Privacy-aware Ranking with Tree Ensembles on the Cloud

Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang
Department of Computer Science
University of California at Santa Barbara
Motivation for Private Search

- Client uploads data to the cloud, utilizing its computing power
- Server is **honest-but-curious**: correctly executes protocols but observes/infers private information
 - Plain text leakage occurs due to various such as accidents, misconfiguration, or employee misuse
 - Even feature leakage such as TFIDF may cause partial document leakage.
Privacy Requirement for Top K Search

- Given a set of documents feature vectors
 - Each document d has encrypted feature i denoted as $E(f^d_i)$

- Indexing and top K search scheme so that
 - Server can access encrypted document features
 - Rank them within a reasonable response time without knowing underlying feature values
 - E.g. $\text{RankScore}(E(f^d_1), E(f^d_1))$ vs $\text{RankScore}(E(f^d_2), E(f^d_2))$
Privacy Challenges in Feature Composition and Rank Computation

• Ranking requires arithmetic computation and comparison
 • Feature composition: e.g. TF-IDF, BM25, word distance.
 • Linear/nonlinear rank computation and comparison:
• Computation and comparability of encrypted features
 ▪ Compose $E(f_1^d + f_2^d)$ from $E(f_1^d)$ and $E(f_2^d)$ securely?
 ▪ Compare $E(f_1^{d1} + f_2^{d1})$ and $E(f_1^{d2} + f_2^{d2})$ securely?
 ▪ Fully Homomorphic encryption [Gentry STOC09]: inefficient
• No publication on private learning-to-rank tree ensembles
Previous work on searchable encryption & private search

- **Searchable encryption** [Cash et al. Crypto13, Curtmola et al. Crypto13, Kamara12]– does not address ranking
- **Private decision trees** e.g. [Bost et al. NDSS15]
 - Use computation-heavy cryptographic techniques (e.g. Homomorphic encryption), not scalable.
- **Order Preserving Encryption** [Boldyreva et al. Crypto11] – does not support arithmetic operations
- **Leakage abuse attack of search index, features**, [Cash et al. CCS15, Wang et al. S&P17]
- **Existing research on private additive ranking:**
 - [Cao et al. TPDS14, Xia et. al. TPDS16] works for small database size.
 - [Agun et al. WWW18] relies on client-server collaborative ranking.
Overview of Proposed Private Tree Ranking Scheme (PTR)

1. Restrict computation operators and rely on more raw features
2. Query-length-specific training
3. Hide feature values and tree thresholds with comparison-preserved mapping
 - Prove tree ensemble training can be competitive using raw features with restricted feature composition.
 - Derive leakage profile and privacy property on what is protected.
 - Evaluate relevance competitiveness of PTR using TREC Datasets
Proposed PTR: Restrict computation operators and rely on more raw features

• More composition operation types supported \rightarrow less secure

• Strategy:
 ▪ Restrict type of arithmetic operations in feature and rank computation. Only support min/max based composition from raw features
 ▪ Rely on raw features more with tree branching composition

• For **BM25**, use individual raw features (Avoid addition)
• For **proximity**, use word pair or n-gram scores as basis. Avoid addition, or derivation from word positions
Proposed PTR: Query-length-specific training

- Number of raw features is query-dependent.
- Query-length specific training with hybrid tree ensemble

Allow a different algorithm to be used for a different query length with a different combination of raw/composite features

Training set

2 word queries
3 word queries
4 word queries
k word queries
Proposed PTR: Hide feature values and tree thresholds with comparison-preserved mapping

- **Objective:** Hide feature values and tree thresholds for better privacy

- **Option 1: OPM**
 - Order preserved mapping [Boldyreva et al. Cryoto11]
 - $v_1 > v_2 \iff \text{OPM}(v_1) > \text{OPM}(v_2)$
 - $v_1 = v_2 \iff \text{OPM}(v_1) = \text{OPM}(v_2)$

- **Option 2: CPM** (Comparison preserved mapping)
 Feature value/threshold mapping only preserves correctness of decision tree branching
 Leak less: $v_1 \geq v_2 \iff \text{CPM}(v_1) \geq \text{CPM}(v_2)$
Can tree ensemble training be competitive using raw features with restricted feature composition?

