
Low-Cost Data Deduplication for Virtual Machine Backup in Cloud Storage
Wei Zhang?, Tao Yang?, Gautham Narayanasamy?, and Hong Tang†

? University of California at Santa Barbara, †Alibaba Inc.

Abstract
In a virtualized cloud cluster, frequent snapshot backup
of virtual disks improves hosting reliability; however,
it takes significant memory resource to detect and re-
move duplicated content blocks among snapshots. This
paper presents a low-cost deduplication solution scal-
able for a large number of virtual machines. The key
idea is to separate duplicate detection from the actual
storage backup instead of using inline deduplication,
and partition global index and detection requests among
machines using fingerprint values. Then each machine
conducts duplicate detection partition by partition inde-
pendently with minimal memory usage. Another opti-
mization is to allocate and control buffer space for ex-
changing detection requests and duplicate summaries
among machines. Our evaluation shows that the pro-
posed multi-stage scheme uses a small amount of mem-
ory while delivering a satisfactory backup throughput.

1 Introduction
Periodic archiving of virtual machine (VM) snapshots
is important for long-term data retention and fault re-
covery. For example, daily backup of VM images is
conducted automatically at Alibaba which provides the
largest public cloud service in China. The cost of fre-
quent backup of VM snapshots is high because of the
huge storage demand. This issue has been addressed
by storage data deduplication [8, 15] that identifies re-
dundant content duplicates among snapshots. One ar-
chitectural approach is to attach a separate backup sys-
tem with deduplication support to the cloud cluster, and
every machine periodically transfers snapshots to the at-
tached backup system. Such a dedicated backup con-
figuration can be expensive, considering that significant
networking and computing resource is required to trans-
fer raw data and conduct signature comparison.

This paper seeks for a low-cost architecture option
and considers that a backup service uses the existing
cloud computing resource. Performing deduplication
adds significant memory cost for comparison of con-
tent fingerprints. Since each physical machine in a clus-
ter hosts many VMs, memory contention happens fre-
quently. Cloud providers often wish that the backup ser-
vice only consumes small or modest resources with a
minimal impact to the existing cloud services. Another
challenge is that deletion of old snapshots compete for

computing resource as well, because data dependence
created by duplicate relationship among snapshots adds
processing complexity.

Among the three factors - time, cost and deduplication
efficiency, one of them has to be compromised for the
other two. For instance, if we were building a deduplica-
tion system that has a high rate of duplication detection
and has a very fast response time, it would need a lot of
memory to hold fingerprint index and cache. This leads
to a compromise on cost. Our objective is to lower the
cost incurred while sustaining the highest de-duplication
ratio and a sufficient throughput in dealing with a large
number of VM images.

The traditional approach to deduplication is an inline
approach which follows a sequence of block reading, du-
plicate detection, and non-duplicate block write to the
backup storage. Our key idea is to first perform paral-
lel duplicate detection for VM content blocks among all
machines before performing actual data backup. Each
machine accumulates detection requests and then per-
forms detection partition by partition with minimal re-
source usage. Fingerprint based partitioning allows
highly parallel duplicate detection and also simplifies
reference counting management. The tradeoff is that ev-
ery machine has to read dirty segments twice and that
some deduplication requests are delayed for staged par-
allel processing. With careful parallelism and buffer
management, this multi-stage detection scheme can pro-
vide a sufficient throughput for VM backup.

2 Background and Related Work
At a cloud cluster node, each instance of a guest operat-
ing system runs on a virtual machine, accessing virtual
hard disks represented as virtual disk image files in the
host operating system. For VM snapshot backup, file-
level semantics are normally not provided. Snapshot
operations take place at the virtual device driver level,
which means no fine-grained file system metadata can
be used to determine the changed data.

Backup systems have been developed to use content
fingerprints to identify duplicate content [8, 9]. Of-
fline deduplication is used in [5, 2] to remove previ-
ously written duplicate blocks during idle time. Sev-
eral techniques have been proposed to speedup search-
ing of duplicate fingerprints. For example, the data do-
main method [15] uses an in-memory Bloom filter and

a prefetching cache for data blocks which may be ac-
cessed. An improvement to this work with paralleliza-
tion is in [12, 13]. As discussed in Section 1, there is
no dedicated resource for deduplication in our targeted
setting and low memory usage is required so that the re-
source impact to other cloud services is minimized. The
approximation techniques are studied in [3, 6, 14] to re-
duce memory requirement with a tradeoff of the reduced
deduplication ratio. In comparison, this paper focuses
on full deduplication without approximation.

