CMPSC 274: Transaction Processing
Lecture #4: Concurrency Control
Protocols

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design

¢ 4.3 Locking Scheduters

¢ 4.4 Non-Locking Schedulers
¢ 4.5 Hybrid Protocols

® 4.6 Lessons Learned

4/18/11

Transaction Scheduler

Client 1 Client 2 Clients
}
Requests .
N [T I - B B Data
Layer 5
. e e e Server
Transaction . Layer 4
Manager JImmrrmrmmmmmem, e
(TM) Layer 3
Data
Manager~ '} Layer 2
(DM) Layer 1

Database

Scheduler Actions and Transaction States

begin

reject commit

Definition 4.1 (CSR Safety):
For a scheduler S, Gen(S) denotes the set of all schedules that
S can generate. A scheduler is called CSR safe if Gen(S) C CSR.

restart

4/18/11

Scheduler Classification

concurrency control protocols

e

pessimistic optimistic hybrid
non-locking locking BOCC FOCC

/\ two-phase/ non-two-phase
TO SGT / \ /\
AL WTL

0O2PL RWTL

N7

2PL

C2PL S2PL

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design

¢ 4.3 Locking Schedulers
e 4 3 1 Introduction

¢ 4.3.2 Two-Phase Locking (2PL)
¢ 4.3.3 Deadlock Handling
¢ 4.3.4 Variants of 2PL
¢ 4.3.5 Ordered Sharing of Locks (O2PL)
¢ 4.3.6 Altruistic Locking (AL)
¢ 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
¢ 4.3.8 Geometry of Locking
¢ 4.4 Non-Locking Schedulers
e 4.5 Hybrid Protocols
® 4.6 Lessons Learned

4/18/11

General Locking Rules

For each step the scheduler requests a lock on behalf of the step’s transaction
Each lock is requested in a specific mode (read or write).
If the data item is not yet locked in an incompatible mode the lock is granted;
otherwise there is a lock conflict and the transaction becomes blocked
(suffers a lock wait) until the current lock holder releases the lock.

Compatibility of locks:

rl(x)

wl;(x)

lock)

+

holder wl(x)

General locking rules:

LR1: Each data operation o,(x) must be preceded by ol,(x) and followed by ou;(x).

lock requestor

LR2: For each x and t; there is at most one ol,(x) and at most one ou;(x).

LR3: No ol,(x) or ou;(x) is redundant.

LR4: If x is locked by both t;and t, then these locks are compatible.

Simple Locking

* Locking alone is not enough:

ro [XIw, [XJw,[y]r, [y]

rly [X]ry [X]ruy IXIwl, [yTw, [XTw, [yTwu, [,y D [yTrug [y]

4/18/11

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design

¢ 4.3 Locking Schedulers
e 4 3 1 Introduction
¢ 4.3.2 Two-Phase Locking (2PL)
433 Deadtock Handting
¢ 4.3.4 Variants of 2PL
¢ 4.3.5 Ordered Sharing of Locks (O2PL)
¢ 4.3.6 Altruistic Locking (AL)
¢ 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
¢ 4.3.8 Geometry of Locking

¢ 4.4 Non-Locking Schedulers

e 4.5 Hybrid Protocols

® 4.6 Lessons Learned

Two Phase Locking Protocol

e The 2PL protocol:

1. On p[x], if pl.[x] conflicts delay it otherwise set
pl;[x].

2. Once the scheduler has set pl[x] it may not
release it until the DM has acknowledged
processing of p,[x].

3. Once the scheduler has released a lock for a
transaction, it may not subsequently obtain any
more locks for that transaction (on any data
item).

4/18/11

Two-Phase Locking (2PL)

Definition 4.2 (2PL):
A locking protocol is two-phase (2PL) if for every output schedule s and every

transaction t; € trans(s) no ql; step follows the first ou; step (g, o € {r, w}).

Example 4.4:
s = w,(x) ry(x) wily) wy(z) r5(z) ¢ w,ly) wsly) ¢, wy(z) ¢4

I il il il I
@ b ' w,(y)
,,,,,,,,,,,,,,,,,,,,,,, : I
b r4(2) wyly) | ow()
|+

wly(x) wy(x) wiy(y) wy(y) wli(z) wal(z) wu, () rly(x) ry(x) wu(y) wuy(z) ¢,
rl3(z) r3(z) wi,(y) w,(y) wu,(y) ru,(x) c,
wlz(y) wsly) wls(z) ws(z) wus(z) wusly) ¢,

2PL Properties

* Prop I. If pi[x] in H (which is 2PL) then pli[x] <
pi[x] < pui[x].

