
Cache-Conscious Performance Optimization for
Similarity Search

Maha Alabduljalil, Xun Tang, Tao Yang
Department of Computer Science

University of California, Santa Barbara
{maha,xtang,tyang}@cs.ucsb.edu

ABSTRACT
All-pairs similarity search can be implemented in two stages.
The first stage is to partition the data and group poten-
tially similar vectors. The second stage is to run a set of
tasks where each task compares a partition of vectors with
other candidate partitions. Because of data sparsity, access-
ing feature vectors in memory for runtime comparison in the
second stage, incurs significant overhead due to the presence
of memory hierarchy. This paper proposes a cache-conscious
data layout and traversal optimization to reduce the execu-
tion time through size-controlled data splitting and vector
coalescing. It also provides an analysis to guide the opti-
mal choice for the parameter setting. Our evaluation with
several application datasets verifies the performance gains
obtained by the optimization and shows that the proposed
scheme is upto 2.74x as fast as the cache-oblivious baseline.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess, Clustering; H.3.4 [Systems and Software]: Perfor-
mance evaluation

General Terms
Algorithms, Experimentation, Performance

Keywords
Similarity search, data layout and traversal, memory hierar-
chy

1. INTRODUCTION
All Pairs Similarity Search (APSS) [6], which identifies

similar objects among a given dataset, has many important
applications. For example, collaborative filtering provides
recommendations by determining which users have similar
tastes [29, 7], search query suggestions identifies queries with
similar search results [22], web mirrors and plagiarism recog-
nition [25], coalition detection for advertisement frauds [20],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’13, July 28–30, 2013, Dublin, Irland.
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

query suggestions [22], spam detection [8, 16, 14], cluster-
ing [5], and finally near duplicate detection [12, 30].

The complexity of a näıve APSS can be quadratic to the
dataset size. Previous research on expediting similarity com-
puting, developed filtering methods to eliminate unnecessary
computations [6, 28, 2], applied inverted indexing to com-
pare vectors only when they share features [18, 21], and
used partitioning and parallelization techniques [1]. The
LSH based mapping can approximately map vectors to the
same bucket when they are potentially similar. However,
none of the previously developed methods have considered
the impact of memory hierarchy on execution time. The
main memory access latency can be 10 to 100 times slower
than the L1 cache latency. Thus, the unorchestrated slow
memory access can significantly impact performance.

In this paper, we exploit memory hierarchy and develop
orthogonal techniques to improve the efficiency of APSS by
optimizing data layout and traversal methods. Specifically,
we investigate how data traversal affects the use of mem-
ory layers. This method is also motivated by the work in
query processing [23] and sparse matrix computation that
considers cache optimization in computation arrangement.

Similarity comparisons can be performed through a num-
ber of tasks where each of them compares a partition of
vectors with other candidate vectors [1].

We propose two algorithms PSS1 and PSS2 to exploit the
memory hierarchy explicitly. PSS1 splits the data hosted in
the memory of each task to fit into the processor’s cache and
PSS2 coalesces data traversal based on a length-restricted in-
verted index. We provide an analytic cost model and iden-
tify the parameter values that optimize the performance.
Hence, the contribution of this paper is a memory-hierarchy
aware framework for fast similarity comparison with opti-
mized data layout and traversal.

The rest of this paper is organized as follows. Section 2
reviews background and related work. Section 3 discusses
the design framework and PSS1 algorithm for cache-aware
data splitting. Section 4 analyzes cost model of PSS1 and
demonstrates the impact of the parameters on memory ac-
cess performance. Section 5 presents the optimization using
vector coalescing named PSS2. Section 6 is our experimental
evaluation that assess PSS1 and PSS2. Section 7 concludes
this paper.

2. BACKGROUND AND RELATED WORK
Following the definition in [6], the APSS problem is de-

fined as follows. Given a set of vectors di = {wi,1, wi,2,
· · · , wi,m}, where each vector contains at mostm non-negative
features and is normalized to a unit length, then the cosine-

based similarity between two vectors is computed as:

Sim(di, dj) =
∑

t∈(di∩dj)

wi,t×wj,t.

Two vectors x, y are considered similar if their similar-
ity score exceeds a threshold τ , namely Sim(x, y) ≥ τ . The
time complexity of APSS is high, especially for a big dataset.
There are application-specific methods applied to reduce the
complexity. For example, text mining removes stop-words or
extremely high frequent features [18]. We use such prepro-
cessing throughout the experiments in Section 6. Generally,
there are two groups of optimization techniques developed
in the previous work to accelerate APSS.

• Dynamic computation filtering. Partially accu-
mulated similarity scores can be monitored at runtime
and dissimilar pair of documents can be detected dy-
namically based on the given similarity threshold with-
out the complete derivation of the total similarity value
[6, 28, 21] .

• Similarity-based grouping in data preprocess-
ing. The search scope for similarity can be reduced
when potentially similar vectors are placed in one group.
One approach is to use inverted indexing [28, 18, 21]
developed for information retrieval [5]. This approach
identifies vectors that share at least one feature, as
potentially similar. Hence, it skips unnecessary data
traversal while conducting APSS. Another approach is
LSH that can approximately map similar vectors into
one group [11, 26]. This approach has a tradeoff be-
tween precision, recall ratio, and redundant computa-
tions when using multiple hash functions. The study
in [2] shows that exact comparison algorithms can de-
liver performance competitive to LSH when computa-
tion filtering are used.

Another approach is partition-based search [1] which
statically identifies dissimilar vectors to guide data group-
ing. Runtime computation avoids the comparison among
dissimilar vectors.

Cache optimization for computationally intensive applica-
tions is studied in the context of general database query pro-
cessing [23, 19] and matrix-based scientific computing [10,
9, 27, 4]. Motivated by these studies, we investigate the op-
portunities of cache-conscious optimization targeting APSS.