Definition:

- Composition function $g(f_1, \ldots, f_k)$ is inequality-simplifiable if any inequality $g(f_1, \ldots, f_k) \geq t$ can be transformed as $f_i \geq t'$ given fixed $k-1$ features except f_i.

- Example: $2f_1 + 3f_2$, $f_1 \log f_2$, $\frac{1}{1+e^{-f_1-f_2}}$

Theorem: A decision tree that uses inequality-simplifiable composite features can be transformed into another tree using raw features only without training loss degradation in terms of squared error or entropy-based information gain.

\[g(f_1, \ldots, f_k) \geq t \quad \rightarrow \quad f_i \geq t' \]
Example of tree transformation by removing sum operators

- Transform a tree with a sum-based composite feature into another tree using raw features only.

- The new tree can separate white and black circles as accurate as the old tree.

Sum is inequality-simplifiable.
Tree transformation with inequality-simplifiable composite features

Inequality-simplifiable composition using k raw features can be transformed, using at most $k-1$ raw features without loss in terms of squared error or information gain.

\[g(f_1, f_2, \ldots, f_k) \geq c \]

\[f_1 \geq a_2 \]

\[g(a_1, f_2, \ldots, f_k) \geq c \]

\[f_1 \geq a_3 \]

\[g(a_2, f_2, \ldots, f_k) \geq c \]

\[\ldots \]

\[f_1 \geq a_n \]

\[g(a_{n-1}, f_2, \ldots, f_k) \geq c \]

\[g(a_n, f_2, \ldots, f_k) \geq c \]
CPM: Comparison Preservering Mapping

Objective: Index data hides feature values and tree thresholds

Step 1: Partition document feature values and tree thresholds into disjoint comparable groups

- Each group contains all raw feature values and min/max composite features and associated tree thresholds comparable in decision trees.

Step 2: Apply CPM to each group.

Let sorted distinct thresholds be \([t_1, t_2, \ldots, t_r]\). Then

\[CPM(t_i) = i. \]

For any feature value \(f \), if \(f < t_1 \), \(CPM(f) = 0 \).

If \(f \) is in \([t_{i-1}, t_i]\), \(CPM(f) = i-1 \).
Example of CPM

Comparable group
with 3 thresholds
[0.5, 3, 5]
→
[1, 2, 3]
and 6 feature values
[0.3, 0.8, 1.5, 2.5, 3.8, 5.1]
→
[0, 1, 1, 1, 2, 3]

Original Trees

\[f_1 \geq 3\]
\[\max(f_1, f_2) \geq 5\]
\[f_2 \geq 0.5\]

Encoded Trees

\[f_1 \geq 2\]
\[\max(f_1, f_2) \geq 3\]
\[f_2 \geq 1\]
Correctness and Space Efficiency of CPM

• Encoding of feature values and thresholds does not affect the correctness of comparison in decision tree computation

• For any feature value f and tree threshold t, $\min(f_1, f_2) \geq t \iff \min(CPM(f_1), CPM(f_2)) \geq CPM(t)$

• $\max(f_1, ..., f_k) \geq t \iff \max(CPM(f_1), ..., CPM(f_k)) \geq CPM(t)$

• **Storage space requirement**: each encoded value requires $\log N$ bits where N is the number of distinct tree thresholds.

• 2-3 bytes in practice
Leakage Profile: What is leaked to the server?

- Partial order leakage of feature values within each comparable group
 - $\text{CPM}(v_1) > \text{CPM}(v_2) \Rightarrow v_1 > v_2$
 - $\text{CPM}(v_1) = \text{CPM}(v_2) \nRightarrow v_1 = v_2$

- Partial distribution information: The number of distinct thresholds, the number of encoded feature values between two consecutive thresholds in each group.