* Prop Il. If conflicting pi[x] and gj[x] in H then
either pui[x] < glj[x] or quj[x] < pli[x].

* Prop lll. If pi[x] and gi[y] in H then pli[x] <
quily].

4/18/11

2PL History is CSR

* Lemma 1. If Ti 2 Tj in SG(H) then for some x
and some conflicting operations pi[x] and gj[x]
in H, pui[x] < glj[x].

* Lemma 2. IfT1 > T2 > ..2Tnbeapathin
SG(H), then there exist items x and y such that
pl[x] and gn[y] in H such that pul[x] < gln[y].

Using the Serializability Theorem

* Suppose SG(H) has a cycle: T12T2-> ...
2>Tn>T1.

Establish contradiction by using Lemma 2.

4/18/11

4/18/11

Proof of 2PL Correctness

Let s be the output of a 2PL scheduler, and let G be the conflict graph of

CP (DT(s)) where DT is the projection onto data and termination operations
and CP is the committed projection.

The following holds (Lemma 4.2):

(i) 1 (t, ;) is an edge in G, then puy(x) < gl;(x) for some x with conflicting p, q.
(i) 1f(ty, t,, ..., t,) is @ path in G, then pu,(x) < gl (y) for some x, y.

(iii) Gis acyclic.

This can be shown as follows:

(i) By locking rules LR1 through LRA4.

(ii) By induction on n.

(iii) Assume G has a cycle of the form (t,, t,, ..., t,, t;).
By (ii), pu,(x) < gl,(y) for some x, y,
which contradicts the two-phase property.

Correctness and Properties of 2PL

Theorem 4.1:
Gen(2PL) C CSR (i.e., 2PL is CSR-safe).

Example 4.5:
s =w,(x) ry(x) c, ra(y) cg wy(y) ¢, €ECSR
but & Gen(2PL) for wu,(x) < rl,(x) and rus(y) < wl,(y),
rly(x) < r,(x) and r3(y) < rus(y), and r,(x) < r5(y)
would imply wu, (x) < wl,(y) which contradicts the two-phase property.

Theorem 4.2:
Gen(2PL) C OCSR

Example:
w;(X) 15(x) r3(y) ry(z) waly) €5 ¢, ¢,

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
¢ 4.3.1 Introduction

o4 2 2 Two-Phacselockinse{(2PL)
2 TWOTTRSETOCKME (27

¢ 4.3.3 Deadlock Handling

e 4.3.4 Variants of 2PL
¢ 4.3.5 Ordered Sharing of Locks (O2PL)
¢ 4.3.6 Altruistic Locking (AL)
¢ 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
¢ 4.3.8 Geometry of Locking
¢ 4.4 Non-Locking Schedulers
e 4.5 Hybrid Protocols
® 4.6 Lessons Learned

Deadlock Detection

Deadlocks are caused by cyclic lock waits
(e.g., in conjunction with lock conversions).

Example: r,(x) w,(y)
t I } }

Deadlock detection:
(i) Maintain dynamic waits-for graph (WFG) with
active transactions as nodes and
an edge from t; to t; if t; waits for a lock held by t;.
(i) Test WFG for cycles
. continuously (i.e., upon each lock wait) or
. periodically.

4/18/11

Deadlock Resolution

Choose a transaction on a WFG cycle as a deadlock victim
and abort this transaction,
and repeat until no more cycles.

Possible victim selection strategies:

1. Last blocked

2. Random

3. Youngest

4. Minimum locks

5. Minimum work

6. Most cycles

7. Most edges

lllustration of Victim Selection Strategies

Example WFG:

/58 \tG t t, /tg\
| \jl t, 3 /O

—— e

Most-cycles strategy would select t, (or t;) to break all 5 cycles.

v N

L —t

— N\

t, —— t, ty — t,

Example WFG:

Most-edges strategy would select t, to remove 4 edges.

4/18/11

10

Deadlock Prevention

Restrict lock waits to ensure acyclic WFG at all times.