3. FRAMEWORK AND CACHE-AWARE
DATA SPLITTING

In this section, we give an overview of the partition-based
comparison framework [1] and then present the caching op-
timization strategies as our contributions.

3.1 Framework and basic algorithm
The framework for partition-based similarity search (PSS)

consists of two steps. The first step is to divide a dataset
into a set of partitions. During this process, the dissimilarity
relationship among partitions is identified so that unneces-
sary comparisons among them are avoided. The second step
is to assign a partition to a task and each task compares this
partition with other potentially similar partitions.

Dissimilarity-based partitioning identifies dissimilar vec-
tors as much as possible without explicitly computing the

product of their features. One approach is to use the fol-
lowing inequality that uses the 1-norm and ∞-norm of each
vector.

Sim(di, dj) ≤ min(||di||∞||dj ||1, ||dj ||∞||di||1) < τ.

The partitioning algorithm sorts the vectors based on their
1-norm values and uses the sorted list to identify dissimi-
lar pairs (di, dj) in complexity O(n logn) satisfying the in-
equality ‖di‖1 < τ

||dj ||∞
. A different τ value would affect

the outcome of the dissimilarity detection in the above par-
titioning. The details for the above static partitioning is
discussed in [1]. This paper focuses on optimizing the task
execution after the static partitioning is applied. Note that
this scheme can also be applied with LSH when approxima-
tions are allowed. When vectors are mapped into a set of
dissimilar buckets using LSH, some buckets can still be big
and the static partitioning can be further applied to divide
such buckets.

Figure 1: A PSS task compares the assigned partition A
with other partitions O.

Figure 1 depicts a task for partition-based similarity search
interacting with a CPU core with multiple levels of cache.
Two or three cache levels are typical in today’s Intel or AMD
architecture [17, 15]. We assume that the assigned partition
A fits the memory of one machine as the data partitioning
can be adjusted to satisfy such an assumption. But vectors
of O can exceed memory and need to be fetched gradually
from a local or remote storage. In a computer cluster with
the distributed file system such as Hadoop, a task can seam-
lessly fetch data from the file system without worrying about
the machine location of data.

The memory used by each task has three areas, as illus-
trated in Figure 1. 1) Area S: hosts the assigned partition
A. 2) Area B: stores a block of vectors fetched from other
candidate partitions O at each comparison step. 3) Area C:
stores intermediate results temporarily.

Figure 2 describes the function of a PSS task. Each task
loads the assigned vectors, whose data structure is in forward
index format, into area S. Namely, each vector consists of an
ID along with a list of feature IDs and their corresponding
weights, stored in a compact manner. After loading the
assigned vectors, the task inverts them locally within area
S. It then fetches a number of vectors from O, in forward
index format, and place them into area B.

Let dj be the vector fetched from O to be processed (Line
5). For each feature t in dj , PSS uses the inverted index
in area S to find the localized t’s posting (Line 10). Then
weights of vector di from t’s posting and dj contribute a par-
tial score towards the final similarity score between dj and
di. After all the features of dj are processed, the similarity

Task (A, O)

1: Read all vectors from assigned partition A into S
2: Build inverted index of these vectors and store in S
3: repeat
4: Fetch a set of vectors from O into B
5: for dj ∈ B do
6: Compare (S, dj)
7: until all vectors in O are fetched

Compare (S, dj)
8: Initialize array score of size |S| with zeros
9: rj ← ||dj ||1

10: for t ∈ dj And Posting(t) ∈ S do
11: for di ∈ Posting(t) and di is a candidate do
12: score[i]=score[i]+wi,t×wj,t
13: if (score[i]+maxw[di]×rj<τ) then
14: Mark di as non-candidate
15: rj = rj − wj,t
16: for i = 1 to |S| do
17: if score[i]>τ then
18: Write (di, dj , score[i])

Figure 2: PSS task.

scores between dj and the vectors in S are validated (Line
17) and only those that exceed the threshold are written to
disk. In Compare(S, dj), the dissimilarity of vector di in S
with dj can be marked (Line 14) by using a negative value
for score[i]. Array maxw[] contains the ∞-norm value of
vector di.

3.2 Cache-conscious data splitting
When dealing with a large dataset, the number of vectors

in each partition is high. Having a large number of vectors
increase the benefits of using inverted indexing as shown in
Figure 2. But it has a problem that the accessed areas S
or C may not fit in the fast cache. In that case, temporal
locality is not exploited, meaning the second access of the
same element during any computation will be a cache miss.
As we show in the next section, this leads to frequent slow
memory access and a significant increase in execution time.
Since fast access of each area S, B or C is equally important
in the core computation (Lines 12 and 13), one idea is to let
area C fit in L1 cache by explicitly dividing vectors of the
assigned partition in S into a set of splits and have the task
focus on one split at a time.

Figure 3: A partition in area S is further divided into mul-
tiple splits for each PSS1 task. Four data items are involved
in the core computation. The striped area indicates cache
coverage.

Figure 3 illustrates this cache-conscious data splitting idea.
The corresponding algorithm called PSS1 is shown in Fig-
ure 4. First, it divides the hosted vectors in S into q splits.
Each split Si is of size s. PSS1 then executes q comparison
sub-tasks. Each sub-task compares vectors from Si with a

Task (A, O)

1: Read and divide A into q splits
2: Build an inverted index for each split Si and store in S
3: repeat
4: Fetch a set of vectors from O into B
5: for dj ∈ B do
6: for Si ∈ S do
7: Compare (Si, dj)
8: until all vectors in O are fetched

Figure 4: PSS1 task.

vector bj in B. The access in area C is localized such that
array score[] and maxw[] can fully fit in L1 cache. This
improves temporal locality of data elements for area C and
reduces the access time by an order of magnitude. The core
computation speeds up as a result.

