
1/9/13

1

+

Enterprise Scale Data
Management
Divy Agrawal
Department of Computer Science
University of California at Santa Barbara

Transaction
Processing

2

+
The Transaction Concept
 Multiple online users:

 Gives rise to the concurrency problem.

 Component unreliability:
 Gives rise to the failure problem.

 Database designers confronted these
problems in the context of managing persistent
data:
 Online transaction processing system
 Design, implementation, and operation of large

application system with hundreds of terminals, tens of
computers, providing service with no downtime,
guaranteeing application correctness and data
consistency.

1/9/13 Winter'2013:CMPSC 274

3

+
The Transaction Concept
 Transactions provide an integrative framework

in the presence of many “moving parts”.

 Distributed transaction-oriented systems are
the enabling technology:
 Distributed and Networked applications
 E-commerce and Workflow systems
 Large-scale Information Infrastructures

 Without transactions, distributed systems/
networked applications cannot be made to
work.

1/9/13 Winter'2013:CMPSC 274

1/9/13

2

4

+
The Transaction Concept
 Transactions were originally developed in the

context of DBMS as a paradigm to deal with:
 Concurrent access to shared data
 Failures of different kinds/types.

 Typical and canonical application scenarios in
the context of banking application: Debit/
Credit operations, and fund Transfers.

 The key problem solved in an elegant manner:
 Subtle and difficult issue of keeping data consistent in

the presence of concurrency and failures

 while ensuring performance, reliability, and
availability.

1/9/13 Winter'2013:CMPSC 274

+
OLTP Example: Debit/Credit

1/9/13 Winter'2013:CMPSC 274

void main () {
 EXEC SQL BEGIN DECLARE SECTION
 int BAL, AID, amount;
 EXEC SQL END DECLARE SECTION;

 scanf (“%d %d”, &AID, &amount); // USER INPUT

 EXEC SQL Select Balance into :BAL From Account
 Where Account_Id = :AID; // READ FROM DB

 BAL = BAL + amount; // update BALANCE

 EXEC SQL Update Account
 Set Balance = :b Where Account_Id = :AID; // WRITE TO DB
 EXEC SQL Commit Work;
}

+Concurrent Executions: Lost Update Anomaly

 DEBIT($50) Time CREDIT($100)

Select Balance Into :b1
From Account 1
Where Account_Id = :a

 /* b1=100, a.Balance=100, b2=0 */
 Select Balance Into :b2 2 From Account
 Where Account_Id = :a
 /* b1=100, a.Balance=100, b2=100 */

b1 = b1-50 3
 /* b1=50, a.Balance=100, b2=100 */
 4 b2 = b2 +100
 /* b1=50, a.Balance=100, b2=200 */

Update Account
Set Balance = :b1 5
Where Account_Id = :a

 /* b1=50, a.Balance=50, b2=200 */
 Update Account
 6 Set Balance = :b2 Where Account_Id = :a
 /* b1=50, a.Balance=200, b2=200 */

Observation: concurrency or parallelism may cause inconsistencies,
 requires concurrency control for “isolation”

1/9/13 Winter'2013:CMPSC 274

1/9/13

3

+
Funds Transfer: Inconsistent DATA

Observation: failures may cause inconsistencies,
 require recovery for “atomicity” and “durability”

void main () {
 /* read user input */
 scanf (“%d %d %d”, &srcid, &tgtid, &amount);
 /* subtract amount from source account */
 EXEC SQL Update Account
 Set Balance = Balance - :amount Where AccId = :srceid;
 /* add amount to target account */
 EXEC SQL Update Account
 Set Balance = Balance + :amount Where AccId = :tgtid;
 EXEC SQL Commit Work; }

1/9/13 Winter'2013:CMPSC 274

CRASH

+

Divy Agrawal
Department of Computer Science
UC Santa Barbara

Database Fundamentals

Database
Correctness

1/9/13 Winter'2013:CMPSC 274

+
Reminder: Database System Layers

1/9/13

Database

Database
Server

Clients . . .
Requests

 Language & Interface Layer
 Query Decomposition &

 Optimization Layer
 Query Execution Layer

 Access Layer

 Storage Layer

Data
Accesses

Request
Execution
Threads

Winter'2013:CMPSC 274

1/9/13

4

10

+
Basic Ingredients

 Elementary Operations (read and write)

 Transactions (i.e., transaction program
executions)

  Execution histories

  Characterization of correct executions

  Protocols (i.e., online algorithms to ensure
correctness)

1/9/13 Winter'2013:CMPSC 274

+
Transaction Page Model: Syntax

Page Model of Transaction:

A transaction T is a partial order of steps (actions) of
the form r[x] or w[x], where x ∈ D and reads and
writes as well as multiple writes applied to the same
object are ordered.
We write T = (op, <) for transaction T with step set op
and partial order <.

