
An Efficient Data Location Protocol for
Self-organizing Storage Clusters

Hong Tang and Tao Yang ∗

Department of Computer Science
University of California, Santa Barbara, CA 93106

{htang, tyang}@cs.ucsb.edu

ABSTRACT
Component additions and failures are common for large-scale stor-
age clusters in production environments. To improve availabil-
ity and manageability, we investigate and compare data location
schemes for a large self-organizing storage cluster that can quickly
adapt to the additions or departures of storage nodes. We fur-
ther present an efficient location scheme that differentiates between
small and large file blocks for reduced management overhead com-
pared to uniform strategies. In our protocol, small blocks, which
are typically in large quantities, are placed through consistent hash-
ing. Large blocks, much fewer in practice, are placed through a
usage-based policy, and their locations are tracked by Bloom fil-
ters. The proposed scheme results in improved storage utilization
even with non-uniform cluster nodes. To achieve high scalability
and fault resilience, this protocol is fully distributed, relies only
on soft states, and supports data replication. We demonstrate the
effectiveness and efficiency of this protocol through trace-driven
simulation.

1. INTRODUCTION
High-performance cluster-based storage is a critical component

for many large-scale data-intensive applications [2, 10, 12, 13, 14,
26, 37]. As scalable cluster-based storage becomes more widely
used in applications, availability and manageability become impor-
tant for a production system. Since application demand for storage
capacity constantly grows as faster computers with larger memory
at lower cost become available for more advanced computing, it is
desirable to expand a storage cluster incrementally over time [34].
On the other hand, node departures in a production storage cluster
occur periodically due to node failures or scheduled maintenance.
For example, at Ask Jeeves [1], a storage cluster with hundreds of
nodes is used to index billions of web pages continuously and disk
additions or failures can happen as often as once every few days.
It is desirable to have a storage cluster with sustained performance
and availability during storage node additions and departures. We
call a storage cluster that can adapt to the changes of cluster nodes
as self-organizing.
∗Also affiliated with Ask Jeeves/Teoma.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC ’03, November 15–21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011 ...$5.00.

Previous work on cluster-based storages mainly focuses on vir-
tualizing distributed storage resources as a single disk image and
delivering high I/O performance [10, 27, 37, 42]. They typically
assume that the set of cluster nodes is relatively stable and the map-
ping from file data (or metadata) to physical nodes are either fixed
or through modulus-based hashing. Thus a change in the set of
cluster nodes would require a reconfiguration of the storage system
and data need to be reassigned to new locations, which adversely
affects the availability and manageability of the system.

Adaptive data placement has been extensively studied in the peer-
to-peer (P2P) research community [11, 21, 35, 39]. In principle,
these schemes could be applied for a cluster-based storage system
for high availability. However, a local-area network (LAN) has
many different characteristics from a wide-area network (WAN)
and it is important to exploit the high-speed nature of a local-area
network for developing high performance self-organizing storage
clusters. For instance, in Chord, each node maintains a finger ta-
ble of size O(log N) and a data location request requires O(log N)
network communications, where N is the number of member nodes
of the P2P network. In a LAN, N is typically small and it is afford-
able to maintain a global picture of the set of nodes, which then
could reduce the number of network communications to one.

To accommodate the fact that storage resources and data loca-
tions are dynamically changing, this paper studies a flexible data
location scheme such that the address mapping from data to stor-
age nodes is adaptive to the change of storage nodes. Our proto-
col can be used in existing cluster-based parallel file systems such
as PVFS [10] to extend their capability to handle dynamic cluster
environments. Our protocol design, inspired by previous research
projects on distributed data location protocols, specifically targets
the cluster environment.

The primary contribution of this work is that it takes advantage of
the fact that in a file system, most of the files are small, while most
of the space is taken by a small fraction of large files to reduce the
protocol management overhead. When using variable-sized blocks
to organize file data, the size distribution of blocks also exhibits the
same pattern, namely, most blocks are small while most space is
taken by large blocks. Our protocol differentiates between small
and large blocks as follows: The locations of small blocks are cho-
sen by consistent hashing [23]. Large blocks are placed based on
a usage-based mechanism or any method that exploits I/O paral-
lelism or data locality, and Bloom filters [7] are used to keep track
of their locations. The proposed scheme improves storage utiliza-
tion even with non-uniform cluster nodes. This protocol is fully
distributed, relies only on soft states, and supports data replication.
Through experiments, we show that the differentiated protocol de-
sign is much more efficient than uniform strategies in three aspects:
access efficiency, storage utilization, and management overhead.

The rest of the paper is organized as follows: Section 2 describes
our targeted architecture and the design goals. Section 3 compares
various data location schemes. Section 4 presents our differenti-
ated data location protocol design. We evaluate the performance of
our protocol design in Section 5 through trace-driven simulations.
Section 6 concludes the paper.

2. ARCHITECTURE ASSUMPTIONS AND
DESIGN OBJECTIVES

In this paper, we mainly target a generic storage cluster where
a number of commodity PCs or workstations are connected by a
high-bandwidth low-latency network. Each node in the cluster has
storage devices attached to it. We follow three architecture features
proposed in the previous work:

• Share-nothing architecture. Storage devices are only ac-
cessible from the hosts to which they are attached. This dif-
fers from the shared-disk architecture adopted by GPFS [37]
or Snappy [27] where each storage device may be accessed
from multiple nodes. The shared-disk architecture requires
special hardware support while one of our design principles
is to employ commodity hardware components as much as
possible so that the cost-effectiveness of the cluster archi-
tecture will not be compromised1 . Systems based on the
share-nothing architecture include Petal/Frangipani [26, 40]
and PVFS [10].

• Functionally symmetric nodes. There are no explicit func-
tional distinctions among cluster nodes. All nodes can carry
the tasks of computation and storage management. This choice
is different from systems such as Slice [4] or Coda [24] where
there is a dedicated set of nodes acting as servers or storage
suppliers. The concept of a functionally symmetric archi-
tecture is not new and is similar to the serverless design of
xFS [5] in spirit. A functionally symmetric design can sim-
plify administration tasks, smooth system expansion, and is
more resilient to failures. We want to emphasize that func-
tional symmetry does not mean architectural uniformity. Our
system design targets a typical cluster environment where it
is common to have nodes with different processing power or
storage capacity.

• Resource virtualization. To make a cluster-based file sys-
tem easy to use and manage, it is important to have a uniform
namespace and virtualize distributed storage resources as a
single disk volume. This goal has been the main design ob-
jective of a number of parallel or cluster-based file systems
such as GPFS [37] and PVFS [10]. On the other hand, dis-
tributed file systems such as NFS [3] and Coda [24] do not
provide storage virtualization because a file cannot span mul-
tiple servers (however, they do export a uniform namespace
through the UNIX mount mechanism).

The focus of our research in the above context is to deal with
the changes of storage cluster configuration while providing high
availability. There are always changes in a storage cluster over
time: existing machines may fail or exhausts its usage lifespan,
and new machines can join the cluster as the demand for storage
capacity increases. We envision a storage system must have 24x7
availability to the applications; namely, the configuration change
1This argument does not imply that shared-disk architecture is a
bad design. In fact, shared-disk architecture can be the choice of
design where very high performance and availability is required.

in the system should have little or no impact to the system avail-
ability. Previous research on distributed file systems or storage sys-
tems [4, 5, 10, 19, 20, 26, 37, 42] mainly assume that the set of
nodes supplying storage resources is relatively stable, and the map-
ping from file data (or metadata) to physical nodes are either fixed
or determined through modulus-based hashing (details of some of
these data location schemes will be discussed in Section 3.). Typi-
cally, a change in the storage node membership would require sys-
tem reconfiguration and data migration, which interrupts the avail-
ability of the system. The goal of self-organizing is to let the sys-
tem automatically adapt to the changes of the cluster environment.
When a new node joins the cluster, its storage resource will be au-
tomatically “merged” into the virtualized storage space; when a
node leaves the cluster, its storage resource will automatically be
excluded from the virtualized storage space.

