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Abstract|Network traÆc measurements provide essential

data for networking research and network management. In

this paper we describe a passive monitoring system designed

to capture GPS synchronized packet level traÆc measure-

ments on OC-3, OC-12, and OC-48 links. Our system is

deployed in four POPs in the Sprint IP backbone. Mea-

surement data is stored on a 10 terabyte SAN (Storage Area

Network) and analyzed on a computing cluster. We present

a set of results to both demonstrate the strength of the

system, and identify recent changes in Internet traÆc char-

acteristics. The results include traÆc workload, analyses

of TCP 
ow round-trip times, out-of-sequence packet rates,

and packet delay. We show �rst that SNMP-based monitor-

ing is not accurate enough. We also show that some links no

longer carry web traÆc as their dominant component to the

bene�t of �le sharing and media streaming. On most links

we monitored, TCP 
ows exhibit low out-of-sequence pack-

ets rates. We �nally establish that delay inside the backbone

is dominated by speed of light.

I. Introduction

O
VER-PROVISIONING is widely used by packet net-

work engineering teams to achieve failure resilience

and support the rapid growth of traÆc volume. So far

this approach has been successful in maintaining scalable,

simple, highly available, and robust networks. It is impor-

tant to realize that in packet networks that do not perform

call admission control, there is often no way to control the

amount and types of traÆc entering the network. The pro-

visioning problem therefore lies in �guring out how much

excess capacity is required to provide robustness (e.g. re-

silience to multiple simultaneous link failures) and scala-

bility. The current tools for network management, such as

SNMP (Simple Network Management Protocol), are lim-

ited in their capabilities, since they only provide aggregate

level statistics about the traÆc (e.g. average link utiliza-

tion over �ve minute intervals) and do not give insight into

traÆc dynamics on times scales appropriate for events such

as packet dropping. Another example is the demand traÆc

matrix which is a crucial input to many network planning,

provisioning, and engineering problems, but which is diÆ-

cult to obtain with available tools [1], [2].

Detailed traÆc measurements are necessary to assess the

capacity requirements and to eÆciently engineer the net-
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work. Research topics that can bene�t from the packet-

level monitoring are:

� Developing traÆc models that allow network operators

to determine the amount of over-provisioning required in

their network [3].

� Assessing the trade-o�s between di�erent levels of granu-

larity in routing, and studying the traÆc dynamics between

POPs [4], [2].

� Develop algorithms to detect network anomalies such as

Denial-of-Service attacks and routing loops [5].

� Studying the performance of TCP, and identify where

congestion is occurring in the network [6].

� Evaluating the network's capability to support new

value-added services (telephony, QoS, etc.) [7].

In order to gain a better insight into network traÆc,

we have developed the IP Monitoring (IPMON) system

and have deployed it in the Sprint IP backbone network.

The IPMON system is capable of (i) collecting packet-level

traces at multiple points of the Sprint IP backbone for link

speeds of up to OC-48 (2.5 Gbps), (ii) marking each of the

packets with a sub-microsecond time-stamp, and (iii) syn-

chronizing these traces to within 5 �s. O�-line processing

of the packet traces then enables detailed studies of the

various aspects of traÆc characteristics such as delay and

loss.

This paper �rst describes the architecture and capabili-

ties of the IPMON system. We then present observations of

traÆc on OC-12 (622 Mbps) and OC-48 links in the Sprint

IP backbone network1.

Results presented in this paper provide a high-level view

of a major backbone network traÆc in 2001 and 2002, and

highlight the changes that have occurred in traÆc charac-

teristics with respect to previous studies. We illustrate the

limits of SNMP. We identify the impact of new applications

such as distributed �le sharing and streaming media. We

�nd that on some links, over 60% of the traÆc is generated

by these new applications while only 30% is web traÆc. We

also present results on end-to-end loss and round-trip-time

(rtt) performance of TCP connections that are signi�cantly

di�erent from previous observations. We also present re-

sults on the network delays that are experienced through a

single router in the backbone as well as the U.S. transcon-

tinental delay measurement. We �nd that packets experi-

ence very little queuing delay and insigni�cant jitter in the

backbone.

The paper is organized as follows. Section II discusses

related work. Section III describes the monitoring system
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architecture. Section IV presents and analyzes traÆc mea-

surements from the Sprint IP backbone network. It starts

with a brief description of the 32 traces used in the pa-

per, and analyses the traÆc load broken into bytes, appli-

cations, and numbers of 
ows. The performance of TCP


ows is evaluated in terms of round trip times and out-

of-sequence packet rates. Lastly, delay measurements are

presented. Section V concludes and discusses future work.

II. Related Work

The challenges in designing a monitoring system for a

comprehensive view of the network performance are (i) the

collection of detailed traÆc statistics, including applica-

tion mixes and traÆc matrixes, from heterogenous network

links, (ii) limiting the side-e�ects of the monitoring system

on the monitored network and (iii) obtaining a global view

of the monitored network from a limited number of moni-

toring sites. Existing monitoring systems partially address

these three issues.

Network researchers have adopted two distinct ap-

proaches to data collection. The �rst approach uses an

\active" measurement system to inject probe traÆc into

the network and which then extrapolates the performance

of the network from the performance of the injected traf-

�c. Both the probe methodology and the probe volume are

de�ned by the metrics to be observed and by the level of

accuracy needed in the analysis. A major drawback of ac-

tive monitoring systems is that probing for one metric, for

example bottleneck bandwidth, will often bias the results

for other metrics, for example packet loss. Furthermore,

metric speci�c probes may result in it not being possible

to use an archived data set to answer new questions. An-

other important limitation is that it is diÆcult to control

the path taken by the probe packets.