- Tree ensemble structure information: 1) the number of trees, 2) the topology of each tree, 3) the membership of comparable group, 4) score value difference between every two leaves in a tree.
Privacy Properties: What information is protected

- Server cannot compare feature values and thresholds associated with different comparable groups.
 - Within the same group, $\text{CPM}(v_1) = \text{CPM}(v_2)$, the server cannot figure out the order of v_1 and v_2
- A server cannot well approximate the actual values of feature values, their difference, and their ratios.
 - If it can do within an error bound, then it has to distinguish the original data from an infinite number of other possible datasets beyond the error bound, which is unlikely.
 - Cannot well approximate actual values and their difference of thresholds
Evaluation

- **Privacy-aware indexing and runtime support**
 - Key-value store scheme to fetch feature values for private search [Agun et. al. WWW 2018]
- **Evaluation objective:** Can PTR with hybrid tree ensembles using raw and min/max compositions perform competitively?

<table>
<thead>
<tr>
<th>Query length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust04, 0.5M</td>
<td>11</td>
<td>70</td>
<td>140</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Robust05, 1M</td>
<td>1</td>
<td>19</td>
<td>24</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>ClubeWeb09-12, 50M</td>
<td>64</td>
<td>70</td>
<td>52</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>ClubeWeb, MQ09, 50M</td>
<td>98</td>
<td>294</td>
<td>232</td>
<td>53</td>
<td>9</td>
</tr>
</tbody>
</table>
Relevance of PTR with Restricted Features

Compared to Existing Methods with no Restriction
5-fold validation NDCG@20 results

<table>
<thead>
<tr>
<th>Collections</th>
<th>λ-MART</th>
<th>GBRT</th>
<th>Random Forest</th>
<th>PTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust04</td>
<td>0.3936</td>
<td>0.4025</td>
<td>0.4114</td>
<td>0.3975 (-3.3%)</td>
</tr>
<tr>
<td>Robust05</td>
<td>0.2765</td>
<td>0.2778</td>
<td>0.2945</td>
<td>0.2928 (-0.6%)</td>
</tr>
<tr>
<td>ClueWeb09-12</td>
<td>0.2235</td>
<td>0.1906</td>
<td>0.2100</td>
<td>0.2160 (-3.4%)</td>
</tr>
<tr>
<td>ClueWeb09, MQ09</td>
<td>0.2603</td>
<td>0.2419</td>
<td>0.2395</td>
<td>0.2573 (-1.2%)</td>
</tr>
</tbody>
</table>

PTR is close to the best constantly with small degradation
Relevance with different query lengths

NDCG@20 of ClueWeb09, MQ09. Features include raw individual BM25 for title/body, word-pair distance with min/max composition, PageRank, and Wikipedia indicator.

<table>
<thead>
<tr>
<th>Q-length</th>
<th>λ-MART</th>
<th>GBRT</th>
<th>Random Forest</th>
<th>PTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2712</td>
<td>0.2457</td>
<td>0.2612</td>
<td>0.2712 (0%)</td>
</tr>
<tr>
<td>3</td>
<td>0.2683</td>
<td>0.2185</td>
<td>0.2284</td>
<td>0.2767 (+3.1%)</td>
</tr>
<tr>
<td>4</td>
<td>0.2280</td>
<td>0.2296</td>
<td>0.2369</td>
<td>0.2296 (-3%)</td>
</tr>
<tr>
<td>5</td>
<td>0.0913</td>
<td>0.0843</td>
<td>0.0388</td>
<td>0.0913 (0%)</td>
</tr>
</tbody>
</table>

PTR gives the more stable results than others by selecting the best configuration with query-length specific optimization.
Contributions and Conclusions

- Addressed an open problem for server-side privacy aware ranking using tree ensembles.
- Three techniques are proposed in private tree ranking (PTR) scheme
 - Restricting decision trees using raw features and min-max composition is a sound tradeoff for privacy with competitive relevance.
 - Query-length specific training
 - Comparison-preserving mapping scales well for large datasets with sound privacy properties.
- Future work is to consider other nonlinear ranking including neural nets.