The following optimization objectives are considered in our de-
sign:

• Data access performance and reliability. Performance is
always the overriding concern for a cluster-based system sup-
porting today’s I/O-intensive applications. Data access per-
formance can be further broken down into two parts: data
location performance and data transfer performance. We fo-
cus on optimizing data location performance for fast lookup
and placement in a large-scale cluster. Reliability is also an
important aspect to be considered. A centralized server with
fast lookup is not acceptable because it is a potential single-
point of failure.

• Storage utilization. The system should be able to effectively
utilize the available storage space. As node additions and
departures occur, the distribution of file blocks in the cluster
can become uneven and some space may not be usable due to
the restriction of mapping method, as will be shown in later
sections.

• Maintenance overhead. As the cluster configuration changes,
the metadata for the location information may also need to
change. Additionally, data migration may be necessary to
maintain the data locations in the cluster in a consistent state.
During this process, the system may consume various re-
sources to maintain the consistency of state information and
it is desirable to keep such maintenance cost low.

3. DESIGN CHOICES AND A COMPARI-
SON OF DATA LOCATION SCHEMES

3.1 Problem Statement
We consider that the physical data of a user-perceived file are

divided into blocks and are organized as a tree. Non-leaf blocks
(called index blocks) contain pointers to other blocks, and the ac-
tual file data are stored in leaf blocks (called data blocks). Each
block is stored in its entirety on a cluster node. We use a uni-
fied address space to address these blocks. The address space can
be set to be large enough (128-bit integers) that block addresses
(called BlockIDs) can be generated in a distributed fashion with-
out worrying about collisions. To support files with a wide range
of sizes, from several kilobytes to several terabytes, the sizes of
blocks are typically not fixed [10, 15, 37, 43]. Figure 1 illustrates
several examples of how file data are organized as a tree of blocks:
Small files may be represented by a direct data block (Figure 1(a)).
Large files may have one index block and a set of data blocks (Fig-
ure 1(b)). Very large files may require multiple levels of indexing

0xf4a5

data

...

(a) A small file
represented by
a data block.

0x14fb

0x463d

0x4da2

0xb9e0

index
0x463d
0x4da2
0xb9e0

data
...

data
...

data
...

(b) A large file with
an index block and a
set of data blocks.

0xbf05

0x2dff

0x820d

0x5c53

0x2656

0x8f45

0x4b51

0x87db

index
0x2dff
0x820d
0x5c53

data
...

index
0x2656
0x8f45

index
0x4b51
0x87db

data
...

data
...

data
...

data
...

(c) A very large file
with multiple levels of
index blocks.

Figure 1: Tree-based data organization. The top slot of each block marks whether it is a data block or index block. In this example, BlockIDs
are 16 bits integers.

(Figure 1(c)). Such a structure is quite general, for instance, the
data organization schemes used by OceanStore [36], PVFS [10], or
PIOFS [15] can all be considered as special cases of such a tree-
based data organization scheme. An additional advantage of such a
scheme is that each file can be uniquely identified by the BlockID
of the root block (called FileID).

Note that file system namespace management is orthogonal to
data organization. For example, we can have a dedicated names-
pace server that maps human understandable pathnames to the cor-
responding FileID. We can alternatively implement file system di-
rectories as special files, which further contain names and FileIDs
of the files or sub-directories stored in it (then all we need to know
is the FileID of the root directory). Scalable and reliable names-
pace management has been studied in various research projects [4,
8, 37], and is not the focus of this paper2.

The problem of data location is to derive and maintain the map-
ping function F from the block address space B to the set of cluster
hosts H. Given a new data block, we need to find a host (or several
hosts under a replication scheme) to host this block, and add the
mapping between the BlockID to the host ID (or host IDs). When
accessing a data block, we need to retrieve the host (or hosts) that
maintains the block. There are a number of issues that need to be
considered in designing a data location scheme:

• How are data mapped to hosts? There are a number of
objectives driving different data mapping strategies. In the
previous research, striping or related methods are studied for
exploiting parallel I/O [10, 15, 37]. Copies of data can be
mapped to multiple locations for better fault tolerance. Bal-
ancing space usage among nodes is another strategy so that
data blocks are evenly distributed among machines, which
allows a higher degree of I/O parallelism. Chang et al. [12]
further proposed to cluster relevant data together on a same
host to reduce disk seek time.

• How is the mapping information maintained? If data are
placed on hosts without any restriction, an explicit table for
block mapping needs to be maintained. Additionally, the

2However, we did implement a namespace server for practical us-
age in this project.

mapping information needs to be made available to any node
that needs to access blocks on behalf of an application.

If the mapping is computable through some pre-defined func-
tion, an explicit table for block mapping is not necessary. In
this case, there will be no cost for maintaining the consis-
tency of the mapping information across nodes. However,
such a function may increase the maintenance overhead in
the event of node additions or departures, and lead to imbal-
ance in data distribution.

• What is the impact of node additions or departures on the
mapping table maintenance? When nodes join or leave the
system, the mapping table may need to be updated. If the
change of cluster size affects data mapping, data blocks need
to be migrated among nodes in order to keep the mapping
consistent. When the table is replicated, any changes to the
mapping table need to be applied to all the replicas.

When dealing with a large storage cluster hosting terabytes
of data, the migration cost should be minimized. Otherwise,
moving a large amount of data would reduce the availability
of such a cluster, affect the system performance, and increase
operation challenge if human intervention is required to fix
some unexpected problems.

3.2 Data Location Schemes
Data location has been extensively studied in previous research

on distributed and parallel file systems. Additionally, recent re-
search on peer-to-peer network also proposed various interesting
data location schemes. In the following sections, we present a com-
parison of these schemes which are used with some modification in
our context. Throughout the following discussion, we let N be the
number of physical blocks in the system, H be the number of hosts
in the cluster (N � H), and S be the total volume of stored data.

We categorize data location schemes into two types based on
whether the mapping information is replicated or partitioned among
cluster nodes.

3.2.1 Replicated Mapping Table and Bloom Filter
A simple approach is to implement F as a globally replicated

mapping table [27]. Each entry in the table specifies a 〈BlockID,
Host〉 pair. The space requirement for this table would be O(N),

and the lookup cost is O(log N) (suppose the table entries are
sorted by BlockIDs). The main problem of this approach is that
the size of the mapping table could be very large in supporting a
large-scale storage cluster with billions of file blocks. A back-of-
the-envelope calculation shows that it would take as much as 2GB
memory to store such a table with one hundred million entries.

An improved approach is to “compress” the mapping table us-
ing Bloom filters [7]. Bloom filters have been used in Summary
Cache [18] and OceanStore [25]. A Bloom filter is a compact data
structure to encode a set of keys (in our case BlockIDs) in a bit ar-
ray and can be used to check whether a given key is in that set with
a small percentage of false positive.

� � � �

��� ���
��� 	
�� ���� � � � ��	 �

��� ��� � � � ���

x

0 1−m

)(2 xf)(1 xf)(3 xf)(4 xf

)(2 xf)(1 xf)(3 xf)(4 xf

Figure 2: Adding a key to a Bloom filter using four hash functions.

To encode a set B = {b1, b2, ..., bn} of n keys into an m-bit
Bloom filter, we first initialize all bits to 0. We then use a group
of j independent hash functions {f1, f2, ..., fj} to set some bits in
the bit array (fi hashes a key to an integer between 0 and m − 1).
Specifically, for each key bi, we set the bits f1(bi), f2(bi), ..., and
fj(bi). Figure 2 illustrates how we add a key into a Bloom filter
using four hash functions. To check whether a key x is in B, we
simply test whether the bits f1(x), f2(x), ..., and fj(x) are all
set. If any of those bits are not set, we are sure that x is not in B.
However, it does introduce a small percentage of false positive, i.e.,
when all those bits are set, there is a small chance that x may not
be in B. Sacrificing a small amount of certainty, Bloom filters can
reduce the space requirement by at least one order of magnitude.
For example, it is possible to use only 150MB memory to encode
one hundred million BlockIDs with a false positive rate less than
0.4% using six hash functions. In practice, j is typically statically
determined to limit the false positive rate, and m is dynamically
adjusted to maintain the percentage of set bits to be around 50%.