The data splitting also introduces potential benefits from
exploiting the multi-core CPU architecture via threads. Ev-
ery time a data block from O is fetched into B, there can be
multiple threads running in parallel to execute Compare(Si,
dj) where dj is a vector in B.

The question is, how to determine the s value of each split
so that the caches are best utilized? This is discussed next.

4. COST ANALYSIS AND CACHE PERFOR-
MANCE OF PSS1

We model the total execution time of each PSS1 task
and analyze how memory hierarchy affects the running time.
This analysis facilitates the identification of optimized pa-
rameter setting. Table 1 describes the parameters used in
our analysis. They represent the characteristics of the given
dataset, algorithm variables, and the system setting.

4.1 Task execution time
The total execution time for each task contains two parts:

I/O and computation. I/O cost occurs for loading the as-
signed vectors A, fetching other potentially similar vectors,
and writing similarity pairs to disk storage. Notice that in
fetching other vectors for comparison, the algorithm always
fetches a block of vectors to amortize the startup cost of
I/O. For the datasets we have used, read I/O takes about
2% of total cost while write I/O takes about 10-15%. Since
I/O cost is the same for the baseline PSS and our proposed
schemes, we do not model it in this paper.

For each split, the computation time contains a small over-
head for the index inversion of its s vectors. Because the
inverted index is built once and reused every time a parti-
tion is loaded, this part of computation becomes negligible
and the comparison time with other vectors dominates. The
core part (Lines 12, 13 in Figure 2) is computationally in-
tensive. Following Table 1, h is the cost of looking up the
posting of a feature appeared in a vector in B. Symbol ps
is the average length of postings visited in Si (only when a
common feature exists), so it estimates the number of itera-
tions for Line 10. Furthermore, there are 4 memory accesses
in Line 12 and 13, regarding data items score[i], wi,t, wj,t,
and maxw[di]. Other items, such as rj , and τ , are constants
within this loop and can be pre-loaded into registers. There
are 2 pairs of multiplication and addition involved (one in
Line 12 and one in Line 13) bringing in a cost of 2ψ. For
simplicity of the formula, we model the worst case where
none of the computations are dynamically filtered.

For a large dataset, the cost of self-comparison within the

Dataset
wd,t Weight of feature t in vector d
τ Similarity threshold
k Average number of non-zero features in d

Algorithm
S,B,C Memory usage for each task
n Number of vectors to compare per task (|O|)
s Avg. number of vectors for each split in S
b Number of vectors fetched and stored in B
Si A split in area S divided by PSS1
q Number of splits in S
h Cost for t-posting lookup in table
δtotal Cost of accessing the hierarchical memory
mj(X) Miss ratio in level j cache for area X
Dj(X) Number of misses in level j cache for area X
Dj Total number of access misses in level j cache
ps Average posting length in the inverted index

of each split Si
pb Average posting length in the inverted index

of b vectors in B
Infrastructure

l Cache line size
es, eb, ec Element size in S, B, C respectively
fs, fb, fc Effective prefetch factor for elements in S, B

and C respectively
δ1, δ2, δ3 Latency when accessing L1, L2, and L3 cache
δmem Latency when accessing main memory
ψ Cost of addition and multiplication

Table 1: Modeling Symbols

same partition for each task is negligible compared to the
cost of comparisons with other vectors in O. The execution
time of PSS1 task (Figure 4) can be approximately modeled
as follows.

Time = q
[
nk(

lookup︷︸︸︷
h +

multiply+add︷ ︸︸ ︷
ps × 2ψ) +

traverse S,B,C︷ ︸︸ ︷
δtotal

]
. (1)

As s increases, q decreases and the cost of inverted index
lookup may be amortized. In the core computation, ps in-
creases as s increases. More importantly, the running time
can be dominated by δtotal which is the data access cost due
to cache or memory latency. The data access cost is affected
by s because of the presence of memory hierarchy. We in-
vestigate how to determine the optimal s value to minimize
the overall cost in the following subsection.

4.2 Memory and Cache Access of PSS1
Here, we estimate the cost of accessing data in S, B, and

C. Define D0 as the total number of data accesses in per-
forming Compare(Si, dj) in Figure 4. Define Dj as the total
number of data access misses in cache level j. δi is the access
time at cache level i. δmem is the memory access time.

δtotal = (D0 −D1)δ1 + (D1 −D2)δ2 + (D2 −D3)δ3

+D3δmem.
(2)

To conduct the computation in Lines 12 and 13 of Fig-
ure 2, the program needs to access weights of Si, B, score[]
and maxw[] in C. We model these accesses separately then
add them together as follows:

D0 = D0(Si)+D0(B)+D0(C) =

Si︷ ︸︸ ︷
nkps +

B︷ ︸︸ ︷
nkps +

C︷ ︸︸ ︷
2nkps . (3)

Case Si C Description

(1)

m1
es
fsl

0 C fits in L1; Si does
not fit L1, but fits in
L2.

m2 0 0
m3 0 0

(2)

m1
es
fsl

ec
fcl Si and C do not fit

in L1, but fit in L2.m2 0 0
m3 0 0

(3)

m1
es
fsl

ec
fcl C does not fit in L1,

but fits in L2;
Si does not fit in L2
but fits in L3.

m2
es
fsl

0

m3 0 0

(4)

m1
es
fsl

ec
fcl Si and C do not fit

in L2, but fit in L3.m2
es
fsl

ec
fcl

m3 0 0

(5)

m1
es
fsl

ec
fcl C does not fit in L2

but fits in L3; Si
does not fit in L3.

m2
es
fsl

ec
fcl

m3
es
fsl

0

(6)

m1
es
fsl

ec
fcl Si and C do not fit

in L3.m2
es
fsl

ec
fcl

m3
es
fsl

ec
fcl

Table 2: Cases of cache miss ratios for split Si and area C in
PSS1 at different cache levels. Column 3 is the cache miss
ratio mj(Si) for accessing data in Si. Column 4 is the cache
miss ratio mj(C) for accessing data in C. Column 5 describes
the condition of each case.