The second approach is that of passively observing and

recording network traÆc. These passive measurement sys-

tems use the recorded traÆc to characterize both the user

applications and the network's performance. The draw-

back of passive monitoring systems is that they depend

on the existence of appropriate network traÆc. The ca-

pabilities of passive monitoring systems tend to be heavily

de�ned by the characteristics of the hardware infrastruc-

ture used. Due to the quantity of data produced, recording

traces from very high bandwidth links is a serious challenge

[8]. If the data is summarized in order to reduce its volume,

then issue (i) may be compromised. For the same reason,

issue (iii) requires the deployment of monitoring hardware

in various locations of the network. As a result, global

observations have often been addressed by inference tech-

niques, and not by exhaustive passive monitoring of every

link in a network. Finally, passive systems which record

and archive full traces allow for re-analysis of the archived

data.

Ping, Traceroute and Pathchar are good examples of

simple active monitoring tools. Paxson used these tools,

and others, to perform pioneering work [9],[10] in network

measurement. Paxson's measurement system has been fur-

ther developed into the NIMI (National Internet Measure-

ment Infrastructure) project [11]. NIMI relies on servers

deployed at di�erent locations of the Internet and which

generate and exchange active monitoring traÆc. TraÆc

metrics derived from these active probes include available

bandwidth, delay, and packet loss. NIMI only partially ad-

dresses issue (i) since it only provides delay and loss data,

and issue (iii) given that the number of deployed NIMI

servers is \large enough". Issue (ii) is addressed in active

measurements by limiting the probe traÆc in order to min-

imize the impact on the network at the possible expense of

measurement accuracy.

Other active measurement projects include Surveyor,

which uses a set of 41 GPS synchronized systems to mea-

sure one-way network delay and loss [12]; PingER (Ping

End-to-end Reporting), which measures packet loss and

available bandwidth between high energy nuclear and par-

ticle physics research facilities [13]; and the RIPE Test

TraÆc Measurement project, which measures bandwidth

and delay performance between 60 measurement systems

in Europe, North America, and Israel [14].

OC3MON is a passive monitoring system for OC-3 links

(155 Mbps) described in [15]. OC3MON collects packet-

level traces or 
ow-level statistics. Packet-level traces can

be collected only for a limited amount of time (only few

minutes at a time), while 
ow-level statistics can be col-

lected on a continuous basis. It has been deployed at

two locations in the MCI backbone network to investigates

daily and weekly variations in traÆc volume, packet size

distribution, and traÆc composition in terms of protocols

and applications [16]. OC3MON has been extended in [17]

to support OC-12 and OC-48 links2. Passive monitoring

systems require speci�c hardware to collect data on the

network. In the case of OC3MON, data capture relies on

tapping the �ber through a dedicated network interface

card.

NetFlow [18] is a Cisco proprietary passive measurement

tool. NetFlow collects information about every TCP and

UDP 
ow on a particular input or output link of a router.

A 
ow record includes the source and destination addresses

and port numbers, numbers of bytes and packets transmit-

ted, and duration in time. The 
ow information is collected

by the router and transmitted to an external system for

storage. While NetFlow is a powerful measurement tool,

unreliable transmission of its output to the collection site

can be a concern when the path between the routers and

the collection site is heavily loaded [1]. NetFlow can also

impact the performance of a router in case of DoS (Denial-

of-Service) attacks, for example.

Juniper Networks has a set of accounting tools to col-

lect similar statistics as NetFlow [19]. Using the Inter-

net Processor II ASIC, the Juniper routers support �lter-

based, MPLS-based, and destination class usage account-

ing. They also allow accounting pro�les to be stored on a

local disk. This feature adds 
exibility in transferring the

collected accounting data when managing high-capacity

routers.

2The analysis results from two 1-hour-long OC-48 traces are avail-
able at http://www.caida.org.
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There are several projects which combine both active

and passive measurement. The NetScope project [20] col-

lects measurements from the AT&T network in order to

study the e�ects of changing network routes and router

con�guration. Using NetFlow measurements from router,

the traÆc demand for the entire network is derived [21].

The traÆc demand is used in simulation to determine the

e�ects of changing the network con�guration. As part of

an ongoing e�ort to develop better network measurement

tools, a passsive monitoring system called PacketScope is

developed and used to collect and �lter packet-level infor-

mation.

The NAI (Network Analysis Infrastructure) project mea-

sures the performance of the vBNS and Abilene networks.

This system collects packet traces, active measurements of

round-trip delay and loss, and BGP routing information.

All of the 90-second-long packet traces from this project

are available on its web site3.

There are commercial products for passive monitor-

ing, such as Niksun's NetDetector 4 and NetScout's ATM

Probes 5. These systems, however, are limited to OC-3 or

lower link speed, and are thus not adequate for Internet

backbone links.

Our monitoring infrastructure, called IPMON, solves is-

sue (i) as our hardware capabilities allow us to record

packet traces for any link capacity up to OC-48. The range

of observable metrics is wider than with any of the above

systems thanks to the timestamps synchronized to a global

clock signal to the 5 �s accuracy. Issue (ii) is addressed be-

cause the system is passive; data collection does not disturb

the traÆc being observed. We partially address issue (iii)

by deploying the monitoring entities in geographically dis-

tributed locations and by monitoring a diverse set of links.

The IPMON components will be described and discussed

in greater details in the next section.

III. IPMON Architecture and Features

In this section we present the architecture of the Sprint

IP backbone network and then give a high level description

of our passive monitoring system. We close the section with

a brief summary of practical concerns in trace collection.

A. The Sprint IP backbone network

The topology of a tier-1 Internet backbone typically con-

sists of a set of nodes known as Points-of-Presence (POPs)

connected by high bandwidth OC-48 (2.5 Gbps) and OC-

192 (10 Gbps) links. From each POP links radiate out-

wards to customers (e.g. large corporate networks, regional

tier-2 ISPs or DSL-aggregation devices, and large server

farms), which typically require higher bandwidth network

connections6. Each POP may have links, known as private

peering points, to other backbone networks as well as links

to public network access points (NAPs). Because of traÆc

3http://moat.nlanr.net/PMA/
4http://www.niksun.com/
5http://www.netscout.com/products/probes.html
6Lower bandwidth customers, such as dial-up home users, connect

to tier-2 ISPs which in turn connect to the backbone network.

volume, major backbone networks often have peering links

in multiple, geographicly distinct, POPs.