To manage data location information using Bloom filters, each
host maintains a Bloom filter that encodes all the blocks stored lo-
cally. It also broadcasts updates of the Bloom filter to all other hosts
on the cluster. So each host keeps H − 1 additional Bloom filters,
one for every other host. To lookup a BlockID b, we iterate through
all the Bloom filters and perform the membership test. If a test of b
on host hi’s Bloom filter is positive, then b can be accessed on hi

with high probability. False positives will be discovered eventually
when we try to access the block from a host that does not have it.
The space requirement for Bloom filters is still O(N), but the con-
stant factor is much smaller than the replicated mapping table case.
The lookup cost is O(H).

3.2.2 Partitioned Mapping Table
A Bloom filter table could still be large and in order to avoid the

scalability problem, we can partition the mapping information so
that each host only manages a portion of the mapping information.
Basically, we designate a host for each BlockID which is responsi-
ble for resolving the location of that block. This host is called the
home host of that block. The host that actually stores a block is
called the owner of the block. A lookup operation first determines
which host is the home host of a BlockID, and then finds the owner
of the block through the home host. Thus each lookup involves
both computation and communication.

An extension of the naive approach described previously is to
use a global redirection table to determine the home host of a block.
The size of the redirection table is in the order of H , and each entry
contains a host ID. Given a BlockID b, we take a modulus operation
with the table size as the base and use the result to index into the
redirection table. The host stored in the corresponding entry will
be the home host of block b. Variations of this scheme has actu-
ally been adopted by Petal [26], xFS [5] and Slice [4]. The space
requirement on each host is now O

�
N
H

+ H � , and the lookup cost
is O(log N − log H)≈O(log N) plus one network operation. One
drawback of this scheme is that whenever a node joins or leaves
the network, the global redirection table needs to be modified con-
sistently to reflect the change. In previous research, this typically
requires the system to enter a recovery mode and could result in a
disruption of the service [5, 26].

Various distributed hash table (DHT) schemes for P2P systems
such as Chord [39], Tapestry [21], and Pastry [11] can also be re-
garded as data location schemes where mapping information is par-
titioned among hosts. Because those schemes must work over a
WAN, it is not possible to maintain the replication consistency of a
global redirection table. Instead, they use some distance metrics to
establish the distance between a key (or BlockID in our case) and a
host, and designate the host that is the closest to a certain BlockID
to be the home host of that block. Each node keeps a routing table
with a small number of entries that allows it to forward a lookup
request to a host that is closer to the BlockID than itself. The rout-
ing process guarantees it takes at most O(log H) network hops to
locate the home host of a certain BlockID. At the home host, it
again takes O(log N − log H)≈O(log N) CPU cycles to locate a
block’s owner. The total space requirement is O

�
N
H

� . An impor-
tant advantage of these DHT schemes over the partitioned mapping
table scheme is that they can automatically adapt to node additions
or departures without any special reconfiguration.

Given the fact that it is relatively easy to maintain a consistent
view of the set of hosts on a LAN, we can improve the lookup
efficiency by reducing the number of network operations. For in-
stance, we can modify the Chord scheme by changing the routing
table (called the finger table in the original paper [39]) such that
it maintains all the hosts in the cluster, then we can determine a
BlockID’s home host directly and thus reduce the total number of
network operations to just one.

When the set of hosts changes, the partition of BlockIDs among
hosts could also change. When a BlockID’s home host changes,
its original home host needs to forward the BlockID’s owner ad-
dress to the new home host. Suppose the mapping information is
evenly partitioned among hosts, the bandwidth requirement would
be O

�
N
H

� when a host joins or leaves the cluster.
One complication in the partitioned approach is that we still need

to use replication to improve the availability of each mapping table
partition in addition to the fault tolerance issue for data blocks.

3.2.3 Controllable versus Uncontrollable Data
Placement

The above schemes all assume that physical blocks are placed in
a controllable fashion. For example, a block is placed following the
parallel I/O principle using striping or to balance the space usage.
The storage system designer or application users can decide data
placement policies based on their needs. As a result, the mapping
information has to be maintained in a table.

If the requirement of controlled placement is relaxed, and if we
can compute the location of a block directly using a function, then
the mapping table is not needed, which eliminates the need to store
mapping information explicitly and avoids consistency issues in

Scheme Space CPU-cost Net-ops Mig-overhead Weakness
GMAP O(N) O(log N) 0 0 High space overhead.

BLOOM O(N) O(H) 0 0 Space requirement may still be too high.
PMAP O(N/H) O(log N) 1 O(N/H) Cannot automatically adapt to cluster member changes.

P2P-DHT O(N/H) O(log N) O(log H) O(N/H) High network communication overhead.
Chord-LAN O(N/H) O(log N) 1 O(N/H) Still requires network communication.

DCH O(H) O(log H) 0 O(S/H) Uncontrollable placement.
LH* O(1) O(1) 0 O(S/H) Uncontrollable placement; centralized coordinator.

Figure 3: A comparison of data location schemes. A list of notations: N – number of blocks; H – number of hosts (we assume N
H

� H);
S – total volume of stored data; GMAP – replicated mapping table; BLOOM – Bloom filters; PMAP – partitioned mapping table; P2P-
DHT – distributed hash table schemes proposed by P2P community; Chord-LAN – modified Chord with complete host table; DCH – direct
placement using consistent hashing; LH* – distributed linear hashing. Note the column “Mig-overhead” means the additional bandwidth
requirement to migrate data when a host joins or leaves the cluster.

maintaining such a table across multiple nodes. To achieve this
computable mapping, we can use consistent hashing [23] (referred
to as DCH in this paper) or distributed linear hashing LH* [28, 29,
30]. The basic idea is to let the home host of a certain BlockID
store the actual physical block instead of a pointer to the owner of
the block. The space requirement is much smaller, ranging from a
constant for LH* to O(H) for DCH, and data lookup only involves
computation which varies from a constant for LH* to O(log H) for
DCH. Although LH* seems more efficient than DCH, it actually re-
quires a centralized coordinator that controls the update of two inte-
ger counters. The coordinator does not become a threat toward the
system scalability because the work involved is fairly light-weight
(incrementing the counters or reporting the current values of the
counters); however, it is a potential single-point-of-failure.

The price we pay for computable mapping is that data placement
becomes uncontrollable, because a hashing function does not con-
sider if there is space available for hosting a block or not. Thus a
certain amount of free space must always be reserved to keep such
a scheme working, which leads to wasted space. Several techniques
are proposed to improve storage utilization [9, 16, 22, 23, 29].
However, it remains a hard problem to maintain high storage uti-
lization, especially in a heterogeneous environment where cluster
nodes are added with different capacities.

It should be noted that for uncontrollable data placement, when
the set of hosts changes, we need to migrate the physical blocks
instead of pointers. The bandwidth consumption for migrating the
blocks is O

�
S
H

� for DCH when a host joins or leaves the clus-
ter [23]. If a modulus-based hashing method is used, almost all
data blocks need to be migrated when the number of hosts changes.

3.2.4 A Summary of the Comparison
Figure 3 gives a comparative summary of the data location schemes

described above. For each scheme, we also show its weakness com-
pared to other schemes. The schemes are listed in the descending
order of their space requirement, which reflects the memory con-
sumption. For all these schemes, the CPU requirement is quite
low. In essence, these schemes can be divided into three differ-
ent classes: (1) Unscalable memory requirement but fast access
speed (GMAP and BLOOM); (2) Scalable memory requirement
but low access speed (PMAP, P2P-DHT and Chord-LAN); (3) Very
low memory requirement and high access speed, but uncontrollable
data placement (DCH and LH*).

4. DIFFLOC: A DIFFERENTIATED DATA
LOCATION PROTOCOL

Each scheme described in Section 3.2 has strengths and weak-

nesses. Our solution is to combine multiple schemes together and
dynamically decide which scheme should be used to locate a cer-
tain block. Specifically, we place and locate small file blocks through
DCH, and we place large file blocks based on storage availability
and locate them through Bloom filters. In this section, we first
present the motivation behind such a design, followed by a descrip-
tion of the main modules of the protocol. We conclude this section
with a discussion of various subtle details of the protocol design.