Additional inline deduplication techniques are studied
in [7, 6, 10]. All of the above approaches have focused
on such inline duplicate detection in which deduplica-
tion of an individual block is on the critical write path.
In our work, this constraint is relaxed and there is a wait-
ing time for many duplicate detection requests. This re-
laxation is acceptable because in our context, finishing
the backup of required VM images within a reasonable
time window is more important than optimizing individ-
ual VM block backup requests.

3 System Design
We consider deduplication in two levels. The first level
uses coarse-grain segment dirty bits for version-based
detection [4, 11]. Our experiment with Alibaba’s pro-
duction dataset shows that over 70 percentage of dupli-
cates can be detected using segment dirty bits when the
segment size is 2M bytes. This setting requires OS to
maintain segment dirty bits and the amount of space for
this purpose is negligible. In the second level of dedu-
plication, content blocks of dirty segments are compared
with the fingerprints of unique blocks from the previous
snapshots. Our key strategies are explained as follows.

• Separation of duplicate detection and data
backup. The second level detection requires a
global comparison of fingerprints. Our approach
is to perform duplicate detection first before actual
data backup. That requires a prescanning of dirty
VM segments, which does incur an extra round
of VM reading. During VM prescanning, detec-
tion requests are accumulated. Aggregated dedu-
plicate requests can be processed partition by par-
tition. Since each partition corresponds to a small
portion of global index, memory cost to process de-
tection requests within a partition is small.

• Buffered data redistribution in parallel dupli-
cate detection. Let global index be the meta data
containing the fingerprint values of unique snap-
shot blocks in all VMs and the reference point-
ers to the location of raw data. A logical way
to distribute detection requests among machines
is based on fingerprint values of content blocks.
Initial data blocks follows the VM distribution
among machines and the detected duplicate sum-

Segment fingerprint

Snapshot 1

0a48b5...

bd25c3...

......

Ref Segment fingerprint

Snapshot 2

0a48b5...

f5267e3...

......

Ref

Block fingerprint

57abff...

cc45d3...

......

Ref Block fingerprint

95cde4...

8ea890...

......

Ref Block fingerprint

8372ad...

bc35dd...

......

Ref

Snapshot
metadata

Segment
metadata

Figure 1: Metadata structure of a VM snapshot.

mary should be collected following the same distri-
bution. Therefore, there are two all-to-all data re-
distribution operations involved. One is to map de-
tection requests from VM-based distribution to fin-
gerprint based distribution. Another one is to map
duplicate summary from fingerprint-based distribu-
tion to VM based distribution. The redistributed
data needs to be accumulated on the disk to reduce
the use of memory. To minimize the disk seek cost,
outgoing or incoming data exchange messages are
buffered to bundle small messages. Given there are
p× q partitions where p is the number of machines
and q is the number of fingerprint-based partitions
at each machine, space per each buffer is small un-
der the memory constraint for large p or q values.
This counteracts the effort of seek cost reduction.
We have designed an efficient data exchange and
disk data buffering scheme to address this.

We assume a flat architecture in which all p machines
that host VMs in a cluster can be used in parallel for
deduplication. A small amount of local disk space and
memory on each machine can be used to store global
index and temporary data. The real backup storage can
be either a distributed file system built on this cluster or
use another external storage system.

The representation of each snapshot in the backup
storage has a two-level index structure in the form of a
hierarchical directed acyclic graph as shown in Figure 1.
A VM image is divided into a set of segments and each
segment contains content blocks of variable-size, parti-
tioned using the standard chunking technique with 4KB
as the average block size. The snapshot metadata con-
tains a list of segments and other meta data information.
Segment metadata contains its content block fingerprints
and reference pointers. If a segment is not changed from
one snapshot to another, indicated by a dirty bit embed-
ded in the virtual disk driver, its segment metadata con-
tains a reference pointer to an earlier segment. For a
dirty segment, if one of its blocks is duplicate to another
block in the system, the block metadata contains a refer-
ence pointer to the earlier block.