The Sprint IP backbone consists of approximately 40

POPs worldwide, of which about 20 are located in the

U.S.A. Figure 1 shows an abstract view of the Sprint U.S.

backbone topology. Within a POP the network is a two-

level, hierarchical structure: access (edge or gateway) and

backbone (or core). Customer links are connected to access

aggregation routers. The access routers are in turn con-

nected to the backbone routers. These backbone routers

provide connectivity to other POPs, and connect to pub-

lic and private peering points. The backbone links that

interconnect the POPs have the speed of OC-48 or OC-

192. Sprint uses Packet-over-Sonet (POS) framing which

in turn runs over Sprint's DWDM (Dense Wavelength Di-

vision Multiplexing) optical network.

B. The IPMON monitoring infrastructure

A detailed description of the monitoring infrastructure is

provided in [22]. We give here a short description of the IP-

MON architecture. IPMON consists of three elements (see

Figure 1): a set of passive monitoring entities which collect

the packet traces; a data repository that stores the traces

once they have been collected; and an analysis platform

which performs o�-line analysis. Analysis is performed o�-

line for two reasons. The primary reason is that the data

is used in many di�erent research projects, each of which

has its own set of custom analysis tools. It is more eÆcient

to perform the multiple types of analysis on a computing

cluster in the lab where many systems can access the data

simultaneously. The second reason is we archive the traces

for use in future projects.

B.1 Monitoring entities

The monitoring entities are responsible for collecting the

packet traces. Each trace is a sequence of packet records

that contain the �rst 40 bytes of each packet, the IP and

UDP/TCP headers, as well as a sub-microsecond times-

tamp which indicates the time at which the packet was

observed. The source and destination IP addressess are

not anonymized, since they are needed in routing-related

analysis.

Each monitoring entity is a dual-processor Linux PC

(Dell PowerEdge 6000 series) with 1 GB main memory,

a large disk array (100 to 330 GB), and a POS network in-

terface card, known as the DAG card [23]. Existing DAG

cards are capable of monitoring links ranging in speed from

OC-3 to OC-48. An OC-192 monitoring card is under de-

velopment [8]. The DAG card captures, timestamps, and

transfers the POS HDLC framing information and the IP

packet headers to the main memory of the Linux box where

software tranfers the data to the disk array. An optical

splitter is installed on the monitored link, and one output

of the splitter is connected to the DAG card in the PC. This

is a receive-only connection, the DAG card does not have

the capability of injecting data into the network. Since a

receive-only passive optical splitter is used, failure or mis-

behavior of the monitoring entity or the DAG card cannot
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Fig. 1. The IPMON system in the Sprint IP backbone

compromise network integrity.

Each monitoring entity has a removable disk array of up

to 330 GB. This amount of disk space allows us to cap-

ture a minimum of several hours of trace data at full link

utilization. We can either schedule trace collection for a

pre-de�ned interval or allow it to run until space on the

hard disks is exhausted. By engineering design the net-

work links are not fully loaded except in extreme failure

scenarios and we are typically able to collect several days

of measurement data.

The packet timestamps are generated by an embedded

clock on the DAG card that is synchronized to an external

GPS signal. GPS is a satellite based system that provides

a global time information with an accuracy of 20 nanosec-

onds. Hardware errors as well as other system related issues

bring the maximum error on timestamps to 5 �s [22][23].

This synchronization ability allows us to measure the one-

way network delay between two monitored links.

A total of 60 monitoring entities are installed at 4 dif-

ferent POPs, chosen on the basis of geographic diversity

and connectivity. They monitor the traÆc on OC-3, OC-

12, and OC-48 links which connect the access routers, the

backbone routers and several of the public peering links.

B.2 Data Repository

The data repository is a two level store consisting of a

12 TB removable tape library and a 10 TB disk storage

array. It is located at the Sprint Advanced Technology

Laboratory (ATL). For short traces a dedicated OC-3 link

is available for transferring the data from the monitoring

entities back to the ATL. Given that a full multi-POP trace

set consists of approximately 10TB when trace collection

is allowed to run until the disks �ll up, the best method

for transferring full traces back to the data repository is by

physically shipping the removable hard disks. As a result

of these constraints on transferring trace data, we do not

schedule new traces until the previous trace data is either

transferred or deleted.

To improve transfer time and decrease the storage ca-

pacity requirements, the trace data is compressed before

it is transferred over the network or placed on the data

repository. Using the compression program bzip, we are

able to achieve compression ratios ranging from 2:1 to 3:1

depending on the trace characteristics. We are developing

more sophisticated compression techniques in order to be

able to support data capture on OC-192 links [8].

B.3 Data Analysis Platform

Data analysis is performed on a cluster of 17 high-end

personal computers (PCs) connected via a Storage Area

Network (SAN) to the 10 TB disk array. Two categories

of analysis are performed on the platform:

� Single trace analysis involves processing data from a sin-

gle link. This type of analysis includes, but is not limited

to, determining packet size distributions, 
ow size distribu-

tions, and the amount of bandwidth consumed by di�erent

applications.

� Multi-trace analysis involves correlating traÆc measure-

ments from di�erent links. This includes calculating delay

and identifying packet losses. The key to performing multi-

trace analysis is to identify an individual packet as it travels

across multiple links in the network. To identify a packet
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we use the 30 bytes out of the 40 bytes of header informa-

tion that provide unique identi�cation of packets. These

30 bytes include the source and destination IP addresses,

the IP header identi�cation number, and possibly TCP and

UDP header information (TCP and UDP information may

not be available due to the use of IP options). Other �elds,

such as the IP version and checksum are not used since they

are identical in most IP packets or, in the case of the check-

sum, provide redundant information. To match packets on

multiple links we use a hash-based search algorithm to de-

termine if the same packet is observed in multiple traces

[24].

The following three sets of analysis tools are most com-

monly used.

� The �rst set of tools is a set of custom tools which ex-

tract information about individual 
ows from a single trace.

These tools process an entire trace and return a list of 
ows,

their start time, end time, and details about each packet

in the 
ow.