4.1 Motivation
The idea of differentiated treatment of small and large file blocks

is motivated by previous studies by Baker et al. [6] and Vogels [41],
in which they found that large files and small files exhibit different
characteristics in terms of user activities, access patterns, and their
life time. Particularly, in terms of file size distribution, it turns out
that most operations are on small files while most bytes transferred
are for large files. This could be translated into the statement that
the majority of files in a file system are small files, but the majority
of disk space is consumed by large files. Additionally, small files
are created and deleted more frequently than large files. Both stud-
ies are based on typical interactive usage of file systems. However,
we believe the conclusions still hold for non-interactive workload.
To confirm our belief, we studied the file size distributions for three
systems under non-interactive usage: (1) Storage for offline pro-
cessing of a commercial search engine at Ask Jeeves/Teoma (such
as page crawling and indexing) (Service-offline); (2) Storage for
online database generation and data aggregation of the same com-
pany (Service-online). (3) A backup archive server for a research
lab at UCSB (Group-archive). Service-offline and Service-online
consist of disks scattered on multiple hosts, and Group-archive con-
sists of three disks attached to the same server.

Service-offline Service-online Group-archive
Total files 489,601 34,235 301,448
Total size (MB) 7,167,382 1,978,640 152,833
%-files using 90%-space 1.3 6.9 7.1
%-files using 95%-space 4.3 8.1 16.1
%-files using 98%-space 9.1 8.8 23.3
Knee-point(%-files,%-space) (3.1,94.0) (9.5,99.7) (5.5,88.8)

Figure 4: The statistics and characteristics of three file systems un-
der non-interactive workload.

The sizes and numbers of files in these three systems are shown
in Figure 4. The file size distributions for these systems are shown
in Figure 5. The x-axis in Figure 5 is the percentage of total files.
The y-axis is the cumulative size of the largest x percent files, ex-
pressed as a percentage of the total data volume. To make the re-

sults easier to comprehend, Figure 4 further shows the knee points3

on the file size distribution curves, as well as the percentages of
files accounting for 90%, 95% and 98% of the total data volume.
As we can see, the file size distribution is heavily skewed in all
three systems. Additionally, for Service-online and Service-offline,
which are used by data-intensive components in an Internet search
engine, more than 90% of the files take up only 2% of the total
space.

0 20 40 60 80 100
0

20

40

60

80

100

Pecentage of files (%)

P
er

ce
nt

ag
e

of
 c

um
ul

at
iv

e
sp

ac
e

(%
)

File size distribution

Service−offline
Service−online
Group archive

Figure 5: Cumulative file size distribution for three file systems
under non-interactive workload. We sort files based on their sizes
in descending order. x-axis is the percentage of total files; y-axis is
the cumulative file size normalized as a percentage of the total data
volume. A point (x, y) on a curve means that the largest x% files
account for y% of the total space taken.

It should be noted that we use the number of files and their sizes
as units to illustrate that storage space is dominated by a small num-
ber of large files even though there are a large number of small files.
However, since we typically choose large block sizes for large files
and small block sizes for small files when organizing file data in a
storage cluster, it is reasonable to infer that the capacity of a large
storage system is usually dominated by a relatively small number
of large data blocks even though there are a large number of small
data blocks.

Based on this observation, we seek to use different data location
schemes to manage blocks with different sizes. First, we can see
that if we use DCH to manage only small blocks, then the amount
of wasted space that must be reserved to accommodate the uncon-
trolled placement can be significantly reduced because small blocks
only take a small percentage of total storage space. For the same
reason, the amount of data that needs to be migrated in the event of
host additions or departures is also reduced. Second, if we only use
BLOOM to manage large blocks, the amount of memory required
by the Bloom filters can also be significantly reduced because the
number of large blocks is only a fraction of total blocks. In addi-
tion, all lookup requests can still be served without communicating
with other hosts. Figure 6 compares this differentiated data loca-
tion scheme (which we call Diffloc) with DCH and BLOOM in
terms of the optimization objectives specified in Section 2. As we
can see, Diffloc enjoys the efficiency of both BLOOM and DCH
while avoiding either scheme’s weaknesses.

4.2 Protocol Design
The Diffloc protocol does not require centralized control. On

3A knee-point is defined as the point on a curve where the gradient
is 1.0.

DCH BLOOM Diffloc
Storage utilization − + +

Migration overhead − + +
Memory consumption + − +

Access efficiency + + +
Figure 6: A qualitative comparison of Diffloc with DCH and
BLOOM. We define goodness as high storage utilization, low man-
agement overhead, or high access efficiency. We rank the schemes
using marks of “+” (good), “−” (bad), or “.” (fair, which happens
not to be used).

each participating cluster node there is a Diffloc daemon that con-
tains three cooperative modules: (1) protocol state management;
(2) data placement and location request handling; (3) local storage
management.

4.2.1 Protocol State Management
Each host maintains two data structures: a set of live hosts (for

DCH) and an array of Bloom filters (for BLOOM). All hosts sub-
scribe to the same multicast channel, through which they periodi-
cally send their local states and receive state updates from remote
hosts. The state information includes the host’s current load con-
dition, the amount of available storage space, and the Bloom filter
that encodes its locally stored large blocks. A host learns about
the set of live hosts simply by monitoring the state update packets
(called heartbeat packets). The absence of heartbeat packets from
a certain host for a prolonged period (e.g., ten times the average
update interval) will prompt other hosts to remove that host from
the live set.

It is not feasible to send out the whole Bloom filter every time a
host announces its states. The Diffloc daemon keeps track of what
bits have been set or cleared during the past announcement interval
and only sends out an incremental update of the Bloom filter. This
approach has also been suggested by Summary Cache [18].

4.2.2 Requests Handling for Data Placement and
Location

The Diffloc daemon is responsible for handling all data place-
ment or location requests originated from applications running lo-
cally. To adaptively switch between the DCH and BLOOM proto-
cols, an important question is how to determine whether a block is
a small block or a large block. As can be seen in Figure 4, the aver-
age block sizes for different applications may be different and there
is no universally applicable threshold size to distinguish these two
categories of blocks. Ideally, we would like to choose the threshold
size around the knee-point. However, the knee-point cannot be de-
termined until a file system is populated with blocks. On the other
hand, maintaining a global threshold among all hosts requires us
to run a consensus protocol every time this threshold is changed,
which could limit the system’s scalability and can fail during net-
work partitions.

In this paper, we let each host maintain a per-host threshold size
and periodically announce it through the multicast channel. The ad-
justment of the threshold is based on the size distribution of blocks
stored on a host and is part of the local storage management, which
will be discussed in Section 4.2.3.

Figure 7 shows how the Diffloc daemon places (place_block)
and locates (lookup_block) blocks based on the per-host thresh-
old sizes. Routine DCH_hash finds a BlockID’s closest host ac-
cording to consistent hashing. Routine BLOOM_lookup returns the
host whose Bloom filter encodes a certain BlockID (Strictly speak-

Host place_block (Block b)
{

// Should b be placed using DCH?
Host h = DCH_hash(hosts, b.bid);
if (h.threshold >= b.size) {

// Yes (because b’s size is below h’s threshold).
return h;

}
else { // No.

// Find candidate hosts that can store the block.
set<Host> candidates = find h in hosts

where (h.threshold < b.size);
// Select one host from the candidates
// based on some placement policy.
h = Place_policy(candidates, b);
return h;

}
}

Host locate_block (Block b)
{

Host h = DCH_hash(hosts, b.bid); // Is b managed by DCH?
if (h.threshold >= b.size) {

// Yes (because b’s size is below h’s threshold).
return h;

}
else { // No.

// Re-do the lookup using BLOOM.
h = BLOOM_lookup(b.bid);
return h;

}
}

Figure 7: Differentiated data placement and location. Routine
place block returns a host that is suitable for storing a certain
block; routine lookup block returns a host that stores a certain
block with high probability.

ing, BLOOM_lookup may return an exception when the BlockID is
not encoded in any host’s Bloom filter; it may also return multiple
hosts due to false positives. These conditions happen rarely and
we briefly discuss how to handle them in Section 4.3.). Routine
Place_policy implements a placement policy for large blocks.
We discuss the placement policy in Section 4.2.4.