...

p send
buffers

Dirty segment
scan

q request
buffers

p receive
buffers

Request
accumulation

Fingerprint
comparison

...

Partitioned
global index

p receive
buffers

Summary
output

v summary
buffers

...
...

...

Other machines

... ...

On-disk
requests

...

...

...

......

p send
buffers

VM

VM

VM

...

VM

VM

VM

...

...
...

...

Machine 2

Machine 1
On-disk

dup
summary

...
...

Non-duplicate
block backup

Dirty
segments

...

...

...

...

Non-duplicate
blocks

Figure 2: Processing flow of Stage 1 (dirty segment scan and request accumulation), Stage 2 (fingerprint comparison
and summary output), and Stage 3 (non-duplicate block backup).

The data flow of our multi-stage duplicate detection is
depicted in Figure 2. In Stage 1, each machine indepen-
dently reads VM images that need a backup and forms
duplicate detection requests. The system divides each
dirty segment into a sequence of chunk blocks, com-
putes the meta information such as chunk fingerprints,
sends a request to a proper machine, and accumulates
received requests into a partition on the local temporary
disk storage. The partition mapping uses a hash func-
tion applied to the content fingerprint. Assuming all ma-
chines have a homogeneous resource configuration, each
machine is evenly assigned with q partitions of global
index and it accumulates corresponding requests on the
disk. There are two options to allocate buffers at each
machine. 1) Each machine has p× q send buffers corre-
sponding to p× q partitions in the cluster since a content
block in a VM image of this machine can be sent to any
of these partitions. 2) Each machine allocates p send
buffers to deliver requests to p machines; it allocates p
receive buffers to collect requests from other machines.
Then the system copies requests from each of p receive
buffers to q local request buffers, and outputs each re-
quest buffer to one of the request partitions on the disk
when this request buffer becomes full. Option 2, which
is depicted in Figure 2, is much more efficient than Op-
tion 1 because 2p+ q is much smaller than p× q, except
for the very small values. As a result, each buffer in Op-
tion 2 has a bigger size to accumulate requests and that
means less disk seek overhead.

Stage 2 is to load disk data and perform fingerprint
comparison at each machine one request partition at a
time. At each iteration, once in-memory comparison be-
tween an index partition and request partition is com-

pleted, duplicate summary information for segments of
each VM is routed from the fingerprint-based distribu-
tion to the VM-based distribution. The summary con-
tains the block ID and the reference pointer for each
detected duplicate block. Each machine uses memory
space of the request partition as a send buffer with no
extra memory requirement. But it needs to allocate p
receive buffers to collect duplicate summary from other
machines. It also allocates v request buffers to copy du-
plicate summary from p receive buffers and output to the
local disk when request buffers are full.

Stage 3 is to perform real backup. The system loads
the duplicate summary of a VM, reads dirty segments
of a VM, and outputs non-duplicate blocks to the final
backup storage. Additionally, the global index on each
machine is updated with the meta data of new chunk
blocks. When a segment is not dirty, the system only
needs to output the segment meta data such as a refer-
ence pointer. There is an option to directly read dirty
blocks instead of fetching a dirty segment which can in-
clude duplicate blocks. Our experiment shows that it is
faster to read dirty segments in the tested workload. An-
other issue is that during global index update after new
block creation, the system may find some blocks with
the same fingerprints have been created redundantly. For
example, two different VM blocks that have the same
fingerprint are not detected because the global index has
not contained such a fingerprint yet. The redundancy is
discovered and logged during the index update and can
be repaired periodically when necessary. Our experience
is that there is a redundancy during the initial snapshot
backup and once that is repaired, the percentage of re-
dundant blocks due to concurrent processing is insignif-

icant.
The above steps can be executed by each machine

using one thread to minimize the use of computing re-
source. The disk storage usage on each machine is fairly
small for storing part of global index and accumulating
duplicate detection requests that contain fingerprint in-
formation. We impose a memory limit M allocated for
each stage of processing at each machine. The usage of
M is controlled as follows and space allocation among
buffers is optimized based on the relative ratio between
the cross-machine network startup cost and disk access
startup cost such as seek time. Using a bigger buffer can
mitigate the impact of slower startup cost.