� The second set of tools is the CoralReef public suite and

custom tools which we use to identify the amount of traf-

�c generated by di�erent protocols (e.g. TCP, UDP) and

applications (e.g. web, email, media streaming) [25].

� The third set of tools is used for multi-trace correlation.

These tools use the hash-based algorithm for �nding pack-

ets that have been recorded on multiple links and returns

a list of these packets and the time at which they were

observed on each link.

C. Trace Sanitization

The trace collection is a complex process and traces can

be corrupted at any step of the process:

� The monitoring entities can fail. Problems range from

operating systems to hardware failures. Any of these prob-

lems can potentially a�ect the trace consistency. Hard disk

failures are the most common in our experience.

� GPS synchronization can be lost. The monitoring en-

tities are currently daisy chained to the GPS source and

the failure of one entity a�ects all systems down the chain

(GPS clock distribution is currently being upgraded to �x

this speci�c problem). Also problems internal to a DAG

card can cause that DAG card to become out of synchro-

nization with others.

� Because the DAG hardware has been co-developed with

the monitoring platform, hardware or software bugs have

impacted the traces. For example, we have observed traces

where packets were missing, or traces had sequences of ze-

roes. Misalignment or byte swapping has also been a prob-

lem.

� While they are tranferred from the collection site to the

analysis platform, traces can be corrupted or truncated due

to intermediate system failures: local disk failure, defective

tapes, etc.

Therefore, before being used, traces need to be sanitized.

We realized the need for sanitization from the �rst trace

collection, and, as we discovered and �xed sources of cor-

ruption, have steadily improved upon the process. Today

it is established as a systematic process that is run on ev-

ery trace before the trace in an analysis. The current steps

in the sanitization process are described below. We under-

stand that the list of sources of corruption is not exhaus-

tive, and continues to grow, though slowly.

� We �rst check the hard disks on which the traces are

stored for bad blocks and access problems.

� We analyse the DAG card log. While collecting a trace,

the DAG card keeps track of GPS synchronization and in-

crements a counter any time it misses a packet.

� We process the POS HDLC header and verify the con-

sistency of each packet based on the information, such as

packet type, contained in the HDLC header. We then check

that the structure of the packet is correct for the packet

type.

� We check that the timestamps are monotonically increas-

ing, and that the inter-packet time is both greater than the

time required to transmitt the previous packet and that any

gaps in the trace are reasonable7.

� We detect traces out of GPS synchronization by calcu-

lating the delay between traces. If the minimum delay per

minute between two traces does not remain constant, and


uctuates more than a few milliseconds, those two traces

are considered out of synchronization.

Anytime a problem is detected, the corresponding trace

is ignored and only those traces that are "sanitized" per

process described above are used in analysis.

IV. Measurement Results

In this section we present measurement results to demon-

strate the capabilities of the IPMON system and to pro-

vide information on the characteristics of backbone traÆc

in 2001 and 2002. The results are organized in three cat-

egories. First we present traÆc workload statistics (e.g.

application mix, packet size distribution, 
ow size distri-

bution). These results are not unique to our measurement

system. They can be obtained using 
ow-level measure-

ment systems such as NetFlow or CoralReef 8. However,

these results are the �rst published traÆc statistics from

a large number of OC-12 and OC-48 links in a production

backbone network, and they show the impact of emerging

applications such as distributed �le sharing and streaming

media. The second category of results are TCP perfor-

mance statistics. These results demonstrate the advan-

tages of collecting packet-level measurements. The third

set of results are packet delay measurements through a

single backbone router and over a U. S. transcontinental

path.

A. Trace Description

The IPMON system collects measurements from about

30 bidirectional links out of about 5000 links at 4 POPs

in the Sprint IP backbone. Three POPs are located on

the east coast of the U.S.A., and one POP on the west

7On OC-3 to OC-48 links it is extremely unlikely to have no packet
in any interval of 100 ms. A long gap is often an indication of clock
synchronization problem.
8We actually use CoralReef public suite and SNMP data to validate

the workload results.
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coast. OC-48 links we monitor are all long-haul trans-

continental connections. The other links either connect

backbone routers to access routers within the POP, or con-

nect peers and customers to the backbone as in Figure 1.

Due to space limitation, we do not present results from all

of the traces, but choose to use a subset of 32 traces for

this paper. The goal of this paper is to demonstrate the

strengths and functionalities of the IPMON system, and

present general observations made through them on the

Sprint IP backbone network. For this purpose we believe

32 traces are enough. For the ease of presentation, we limit

ourselves to only one or two traces in some of the �gures.

Readers are referred to the Data Management System at

http://ipmon.sprintlabs.com for the exhaustive list of

available traces and analysis results.

The link speeds, start times, and durations of the 32

traces used in the paper are given in Table IV-A. The

starting time of traces on Tuesday, July 24th, 2001 and

Wednesday, September 5th, 2001 was 8am EDT; that on

Friday, April 19th, 2002 was at 1pm EDT. Di�erent days

of the week were chosen in order to take into account time-

of-day and day-of-week variations. Traces of 2001 are from

OC-12 links, and those of 2002 are from OC-48. Since we

use a �xed amount of hard disk space, the durations of

the traces depend on the link utilization: the higher the

link utilization is, the more packets are captured, and the

shorter the trace is. We can also �x the trace collection

time to a constant as in the case of OC-48 traces. Even-

numbered traces are from the opposite directions of odd-

numbered traces; for example, OC-12-1 and OC-12-2 are

fom the same link, but in opposite directions. We do not

have week-long traces for all monitored links, but only from

a subset of links as shown in Table IV-A. Therefore, to

study the week-long trends, we resort to SNMP statistics

collected separately.

B. Workload Characteristics

B.1 TraÆc Load in Bytes

Figure 2 shows the traÆc load in 5 minute intervals col-

lected using SNMP over one week. The SNMP statistics

are collected from the same links that we collected OC-12-7

and OC-12-8 traces from. Daily peaks are visible between

9 am to 5 pm. On the weekend, the traÆc decreases sig-

ni�cantly. The same behavior is observed on all links with

variations on peak height, duration, and hours, depending

on the geographic location and the customer type of the

link [4]. Figure 3 shows the traÆc load measured in 1 sec-

ond intervals collected on our monitoring platforms. The

region marked by two vertical lines in Figure 2 corresponds

to the 24-hour-long period shown in Figure 3. Figure 4

plots the average link utilizations in 1 second intervals of

all the traces.