Define Dj(X) as the total number of data accesses missed
in cache level j for accessing area X. mj(X) is the cache
miss ratio to access data for area X in cache level j.

Dj =Dj(Si) +Dj(B) +Dj(C)

=Dj−1(Si) ∗mj(Si) +Dj−1(B) ∗mj(B)

+Dj−1(C) ∗mj(C).

(4)

Table 2 lists six cases of miss ratio values mj(Si) and
mj(C) at different cache levels j. The miss ratio for B is
not listed and is considered close to 0 assuming it is small
enough to fit in L1 cache after warm-up. That is true for
our tested datasets. For a dataset with long vectors and B
cannot fit in L1, there is a small overhead to fetch it partially
from L2 to L1. Such overhead is negligible due to the relative
small size of B, compared to Si and C. We explain this table
in more details from the following aspects.

• A cache miss triggers the loading of a cache line from
next level. We assume the cost of a cold cache miss
during initial cache warm-up is negligible and the cache
replacement policy is LRU-based. Thus the cache miss
ratio for consecutive access of a vector of elements is
1
l/e

where l is the cache line size and e is the size of each

element in bytes. We assume that cache lines are the
same in all cache levels for simplicity, which matches
the current Intel and AMD architecture.

• The computer system prefetches a few cache lines in
advance, in anticipation of using consecutive memory
regions [17, 15]. Let fs be the effective prefetch factor
for Si, and es be the element size for Si. The cache
miss ratio for accessing Si is adjusted as es

fsl
. Similarly,

the cache miss ratio for accessing C is adjusted as ec
fcl

and the cache miss ratio for accessing B is adjusted as

eb
fbl

.

• In Case (1), s is small. C can fit in L1 cache. Thus
after initial data loading, its corresponding cache miss
ratios m1(C1), m2(C1), and m3(C1) are close to 0.
Then m1(Si) = es

fsl
, and m2(Si) and m3(Si) are ap-

proximately 0 since each split can fit in L2 (but not
L1). In this case, s is too small, the benefit of using
the inverted index does not outweigh the overhead of
the inverted-index constructions and dynamic look-up.

• In Case (2), Si and C can fit in L2 cache (but not L1).
m1(Si) = es

fsl
, and m1(C) = ec

fcl
. m2(Si) and m3(Si)

are approximately 0. Thus δtotal is:

δtotal =

[
nkps(1−

es
fsl

) + nkps + 2nkps(1−
ec
fcl

)

]
δ1

+

[
nkps

es
fsl

+ 2nkps
ec
fcl

]
δ2.

(5)

Hence task time is

T ime = q

[
nk(h+ ps2ψ) + nkps

(
4δ1 + (

es
fs

+
2ec
fc

)
δ2 − δ1

l

)]
.

• As s becomes large in Case (3) to Case (6), Si and C
cannot fit in L2 nor L3, and they need to be fetched
periodically from memory if not L3.

We illustrate s value for the optimal case. For the AMD
Bulldozer 8-core CPU architecture (FX-8120) tested in our
experiments, L1 cache is of size 16KB for each core. L2 cache
is of size 2MB shared by 2 cores and L3 cache is of size 8MB
shared by 8 cores. Thus 1MB on average for each core.
Other parameters are: δm = 64.52ns, δ3 = 24.19ns,δ2 =
3.23ns, δ1 = 0.65ns, l = 64 bytes. We estimate ψ = 0.16ns,
h = 10ns, ps = 10%s, fc = fs = 4 based on the results from
our micro benchmark. The minimum task time occurs in
Case (2) when Si and C can fit in L2 cache, but not L1. Thus
the constraint based on the L2 cache size can be expressed
as

s× k × es + 2s× ec ≤ 1MB.

While satisfying the above condition, split size s is chosen
as large as possible to reduce q value. For Twitter data, k
is 18, es is 28 bytes, and ec is 4 bytes. Thus the optimal s
is around 2K.

To show how the choice of s affects the task execution time
in Formula (1), we measure the ratio of the data access time
(including the inverted index lookup) over the computation
time:

Data-access

Computation
=

4δ1 + (es
fs

+ 2ec
fc

) δ2−δ1
l

+ h
ps

2ψ
.

This ratio captures the data access overhead paid to per-
form comparison computation and the smaller the value is,
the better. For Twitter benchmark, the above ratio is 8
for optimum case, while it increases to over 25 for Case (3)
and Case (4) where more frequent access to L3 cache is re-
quired. The data-access-to-computation ratio deduction is
supported by experiment results shown in Figure 5. It shows
that by selecting s based on our cost function, we are able
to reduce the data-access-to-computation ratio from 25 to 8.

When an optimum s is chosen, we manage to dramatically
reduce the slow cache/memory access out of the whole task
execution time.

 5

 10

 15

 20

 25

 30

5K 10K 15K 20K 25K

D
at

a
ac

ce
ss

 ti
m

e
to

 c
om

pu
ta

tio
n

tim
e

ra
tio

Split size: s

ratio

Figure 5: Y axis is the ratio of actual data access time to
computation time for Twitter data observed in our experi-
ments.

5. PSS2 WITH FEATURE-BASED VECTOR
COALESCING

In PSS1, every time a feature weight from area Si is loaded
to L1 cache, its value is multiplied by a weight from a vec-
tor in B. As Si does not fit in L1 cache, the utilization of
L1 for Si is low. L1 cache usage for Si is mainly for spa-
tial locality. Namely fetching one or few cache lines for Si
to avoid future L1 cache miss when consecutive data is ac-
cessed. The benifit of temporal locality is low, because the
same element is unlikely to be accessed again before being
evicted, especially for L1 cache due to its small size.