Reasonable deadlock prevention strategies:

1.

5.

Wait-die:
upon t; blocked by t;:
if t; started before t; then wait else abort t;
Wound-wait:
upon t; blocked by t;:
if t; started before t; then abort t; else wait
Immediate restart:
upon t; blocked by t;: abort t;
Running priority:
upon t; blocked by t;:
if t; is itself blocked then abort t; else wait
Timeout:
abort waiting transaction when a timer expires

Abort entails later restart.

Chapter 4: Concurrency Control

Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
¢ 4.3.1 Introduction
¢ 4.3.2 Two-Phase Locking (2PL)

e 4,33 Deadlock Hnndling
* 4.3.4 Variants of 2PL

¢ 4.3.5 Ordered Sharing of Locks (OZPL)
¢ 4.3.6 Altruistic Locking (AL)
¢ 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
¢ 4.3.8 Geometry of Locking
¢ 4.4 Non-Locking Schedulers
e 4.5 Hybrid Protocols
® 4.6 Lessons Learned

4/18/11

11

Variants of 2PL

general 2PL

locks

R

time

Definition 4.3 (Conservative 2PL):
Under static or conservative 2PL (C2PL)
each transaction acquires all its locks

before the first data operation (preclaiming). ‘\—\—\—\—‘
t
t

locks

ime

Definition 4.4 (Strict 2PL):

Under strict 2PL (S2PL)

each transaction holds all its write locks
until the transaction terminates.

locks

ime

Definition 4.5 (Strong 2PL):

Under strong 2PL (SS2PL)

each transaction holds all its locks (i.e., both
r and w) until the transaction terminates.

Properties of S2PL and SS2PL

Theorem 4.3:
Gen(SS2PL) C Gen(S2PL) C Gen(2PL)

Theorem 4.4:
Gen(SS2PL) C COCSR

4/18/11

12

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
¢ 4.3.1 Introduction
¢ 4.3.2 Two-Phase Locking (2PL)
¢ 4.3.3 Deadlock Handling
e 4.3.4 Variants of 2PL

¢ 4.3.5 Ordered Sharing of Locks (O2PL)

Ao Ale. s

436 Altruistic tocking (AL}

¢ 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
¢ 4.3.8 Geometry of Locking

¢ 4.4 Non-Locking Schedulers

e 4.5 Hybrid Protocols

® 4.6 Lessons Learned

Ordered Sharing of Locks

Motivation:
Example 4.6:

sy = Wy (x) ry(x) rly) €3 wyly) ¢ wy(z) ¢,
ECOCSR, but

&Gen(2PL)

Observation:
the schedule were feasible if write locks could be shared
s.t. the order of lock acquisitions dictates the order of data operations

Notation:
pli(x) = ali(x) (with ;=) for pl(x) <, ql;(x) A p;(x) <, q;(x)

Example reconsidered with ordered sharing of locks:
wiy(x) wy(x) rl;(x) r,(x) rlg(y) r3(y) rus(y) ¢
wl(y) wy(y) wu,(x) wu,(y) ¢, wiy(z) wy(z) ru,(x) wu,(z) c,

4/18/11

13

Lock Compatibility Tables With Ordered Sharing

LT, rli(x) |wl(x)
rl(x) | + -
wl(x) | — ~
LT, rl(x) |wl(x) LT, rl(x) (wl(x) L7, rl(x) (wl(x)
rl(x) | + - rl(x) | + - rl(x) | + -
wl(x) | - - wl(x) - - wifx) | - -
LT, rl(x) |wl(x) LT, rl(x) wl(x) LT, rl(x) wl(x)
) |+ |~ ix) | + | - ix) |+ | —
wiix) |~ | - wiix)| | T wiix)| - |
LT, rl(x) wl(x)
) |+ |
wiix) |~ | T
Additional Locking Rules for O2PL
0S1 (lock acquisition):
Assuming that pl;(x) — ql;(x) is permitted,
if pli(x) <, ali(x) then p;(x) <; g;(x) must hold.
Example: Satisfies 0S1,
wi(x) w,(x) Wl (x) w,(x) wly(y) wly) wu(x) wu(y) c, R
whi(y) Wi (y) wu,(x) wuy(y) ¢; but ECoR

0S2 (lock release):

If pli(x) = ql;(x) and t; has not yet released any lock, then
t; is order-dependent on t;. If such t; exists, then tjison hold.
While a transaction is on hold, it must not release any locks.