The following observations are of interest:
� TraÆc load reported by SNMP is lower than that from

the IPMON measurements. In OC-12-7 the maximum on

July 24th, 2001, is about 68 Mbps in SNMP, while it

reaches above 125 Mbps from the IPMON measurements.

This is because the SNMP statistic is an average over 5

Trace Link Speed Start Time Duration
OC-12-1 OC-12 Jul. 24, 2001 13h 30m
OC-12-2 OC-12 Jul. 24, 2001 2d 2h 35m
/C-12-3 OC-12 Jul. 24, 2001 15h 55m
OC-12-4 OC-12 Jul. 24, 2001 7h 34m
OC-12-5 OC-12 Jul. 24, 2001 1d 3h 17m
OC-12-6 OC-12 Jul. 24, 2001 23h 7m
OC-12-7 OC-12 Jul. 24, 2001 4d 18h 42m
OC-12-8 OC-12 Jul. 24, 2001 4d 10h 1m
OC-12-9 OC-12 Jul. 24, 2001 4d 57m
OC-12-10 OC-12 Jul. 24, 2001 6d 48m
OC-12-11 OC-12 Sep. 5, 2001 11h 2m
OC-12-12 OC-12 Sep. 5, 2001 10h 6m
OC-12-13 OC-12 Sep. 5, 2001 6h 17m
OC-12-14 OC-12 Sep. 5, 2001 2d 9h 47m
OC-12-15 OC-12 Sep. 5, 2001 1d 2h 5m
OC-12-16 OC-12 Sep. 5, 2001 7h 24m
OC-12-17 OC-12 Sep. 5, 2001 1d
OC-12-18 OC-12 Sep. 5, 2001 17h 51m
OC-12-19 OC-12 Sep. 5, 2001 16h 7m
OC-12-20 OC-12 Sep. 5, 2001 14h 3m
OC-12-21 OC-12 Sep. 5, 2001 16h 2m
OC-12-22 OC-12 Sep. 5, 2001 4d 19h 3m
OC-12-23 OC-12 Sep. 5, 2001 14h 13m
OC-12-24 OC-12 Sep. 5, 2001 13h 7m
OC-48-1 OC-48 Apr. 19, 2002 1h
OC-48-2 OC-48 Apr. 19, 2002 1h
OC-48-3 OC-48 Apr. 19, 2002 1h
OC-48-4 OC-48 Apr. 19, 2002 1h
OC-48-5 OC-48 Apr. 19, 2002 1h
OC-48-6 OC-48 Apr. 19, 2002 1h
OC-48-7 OC-48 Apr. 19, 2002 1h
OC-48-8 OC-48 Apr. 19, 2002 1h

TABLE I

Table of Traces

M
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Fig. 2. Week-long time-series plot from SNMP

minutes, while the traÆc load is calculated in 1 second in-

tervals from the IPMON measurements. It shows that the

traÆc is more bursty in �ner time granularity, and our mon-

itoring system is capable of capturing it. In other words,

SNMP statistics are not appropriate to detect short term

congestions.

� We observe distinct weekly and diurnal patterns in Fig-

ures 2 and 3. From Monday to Friday, the traÆc surges

during the busy hours, and the load comes down signi�-

cantly at night. The day-to-night traÆc ratio is about 5:1

to 7:1. On the weekend the traÆc load is signi�cantly less

than on the weekdays, and does not exhibit clear pattern.

The low traÆc load on the weekend is possibly due to busi-

ness closing. Bhattacharrya et al demonstrates the impact

of customer behavior on the overall traÆc to the matching
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Fig. 4. Average link utilization vs. traces

e�ect [4].

� Figure 4 shows that all of the links are utilized under

60%, and most of them under 30%. The results are consis-

tent with our previous observations on the overall network

performance [26]: most of the links are utilized under 50%,

and less than 10% of the links in the backbone experi-

ence utilization higher than 50% at any given 5 min inter-

val. This is a consequence of bandwidth over-provisioning.

Over-provisioning is not a waste of resources, but is a

design choice that allows Sprint to protect the network

against multiple failures and to handle traÆc variability in-

curred by the absence of access control. This is analogous

to the use of working and protect circuits in traditional

telecommunication networks.

� In Figure 3 we see occasional peaks in utilization. There

can be many causes behind such peaks: Denial-of-Service

(DoS) attacks, routing loops, and simply bursty traÆc. In

some traces we found an order of magnitude more TCP

SYN packets than usual that are destined to the same ad-

dresses. We suspect those peaks are due to DoS attacks,

but admit that it is not easy to verify if the destinations

su�ered Denial-of-Service attacks, since most organizations

are reluctant to release such information. We also observed

that transient loops caused spikes in utilization. In other

cases peaks were simply due to very bursty arrival of pack-

ets. We leave the detailed study of these phenomena for

future work.

� TraÆc volumes are asymmetric on both link directions.

This traÆc asymmetry results from two factors. The �rst

factor is the nature of an application. Many applications,

such as web and ftp, are inherently asymmetric. One direc-

tion carries small request messages and the other direction

carries the actual web data. For example, if a link con-

nects to a web server farm, the direction toward the server

farm usually carries requests, and thus less traÆc than the

other direction. The second factor is routing. Most net-

works use the \hot potato" routing policy. TraÆc destined

to another network is passed to that network at the closest

peering point. As a result, if a 
ow is observed on one direc-

tion of a link, it is possible that the reverse direction of the


ow will follow a di�erent route and will not be observed

on the opposite direction of the link.

