Processing

Enterprise Scale Data

Management

Divy Agrawal
Department of Computer Science

University of California at Santa Barbara

Transaction . .

+
The Transaction Concept

= Multiple online users:
= Gives rise to the concurrency problem.

= Component unreliability:
= Gives rise to the failure problem.

m Database designers confronted these
problems in the context of managing persistent
data:
= Online transaction processing system
= Design, implementation, and operation of large

application system with hundreds of terminals, tens of
computers, providing service with no downtime,
guaranteeing application correctness and data
consistency.

Winter2013:CMPSC 274

18013

+
The Transaction Concept

m Transactions provide an integrative framework
in the presence of many “moving parts”.

m Distributed transaction-oriented systems are
the enabling technology:
= Distributed and Networked applications
m E-commerce and Workflow systems
= Large-scale Information Infrastructures

m Without transactions, distributed systems/
networked applications cannot be made to
work.

Winter2013:CMPSC 274

18013

1/9/13

The Transaction Concept

m Transactions were originally developed in the
context of DBMS as a paradigm to deal with:
Concurrent access to shared data
Failures of different kinds/types.

m Typical and canonical application scenarios in
the context of banking application: Debit/
Credit operations, and fund Transfers.

u The key problem solved in an elegant manner:

Subtle and difficult issue of keeping data consistent in
the presence of concurrency and failures

while ensuring performance, reliability, and
availability.

Winter2013:CMPSC 274 18013

OLTP Example: Debit/Credit

void main () {
EXEC SQL BEGIN DECLARE SECTION
int BAL, AID, amount;
EXEC SQL END DECLARE SECTION;

scanf (“%d %d”, &AID, &amount); // USER INPUT

EXEC SQL Select Balance into :BAL From Account
‘Where Account_Id = :AID; // READ FROM DB

BAL = BAL + amount; // update BALANCE
EXEC SQL Update Account

Set Balance = :b Where Account_Id = :AID; //WRITETO DB
EXEC SQL Commit Work;

Winter2013:CMPSC 274 18013

Concurrent Executions: Lost Update Anomaly

DEBIT($50) Time CREDIT($100)

Select Balance Into :b,
From Account 1
Where Account_Id =:a
/*1b,=100, a.Balance=100, b,=0 */
Select Balance Into :b,
2 From
Where Account_Id =:a
/*b,=100, a.Balance=100, b,=100 */

bl =bl1-50 3
/*b,=50, a.Balance=100, b,=100 */
b, = b, +100
/* b,=50, a.Balance=100, bz=206 */
Update Account
Set Balance = :b 5
Where Account_'!d =

:a
/*b,=50, a.Balance=50, b,=200 */
Update Account
6 Set Balance = :b
Where Account_id = :a
/* b,=50, a.Balance=200, b,=200 */

Observation: concurrency or llelism may cause il

requires concurrency control for “isolation”
Wintex2013:CMPSC 274 10113

1/9/13

+
Funds Transfer: Inconsistent DATA

void main () {
/* read user input */
scanf (“%d %d %d”, &srcid, &tgtid, &amount);
/* subtract amount from source account */

EXEC SQL Update Account CRASH
Set Balance = Balance - :amount Where Accld = :srceid;

/* add amount to target account */ —

EXEC SQL Update Account

Set Balance = Balance + :amount Where Accld = :tgtid;
EXEC SQL Commit Work; }

Observation: failures may cause inconsistencies,
require recovery for “atomicity” and “durability”

Winter2013:CMPSC 274 18013

Database
Correctness

Database Fundamentals

Divy Agrawal
Department of Computer Science
UC Santa Barbara

1813 Winter2013:CMPSC 274

+
Reminder: Database System Layers

Clients LRI

Request

]anguage & Interface Layer
Request $Query Decomposition &
=]

Optimization Laver.
D Threads § Query Execution Layer
Server ? Access Layer b
b Storage Layer b
Data
ccesses
Databa:

Winter2013:CMPSC 274 18013

1/9/13

Basic Ingredients
mElementary Operations (read and write)

mTransactions (i.e., transaction program
executions)

m Execution histories
m Characterization of correct executions

m Protocols (i.e., online algorithms to ensure
correctness)

Winter2013:CMPSC 274

10

18013

Transaction Page Model: Syntax

Page Model of Transaction:

A transaction T is a partial order of steps (actions) of
the form r[x] or w[x], where x € D and reads and
writes as well as multiple writes applied to the same
object are ordered.

