
Privacy and Efficiency Tradeoffs for
Multiword Top K Search

with Linear Additive Rank Scoring
Daniel Agun, Jinjin Shao, Shiyu Ji, Stefano

Tessaro, Tao Yang
Department of Computer Science

University of California at Santa Barbara

Open Problem for Private Search

• Privacy challenge on the cloud
§ Client offloads data to the cloud, and wants to exploit

cloud computing resource
§ Server is honest-but-curious: correctly executes protocol

but observes/infers private information
• Privacy requirement: Store client-owned data on the

cloud, and have the free-text keyword search on the
data, without leaking the plaintext
§ Open problem: how to design and implement efficient

private ranking for multi-keyword search?
$~?@$Encrypted query

keywords
Encrypted
data and index

Cloud server
Client

DocumentsRanked results
Client

Top K Search Problem Definition

• Given a set of documents feature vectors
§ Each document 𝑑 has many encrypted features denoted as

E(𝑓#$)
• Indexing and top K search scheme so that

§ Server can access encrypted document features
§ Rank them within a reasonable response time without

knowing underlying feature values
§ E.g. RankScore(E(𝑓%$%), E(𝑓&$%)) vs RankScore(E(𝑓%$&), E(𝑓&$&))

Encrypted query
keywords

Cloud server
Client Ranked results

Our Approach and Contributions
• Private ranking scheme with linear additive scoring for

efficient top K keyword search
• Support modest sized cloud datasets –

• Bigger dataset requires faster internet connection
between server and client (or trusted client-proxy)

• Strike for tradeoffs between privacy and efficiency
• Single-round client-server collaboration
• Server-side partial ranking using blinded feature weights

with random masks to reduce result size

Final ranking

Encrypted query
keywords Cloud server

Partial ranking

Client Ranked results

Design Considerations

• Additive Linear Ranking Formula
§ Weighted liner combination of features: 𝑆𝑐𝑜𝑟𝑒 = ∑𝛼/𝑓/$�

�

§ Simplify to ∑𝑓/$�
� by embedding 𝛼/ in feature

• Ranking features that can be accommodated
§ Term-frequency based (TFIDF, BM25)
§ Proximity composite (word pair distance)
§ Document-query specific (click-through rate)
§ Document-specific (freshness, quality)

• Handling sparsity of raw ranking features
§ Explicit storage with uniform representation

– too expensive
§ Separate required and optional features

– Handling of optional features without leakage is a challenge:

Design Considerations – Private Features

• Previous work
§ TFIDF-based query/document dot product

– Multiply a query vector and document with a matrix
– Unscable even for small datasize: prohibitive search cost for

datasets over a few thousand documents/terms
• Homomorphic Encryption – still not practical for reasonable

response time, no efficient comparison
• Order Preserving Encryption – does not support arithmetic

operations
• Searchable encryption – does not address ranking
• Multi-round client-server communication – slow
• Our solution: Feature encryption with mask blinding

§ Encrypt feature E(𝑓#$)= 𝑓#$ + 𝑅#$	𝑚𝑜𝑑	𝑁, 𝑅#$ is random mask

Ordering Masked Rank Scores Without
Knowing Rank Values

• Scoring function – linear sum of features
§ Separate	required	features	and	optional	features

– handle	feature	sparsity	and	retain	space	efficiency
§ Blinded score:

– (Sum of features + sum of offsets) mod N
• How can server order two documents without knowing

real scores with wraparound from mod?
§ Theorem:

– If blinded score difference of two documents is < N/2,
order of unblinded scores = order of blinded score

– Otherwise order is reversed
§ Requirement: same mask and unblinded score < N/2

Server-Side Partial Ranking

• Per-document random masks
§ Stored feature: 𝑓#$ + 𝑅#$	𝑚𝑜𝑑	𝑁
§ Completely private, server cannot rank

• Chunk-wide random masks
§ Stored feature: 𝑓#$ + 𝑅#$ + 𝑅#I	𝑚𝑜𝑑	𝑁, where 𝑐 is the

posting chunk of term 𝑖
§ Query-dependent deblinding

– Server only able to remove	𝑅#$ when client sends it
– Only leak feature difference within a chunk to server when

such a word is searched and partial ranking is triggered
• Term posting size restriction

§ Only trigger partial ranking when length >10000

Query Decomposition and Subquery
Handling

• Query Decomposition
§ Query: cd rate
§ Client-side earlier intersection to

generate subqueries:
– CD1 rate2, CD-rate1

– CD3 rate3, CD-rate1

– CD4 rate4

– CD4 rate5

fCD + fRate
+RCD + RRate

Comparable
docs

fCD + fRate +fCD-rate
+RCD + RRate+RCD-rate

Chunked postings

For each subquery, compare documents
within each optional matching case

Incomparable across subqueries
Maximize comparable documents
among optional feature matching cases
by exploiting their lattice relationship

Indexing and Runtime Processing for
Conjunctive Queries

• Adopt document matching algorithm from Cash et al.
(CRYPTO’13) for secure intersection