O2PL: locking with rules LR1 - LR4, two-phase property,
rules OS1 - 0S2, and lock table LT

4/18/11

14

O2PL Example

Example 4.7:
S= I’l(X) Wz(X) rg(y) Wz(\/) C, W3(Z) Cs rl(z) Cy

ry(x) r(z)

r|1(X) rl(X) W|2(X) Wz(x) r|3(y) r3(Y) le(y) Wz(y)
wls(z) w;(z) rus(y) wus(z) ¢, rly(z) ry(z) ruy(x) rus(z) wu, (x) wu,(y) ¢, ¢,

Correctness and Properties of O2PL

Theorem 4.5:

Let LT, denote the locking protocol with ordered sharing
according to lock compatibility table LT;.

For each i, 1<i <8, Gen(LT;) C CSR.

Theorem 4.6:
Gen(O2PL) € OCSR

Theorem 4.7:
OCSR C Gen(02PL)

Corollary 4.1:
Gen(0O2PL) = OCSR

4/18/11

15

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design
¢ 4.3 Locking Schedulers
¢ 4.3.1 Introduction
¢ 4.3.2 Two-Phase Locking (2PL)
¢ 4.3.3 Deadlock Handling
¢ 4.3.4 Variants of 2PL

¢ 4 35 Ordered-Sharineof locks {O2PL)
“ KS{OILr)

Do oraereaonaringo+t+0¢€

* 4.3.6 Altruistic Locking (AL)

® 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
¢ 4.3.8 Geometry of Locking

¢ 4.4 Non-Locking Schedulers

e 4.5 Hybrid Protocols

® 4.6 Lessons Learned

Altruistic Locking (AL)

Motivation:

Example 4.8: concurrent executions of
t, = w;,(a) wy(b) wy(c) wy(d) w,(e) wy(f) wy(g)
t, =r,(a) ry(b)
ty = r5(c) ry(e)

Observations:
- t, and t; access subsets of the data items accessed by t,
- t, knows when it is “finished” with a data item
- t, could “pass over” locks on specific data items to
transactions that access only data items that t, is finished with
(such transactions are “in the wake” of t,)

Notation:
d,(x) for t; donating its lock on x to other transactions

Example with donation of locks:
wl,(a) wy(a) dy(a) rl,(a) ry(a) wly(b) wy(b) dy(b) rl,(b) ry(b) wl,(c) wy(c) ...
... TUy(a) ruy(b) ... wu,(a) wu,(b) wu,(c) ...

4/18/11

16

Additional Locking Rules for AL

AL1: Once t; has donated a lock on x, it can no longer access x.
AL2: After t; has donated a lock x, t; must eventually unlock x.
AL3: t; and t; can simultaneously hold conflicting locks

only if t, has donated its lock on x.

Definition 4.27:
(i) pi(x)is in the wake of t, (i=j) in s if di(x) <, p;(x) <, ouy(x).
(ii) t;is in the wake of t; if some operation of t;is in the wake of t.
t;is completely in the wake of t; if all its operations are in the wake of t..
(iii) t;isindebted to t;in s if there are steps o,(x), d(x), p;(x) s.t.
p;(x) is in the wake of t; and (p;(x) and o;(x) are in conflict or

there is q,(x) conflicting with both p;(x) and o,(x) and 0;(x) < g, (x) <, p;(x).

AL4: When t is indebted to t;,
t; must remain completely in the wake of t;.

AL: locking with rules LR1 - LR4, two-phase property,
donations, and rules AL1 - AL4 .

AL Example

Example:
rl,(a) ry(a) d,(a) wis(a) wy(a) wus(a) cq
rly(a) ry(a) wl,y(b) ru,(a) wy(b) wu,(b) c, rly(b) ry(b) ru,(a) ru,(b) ¢,

— disallowed by AL (even &CSR)

Example corrected using rules AL1 - AL4:
rly(a) ry(a) di(a) wiy(a) wy(a) wus(a) ¢4
rl,(a) r,y(a) rly(b) ry(b) ruy(a) ruy(b) ¢; wi,(b) ru,(a) w,(b) wu,(b) c,

— admitted by AL (t, stays completely in the wake of t;)

4/18/11

17

Correctness and Properties of AL

Theorem 4.8:
Gen(2PL) C Gen(AL).