4.2.3 Local Storage Management
The local storage management module is responsible for the cre-

ation and deletion of blocks, and the incremental updating of the
local Bloom filter accordingly. Specifically, we keep a reference
counter for every bit of the Bloom filter. When we add a BlockID
to the Bloom filter, we increment the counters for the hashing bits.
When we remove a BlockID from the Bloom filter, we decrement
the counters for the corresponding hashing bits. A bit will be set
when its reference counter changes from 0 to 1; and it will be
cleared when the reference counter changes from 1 to 0.

The second part of the storage management module maintains
the size distribution of all local blocks and dynamically determine
a threshold size from the distribution. The threshold size is used
by the data placement and location module to differentiate between
small and large blocks, as shown in Figure 7.

Instead of setting the threshold size close to the knee point of the
block size distribution, it is actually sufficient to control the storage
consumed by blocks below the threshold size. For example, we
can limit that all small blocks to consume at most 10% of the local
storage capacity.

Our solution is called Slide Bar and is illustrated in Figure 8:
Initially, when a file system is empty, the block distribution curve
(called the profile line) is a flat line, and we set the threshold (the
vertical bar) at the right end of the profile line (Figure 8(a)). When
the file system is populated by more blocks, the profile line rises.

To maintain the invariance that all blocks smaller than the thresh-
old (those in the shadow area) are constrained by a certain space
limit, the threshold bar needs to slide to the left (Figure 8(b)). The
threshold bar continues to slide toward left over time until the file
system is fully populated (Figure 8(c)). Every time the bar moves,
blocks that have changed side (from the left side of the bar to the
right) correspondingly change their location scheme from DCH to
BLOOM, and thus need to be added to the local Bloom filter.

The profile line could also decrease when blocks are deleted,
however, we do not slide the threshold bar back to right. The reason
for such a choice is because changing a block’s location scheme
from BLOOM to DCH could prevent the block from being located
unless the block is migrated to a proper location. Although the
profile line of a file system may transiently rise and fall when blocks
are deleted or created over time; we expect the shape of the profile
line to remain relatively stable when a file system is reasonably
populated (e.g., 50% full). So the potential danger of shifting the
threshold bar to be excessively small and lead to too many large
blocks is also expected to be slim. The traces that we collected
over a period of 15 days do exhibit a consistent block distribution
curve. We plan to study the effectiveness of such a scheme when
the system is put into use in a production environment.

4.2.4 Data Placement Policy
For blocks of small files and index blocks (which are typically

small), we use DCH to map them directly to different nodes. For
large files, parallel I/O is feasible and we may use various methods
to place their blocks. For example, data placement may seek to bal-
ance storage usage, I/O workload, or exploit locality by clustering
related data items [12]. Our scheme can support arbitrary policies
and the result of placement is stored in the mapping table. Its sum-
mary information encoded in the Bloom filter is propagated to all
nodes that need the information.

In our evaluation study, we use a usage-based block placement
policy which distributes blocks of a file to different nodes and bal-
ances space usage among all the nodes. The objective is to improve
the overall system storage utilization.

To select a node as the host of a large block, we first filter out
nodes that have insufficient space to hold the block. Then, each
of the remaining nodes has a probability of being chosen as the
owner proportional to its available space. By using a randomized
algorithm, we could avoid the so-called flocking effect that many
blocks are simultaneously placed to the same host.

4.3 Discussions

4.3.1 Handling Node Join
When a node joins the cluster, a portion of small blocks need

to be migrated to the new node as their new owner. While the
migration is in progress, this newly joined node may “mask” the
actual location of a certain block in the sense that the host returned
by the DCH_lookup operation is different from the block’s actual
owner. To solve this problem, we retry the DCH_lookup operation
for k times, and each time we exclude the false owner from the set
of hosts. When all k attempts fail, we perform a multicast query.

Figure 9 shows the modified lookup operation which is now
part of a read_block operation. Retries happen when the actual
data access operations fail. To avoid multiple lookup requests for
the same block, we also employ a local location cache that main-
tains the addresses of recently accessed blocks. We chose a cache
size of around ten thousand entries, which is sufficient to cache
the locations of actively accessed blocks. The probability of a
block’s location being completely masked by l newly joined server

Block size

(a) An empty file system. The
threshold bar is at the far right.

Block size

(b) File system becomes popu-
lated. The threshold bar moves
toward left.

Block size

(c) File system reaches full. The
threshold bar reaches the stable
position.

Figure 8: Determining threshold size through the Slide-Bar algorithm.

is (l

k
)

(l+H

k
)
(l ≥ k). Since H � l, a small value of k can sufficiently

reduce the number of multicast queries.

4.3.2 Handling Node Failure and
Supporting Replication

A node failure can be detected using a heartbeat and timeout
scheme as in Neptune [38]. When a node fails, the block placement
scheme will not choose a failed node to store new blocks. The
location algorithm will still be able to find blocks on live nodes:
for large blocks, the Bloom filters are replicated on all nodes; for
small blocks, the DCH scheme does not depend on the number of
nodes to locate a block. There is no data migration needed after a
node failure.

However, data blocks stored on the failed node do get lost. Repli-
cation or checkpointing can be used to improve the availability. In
some cases, it could be more efficient to rely on application-level
checkpointing than block-level replication because replication can
slow down system performance during heavy write traffic.

If replication is indeed preferred, our Diffloc scheme can be ex-
tended as follows: The replicas of the same block will have the
same BlockID. The replication degrees of the root blocks are stored
in the namespace server. The replication degrees of other blocks are
stored in index blocks. But we do not keep the physical locations of
the replicas of a certain block. For small blocks, we can extend the
DCH algorithm by choosing the closest r hosts to be the homes of
a certain BlockID, as suggested in CFS [16]. For large blocks, we
can modify the placement policy so that it finds r suitable replica
sites, and the Bloom filters will record those replica sites. The pro-
tocol can find all replicas of a certain block most of the time (but not
always). In the rare occasion when we may miss a replica site dur-
ing an update operation, we can treat it as if the missing replica site
suffers a transient failure, so its blocks are not accessible temporar-
ily. Previous researches have studied the problem of maintaining
data consistency across replicas in these situations and their solu-
tions are readily applicable. For instance, we can tag blocks with
versions (which increments whenever we update the block), and
let different hosts synchronize the versions of their blocks through
gossiping or periodic introspection [17, 25, 31].

4.3.3 Adjusting Bloom Filter Sizes
The number of large blocks stored on a node may change over

time, we dynamically adjust the size of the local Bloom filter so that
the percentage of set bits of the filter to be in the range of 25−60%.

If the percentage of set bits is lower than 25%, we shrink the size
of the filter by half; if the percentage of set bits is higher than 60%,
we double the size of the filter.

4.3.4 Data Migration
The goal of data migration is to maintain the invariance that

small blocks are stored in their home hosts based on consistent
hashing when new node joins the network. To efficiently determine
which small blocks need to be migrated upon the detection of a new
host on the network, we maintain a database of the BlockIDs of lo-
cally stored small blocks and sort them based on their locations on
the circular space [0, 1) (called the Chord ring in [39]). The calcu-
lation of the set of migrating blocks takes O(log N) CPU cycles.
The size of this database is proportional to the number of locally
stored objects. Currently we keep the database in memory, how-
ever, it can be easily modified to keep the database on persistent
storage. Since data migration does not happen very frequently, we
expect such a change not impact the overall system performance.

4.3.5 False Positives and False Negatives in Bloom
Filters

As mentioned earlier, in rare occasions, Bloom filters may return
false positives. This means that the BLOOM_lookup call may return
multiple hosts and only one of them actually has the block. In this
case, we can issue the actual request (say a read request) in parallel
to all the hosts, and it will succeed when the host that does own the
block returns the data.
BLOOM_lookupmay also return an empty set, which is also called

false negative. This could happen in the rare situation when we try
to lookup a newly created block whose owner has not announced
the update of its Bloom filter yet. In this case, we again resort to a
multicast query.