Another way to understand this weakness is that the num-
ber of times that an element in L1 loaded for Si can be used
to multiply a weight in B is low before this element of Si is
evicted out from L1 cache. PSS2 is proposed to adjust the
data layout and access structure in B in order to increase
L1 cache reuse ratio for Si. The key idea of PSS2 is listed
as follows.

• Once an element in Si is loaded to L1 cache, we com-
pare more vectors in B at each stage. Namely group
Si from S is compared with b vectors in B.

• We coalesce b vectors in B and build an inverted in-
dex from these b vectors. The comparison between Si
and b vectors in B is done by intersecting postings of
common features in B and Si.

• The above approach also benefits the amortization of
inverted index lookup cost. In PSS1, every term post-
ing lookup for Si can only benefit multiplication with
one element in B. In PSS2, every look up can po-
tentially benefit multiple elements because of vector
coalescing.

Figure 7 illustrates the data traversal pattern of PSS2
with b = 3. There is one common feature t3 that appears
in both Si and B. The posting of t3 in Si is { w1,3,w2,3}
and each iteration of PPS2 uses one element from this list,
and multiplies it with elements in the corresponding posting

PSS2 Task (A,O)
1: Read A and divide it into q splits of s vectors each
2: Build an inverted index for each split Si.
3: repeat
4: Fetch b vectors from O and build inverted index in B
5: for Si ∈ S do
6: Compare(Si, B)
7: until all vectors in O are compared

Compare (S, B)
8: Initialize array score of size s× b with zeros
9: for j = 1 to b do

10: rj ← ||dj ||1
11: for Feature t appears in B and S do
12: for di ∈ Posting(t) in S do
13: for dj ∈ Posting(t) in B and di is a candidate do
14: score[i][j]=score[i][j]+wi,t×wj,t
15: if (score[i][j]+maxw[di]×rj<τ) then
16: Mark pair di and dj as non-candidate
17: for dj ∈ Posting(t) in B do
18: rj = rj − wj,t
19: for i = 1 to s do
20: for j = 1 to b do
21: if score[i][j]>τ then
22: Write (di, dj , score[i][j])

Figure 6: PSS2 task.

of B which is { w4,3,w6,3}. Thus every L1 cache loading
for Si can benefit 2 multiplications with weights in B. In
comparison, every L1 loading of weights for Si in PSS1 can
only benefit one multiplication.

Figure 7: Example of data traversal in PSS2.

Increasing b values expands the size of areas B and C to
store b vectors and a 2D array score[][]. B and C may not
fit in L1, or even L2 cache anymore. Since L2/L3 cache has
higher latency, cache capacity restricts the value of b from
being too large. On the other hand, vectors in B are sparse
and b cannot be too small so that there is a sufficient number
of vectors sharing a feature after coalescing. Our experiment
in Figure 11 discusses this issue in more details.

Similar to PSS1, we can conduct a case-by-case analysis
for cache miss ratios of PSS2 based on how Si, B and C fit
in the different levels of cache. Then we can derive the s
and b ranges in each case.

6. EXPERIMENTS
We have implemented PSS, PSS1 and PSS2 in Java. Dur-

ing the evaluation, PSS, PSS1 and PSS2 are applied after
data preprocessing. In the default setting, static partition-
ing [1] is adopted to partition the dataset then, a set of
parallel tasks is executed following either PSS2 or PSS1. In

another setting (Table 3), LSH [11, 26] is applied first before
static partitioning.

We also evaluated another design option we refer to as
PSS3. PSS3 follows the previous scientific computing re-
search that views a sparse matrix as a collection of dense
small submatrices and employs BLAS3 to perform subma-
trix multiplication [10, 24, 27]. In this case, we represent
the feature vectors in S and B as a set of small submatrices
and use a highly optimized BLAS3 library called MTJ [13]
for the submatrix multiplication.

The evaluation has the following objectives:

1. Compare PSS1 and PSS2 with the baseline PSS us-
ing multiple application datasets. Study how the al-
gorithms behave with different dataset sizes.

2. Evaluate the choice and impact of s value for PSS1
and s and b for PSS2.

3. Illustrate the predicted and observed cache hit ratio.
Validate the accuracy of the cost model with respect
to the actual execution time.

4. Report the overall parallel performance.

5. Evaluate PSS3 to understand the issues of submatrix
multiplication for APSS.

Metrics. We report the running time for different al-
gorithms when the static partitioning is given. Since the
number of tasks is fixed, the overall parallel time is propor-
tional to the average task running time. Hence we mainly
report the average task running time to evaluate the perfor-
mance impact of adjusting split size and fetched block size.
The cost of self-comparison among vectors within a parti-
tion is included when reporting the actual cost. To assess
the scalability, we report the overall speedup for the paral-
lel performance, and measure the megaflops number as an
additional metric.

6.1 Datasets and experimental setup
The experiments are mainly conducted on a cluster of

AMD nodes where each node has 8 cores with 3.1GHz AMD
Bulldozer FX8120 and 16GB memory. They run the Hadoop
MapReduce environment. In reporting parallel speedup, we
have used a bigger cluster of Intel 12-core nodes and each
node has dual Intel X5650 six-core processors and 24GB
memory. The following five datasets are used.

• Twitter dataset containing 20 million tweets collected
from approximately 2 million unique users. The aver-
age number of features per vector is 18.32.

• A web dataset containing about 50 million web pages,
randomly selected from the Clueweb collection dis-
tributed by [3]. The average number of features is 320
per web page.

• Enron email dataset containing 619,446 messages from
the Enron corpus, belonging to 158 users with an aver-
age of 757 messages per user. The average number of
features is 107 per message. The corpus contains large
numbers of duplicated emails.

• Yahoo music dataset containing 1,000,990 users rating
624,961 songs to investigate the similarity among songs
for music recommendation.

• Google news webpages with over 100K news articles
crawled from Google.com. The average number of fea-
tures per article is 830.