OC-12-1 and OC-12-2 are example of an extreme case. OC-

12-1 has an average traÆc volume 200 Mbps, OC-12-2 has

less than 20 Mbps. OC-12-1 and OC-12-2 are to and from

an international peer. Both the direction of web requests

and hot-potato routing can explain the asymmetry on this

link. Most links from 2001 exhibit traÆc asymmetry of

2 and 5 to 1 in Figure 4. As OC-48 POP-to-POP links

carry more diverse and aggregated traÆc, the loads are

less asymmetric than OC-12 links. It is hard to accurately

extrapolate the popularity of traÆc asymmetry in the net-

work from our data. However, the data shows that it is not

uncommon.

B.2 TraÆc Load by Applications

Next we break down the traÆc volume by application.

We use the port numbers to identify the application. When

either the source or destination port number of a packet

corresponds to a well-known port number for a speci�c ap-

plication, we deem the packet as belonging to the applica-

tion. Detailed mapping between port numbers and appli-

cations is from CoralReef public suite [25]. We group sim-

ilar applications into the following categories: web, mail,

�le transfer, peer-to-peer, streaming, and others. The web

category include those packets from HTTP (Hyper Text

Transfer Protocol) and HTTPS (Secure Hyper Text Trans-

fer Protocol). Mail traÆc is from POP3 (Post OÆce Pro-

tocol 3) and SMTP (Simple Mail Transfer Protocol). The

�le transfer traÆc includes FTP (File Transfer Protocol)

and SCP (secure copy). A new kind of application, we call

peer-to-peer, has emerged recently, pioneered by Napter

and Gnutella. It o�ers a way to share �les among users,

and became a popular medium to share audio and video

clips. Popular peer-to-peer applications include Napster,

Morpheus, Gnutella, and KaZaa. Streaming media traf-

�c is from Realaudio, Windows Media Player, and iMesh.

All other known traÆc, such as DNS (Domain Name Ser-

vice) and news, is grouped into the \others" category. The

\unknown" category is for those without identi�able port

numbers. As the peer-to-peer �le sharing systems gained

popularity, audio and video clips of large sizes have added

a serious amount of traÆc to most university networks and

7



more speci�cally to the connections to their ISPs. The

access to the �le sharing systems was then limited by pre-

venting traÆc to or from certain port numbers at the �re-

wall. To circumvent this blockage, many �le sharing ap-

plications adopted the use of dynamically allocated port

numbers instead of using �xed-numbered (or well-known)

ports. For this reason, the amount of unknown traÆc in

the backbone has increased sig�cantly in comparison to the

previous work [16]. For our observations and from propri-

etary observations on DSL customers, we conjecture that

the unknown traÆc is mostly made of peer-to-peer traÆc.

Table II shows the minimum and maximum amounts of

traÆc each category contributes among the 32 traces used

in this paper.

TraÆc Type min - max

web 11% - 90%

peer-to-peer + unknown 0.1% - 80%

streaming 0.2% - 26%

mail 0% - 6%

�le transfer 0% - 7%

others 5% - 21%

TABLE II

Traffic volume breakdown by application

The application mix is quite di�erent from link to link.

Figure 5 plots the average web traÆc per link, and Figure 6

plots the average traÆc of peer-to-peer and unknown traf-

�c combined. In most traces web traÆc represents more

than 40% of the total traÆc volume. This result is con-

sistent with most prior traÆc analysis studies [16], [17],

[27]. However, on a handful of links (OC-12-4, OC-12-9,

OC-12-16, and OC-12-20) the web traÆc contributes less

than 20%, and we see the emergence of peer-to-peer traÆc

which contributes almost 80% of the total traÆc on those

links. Note that these links are customer and inter-router

links. The OC-48 traces exhibit less variability between

web and peer-to-peer traÆc than on OC-12 traces. The

monitored OC-48 links are inter-POP backbone links, and

carry heavily aggregated traÆc. This could explain the

small variability amongst them. Our observations show

that peer-to-peer traÆc has become one of the two most

dominant applications in the network along with the web

traÆc, and its emergence is not limited to a certain type

of links.

Another important observation is that streaming appli-

cations are a stable component of the traÆc, if not much

in volume yet as the peer-to-peer applications. We observe

1 to 6% of streaming traÆc even on OC-48 links.

In addition to the application mix, we also consider the

traÆc breakdown by protocol (TCP/UDP/ICMP). We do

not plot these results because in all cases above 90% of the

traÆc is due to TCP, even on the links with a signi�cant

percentage of streaming media. This is due to the fact that

�rewalls have encouraged the use of TCP rather than UDP

for streaming media.
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Fig. 5. Average volume of web traÆc vs. traces
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Fig. 6. Average volume of peer-to-peer traÆc vs. traces

B.3 TraÆc load in 
ows

Now we consider the traÆc volume in 
ows per minute.

A 
ow is de�ned by the 5-tuple fprotocol type, source IP
address, source port, destination IP address, destination

portg. The start time of a 
ow is the time at which we

observe for the �rst time a packet carrying a given 5-tuple.

The 
ow ends when we do not see any packet with the

same 5-tuple for 60 seconds. The 60 second timeout has

been chosen based on previous work by Cla�y [28] and on

our own observations [8]. A day-long analysis of the same

traces used in Figure 3 is presented in Figure 7. For all the

traces, the average number of 
ows per minute is plotted

in Figure 8.

The main observation is that peaks in the number of


ows in Figure 7 do not necessarily translate in volume

peaks of Figure 3. Between 9 am and 11 am on July 24th,

2001, the number of 
ows is as large as that during the

peak hours between noon and 5 pm. During the same time

period, the traÆc volume is often just half of that during

the peak hours between noon and 5pm. OC-12-7 and OC-

12-8 traces are from a link to a CDN (Content Distribu-

tion Network9) customer. The discrepancy in volume and

9A CDN is a mechanism to improve web content delivery to end
users.
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Fig. 8. Average number of 
ows per minute vs. traces


ow numbers is another example of the asymmetry in Sec-

tion IV-B.1. We also observe a small number of occasional

conspicuous peaks in 
ow numbers. Those peaks corre-

spond to activities between servers of the CDN customer.

However, they do not cause sudden increase in utilization

in Figure 3.