4.3.6 Virtual Hosts
Karger et al. [23] proposed to map each host to a number of vir-

tual hosts in the consistent hashing algorithm to balance the shares
of blocks hashed to all the hosts. Under this revised scheme, the
blocks hashed to a physical host would be the union of blocks
hashed to all its virtual hosts. Dabek et al. [16] further proposed
to set the number of virtual hosts for a physical host proportional
to the storage capacity of the physical host. In the Diffloc protocol,
we also apply the Dabek technique: we set the number of virtual
hosts proportional to the space reserved for small blocks.

int read_block(Block b, char *buf, int off, int sz)
{

// Step 1: check the local location cache.
int rval;
Host h = location_cache.lookup(b);

if (h && ((rval=remote_read(h, buf, off, sz))!=NOT_FOUND))
return rval;

// Step 2: attempt to retrieve data through DCH.
// Make a copy of hosts
set<Host> hosts2 = hosts.clone();
int max_retry = k;
bool try_bloom = false;

while (max_retry-- > 0) {
// Suppose b is managed by DCH.
h = DCH_hash(hosts2, b.bid);
if (h.threshold >= b.size) {
// Found a possible owner
if ((rval=remote_read(h, buf, off, sz)) \

== NOT_FOUND) {
// False alarm, remove h from hosts2.
hosts2.remove(h);

}
else {

location_cache.insert(b, h);
return rval;

}
}
else {
try_bloom = true;
break; // b is managed by Bloom.

}
}

// Step 3: attempt to retrieve data through BLOOM.
if (try_bloom) {

h = BLOOM_lookup(b.bid);
if ((rval=remote_read(h, buf, off, sz))!=NOT_FOUND) {
location_cache.insert(b, h);
return rval;

}
}

// Step 4: fall back to fail-safe multicast query.
h = mcast_lookup(b.bid); // Resort to multicast lookup.
if ((rval=remote_read(h, buf, off, sz)) != NOT_FOUND)

location_cache.insert(b, h);

return rval;
}

Figure 9: read block reads a portion of a block starting from a
certain offset.

5. TRACE-DRIVEN EVALUATION
The Diffloc protocol has been fully implemented as part of the

Sorrento prototype currently under development at UCSB. The over-
all objective of the evaluation is to demonstrate the effectiveness of
the Diffloc protocol in comparison with uniform strategies. We
choose to compare Diffloc with two uniform strategies: (1) DCH
and (2) BLOOM with usage-based block placement. We will ana-
lyze their storage utilization, data migration overhead, and memory
consumption to validate our conclusion.

We also demonstrate the access performance of the Diffloc pro-
tocol in terms of block placement and lookup time. We show that
our protocol has very low overhead when varying the number of
cluster nodes.

Finally, we demonstrate that the Diffloc protocol is able to redis-
tribute workload evenly across hosts in the event of node failures,
and that it can efficiently utilize storage resources for hosts with
non-uniform capacity.

We use trace-driven simulation as our evaluation method. We

describe a trace collection utility in Section 5.1. The simulator is
presented in Section 5.2. All simulations are conducted on a cluster
of 40 dual Pentium III 1.2GHz Linux PCs connected with a Fast
Ethernet switch.

5.1 Trace Collection
Several factors lead us to develop our own trace collection utility:

1. Most of the file system traces available in the public domain
are collected in interactive environments such as desktop ap-
plications or software development process [6, 33, 41]. How-
ever, we are more interested in the file system usage for data-
intensive applications.

2. Existing traces do not have sufficient information to allow
us to loyally reconstruct the environment where the trace is
collected. For instance, the Sprite trace does not have fine-
grained timing information for each operation. Additionally,
file system requests received from distributed clients are mul-
tiplexed on the server side, so the actual application-level ac-
cess pattern is disguised.

3. Existing traces are often too short or the amount of data vol-
ume involved is too small to drive meaningful evaluation for
a very large storage system. We are interested in studying the
long-term behavior of data intensive jobs involving terabytes
of data.

Our trace utility patches the glibc library and intercepts all file
system related system calls (a system call issued by a program will
actually go into a wrapper function which decodes the parameters
and issues the system call interrupt.). We also run a trace collec-
tion daemon on the same machine which waits on a domain socket.
The tracing of an application can be enabled or disabled through
environment variable settings. Applications that are being traced
send the information about each file system call’s parameters, re-
turn values, timing and its own identity to the trace collection dae-
mon. Since over time, a process ID (pid) may be reused by the
operating system, it is not reliable to correlate all system calls from
the same application based on pid. Therefore, we further use a ran-
dom generation ID (genid) for each process group. We can reliably
correlate activities from the same application based on the same pid
and genid combination. To minimize the tracing overhead, the trace
daemon stores the trace data on a dedicated disk. We also care-
fully encode each trace record and compress them before writing
to disk, and each record takes only 5 bytes on average. Combined
with other techniques such as buffered read/write, we are able to
reduce the tracing overhead between 3% and 20%. When the CPU
is not the bottleneck and the application does not issue system calls
too fast, which would otherwise cause the domain socket to be sat-
urated, the overhead is not noticeable.

To collect meaningful trace data that reflect the real world situ-
ation, we run our trace utility in a subset of machines of a produc-
tion environment at a search engine company (Ask Jeeves/Teoma)
where billions of page documents are indexed continuously. We
collected traces from 30 machines for 15 days. During the period,
around 5 million files are created, consuming 1.6TB space. For
the purpose of evaluating the Diffloc protocol, we filtered out data
read/write activities. Since on Linux, the functions of creating a
new file and looking up an existing file are overloaded in the same
open system call, we use the following criteria to decide whether
an open call actually creates a new file: (1) the O_CREAT flag is
set; (2) the file returned has zero size. We further map a file to
a BlockID by hashing the 〈device-number, inode-number〉 combi-
nation of the file. In total, we collected 5.5 million creation oper-

ations, 0.52 million deletion operations, and 72.3 million lookup
operations.

5.2 Simulator Design
The simulator models the environment where a storage cluster

serves block creation, deletion or location requests generated by a
distributed set of processes. The main objective of the simulator
is to understand the system behavior related to data placement and
location activities, thus disk operations or data transfers over the
network are ignored.

Each client process is driven by a trace, which contains all the
data location and placement requests generated by applications on
the same machine over a period of time. Additionally, the simula-
tor models the details of protocol state maintenance activities such
as heartbeat packets and Bloom filter update packets. The data col-
lected by the simulator include disk space usage and memory/band-
width consumption.

The simulation begins with a pre-population phase in which blocks
that exist before the traces start are created.

5.3 Effectiveness of the Differentiated
Protocol Design

We first evaluate the effectiveness of the Diffloc protocol against
DCH and BLOOM. Essentially, we want to validate the “+/−”
signs in Figure 6 with quantitative results. We run the simulation
for a 30-node storage cluster, where each node manages a 100GB
disk. On each cluster node, there is also a client process driven by
a trace collected using our tracing utility. Each cluster node multi-
casts heartbeat packets and Bloom filter updates every second.

We compare the three schemes in terms of storage utilization,
data migration overhead, and memory consumption. We set the
number of virtual nodes corresponding to each physical host to be
32. We measure the data migration cost by adding a new node into
the system at the end of the simulation and calculating how much
data needs to be migrated to the new node. We report memory
consumption based on the memory used at the end of the simula-
tion because the memory consumption grows as the file system is
populated.

Storage utilization cannot be derived directly from the experi-
ments because the amount of data created through trace replay is
not large enough to saturate any host, while the measurement of
storage utilization requires at least one host to run out of space by
definition. We work around this problem by using a different met-
ric that serves as an estimation of storage utilization. Our solution
is based on the observation that good storage utilization can only
be achieved when the storage consumption increases at roughly the
same speed on all nodes. Suppose p1, p2, ..., pH are the percent-
ages of used space of the H hosts by the end of the trace replay,
then we define an estimation of storage utilization as:

� H

i=1
pi

H × maxH
i=1

pi

The above formula gives us the storage utilization as if we could
shrink individual host’s storage capacity proportionally until some
host runs out of space.

