥t

- **Objective:** Index data hides feature values and tree thresholds
- **Step 1:** Partition document feature values and tree thresholds into disjoint comparable groups
- Each group contains all raw feature values and min/max composite features and associated tree thresholds comparable in decision trees.

Step 2: Apply CPM to each group. Let sorted distinct thresholds be $[t_1, t_2, ..., t_r]$. Then CPM $(t_i) = i$. For any feature value f, if f <t₁, CPM(f) = 0. If f is in $[t_{i-1}, t_i]$, CPM(f) = i-1.

Example of CPM

Comparable group

Correctness and Space Efficiency of CPM

 Encoding of feature values and thresholds does not affect the correctness of comparison in decision tree computation

 $\min(f_1, f_2) \ge t$

t₃≥t

- For any feature value f and tree threshold t,
 - $f \ge t \Leftrightarrow CPM(f) \ge CPM(t)$
 - $\min(f_1, ..., f_k) \ge t \iff \min(CPM(f_1), ..., f_k) \ge CPM(t)$
 - $max(f_1, ..., f_k) \ge t \Leftrightarrow max(CPM(f_1), ..., f_k) \ge CPM(t)$
- Storage space requirement: each encoded value requires log N bits where N is the number of distinct tree thresholds.
 - 2-3 bytes in practice

Leakage Profile: What is leaked to the server?

- Partial order leakage of feature values within each comparable group
 - $CPM(v_1) > CPM(v_2) \Rightarrow v_1 > v_2$
 - $CPM(v_1) = CPM(v_2)$ ***** $v_1 = v_2$
- **Partial distribution information:** The number of distinct thresholds, the number of encoded feature values between two consecutive thresholds in each group.
- Tree ensemble structure information: 1) the number of trees, 2) the topology of each tree, 3) the membership of comparable group, 4) score value difference between every two leaves in a tree.

Privacy Properties: What information is protected

- Server cannot compare feature values and thresholds associated with different comparable groups.
 - Within the same group, CPM(v₁) = CPM(v₂), the server cannot figure out the order of v₁ and v₂
- A server cannot well approximate the actual values of feature values, their difference, and their ratios.
 - If it can do within an error bound, then it has to distinguish the original data from an infinite number of other possible datasets beyond the error bound, which is unlikely.
 - Cannot well approximate actual values and their difference of thresholds

Evaluation

- Privacy-aware indexing and runtime support
 - Key-value store scheme to fetch feature values for private search [Agun et. al. WWW 2018]
- Evaluation objective: Can PTR with hybrid tree ensembles using raw and min/max compositions perform competitively?

Query length	1	2	3	4	5
Robust04, 0.5M	11	70	140	25	4
Robust05, 1M	1	19	24	5	1
ClubeWeb09-12, 50M	64	70	52	14	0
ClubeWeb, MQ09, 50M	98	294	232	53	9

Relevance of PTR with Restricted Features

Compared to Existing Methods with no Restriction 5-fold validation NDCG@20 results

Collections	λ- MART	GBRT	Random Forest	PTR
Robust04	0.3936	0.4025	0.4114	0.3975 (-3.3%)
Robust05	0.2765	0.2778	0.2945	0.2928 (-0.6%)
ClueWeb09-12	0.2235	0.1906	0.2100	0.2160 (-3.4%)
ClueWeb09, MQ09	0.2603	0.2419	0.2395	0.2573 (-1.2%)

PTR is close to the best constantly with small degradation

Relevance with different query lengths

NDCG@20 of ClueWeb09, MQ09. Features include raw indivdual BM25 for title/body, word-pair distance with min/max composition, PageRank, and Wikipedia indicator

Q-length	λ-MART	GBRT	Random Forest	PTR
2	0.2712	0.2457	0.2612	0.2712 (0%)
3	0.2683	0.2185	0.2284	0.2767 (+3.1%)
4	0.2280	0.2296	0.2369	0.2296 (-3%)
5	0.0913	0.0843	0.0388	0.0913 (0%)

PTR gives the more stable results than others by selecting the best configuration with query-length specific optimization.

Contributions and Conclusions

- Addressed an open problem for server-side privacy aware ranking using tree ensembles.
- Three techniques are proposed in private tree ranking (PTR) scheme
 - Restricting decision trees using raw features and min-max composition is a sound tradeoff for privacy with competitive relevance.
 - Query-length specific training
 - Comparison-preserving mapping scales well for large datasets with sound privacy properties.
- Future work is to consider other nonlinear ranking including neural nets.