The second observation is that the average number of ac-

tive 
ows per minute is less than 50,000 for all OC-12 links

and than 300,000 for all OC-48 links in Figure 8. In one

trace, the maximum number of active 
ows per minute is 10

times larger than the average, but remains under 400,000.

A look into the minute interval with the maximum number

of 
ows of that speci�c trace revealed that it was likely due

to a DoS attack with randomly spoofed source addresses.

In the rest of the traces the maximum numbers of active


ows are 1.1 to 4 times larger than the average numbers.

The result in Figure 8 is important as it demonstrates

per-
ow scheduling is feasible in hardware on access links.

This observation means that new venues in traÆc control

can be explored, and that routers can go beyond TCP fair-

ness and Active Queue Management10.

10Recent developments in network processors allow per-
ow states
of more than million concurrent 
ows to be processed by a router
interface at line speed: http:www.agere.com.

B.4 Packet size distributions

Prior work has shown that the packet size distribution

is tri-modal [16]. This was a result of a combination of

TCP acknowledgements and the existence two distinct de-

fault message tranmission unit (MTU) sizes. Figure 9

demonstrates this tri-modal packet size distribution for two

traces, OC-12-1 and OC-12-2. For these two traces, there

are three steps at around 40, 572, and 1500, where 40 is

for TCP ACKs, and 572 and 1500 are the default MTUs.

When there is traÆc asymmetry due to applications on the

link, one step is more dominant than the others depending

on the direction. The third trace in Figure 9, OC-12-10,

exhibit more than three steps: 211 and around 820. The

211 byte packets correspond to a proprietary UDP applica-

tion which carries a single 211 byte packet. Most 845 byte

packets are from DNS (domain name service). The 821 and

825 byte packets are generated by media streaming appli-

cations. Trace OC-12-10 clearly shows that the emergence

of new applications requires the periodic re-examination of

assumptions about the distribution of packet sizes on an

IP backbone network.

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size x (Bytes)

P
(P

ac
ke

t S
iz

e 
<

 x
)

OC−12−2 
OC−12−1 
OC−12−10

Fig. 9. Packet size cdf

C. TCP Performance

Except for the packet size distribution analysis, the re-

sults in the previous section do not require packet-level

measurements. Such data can be collected using 
ow-

level aggregate measurements. On the other hand, study-

ing TCP performance requires knowledge about all packets

transmitted in a TCP 
ow. In this section we demonstrate

the types of TCP measurements possible with IPMON by

presenting results on the round-trip-time (rtt) distribution

and out-of-sequence packet statistics for the TCP 
ows.

The rtt is measured as the time elapsed between a SYN

packet and the �rst ACK packet that completes the three-

way handshake, as proposed in [29]. Note that the rtt is

measured end-to-end, i.e. it includes the time spent on

the host computer, and the transmission time on the ac-

cess link to the host computer (which can be as large as

150 ms in the case of a dial-up modem). In addition, we

can only compute the rtt for 
ows for which we observe

the SYN/ACK pair: the rtt of a 
ow is accounted for in

only one direction. Thus to have a complete and accurate

picture of rtt distribution for all 
ows on a link, rtt distri-

9



butions from both directions should be combined. However

due to routing asymmetry, this is not always feasible. Also

the rtt of a 
ow is not a constant value as it may change

over the duration of the 
ow due to changes in network

congestion or in routing: a single value of rtt taken at the

beginning of a 
ow can only be a rough estimate of the

rtt distribution for the 
ow. All these limitations in the

methodology should be taken into consideration in inter-

preting the rtt results below. However, measuring rtt in

the middle of the network allows us to collect many more

data points than it would generally be possible to gather

with active end-to-end measurements.

Figure 10 shows the median rtts vs. traces. On all links

the median rtt lies below 450 ms. Three traces, OC-12-2,

OC-12-12, and OC-12-14, have the median rtt above 300

ms. This result is easily explainable because the links from

which these traces were collected are primarily connected to

European customers. Six traces (OC-12-6, OC-12-7, OC-

12-10, OC-12-18, OC-12-20, OC-12-24) have the median

rtt below 50ms. The traÆc on these links is primarily from

content distribution networks (CDNs). This is consistent

with the results of Krishnamurthy et al that CDNs improve

the overall response time of customer requests [30].
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Fig. 10. Median round-trip time vs. traces

Figure 11 shows the rate of out-of-sequence packets for

TCP 
ows de�ned by the 5-tuple as above. Possible

causes of out-of-sequence packets are: retransmission af-

ter loss, unnecessary retransmission, duplicates, and re-

ordering. Jaiswal et al. reports that most of such out-

of-sequence packets are due to retransmission after loss [6].

While this may seem to be a crude estimate for end-to-end

loss of a 
ow, it provides an upper bound on the number

of losses we can detect from our measurements11.

In Figure 11 we see that in all traces 90% of the 
ows

experience no out-of-sequence packets; in only a handful

of traces is the 99th percentile above 30% out-of-sequence.

The maximum out-of-sequence packet rate often reaches

above 90%, but this may be a result of short 
ows losing

11If a packet is lost before it reaches the link we monitor, and is
somehow retransmitted in order, there is no way we can determine
that a loss has occurred. We believe this case is unusual enough so
that it does not a�ect our results signi�cantly.

0.0

0.2

0.4

0.6

0.8

1.0

O
C

−
12

−
1

O
C

−
12

−
2

O
C

−
12

−
3

O
C

−
12

−
4

O
C

−
12

−
5

O
C

−
12

−
6

O
C

−
12

−
7

O
C

−
12

−
8

O
C

−
12

−
9

O
C

−
12

−
10

O
C

−
12

−
11

O
C

−
12

−
12

O
C

−
12

−
13

O
C

−
12

−
14

O
C

−
12

−
15

O
C

−
12

−
16

O
C

−
12

−
17

O
C

−
12

−
18

O
C

−
12

−
19

O
C

−
12

−
20

O
C

−
12

−
21

O
C

−
12

−
22

O
C

−
12

−
23

O
C

−
12

−
24

O
C

−
48

−
1

O
C

−
48

−
2

O
C

−
48

−
3

O
C

−
48

−
4

O
C

−
48

−
5

O
C

−
48

−
6

O
C

−
48

−
7

O
C

−
48

−
8

O
ut

−
O

f−
S

eq
ue

nc
e 

R
at

e

Maximum 99% 90%

Fig. 11. Out-of-sequence rate vs. traces

most of their packets and reporting a high loss rate. The

fact that the 90% of 
ows experience out-of-sequence rate

of 0% on all the monitored links shows that most TCP


ows experience no end-to-end loss.