• Support feature blinding with dynamic chunk-wide random
masking: prevent server from learning about features if such
a word is not searched/not triggered for partial ranking

• 3 key-value stores for encrypted inverted index setup
§ R-store saves meta information in feature posting chunks

such as document ID range of chunks: facilitates query
decomposition at the client side

§ S-store contains required feature values and is used by
the search algorithm to identify the candidate documents

§ X-store contains feature values accessible using a pair of
document ID and feature ID

S-store and X-Store Setup

• S-store
§ Key is called 𝑠𝑡𝑎𝑔 used for starting search

– Based on word ID and chunk ID
– Formally 𝑠𝑡𝑎𝑔 = 𝑃𝑅𝐹(𝑘S, 𝑤 ∥ 𝑐)

§ Value is a chunk list of posting entries and each posting entry
is an encrypted tuple 𝑒, 𝑦, 𝑓Y

– Encrypted document ID 𝑒
– Blinded bridging number 𝑦 to enable client-authorized X-store key derivation
– Blinded feature 𝑓Y

• X-store
§ Key called 𝑥𝑡𝑎𝑔 used as hash table key for intersection

– Key is based on word ID and doc ID that contains this word
– Formally 𝑔[\] ^_,` [\] ^a,$

§ Value is encrypted feature value
– Formally 𝑋 𝑥𝑡𝑎𝑔 = 𝑓#$ + 𝑅#$ + 𝑅#I	𝑚𝑜𝑑	𝑁

Query Processing Flow & Example

• Phase 1 – client side
§ Form required and optional features; derive subqueries with earlier

intersection
§ Form encrypted tokens including 𝑠𝑡𝑎𝑔 for each subquery

• Phase 2 – server side
§ Use client-𝑠𝑡𝑎𝑔 to access S-store and fetch posting chunks
§ Dynamically compute client-authorized 𝑥𝑡𝑎𝑔 to access features from X-

store
§ Perform server-side partial ranking if authorized

• Phase 3 – client side: Remove random mask for final ordering

Properties of Search Time and Privacy

• Search Complexity
§ Index space: proportional to all non-zero features
§ Search time: 𝑂(𝑛 − 1 ∑ 𝑃𝑜𝑠𝑡𝑖𝑛𝑔 𝑤%�

� for all
subqueries with 𝑛 required/optional features

• Privacy	properties
§ Theorem	4.1: If feature has not been used in any

search query, the server cannot learn corresponding
weight for any document.

§ Theorem	4.2: The server cannot learn document
feature weights for any unpopular word (<10k docs
in its posting) during or after query processing.

§ Also true for any popular word which has only been
involved in searches with at least one unpopular
word.

Implementation and Evaluation of Private Search

• Prototype built in C++
• Evaluation on Linux

Ubuntu 16.04 servers
with 8 cores and 2.4GHz
AMD FX8320, 16GB
RAM Dataset size characteristics

Query processing costs

Cost increases with
more query words and
optional features

Overall query response
time is reasonable (<1s)

Effectiveness of Server Partial Ranking

• Server-side partial ranking reduces network costs
§ Reduces returned result set significantly

– For Aquaint, server filters out 88% of matched results
– Cost 0.39 sec to deliver remaining 22K results on 7.2Mbps

internet connection

Return result reduction in top-10 search with different chunk sizes
Threshold to trigger partial ranking: 10,000+ results

Synthetic queries:
Stop/popular words
with high match
size

Evaluation of Ranking Relevance

• Restriction on optional term distance 𝑳 has small
impact on relevance
§ Restrict optional word distance pairs
§ Less optional features, more comparable documents,

faster response time

Impact of Growing Dataset Size

• Take 0.46sec on average to send over internet at 7.2Mbps with
chunk size of 210 for 5 million docs

• Sending top 10% largest result sizes needs 1.93sec with
today’s average Internet connection (7.2Mbps)
§ With 5G mobile connection (490Mbps), only take 28millisec
§ Also ideal for client-trusted proxy-server setting

ClueWeb09 Category B dataset with 50 million web documents
Return result sizes in top-10 search with partial server-ranking triggering
threshold 10,000, varying index size from 3M to 50M

Leakage Profile

• Size patterns
§ Chunk sizes
§ Count of matching documents

• Rank and feature patterns
§ Rank score and feature value difference within

chunks when used in partial ranking
• Intersection patterns

§ Overlapping pattern of s-tags and encrypted tokens
sent during search (intersection results)

§ Identification of subqueries sharing startup term
(repeated start term)

§ S-term intersections from two subqueries sharing at
least one x-term

Conclusions

• Contributions of this Work
§ Private search with support for linear ranking scores

– Server-side ranking substantially reduces result size
– Still requires final ranking at client side

§ A solution with tradeoff for this open private search
ranking problem

§ Prototype system implementation and evaluation
• Future Work

§ Address Server client communication bottleneck
– Less of a problem with high speed internet
– Client trusted proxy

§ Support more advanced ranking techniques
– Our SIGIR 2018 paper for private search with tree-

ensembles