Theorem 4.9:
Gen(AL) C CSR

Example:
s = 11(x) 1,(2) r3(z) w,(x) ¢, waly) ¢3 ryly) ri(z) ¢ — ECSR,
but €Gen(AL)

Chapter 4: Concurrency Control Algorithms

¢ 4.2 General Scheduler Design

¢ 4.3 Locking Schedulers

¢ 4.3.1 Introduction

¢ 4.3.2 Two-Phase Locking (2PL)

¢ 4.3.3 Deadlock Handling

¢ 4.3.4 Variants of 2PL

¢ 4.3.5 Ordered Sharing of Locks (O2PL)
o 4 3 6 Altruistic Locking (AL)

¢ 4.3.7 Non-Two-Phase Locking (WTL, RWTL)

v4:3:8 Geometry of tocking
¢ 4.4 Non-Locking Schedulers

e 4.5 Hybrid Protocols

® 4.6 Lessons Learned

4/18/11

18

(Write-only) Tree Locking

Motivating example:
concurrent executions of transactions with access patterns b

that comply with organizing data items into a virtual tree T
t; = w;,(a) wy(b) wy(d) wy(e) wy(i) wy(k)
t, = w,(a) w,(b) w,(c) w,(d) w,(h) g h i

Definition (Write-only Tree Locking (WTL)):
Under the write-only tree locking protocol (WTL) lock requests and releases
must obey LR1 - LR4 and the following additional rules:
WTL1: Alock on a node x other than the tree root can be acquired only
if the transaction already holds a lock on the parent of x.
WTL2: After a wy,(x) no further wl,(x) is allowed (on the same x).

Example:
wl,(a) wy(a) wly(b) wu,(a) w,(b) wi,(a) w,(a) wiy(d) wy(d) wu,(d) wi,(e) wu,(b)

w;(e) wl,(b) wu,(a) w,(b) ...

Correctness and Properties of WTL

Lemma 4.6:
If t; locks x before t; does in schedule s, then for each successor v of x

that is locked by both t; and t; the following holds: wl(v) <; wu;(v) <; wl;(v).

Theorem 4.10:
Gen(WTL) C CSR.

Theorem 4.11:
WTL is deadlock-free.

Comment: WTL is applicable even if a transaction’s access patterns
are not tree-compliant, but then locks must still be obtained
along all relevant paths in the tree using the WTL rules.

4/18/11

19

Read-Write Tree Locking

Problem: t; locks root before t does,
but t; passes t; within a “read zone”

Example:
rly(a) rly(b) ry(a) ry(b) wi,(a) w,(a) wi,(b) ul,(a) rl,(a) ry(a) a‘
w, (b) rly(e) uly(b) rl,(b) ry(b) ul,(a) rly(e) rl,(i) ul,(b) ry(e) ry(e) b
ry(i) wi, (i) wy(i) wiy (k) ul,(e) uly(i) rly(i) ul,(e) ry(i) ... /'d\
C e
— appears to follow TL rules f/\ h‘ i
but & CSR & /'\

Solution: formalize “read zone”
and enforce two-phase property on “read zones”

Locking Rules of RWTL

For transaction t with read set RS(t) and write set WS(t)
let C,, ..., C,, be the connected components of RS(t).

A pitfall of tis a set of the form

C,U {x € WS(t) | xis a child or parent of somey € C;}.

Definition (read-write tree locking (RWTL)):
Under the read-write tree locking protocol (RWTL) lock requests and releases

Must obey LR1 - LR4, WTL1, WTL2, and the two-phase property within each pitfall.

Example:
t with RS(t)={f, i, g} and WS(t)={c, |, j, k, o}
has pitfalls pf,={c, f, i, |, j} and pf,={g, c, k}.

4/18/11

20

Correctness and Generalization of RWTL

Theorem 4.12:
Gen (RWTL) C CSR.

RWTL can be generalized for a DAG organization of data items
into a DAG locking protocol with the following additional rule:
t; is allowed to lock data item x only if holds locks on
a majority of the predecessors of x.

4/18/11

21