D. Delay measurements

The accurate knowledge of packet delay characteristics

is important, since delay is a major metric in the de�ni-

tion of Service Level Agreements (SLA). Delay and delay

variation (i.e. jitter) are critical to applications such as

Voice over IP (VoIP). Currently, delay measurements rely

on active measurements. While these measurements pro-

vide good estimates of the average network delay, they re-

quire a large amount of probe traÆc to be generated in

order to be useful in the construction of models, in the

evaluation of SLAs, or in the assessment of application fea-

sibility (such as VoIP). Furthermore, many of the active

probes use ICMP packets which are handled with a lower

priority in routers, and whose delay may not be represen-

tative. Unlike active probes, our delay measurements are

derived from all packets that traverse the network from one

observation point to the other.

The global synchronization mechanism we have imple-

mented in the monitoring systems gives us an accurate

measurement of the delay a packet experiences in our back-

bone. A packet observed at time t on one link and at time

t+q on another link actually spent time q in our backbone.

By monitoring links entering and exiting a single router we

can measure the detailed queuing behavior of the router.

By monitoring links in di�erent geographic locations we

can measure the queuing behavior of the backbone.

Our previous work on single-hop delay shows that the

delay distribution through a single router is usually long

tailed [24]. By understanding the traÆc scaling behavior

and its impact on the delay, we can approximate the de-

lay distribution, and use the knowledge in provisioning the

network [31], [32].

Obtaining delay distributions through multiple POPs is

more challenging than single-hop delay distribution. Be-

tween two links on the opposite sides on the backbone

network, there are often multiple paths that packets can

10



traverse. However, not all the paths carry traÆc between

two links, but only those with the minimum cost calculated

by the IGP (Interior Gateway Protocol). Thus we do not

always �nd common packets in a pair of OC-48 backbone

traces. However, when we do �nd matching packets in two

OC-48 traces, the number of matched packets is very large.

U.S. transcontinental delay distributions in Figure 12 are

obtained between San Jose and New York, and re
ect 200

million packet matches 12. Packets identi�ed in these delay

distributions crossed 5 IP POPs and 8 core routers.
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Fig. 12. Delay distributions

The minimum delays are 27.58 ms from OC-48-6 to OC-

48-4 (from San Jose to New York), and 27.34 ms from OC-

48-3 to OC-48-5 (from New York to San Jose); the average

delays are 28.37 ms and 28.58, and the 99.9% delays are

28.99 ms and 31 ms, respectively. The jitter on these paths

is consequently limited to less than 3 ms. This amount of

jitter is not suÆcient to impact the performance of delay-

constrained applications such as media streaming or VoIP.

While over 99.99% of packets experienced less than 31 ms

delay, we observe a very small number of packets that ex-

perienced delay above 100 ms. In [24] router idiosyncracies

are identi�ed as a cause behind large delays.

The analysis of the delay distributions reveals two major

characteristics of the backbone. First, transmission delays

are currently dominated by the speed of light. Second, the

jitter is extremely low and there is no obstacle in deploying

delay sensitive applications on the backbone.

V. Conclusions

We described a passive monitoring system that is capa-

ble of capturing packet-level traces on high-speed backbone

links. This monitoring infrastructure is innovative in two

aspects. First, there is the capability of simultaneously col-

lecting �ne granularity information on multiple, geograph-

icly dispersed links. Second, all of the collected information

is timestamped with a GPS-synchronized, global clock giv-

ing us the ability to do detailed analyses of packet queuing

and transmission behaviors on an Internet backbone.

We have deployed our monitoring infrastructure on mul-

tiple OC-3, OC-12 and OC-48 bidirectional links in 4

POPs on the Sprint IP backbone network, and collected

12For delay distributions from other traces, we again refer readers
to http://ipmon.sprintlabs.com.

days worth of traces. This paper presented a synthesis

of the results from traces collected in July and Septem-

ber 2001 and April 2002. Interested readers are referred

to http://ipmon.sprintlabs.com for additional results.

Ongoing work is focussed on the deployment of the IPMON

systems on OC-192 links and on upgrading the DAG card

in order to add new �ltering and sampling capabilities.

We observed that link load characteristics often vary

from link to link and that these variations can often be

correlated to the nature of the customers connected to the

POP. As one might expect, as traÆc becomes more highly

aggregated, for example on OC-48 links backbone links,

there is a higher degree of consistency. We also showed

for the �rst time that some links no longer carry web traf-

�c as their dominant component. File sharing and media

streaming applications can represent up to 80% of the traf-

�c volume. This new phenomenon can change signi�cantly

the nature of the Internet traÆc and the way the Internet

should be engineered. We also computed the number of

active 
ows and showed that it is small enough to make

per-
ow queueing an appealing technology to control the

traÆc, and to provide new services. Finally we showed that

TCP 
ows on most links exhibit low out-of-sequence packet

rates, and that backbone delay is dominated by the speed

of the light. Our result also show that the backbone is not

an obstacle to the deployment of VoIP on the Internet.

Our approach would not scale to monitoring every link

in a tier-1 backbone, but deployed on the current scale

it provides crucial data for understanding the dynamics

of network traÆc; data which is not available from exist-

ing router-based monitoring tools. In the long term, the

goal of this project is to identify which metrics need to be

monitored in real-time and to work with router vendors to

design embedded measurement facilities. It is through pre-

cise understanding of traÆc dynamics that we will be able

to make the design and control of Internet backbones an

engineering science.
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