The experimental results are shown in Figure 10. We can see
that Diffloc improves the storage utilization from 87.2% of DCH
to 97.7%, and is comparable with BLOOM, which places objects
purely based on usage. In terms of migration overhead, Diffloc re-
duces the amount of migrated data by more than 98% compared to
DCH, from 3.3% (53.0GB) to 0.071% (1142MB) of total data vol-
ume. The reason for both improvements lies in the fact that the im-
balanced storage usage and the migration overhead under DCH is

due to its uncontrollable block placement policy. By applying DCH
for small blocks which consume less than 10% of the total space,
Diffloc effectively confines the extent of the imbalanced storage us-
age and data migration within a much smaller scale. Overall, the
percentage of usable space and data migration overhead are signif-
icantly improved system-wide.

Metric DCH BLOOM Diffloc
Storage utilization 87.2% 98.7% 97.7%

Migration overhead 53.0GB 0 1.142GB
Memory consumption 24KB 8.3MB 190KB

Figure 10: Effectiveness of the differentiated protocol design.

Secondly, Diffloc reduces the memory consumption by more
than 97% compared to BLOOM. The reason lies in the fact that
the memory consumption under BLOOM is roughly proportional
to the number of blocks. By only using BLOOM to track the lo-
cations of large blocks, which are relatively few in number, Dif-
floc is able to significantly reduce the management overhead. Note
that the results are only for a modest-sized cluster with 30 nodes.
Even though the memory consumption for BLOOM seems afford-
able with today’s commodity hardware; this figure could reach sev-
eral hundred megabytes for large-scale clusters with hundreds of
millions of blocks.

In conclusion, our Diffloc protocol takes advantage of both DCH
and BLOOM schemes, makes effective use of available storage,
and maintains low management overhead.

5.4 Access Efficiency

0 5 10 15 20 25 30
0

5

10

15

20

25

Number of cluster nodes.

Ti
m

e
(µ

s)

Small−block placement
Small−block lookup
Large−block placement
Large−block lookup

Figure 11: Protocol access performance.

We further evaluate the access performance of the protocol. We
vary the number of cluster nodes from 2 to 30, and we run equal
number of client processes as the cluster nodes. We measure the
actual timing for invoking the block placement and lookup opera-
tions. The timing information is obtained through the rdtsc in-
struction, which reads the time stamp counter available on the x86
architecture. We separate the timing for operations on small and
large blocks. The results are shown in Figure 11.

As we can see, the service time for block lookup and place-
ment grows with the number of cluster nodes. For small blocks,
the lookup and placement time grows logarithmically against the
number of cluster nodes. For large blocks, the lookup time grows
almost linearly, while the placement time grows logarithmically. In
general, the overhead is very low and mainly involves CPU compu-
tation. These results confirm the theoretical analysis of Section 3.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

x 105

Server nodes.

N
um

be
r o

f b
lo

ck
s

Block redistribution (Diffloc)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

x 105

Server nodes.

N
um

be
r o

f b
lo

ck
s

Block redistribution (Chained Declustering)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

Server nodes.

G
B

Byte redistribution (Diffloc)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

Server nodes.

G
B

Byte redistribution (Chained Declustering)

Figure 12: Workload redistribution after server 7 fails (Diffloc vs DCH). A total of 0.506 million blocks (155GB) data were stored on server
7. We show the distribution of the replicas of those blocks on other servers both in terms of block counts and byte counts. The subsequent
load increase in terms of requests would be proportional to the block counts distribution; however, the increase in terms of I/O bandwidth
would be proportional to the distribution of byte counts.

5.5 Workload Redistribution after
Node Failure

We have also implemented the replication extension described
in Section 4.3.2. Unlike Petal [26], which places block replicas
on adjacent servers through Chained Declustering, Diffloc places
block replicas in a pseudo-random fashion. Such a design offers
better failure resilience because after losing a host, the workload
that were destined to that host will be redistributed to almost all
other nodes instead of the adjacent nodes.

We compare the load redistribution behavior of Diffloc against
a simplified Chained Declustering scheme. We run the simulation
for a 20-node storage cluster, the request workload is driven by 30
client traces. We set the replication degree to two and the capacity
of each node to 200GB. At the end of the simulation, we calculate
the load redistribution when server 7 fails. The load redistribution
is expressed as a histogram of the distribution of blocks which are
replicas of blocks on server 7. The results are shown in Figure 12.
As we can see, when server 7 fails, the rest servers would take
over similar shares of load increase in Diffloc. On the other hand,
Chained Declustering would only redistribute load to server 6 and
8, which may causes significant load increase on these nodes.

5.6 Data Distribution with Non-uniform Hosts
We further illustrate that the Diffloc protocol can effectively uti-

lize storage resources of non-uniform hosts. Unlike Chord [39],
Diffloc does not require the setting of virtual nodes to be propor-
tional to a host’s capacity to utilize the storage resources. Specifi-
cally, the setting of virtual nodes would only affect the distribution
of small blocks, and would have little impact to the whole system’s
storage utilization, which is dominated by large blocks.

In the following experiment, we employ 20 storage nodes with
non-uniform capacity: half of them with 50GB disk each, and the
other half with 100GB each. We map each host to 32 virtual nodes
regardless of its capacity so that the number of small blocks would
be similar on different hosts. We show the distribution of small and
large blocks when the total data volume reaches 0.4TB, 0.8TB, or
1.2TB. As a comparison, we also show the distribution of blocks
when a uniform DCH scheme is used, in which case the cluster sat-

urates at 0.89TB. Figure 13 shows the experimental results. As we
can see, Diffloc progressively places large blocks based on storage
availability, which leads to high storage utilization. However, in the
case of DCH, more than half of the capacity of the 100GB nodes
are not used.

It should be noted that DCH may be modified to use a differ-
ent number of virtual nodes for each host, which can adjust the
block distribution among non-uniform hosts in term of the number
of blocks. However, such an extension does not consider the size
variations among blocks, nor could it effectively control the block
distribution to meet other objectives.

6. CONCLUDING REMARKS
This paper presents the design and implementation of a differ-

entiated data location protocol for self-organizing storage clusters.
We use consistent hashing to place and locate small blocks. For
large blocks, we can support any placement scheme with Bloom
filter-based tracking. The main advantage of this protocol is that it
is scalable with very low management overhead and makes effec-
tive use of storage resource in comparison with uniform strategies.
The effectiveness of the protocol is validated through trace-driven
simulation studies.

Our work is in large part motivated by previous work on par-
allel/distributed file systems and cluster-based storage systems [2,
4, 5, 10, 19, 20, 24, 26, 32, 37]. Previous studies mainly fo-
cus on infrastructural support of unifying distributed storage re-
sources and have not addressed adequately how blocks should be
placed and located efficiently in response to node additions and
departures. Thus our work is complementary. The protocol de-
scribed in this paper is part of the Sorrento project (Homepage:
http://www.cs.ucsb.edu/projects/Sorrento/),with the goal
of making storage clusters self-organizing and minimizing human
administration. Much future work remains. We plan to conduct a
detailed study of workload characteristics of storage clusters used
by a wide range of data-intensive applications. We also plan to
integrate our protocol in a parallel file system and evaluate its ef-
fectiveness using application benchmarks with data replication.

Acknowledgment. This work was supported in part by NSF

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

20

40

60

80

100

Server nodes.

S
pa

ce
 u

sa
ge

 (G
B

)

Diffloc (0.4TB)

Small blocks
Large blocks
Free space

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

20

40

60

80

100

Server nodes.

S
pa

ce
 u

sa
ge

 (G
B

)

Diffloc (0.8TB)

Small blocks
Large blocks
Free space

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

20

40

60

80

100

Server nodes.

S
pa

ce
 u

sa
ge

 (G
B

)

Diffloc (1.2TB)

Small blocks
Large blocks
Free space

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

20

40

60

80

100

Server nodes.

S
pa

ce
 u

sa
ge

 (G
B

)

DCH (0.4TB)

Used space
Free space

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

20

40

60

80

100

Server nodes.

S
pa

ce
 u

sa
ge

 (G
B

)

DCH (0.8TB)

Used space
Free space

Figure 13: Data distribution on non-uniform hosts. We draw the snapshots when the total data volume reaches 0.4TB, 0.8TB, and 1.2TB. We
compare Diffloc against DCH. Note that since DCH saturates around 0.89TB, we do not have the distribution corresponding to the 1.2TB
case for DCH.