Example: r[x] w[x] r[y] w[y]
1/9/13 Winter'2013:CMPSC 274

+
Transaction Page Model: Semantics

Interpretation of jth step, pj, of T:

If pj=r[x], then interpretation is assignment
vj := x to local variable vj

If pj=w[x] then interpretation is assignment
x := fj (vj1, ..., vjk) with unknown function fj and
j1, ..., jk denoting T‘s prior read steps.

1/9/13 Winter'2013:CMPSC 274

1/9/13

5

+
Lost Update Problem

 P1 Time P2

 /* x = 100 */
r (x) 1

 2 r (x)
x := x+100 3 x := x+200
w (x) 4

 /* x = 200 */
 5 w (x)
 /* x = 300 */

update “lost”

Observation: problem is the interleaving r1(x) r2(x) w1(x) w2(x)

1/9/13 Winter'2013:CMPSC 274

+
Dirty Read Problem

 P1 Time P2

r (x) 1
x := x + 100 2
w (x) 3

 4 r (x)
 5 x := x - 100

failure & rollback 6
 7 w (x)

cannot rely on validity
of previously read data

Observation: transaction rollbacks could affect concurrent transactions

1/9/13 Winter'2013:CMPSC 274

15

+
Correctness Requirements: ACID

 ATOMICITY:
 All-or-none property of user programs

 CONSISTENCY
 User program is a consistent unit of execution

 ISOLATION
 User programs are isolated with the side-effects

of other user programs

 DURABILITY:
 Effects of user programs are persistent forever

1/9/13 Winter'2013:CMPSC 274

1/9/13

6

16

+
Transactions Executions: History

 History:
 Contains all operations from all transactions
 Distinct termination for every transaction
 Preserves the order of operations of all

transactions
 Termination is the final step
 Conflicting operations are ordered

1/9/13 Winter'2013:CMPSC 274

17

+Notion of Transaction Histories
 Goal:

 A technique/algorithm/scheduler that prevents
incorrect or bad execution.

 Develop the notion of correctness – or
characterize what does correct execution
means.

 This characterization will be based on the
histories of transaction execution:

H Good
Bad

1/9/13 Winter'2013:CMPSC 274

+
Transaction Executions: Histories

Let T={T1, ..., Tn} be a set of transactions, where
each Ti ∈ T has the form Ti=(opi, <i).

A history for T is H=(op(H),<H) such that:
 1. op(s) ⊆ ∪i=1..n opi ∪ ∪i=1..n {ai, ci}
 2. for all i, 1≤i≤n: ci ∈ op(s) ⇔ ai ∉ op(s)
 3. ∪i=1..n <i ⊆ <s
 4. for all i, 1≤i≤n, and all p ∈ opi: p <H ci or p <H ai
 5. for all p, q ∈ op(s) s.t. at least one of them is a write
 and both access the same data item: p <s q or q <s p

1/9/13 Winter'2013:CMPSC 274

1/9/13

7

19

+
History Example

R1[x]

 w1[x] c1

R1[z]

R2[x] w2[y] c2

 w3[y]

R3[z] c3

 [z]

1/9/13 Winter'2013:CMPSC 274

20

+
Correctness

 Syntactical semantics for schedules based
on an intuitive notion:
 Each transaction is a correct mapping, i.e.,

Hence, serial execution of transactions will be
correct.

DB DB’

Transaction T
Consistent Consistent

1/9/13 Winter'2013:CMPSC 274

21

+
Serial History

 A history H is serial if for any two
transactions Ti and Tj in H, all operations of
Ti are ordered in H before all operations of
Tj or vice-versa.

1/9/13 Winter'2013:CMPSC 274

1/9/13

8

22

+
General Idea

 Notion of equivalence of two histories H1
and H2.

 Use this notion of equivalence to accept all
histories which are “equivalent” to some
serial history as being correct.

 How to establish this equivalence notion?

1/9/13 Winter'2013:CMPSC 274

23

+
Semantics

 Equivalence via a notion of semantics:
 We do not know the semantics of transaction

programs

 We need a general notion that can capture all
potential transaction semantics

 Need a general enough and powerful
notion that can capture all possible
semantics of transactions.

1/9/13 Winter'2013:CMPSC 274

