
1/9/13

1

+

Enterprise Scale Data
Management
Divy Agrawal
Department of Computer Science
University of California at Santa Barbara

Transaction
Processing

2

+
The Transaction Concept
 Multiple online users:

 Gives rise to the concurrency problem.

 Component unreliability:
 Gives rise to the failure problem.

 Database designers confronted these
problems in the context of managing persistent
data:
 Online transaction processing system
 Design, implementation, and operation of large

application system with hundreds of terminals, tens of
computers, providing service with no downtime,
guaranteeing application correctness and data
consistency.

1/9/13 Winter'2013:CMPSC 274

3

+
The Transaction Concept
 Transactions provide an integrative framework

in the presence of many “moving parts”.

 Distributed transaction-oriented systems are
the enabling technology:
 Distributed and Networked applications
 E-commerce and Workflow systems
 Large-scale Information Infrastructures

 Without transactions, distributed systems/
networked applications cannot be made to
work.

1/9/13 Winter'2013:CMPSC 274

1/9/13

2

4

+
The Transaction Concept
 Transactions were originally developed in the

context of DBMS as a paradigm to deal with:
 Concurrent access to shared data
 Failures of different kinds/types.

 Typical and canonical application scenarios in
the context of banking application: Debit/
Credit operations, and fund Transfers.

 The key problem solved in an elegant manner:
 Subtle and difficult issue of keeping data consistent in

the presence of concurrency and failures

 while ensuring performance, reliability, and
availability.

1/9/13 Winter'2013:CMPSC 274

+
OLTP Example: Debit/Credit

1/9/13 Winter'2013:CMPSC 274

void main () {
 EXEC SQL BEGIN DECLARE SECTION
 int BAL, AID, amount;
 EXEC SQL END DECLARE SECTION;

 scanf (“%d %d”, &AID, &amount); // USER INPUT

 EXEC SQL Select Balance into :BAL From Account
 Where Account_Id = :AID; // READ FROM DB

 BAL = BAL + amount; // update BALANCE

 EXEC SQL Update Account
 Set Balance = :b Where Account_Id = :AID; // WRITE TO DB
 EXEC SQL Commit Work;
}

+Concurrent Executions: Lost Update Anomaly

 DEBIT($50) Time CREDIT($100)

Select Balance Into :b1
From Account 1
Where Account_Id = :a

 /* b1=100, a.Balance=100, b2=0 */
 Select Balance Into :b2 2 From Account
 Where Account_Id = :a
 /* b1=100, a.Balance=100, b2=100 */

b1 = b1-50 3
 /* b1=50, a.Balance=100, b2=100 */
 4 b2 = b2 +100
 /* b1=50, a.Balance=100, b2=200 */

Update Account
Set Balance = :b1 5
Where Account_Id = :a

 /* b1=50, a.Balance=50, b2=200 */
 Update Account
 6 Set Balance = :b2 Where Account_Id = :a
 /* b1=50, a.Balance=200, b2=200 */

Observation: concurrency or parallelism may cause inconsistencies,
 requires concurrency control for “isolation”

1/9/13 Winter'2013:CMPSC 274

1/9/13

3

+
Funds Transfer: Inconsistent DATA

Observation: failures may cause inconsistencies,
 require recovery for “atomicity” and “durability”

void main () {
 /* read user input */
 scanf (“%d %d %d”, &srcid, &tgtid, &amount);
 /* subtract amount from source account */
 EXEC SQL Update Account
 Set Balance = Balance - :amount Where AccId = :srceid;
 /* add amount to target account */
 EXEC SQL Update Account
 Set Balance = Balance + :amount Where AccId = :tgtid;
 EXEC SQL Commit Work; }

1/9/13 Winter'2013:CMPSC 274

CRASH

+

Divy Agrawal
Department of Computer Science
UC Santa Barbara

Database Fundamentals

Database
Correctness

1/9/13 Winter'2013:CMPSC 274

+
Reminder: Database System Layers

1/9/13

Database

Database
Server

Clients . . .
Requests

 Language & Interface Layer
 Query Decomposition &

 Optimization Layer
 Query Execution Layer

 Access Layer

 Storage Layer

Data
Accesses

Request
Execution
Threads

Winter'2013:CMPSC 274

1/9/13

4

10

+
Basic Ingredients

 Elementary Operations (read and write)

 Transactions (i.e., transaction program
executions)

  Execution histories

  Characterization of correct executions

  Protocols (i.e., online algorithms to ensure
correctness)

1/9/13 Winter'2013:CMPSC 274

+
Transaction Page Model: Syntax

Page Model of Transaction:

A transaction T is a partial order of steps (actions) of
the form r[x] or w[x], where x ∈ D and reads and
writes as well as multiple writes applied to the same
object are ordered.
We write T = (op, <) for transaction T with step set op
and partial order <.