The datasets are preprocessed to follow the TF-IDF weight-
ing after cleaning and stopword filtering [18].

6.2 Comparative studies for execution time and
impact of parameters

 1.5x

 2x

 2.5x

 3x

Twitter Clueweb Emails YMusic Gnews

 Im
pr

ov
m

en
t r

at
io

Benchmarks

PSS1 vs. baseline
PSS2 vs. baseline

 0x

 0.5x

 1x

Figure 8: Y axis is ratio TimePSS
TimePSS1

and TimePSS
TimePSS2

. The

average task running time includes I/O.

Figure 8 shows the improvement ratio on the average
task time after applying PSS1 and PSS2 over the baseline.
Namely TimePSS

TimePSS1
and TimePSS

TimePSS2
. PSS is cache-oblivious

and each task handles a very large partition that fits into the
main memory (but not fast cache). For example, each parti-
tion for Clueweb can have around 500,000 web pages. Result
shows PSS2 contributes significant improvement compared
to PSS1. For example, under Clueweb dataset, PSS1 is 1.2x
faster than the baseline PSS while PSS2 is 2.74x faster than
PSS. The split size s for PSS1 and s and b for PSS2 are
optimally chosen.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

250 500 1K 2K 5K 50K 250K

Av
g.

 ta
sk

 ti
m

e
in

 lo
g-

sc
al

e
(m

in
.)

Split size s

Clueweb
Twitter
Emails

Figure 9: The average running time in log scale per PSS1
task under different values for split size s. The partition size
S for each task is fixed, S = s× q.

The gain from PSS to PSS1 is achieved by the splitting
of the hosted partition data. Figure 9 shows the average
running time of a PSS1 task including I/O in log-scale with
different values of s. Notice that the partition size (S =
s × q) handled by each task is fixed. The choice of split
size s makes an impact on data access cost. Increasing s

does not change the total number of basic multiplications
and additions needed for comparison, but it does change the
traversal pattern of memory hierarchy and thus affects data
access cost. For all the datasets shown, the lowest value of
the running time is achieved when s value is ranged between
0.5K and 2K, consistent with our analytic results.

8

32

100

1K

1K 5K 10K 50K 100K 500K

C
oa

le
sc

in
g

si
ze

 b

Split size s

’-’ using 2:1:3

 200

 250

 300

 350

 400

 450

 500

 550

 600

Av
g.

 ta
sk

 ti
m

e
(m

)

Figure 10: Each square is an s × b PSS2 implementation
(where

∑
s = S) shaded by its average task time for Twitter

dataset. The lowest time is the lightest shade.

The gain of PSS2 over PSS1 is made by coalescing visits
of vectors in B with a control. Figure 10 depicts the average
time of the Twitter tasks with different s and b, including
I/O. The darker each square is, the longer the execution time
is. The shortest running time is achieved when b = 32 and
s is between 5K to 10K. When b is too small, the number of
features shared among b vectors is too small to amortize the
cost of coalescing. When b is too big, the footprint of area
C and B becomes too big to fit into L2 cache.

While PSS1 outperforms PSS in all 5 datasets, there is
an exception for Yahoo music dataset. The benefits of PSS2
over PSS1 depend on how many features are shared in area
B. The top and bottom parts of Figure 11 show the average
and maximum number of features shared among b vectors in
area B, respectively. Sharing pattern is highly skewed and
the maximum sharing is fairly high. On the other hand,
the average sharing value captures better on the benefits of
coalescing. The average number shared exceeds 2 or more
for all data when b is above 32 (the optimal b value for PSS2)
except Yahoo music. In the Yahoo music data, each vector
represents a song and features are the users rating this song.
PSS2 slows down the execution due to the low intersection
of the interest among users.

6.3 Cache Behavior and Cost Modeling
We demonstrate the cache behavior of PSS1 modeled in

Section 4.2 with the Twitter dataset. The Linux perf tool is
used to collect the cache miss ratio of L1 and L3.

Figure 12 depicts the real cache miss ratios for L1 and L3
reported by perf tool, the estimated L1 miss ratio which is
D1/D0, and the estimated L3 miss ratio which is D3/D2. L1
cache miss ratio grows from 3.5%, peaks when s = 8K, and
gradually drops to around 9% afterwards when s value in-
creases. L3 cache miss ratio starts from 3.65% when s=100,
reaches the bottom at 1.04% when s= 5K, and rises to al-
most 25% when s= 500K. The figure shows that the esti-
mated cache miss ratio approximates the trend of the actual

Av
g.

 n
um

be
r o

f s
ha

re
d

fe
at

ur
es

 Coalescing size b

Twitter
Clueweb
Emails
YMusic
Gnews

 0

 2

 4

 6

 8

 10

 12

 14

 16

8 16 32 64 128 256 512

Twitter
Clueweb
Emails
YMusic
Gnews

 0

 100

 200

 300

 400

 500

 600

8 16 32 64 128 256 512

M
ax

. n
um

be
r o

f s
ha

re
d

fe
at

ur
es

 Coalescing size b

Figure 11: The top is the average number of shared features
among b vectors. The bottom is the maximum number of
features shared among b vectors.

cache miss ratio well.
To validate our cost model, we compare the estimated

cost with experimental results in Figure 13. Our estimation
of cache miss ratios fits the real ratios quite well, reason-
ably predicts the trend of ratio change as split size changes.
When s is very small, the overhead of building and search-
ing the inverted indexes are too high and thus the actual
performance is poor. When s ranges from 50K to 80K, the
actual running time drops. This is because as s increases,
there is some benefit for amortizing the cost of inverted in-
dex lookup. Both the estimated and real time results suggest
that the optimum s value is around 2K. Given the optimum
s, PSS1 is twice faster than when s is 10K.

6.4 Performance of PSS1 and PSS2 with vary-
ing dataset sizes

We also compare the performance of PSS1 and PSS2 with
the baseline PSS when the dataset size changes.