• For Stage 1, M is divided for 1) an I/O buffer to
read dirty segments; 2) 2p send/receive buffers and
q request buffers.

• For Stage 2, M is divided for 1) space for hosting
a global index partition and the corresponding re-
quest partition; 2) p receive buffers and v summary
buffers.

• For Stage 3, M is divided for 1) an I/O buffer
to read dirty segments of a VM and write non-
duplicate blocks to the backup storage; 2) summary
of duplicate blocks within dirty segments.

Snapshot deletion. Each VM will keep a limited
number of automatically-saved snapshots and expired
snapshots are normally deleted. We adopt the idea of
mark-and-sweep [6]. A block or a segment can be
deleted if its reference count is zero. To delete useless
blocks or segments periodically, we read the meta data
of all snapshots and compute the reference count of all
blocks and segments in parallel. Similar to the multi-
stage duplicate detection process, reference counting is
conducted in multi-stages. Stage 1 is to read the seg-
ment and block metadata to accumulate reference count
requests in different machines in the fingerprint based
distribution. Stage 2 is to count references within each
partition and detect those records with zero reference.
The backup data repository logs deletion instructions,
and will periodically perform a compaction operation
when its deletion log is too big.

4 Evaluation
We have implemented and evaluated a prototype of our
multi-stage deduplication scheme on a cluster of dual
quad-core Intel Nehalem 2.4GHz E5530 machines with
24GB memory. Our implementation is based on Al-
ibaba’s Xen cloud platform [1, 14]. Objectives of our
evaluation are: 1) Analyze the deduplication throughput
and effectiveness for a large number of VMs. 2) Exam-
ine the impacts of buffering during metadata exchange.

We have performed a trace-driven study using a
1323 VM dataset collected from a cloud cluster at Al-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

35M 45M 55M 65M 95M 190M

T
im

e
 (

h
o

u
r)

Stage1
Stage2
Stage3

Figure 3: Parallel time when memory limit varies.

ibaba’s Aliyun. For each VM, the system keeps 10
automatically-backed snapshots in the storage while a
user may instruct extra snapshots to be saved. The
backup of VM snapshots is completed within a few
hours every night. Based on our study of its production
data, each VM has about 40GB of storage data usage on
average including OS and user data disk. Each VM im-
age is divided into 2 MB fix-sized segments and each
segment is divided into variable-sized content blocks
with an average size of 4KB. The signature for variable-
sized blocks is computed using their SHA-1 hash.

The seek cost of each random IO request in our test
machines is about 10 milliseconds. The average I/O us-
age of local storage is controlled about 50MB/second for
backup in the presence of other I/O jobs. Noted that a
typical 1U server can host 6 to 8 hard drives and deliver
over 300MB/second. Our setting uses 16.7% or less of
local storage bandwidth. The final snapshots are stored
in a distributed file system built on the same cluster.

The total local disk usage on each machine is about
8GB for the duplicate detection purpose, mainly for
global index. Level 1 segment dirty bits identify 78%
of duplicate blocks. For the remaining dirty segments,
block-wise full deduplication removes about additional
74.5% of duplicates. The final content copied to the
backup storage is reduced by 94.4% in total.

Figure 3 shows the total parallel time in hours to
backup 2500 VMs on a 100-node cluster a when limit
M imposed on each node varies. This figure also depicts
the time breakdown for Stages 1, 2, and 3. The time in
Stages 1 and 3 is dominated by the two scans of dirty
segments, and final data copying to the backup storage
is overlapped with VM scanning. During dirty segment
reading, the average number of consecutive dirty seg-
ments is 2.92. The overall processing time does not have
a significant reduction as M increases to 190MB. The
aggregated deduplication throughput is about 8.76GB
per second, which is the size of 2500 VM images di-
vided by the parallel time. The system runs with a sin-
gle thread and its CPU resource usage is 10-13% of

one core. The result shows the backup with multi-stage
deduplication for all VM images can be completed in
about 3.1 hours with 35MB memory, 8GB disk overhead
and a small CPU usage. As we vary the cluster size p,
the parallel time does not change much, and the aggre-
gated throughput scales up linearly since the number of
VMs is 25p.