‘We write T = (op, <) for transaction T with step set op
and partial order <.

Example: r[x] w[x] r[y] w[y]

Winter2013:CMPSC 274

18013

Transaction Page Model: Semantics

Interpretation of j** step, p;, of T:

If p;=1[x], then interpretation is assignment
v;:= x to local variable v;

If p;=w[x] then interpretation is assignment
x:=f (vj;, ..., V) with unknown function f; and
j1s ---» Ji denoting T*s prior read steps.

Winter2013:CMPSC 274

18013

1/9/13

1/9/13

Lost Update Problem
Pl Time P2
/*x=100%/
¥ (x) 1
2 ¥ (x)
x 1= x+100 3 x :='x+200
w (%) 4
/% x=200%/
w (x)
T /*x=2300%*/
update “lost”

Observation: problem is the interleaving r(x) r,(x) w,(x) w,(x)

Dirty Read Problem
Pl Time P2
xZx+100 2
) 3
4 ¥ (x)
5 x:i=x-100
failure & rollback 6
7 w (x)

f

cannot rely on validity
of previously read data

Observation: transaction rollbacks could affect concurrent transactions

Winter2013:CMPSC 274 18013

Correctness Requirements: ACID
= ATOMICITY:

All-or-none property of user programs

mCONSISTENCY

User program is a consistent unit of execution

n[SOLATION

User programs are isolated with the side-effects
of other user programs

s DURABILITY:

Effects of user programs are persistent forever

Winter2013:CMPSC 274 18013

Transactions Executions: History

mHistory:
Contains all operations from all transactions
Distinct termination for every transaction

Preserves the order of operations of all
transactions

Termination is the final step
Conflicting operations are ordered

Winter2013:CMPSC 274

16

18013

Notion of Transaction Histories

mGoal:
A technique/algorithm/scheduler that prevents
incorrect or bad execution.

mDevelop the notion of correctness — or
characterize what does correct execution
means.

mThis characterization will be based on the
histories of transaction execution:

Good
Bad

Winter'2013:CMPSC 274

17

18013

Transaction Executions: Histories

Let T={T,, ..., T,} be a set of transactions, where
eachT; €T has the form T;=(op;, <)).

A history for T is H=(op(H),<y) such that:
L.op(s) € Ui n0p; U Uiy o {as e}
2.for alli, 1<isn: ¢;€ op(s) < a; & op(s)

5. for all p, g € op(s) s.t. at least one of them is a write
and both access the same data item:p <, q or g <;p

Winter2013:CMPSC 274

18013

1/9/13

+
History Example

R1[x]
wl[x] cl
Rl[z
R2[x] w2[y] c2
w3[y
R3[z
w3[z]

Winter2013:CMPSC 274

19

18013

+
Correctness

mSyntactical semantics for schedules based
on an intuitive notion:
= Each transaction is a correct mapping, i.e.,

. Transaction T .
Consistent Consistent

Hence, serial execution of transactions will be
correct.

Winter2013:CMPSC 274

18013

+
Serial History

m A history H is serial if for any two
transactions T; and Tj in H, all operations of
T, are ordered in H before all operations of

T; o, vice-versa.

Winter2013:CMPSC 274

18013

1/9/13

+
General Idea

mNotion of equivalence of two histories H,;
and H,.

mUse this notion of equivalence to accept all
histories which are “equivalent” to some
serial history as being correct.

mHow to establish this equivalence notion?

Winter2013:CMPSC 274

18013

+ .
Semantics

mEquivalence via a notion of semantics:

= We do not know the semantics of transaction
programs

= We need a general notion that can capture all
potential transaction semantics

= Need a general enough and powerful
notion that can capture all possible
semantics of transactions.

Winter2013:CMPSC 274

18013

1/9/13