Figure 14 shows the average running time of tasks under
the three algorithms for four benchmarks with varying input
size. We still observe the same trend that PSS1 outperforms
the baseline. PSS2 also outperforms PSS1 in all cases except
for Yahoo music benchmark. In that case, PSS1 is better
than baseline, which is better than PSS2 due to low sharing
pattern among the b vectors discussed in Section 6.2.

To reduce the required comparisons with an approxima-
tion, we tested the algorithms over an LSH implementation
from [26]. LSH is applied first then the static partitioning.
Table 3 compares the baseline with PSS2 after applying LSH
partitioning over Clueweb dataset with varying sizes. PSS2
is upto 2.55x as fast as PSS for the 50M dataset.

Figure 12: Estimated and real cache miss ratios for PSS1
tasks.

Dataset size #Buckets PSS (m) PSS2 (m)
10 M 176 233.34 98.07
50 M 513 1005.42 394.46

Table 3: PSS and PSS2 task time after LSH mapping for
Clueweb. The average number of partitions per bucket is
about 6.

6.5 Overall performance and a comparison with
PSS3

We assess the overall performance in terms of speedup in
processing the entire dataset when varying the number of
cores. Figure 15 reports the speedup (parallel time divided
by sequential time) for processing Twitter dataset with dif-
ferent numbers of cores in the Intel cluster aforementioned.
PSS2 scales well with more computing resources.

We also assess the individual task performance in utilizing
the CPU resource by collecting its megaflops rate and com-
pare it with the peak megaflops rate when vectors are dense.
Similarity computation can be viewed approximately as a
sparse matrix multiplication together with dynamic compu-
tation filtering. We assess the gap between how fast each
CPU core can do in terms of peak application performance
with a dense matrix and what our scheme has accomplished.
First we compare the megaflops performance of our Java

 0

 50

 100

 150

 200

 250

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

A
vg

. t
as

k
tim

e
(m

in
)

Split size: s

Actual time
Estimated time

Figure 13: Actual vs estimated average task time for PSS1
in 3M Twitter dataset while split size varies.

 0

 20

 40

 60

 80

 100

 120

 140

1M 2M 3M 4M 5M

Av
g.

 ta
sk

 ti
m

e
+

I/O
 (m

in
)

Dataset size

Baseline
PSS1
PSS2

(a) Twitter

 0

 200

 400

 600

 800

 1000

 1200

1M 5M 10M 20M 40M

Av
g.

 ta
sk

 ti
m

e
+

I/O
 (m

in
)

Dataset size

Baseline
PSS1
PSS2

(b) Clueweb

 0

 20

 40

 60

 80

 100

 120

100K 200K 300K 400K 500K

Av
g.

 ta
sk

 ti
m

e
+

I/O
 (m

in
)

Dataset size

Baseline
PSS1
PSS2

(c) Emails

 0

 10

 20

 30

 40

 50

 60

 70

100K 200K 400K 600K
Av

g.
 ta

sk
 ti

m
e

+
I/O

 (m
in

)
Dataset size

Baseline
PSS2
PSS1

(d) YahooMusic

Figure 14: Average task running time under Baseline, PSS1 and PSS2 over different datasets.

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 50 100 200 400

Sp
ee

du
p

ra
tio

 in
 p

ar
al

le
l t

im
e

Number of cores

Twitter
Clueweb

Figure 15: Speedup of PSS2 for processing 20M Twitter and
40M Clueweb with varying numbers of cores.

code with MTJ [13] from Netlib, which is highly optimized
for dense matrix multiplication. The megaflops numbers
achieved by a dense matrix multiplication routine (called
dgemm) in MTJ achieves 1500 megaflops for matrix dimen-
sion 1000 on a single core and achieves 500 megaflops for a
small dense matrix. Our scheme achieves 280 megaflops for
Twitter benchmark. That is fairly high considering we are
dealing with extremely sparse matrices.

In PSS3 design, we represent feature vectors in S and B as
a set of small dense submatrices and employ a built-in MTJ
BLAS3 dense matrix routine to multiply these submatirces.
The advantage of PSS3 is that we leverage MTJ, a highly op-
timized library for cache performance. The disadvantage is
that these small dense matrices still contain many zeros and

a BLAS3 routine does not remove the unnecessary computa-
tion operations as well as an inverted index does. Figure 16
lists the comparison between PSS3 and PSS2 performance,
with the ratio TimePSS3

TimePSS2
for different block settings. PSS3

is unfortunately much slower than PSS2. The reason is that
vector-feature matrices in the tested similarity applications
are extremely sparse and the PSS3 strategy with BLAS3
does not contribute enough benefits to counteract the intro-
duced overhead.

 20x
 25x
 30x
 35x

4 16 32

 D
eg

ra
da

tio
n

ra
tio

Block size in PSS3

Twitter
Clueweb
Emails

 5x
 10x
 15x

1x	

Figure 16: Y axis is ratio TimePSS3
TimePSS2

. PSS3 is slower than

PSS2 in general under different blocking sizes.

Table 4 provides another angle to explain why PSS3 slows
down the task. We list the average fill-in ratio of those
nonzero submatrices handled by PSS3. Fill-in ratio is the
number of stored values which are in fact zero divided by
the number of true nonzeros. The fill-in ratio is high and
the number of true nonzeros for each block is too low to gain
enough benefits with this blocked approach.

Block size 4×4 4×8 4×16 16×16 32×8 32×16
Twitter 2.5 3.7 3.9 6.2 5.3 7.7
Clueweb 2.6 8.2 4.8 5.6 4.4 6.2

Table 4: Average fill-in ratio with different block sizes.