ACIR-0082666, 0086061, 0234346, and EIA-0080134. We would
like to thank the anonymous referees, Aziz Gulbeden, Ambuj Singh,
and Alan Sussman for their valuable comments and help.

7. REFERENCES
[1] Ask Jeeves, Inc. URL http://www.ask.com/.
[2] CXFS: A high-performance, multi-OS SAN file

system from SGI. SGI White Paper. URL
http://www.sgi.com/products/storage/
cxfs.html.

[3] NFS: Network File System version 3 protocol specification.
Technical Report SUN Microsystems, 1994.

[4] D. Anderson, J. Chase, and A. Vahdat. Interposed request
routing for scalable network storage. In Proceedings of the 4th
Symposium on Operating System Design and Implementation
(OSDI 00), October 2000.

[5] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless network file systems. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP 95), December 1995.

[6] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ouster-
hout. Measurements of a distributed file system. In Proceed-
ings of the 13th ACM symposium on Operating systems prin-
ciples (SOSP 91), pages 198–212, Pacific Grove, CA, 1991.
ACM Press. ISBN 0-89791-447-3.

[7] B. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the Association for Comput-
ing Machinery, 13(7):422–426, 1970.

[8] S. A. Brandt, L. Xue, E. L. Miller, and D. D. E. Long. Effi-
cient metadata management in large distributed file systems.
In Proceedings of the 20th IEEE / 11th NASA Goddard Con-
ference on Mass Storage Systems and Technologies, pages
290–298, April 2003.

[9] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact,
adaptive placement schemes for non-uniform requirements.
In Proceedings of the 14th Annual ACM Symposium on Par-
allel Algorithms and Architectures (SPAA 02), pages 53–62,
Winnipeg, Manitoba, Canada, 2002. ACM Press.

[10] P. Carns, W. Ligon III, R. Ross, and R. Thakur. PVFS: A
parallel file system for linux clusters. In Proceedings of the
4th Annual Linux Showcase and Conference, pages 317–327,
Atlanta, GA, 2000. USENIX Association.

[11] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wal-
lach. Security for structured peer-to-peer overlay networks. In
Proceedings of the 5th Symposium on Operating Systems De-
sign and Implementation (OSDI 02), Boston, MA, December
2002.

[12] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and
J. Saltz. Titan: a high-performance remote-sensing database.
In Proceedings of the 13th International Conference on Data
Engineering (ICDE 97), Birmingham, U.K., 1997.

[13] J. Chase, D. Anderson, P. Thakur, and A. Vahdat. Manag-
ing energy and server resources in hosting centers. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP 01), October 2001.

[14] D. Colarelli and D. Grunwald. Massive arrays of idle disks for
storage archives. In Proceedings of SuperComputing, 2002.

[15] P. F. Corbett, D. G. Feltelson, J.-P. Prost, G. S. Almasi, S. J.
Baylor, A. S. Bolmarcich, Y. Hsu, J. Satran, M. Snir, R. Colao,
B. D. Herr, J. Kavaky, T. R. Morgan, and A. Ziotek. Parallel
file systems for the IBM SP computers. IBM Systems Journal,
34(2):222–248, 1995. ISSN 0018-8670.

[16] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles
(SOSP 01), Chateau Lake Louise, Banff, Canada, Octorber
2001.

[17] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson.
Epidemic algorithms for replicated database maintenance. In
Proceedings of the 6th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC 87), pages 1–12. ACM
Press, 1987.

[18] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache:
A scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking, 8(3):281–293, 2000.

[19] J. Hartman, I. Murdock, and T. Spalink. The Swarm scalable

storage system. In Proceedings of International Conference
on Distributed Computing Systems, pages 74–81, 1999.

[20] J. Hartman and J. Ousterhout. The Zebra striped network file
system. ACM Transactions on Computer Systems (TOCS), 13
(3):274–310, 1995. ISSN 0734-2071.

[21] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed
object location in a dynamic network. In Proceedings of the
14th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA 02), pages 41–52, August 2002.

[22] R. J. Honicky and E. L. Miller. A fast algorithm for online
placement and reorganization of replicated data. In Proceed-
ings of the 17th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 03), Nice, France, April 2003.

[23] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Levin, and
R. Panigraphy. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the World
Wide Web. In Proceedings of ACM Symposium on Theory of
Computing (STOC 97), pages 654–663, 1997.

[24] J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system. In Proceedings of the 13th ACM Sympo-
sium on Operating Systems Principles (SOSP 91), volume 25,
pages 213–225. ACM Press, 1991.

[25] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 00). ACM,
November 2000.

[26] E. Lee and C. Thekkath. Petal: Distributed virtual disks. In
Proceedings of the 7th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS 96), pages 84–92, Cambridge, MA, 1996.

[27] E. Lee, C. Thekkath, C. Whitaker, and J. Hogg. A Compari-
son of Two Distributed Disk Systems. Technical Report 155,
Compaq (DEC) System Research Center, April 1998.

[28] W. Litwin, M.-A. Neimat, and D. Schneider. LH* — Linear
Hashing for distributed files. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of data,
pages 327–336, Washington, DC, 1993. ACM Press. ISBN
0-89791-592-5.

[29] W. Litwin, M.-A. Neimat, and D. Schneider. LH* — A
scalable, distributed data structure. ACM Transactions on
Database Systems (TODS), 21(4):480–525, 1996.

[30] W. Litwin and T. Schwarz. LH*RS : A high-availability scal-
able distributed data structure using reed solomon codes. In
Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of data, pages 237–248, 2000.

[31] T. Liu and M. Martonosi. Impala: A middleware system for
managing autonomic parallel sensor systems. In Proceedings
of the 9th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPOPP 03), San Diego, CA,
June 2003.

[32] S. Mullender and A. Tanenbaum. A distributed file service
based on optimistic concurrency control. In Proceedings of
the 10th ACM Symposium on Operating Systems Principles
(SOSP 85), pages 51–62, Orcas Island, WA, 1985. ACM
Press. ISBN 0-89791-174-1.

[33] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and
B. Welch. The Sprite network operating system. IEEE Com-
puter Magazine, 21(2), 1988.

[34] D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus,
B. Gribstad, K. Keeton, C. Kozyrakis, D. Martin, S. Peris-

sakis, R. Thomas, N. Treuhaft, and K. Yelick. Intelligent
RAM (IRAM): The industrial setting, applications, and ar-
chitectures. In Proceedings of the International Conference
on Computer Design (ISCA 97), 1997.

[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Commu-
nications (SIGCOMM 01), pages 161–172, San Diego, CA,
August 2001. ACM Press. ISBN 1-58113-411-8.

[36] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The OceanStore prototype. In Pro-
ceedings of the 2nd Conference on File and Storage Tech-
nologies (FAST 03), pages 59–72, San Francisco, CA, March
2003.

[37] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proceedings of the First Con-
ference on File and Storage Technologies (FAST 02), Mon-
terey, CA, January 2002.

[38] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: Scalable replication management and
programming support for cluster-based network services. In
Proceedings of the 3rd USENIX Symposium on Internet Tech-
nologies and Systems (USITS 01), pages 197–208, San Fran-
cisco, CA, March 2001.

[39] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for in-
ternet applications. In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM 01), pages 149–160,
San Diego, CA, August 2001. ACM Press.

[40] C. Thekkath, T. Mann, and E. Lee. Frangipani: A scalable
distributed file system. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP 97), pages
224–237, 1997.

[41] W. Vogels. File system usage in Windows NT 4.0. In Pro-
ceedings of the 17th ACM symposium on Operating systems
principles (SOSP 99), pages 93–109, Charleston, SC, 1999.
ACM Press. ISBN 1-58113-140-2.

[42] J. Waxman and J. McArthur. Storage area networking — Op-
portunity for the indirect channel. IDC White Paper, 2000.

[43] Z. Zhang and K. Ghose. yFS: A journaling file system design
for handling large data sets with reduced seeking. In Proceed-
ings of the 2nd Conference on File and Storage Technologies
(FAST 03), San Francisco, CA, March 2003.