Example: r[x] w[x] r[y] w[y]
1/9/13 Winter'2013:CMPSC 274

+
Transaction Page Model: Semantics

Interpretation of jth step, pj, of T:

If pj=r[x], then interpretation is assignment
vj := x to local variable vj

If pj=w[x] then interpretation is assignment
x := fj (vj1, ..., vjk) with unknown function fj and
j1, ..., jk denoting T‘s prior read steps.

1/9/13 Winter'2013:CMPSC 274

1/9/13

5

+
Lost Update Problem

 P1 Time P2

 /* x = 100 */
r (x) 1

 2 r (x)
x := x+100 3 x := x+200
w (x) 4

 /* x = 200 */
 5 w (x)
 /* x = 300 */

update “lost”

Observation: problem is the interleaving r1(x) r2(x) w1(x) w2(x)

1/9/13 Winter'2013:CMPSC 274

+
Dirty Read Problem

 P1 Time P2

r (x) 1
x := x + 100 2
w (x) 3

 4 r (x)
 5 x := x - 100

failure & rollback 6
 7 w (x)

cannot rely on validity
of previously read data

Observation: transaction rollbacks could affect concurrent transactions

1/9/13 Winter'2013:CMPSC 274

15

+
Correctness Requirements: ACID

 ATOMICITY:
 All-or-none property of user programs

 CONSISTENCY
 User program is a consistent unit of execution

 ISOLATION
 User programs are isolated with the side-effects

of other user programs

 DURABILITY:
 Effects of user programs are persistent forever

1/9/13 Winter'2013:CMPSC 274

1/9/13

6

16

+
Transactions Executions: History

 History:
 Contains all operations from all transactions
 Distinct termination for every transaction
 Preserves the order of operations of all

transactions
 Termination is the final step
 Conflicting operations are ordered

1/9/13 Winter'2013:CMPSC 274

17

+Notion of Transaction Histories
 Goal:

 A technique/algorithm/scheduler that prevents
incorrect or bad execution.

 Develop the notion of correctness – or
characterize what does correct execution
means.

 This characterization will be based on the
histories of transaction execution:

H Good
Bad

1/9/13 Winter'2013:CMPSC 274

+
Transaction Executions: Histories

Let T={T1, ..., Tn} be a set of transactions, where
each Ti ∈ T has the form Ti=(opi, <i).

A history for T is H=(op(H),<H) such that:
 1. op(s) ⊆ ∪i=1..n opi ∪ ∪i=1..n {ai, ci}
 2. for all i, 1≤i≤n: ci ∈ op(s) ⇔ ai ∉ op(s)
 3. ∪i=1..n <i ⊆ <s
 4. for all i, 1≤i≤n, and all p ∈ opi: p <H ci or p <H ai
 5. for all p, q ∈ op(s) s.t. at least one of them is a write
 and both access the same data item: p <s q or q <s p

1/9/13 Winter'2013:CMPSC 274

1/9/13

7

19

+
History Example

R1[x]

 w1[x] c1

R1[z]

R2[x] w2[y] c2

 w3[y]

R3[z] c3

 [z]

1/9/13 Winter'2013:CMPSC 274

20

+
Correctness

 Syntactical semantics for schedules based
on an intuitive notion:
 Each transaction is a correct mapping, i.e.,

Hence, serial execution of transactions will be
correct.

DB DB’

Transaction T
Consistent Consistent

1/9/13 Winter'2013:CMPSC 274

21

+
Serial History

 A history H is serial if for any two
transactions Ti and Tj in H, all operations of
Ti are ordered in H before all operations of
Tj or vice-versa.

1/9/13 Winter'2013:CMPSC 274

1/9/13

8

22

+
General Idea

 Notion of equivalence of two histories H1
and H2.

 Use this notion of equivalence to accept all
histories which are “equivalent” to some
serial history as being correct.

 How to establish this equivalence notion?

1/9/13 Winter'2013:CMPSC 274

23

+
Semantics

 Equivalence via a notion of semantics:
 We do not know the semantics of transaction

programs

 We need a general notion that can capture all
potential transaction semantics

 Need a general enough and powerful
notion that can capture all possible
semantics of transactions.

1/9/13 Winter'2013:CMPSC 274