Table 1 shows performance change when limit
M=35MB is imposed and the number of partitions per
machine (q) varies. Row 2 is memory space required to
load a partition of global index and detection requests.
When q = 100, the required memory is 83.6 MB and
this exceeds the limit M =35MB. Row 3 is the paral-
lel time and Row 4 is the aggregated throughput of 100
nodes. Row 5 is the parallel time for using Option 1 with
p × q send buffers described in Section 3. When q in-
creases, the available space per buffer reduces and there
is a big increase of seek cost. The main network usage
before performing the final data write is for request accu-
mulation and summary output. It lasts about 20 minutes
and each machine exchanges about 8MB of metadata per
second with others during that period, which is 6.25% of
the network bandwidth.

Table 1: Performance when M=35MB and q varies.

#Partitions (q) 100 250 500 750 1000
Index+request 83.6 33.5 16.8 11.2 8.45

(MB)
Total Time N/A 3.12 3.15 3.22 3.29

(Hours)
Throughput GB/s N/A 8.76 8.67 8.48 8.30

Total time N/A 7.8 11.7 14.8 26
(Option 1)

5 Conclusion Remarks
The contribution of this work is a low-cost multi-stage
parallel deduplication solution. Because of separation
of duplicate detection and actual backup, we are able
to evenly distribute fingerprint comparison among clus-
tered machine nodes, and only load one partition at time
at each machine for in-memory comparison.

The proposed scheme is resource-friendly to the exist-
ing cloud services. The evaluation shows that the over-
all deduplication time and throughput of 100 machines
are satisfactory with about 8.76GB per second for 2500
VMs. During processing, each machine uses 35MB
memory, 8GB disk space, and 10-13% of one CPU core
with a single thread execution. Our future work is to
conduct more experiments with production workloads.

Acknowledgment. We thank Michael Agun, Renu

Tewari, and the anonymous referees for their valuable
comments. This work is supported in part by NSF IIS-
1118106. Any opinions, findings, conclusions or recom-
mendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

References
[1] Alibaba Aliyun. http://www.aliyun.com.
[2] C. Alvarez. NetApp Deduplication for FAS and V-Series

Deployment and Implementation Guide. NetApp. Tech-
nical Report TR-3505 , 2011.

[3] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillib-
ridge. Extreme Binning: Scalable, parallel deduplication
for chunk-based file backup. In IEEE MASCOTS ’09,
pages 1–9, 2009.

[4] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. De-
centralized deduplication in san cluster file systems. In
USENIX ATC’09, 2009.

[5] EMC. Achieving storage efficiency through EMC Cel-
erra data deduplication. White Paper, 2010.

[6] F. Guo and P. Efstathopoulos. Building a high-
performance deduplication system. In USENIX ATC’11,
pages 25–25, 2011.

[7] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezis, and P. Camble. Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality. In
FAST’09, pages 111–123, 2009.

[8] S. Quinlan and S. Dorward. Venti: A New Approach to
Archival Storage. In FAST ’02, pages 89–101, 2002.

[9] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive
content-addressed storage in foundation. In USENIX
ATC’08, pages 143–156, Berkeley, CA, USA, 2008.
USENIX Association.

[10] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti.
idedup: latency-aware, inline data deduplication for pri-
mary storage. In FAST’12, 2012.

[11] M. Vrable, S. Savage, and G. M. Voelker. Cumulus:
Filesystem backup to the cloud. In FAST’09, pages 225–
238, 2009.

[12] J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2: A scal-
able high-throughput exact deduplication approach for
network backup services. In IEEE MSST’10, pages 1–
14, May 2010.

[13] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan.
Debar: A scalable high-performance de-duplication stor-
age system for backup and archiving. In IEEE IPDPS,
pages 1–12, 2010.

[14] W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and Y. Zeng.
Multi-level selective deduplication for vm snapshots in
cloud storage. In IEEE CLOUD’12, pages 550–557.

[15] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bot-
tleneck in the data domain deduplication file system. In
FAST’08, pages 1–14, 2008.

	Introduction
	Background and Related Work
	System Design
	Evaluation
	Conclusion Remarks