7. CONCLUSIONS
The main contribution of this paper is the development

and analysis of cache-conscious data layout and traversal
schemes for partition-based similarity search. The key tech-
niques are to 1) split data traversal in the hosted partition
so that the size of temporary vectors accessed can be con-
trolled and fit in the fast cache; 2) coalesce vectors with
size-controlled inverted indexing so that the temporal local-
ity of data elements visited can be exploited. Our analy-
sis provides a guidance for optimal parameter setting. The
evaluation result shows that the optimized code can be upto
2.74x as fast as the original cache-obvious design. Vector
coalescing is effective if there is a decent number of features
shared among the coalesced vectors.

Acknowledgment
We thank Xifeng Yan, Alexandra Potapova, and Paul Weak-
liem for their support and feedback, and the anonymous ref-
erees for their thorough comments. This work is supported
in part by NSF IIS-1118106/0905084 and Kuwait University
Scholarship. Equipment access is supported by the Center
for Scientific Computing at CNSI/MRL under NSF DMR-
1121053 and CNS-0960316. Any opinions, findings, con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

8. REFERENCES
[1] Maha Alabduljali, Xun Tang, and Tao Yang. Optimizing

parallel algorithms for all pairs similarity search. In Proc.
of 6th ACM Inter. Conf. on Web Search and Data Mining
(WSDM), 2013.

[2] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik.
Efficient exact set-similarity joins. In VLDB’06.

[3] Language Technologies Institute at Carnegie
Mellon University. The clueweb09 dataset,
http://boston.lti.cs.cmu.edu/data/clueweb09.

[4] John R. Gilbert Aydin Bulu. Challenges and advances in
parallel sparse matrix-matrix multiplication. In ICPP, 2008.

[5] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[6] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan
Srikant. Scaling up all pairs similarity search. In
Proceedings of WWW, 2007.

[7] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and
Vreixo Formoso. Comparison of collaborative filtering
algorithms: Limitations of current techniques and proposals
for scalable, high-performance recommender systems. ACM
Trans. Web, 2011.

[8] Abdur Chowdhury, Ophir Frieder, David A. Grossman, and
M. Catherine McCabe. Collection statistics for fast
duplicate document detection. ACM Trans. Inf. Syst., 2002.

[9] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
I. S. Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Softw., 16(1):1–17, March 1990.

[10] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An
overview of the sparse basic linear algebra subprograms:
The new standard from the blas technical forum. ACM
Trans. Math. Softw., 28(2):239–267, June 2002.

[11] Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Similarity search in high dimensions via hashing. In VLDB,
1999.

[12] Hannaneh Hajishirzi, Wen tau Yih, and Aleksander Kolcz.
Adaptive near-duplicate detection via similarity learning.
In SIGIR, 2010.

[13] Heimsund Halliday.
http://code.google.com/p/matrix-toolkits-java.

[14] Nitin Jindal and Bing Liu. Opinion spam and analysis. In
Proceedings of the international conference on Web search
and web data mining, WSDM ’08, pages 219–230, 2008.

[15] David Kanter. Md’s bulldozer microarchitecture.
realworldtech.com, 2010.

[16] Aleksander Kolcz, Abdur Chowdhury, and Joshua
Alspector. Improved robustness of signature-based
near-replica detection via lexicon randomization. In
Proceedings of KDD, 2004.

[17] David Levinthal. Performance analysis guide for intel core
i7 processor and intel xeon 5500 processors. Intel, 2009.

[18] Jimmy Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with mapreduce. In
SIGIR, 2009.

[19] Stefan Manegold, Peter Boncz, and Martin L. Kersten.
Generic database cost models for hierarchical memory
systems. In VLDB ’02, 2002.

[20] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.
Detectives: detecting coalition hit inflation attacks in
advertising networks streams. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07.

[21] Gianmarco De Francisci Morales, Claudio Lucchese, and
Ranieri Baraglia. Scaling out all pairs similarity search with
mapreduce. In 8th Workshop on LargeScale Distributed
Systems for Information Retrieval (2010), 2010.

[22] Mehran Sahami and Timothy D. Heilman. A web-based
kernel function for measuring the similarity of short text
snippets. In WWW ’06, pages 377–386, 2006.

[23] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton.
Cache conscious algorithms for relational query processing.
In In Proceedings of the 20th VLDB Conference, pages
510–521. Morgan Kaufmann Publishers Inc, 1994.

[24] Kai Shen, Tao Yang, and Xiangmin Jiao. S+: Efficient 2d
sparse lu factorization on parallel machines. SIAM J.
Matrix Anal. Appl., 22(1):282–305, April 2000.

[25] Narayanan Shivakumar and Hector Garcia-Molina.
Building a scalable and accurate copy detection
mechanism. In DL’96 (ACM Inter. Conf. on Digital
libraries), pages 160–168.

[26] Ferhan Ture, Tamer Elsayed, and Jimmy Lin. No free
lunch: brute force vs. locality-sensitive hashing for
cross-lingual pairwise similarity. In SIGIR ’2011.

[27] Richard Vuduc, James W. Demmel, Katherine A. Yelick,
Shoaib Kamil, Rajesh Nishtala, and Benjamin Lee.
Performance optimizations and bounds for sparse
matrix-vector multiply. In ACM/IEEE Conf. on
Supercomputing, 2002.

[28] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu.
Efficient similarity joins for near duplicate detection. In
Proceeding of the 17th international conference on World
Wide Web, WWW ’08, pages 131–140. ACM, 2008.

[29] Yuan Cao Zhang, Diarmuid Ó Séaghdha, Daniele Quercia,
and Tamas Jambor. Auralist: introducing serendipity into
music recommendation. In Proceedings of the fifth ACM
international conference on Web search and data mining,
WSDM ’12. ACM, 2012.

[30] Shanzhong Zhu, Alexandra Potapova, Maha Alabduljali,
Xin Liu, and Tao Yang. Clustering and load balancing
optimization for redundant content removal. In WWW ’12:
Inter. Conf. on World Wide Web. Industry Track, 2012.

