ENTERTAINMENT EVERYWHERE

Latency-Driven Distribution:
Infrastructure Needs of Participatory
Entertainment Applications

Farzad Safaei, Paul Boustead, Cong Duc Nguyen, Jeremy Brun, and Mehran Dowlatshahi

Smart Internet Technology, Cooperative Research Centre, University of Wollongong

ABSTRACT

This article evaluates network and server infra-
structure requirements to support real-time flows
associated with networked entertainment applica-
tions. These include the state information flow to
update the status of the virtual environment and
immersive communication flows such as voice,
video, gesture, and haptics communication. The
article demonstrates that scaling these applica-
tions to large geographical spreads of participants
will require distribution of computation to meet
the latency constraints of the applications. This
latency-driven distribution of computation will be
essential even when there are no limitations on
the availability of computational resources in one
location. The article provides detailed results on
distributed server architectures for two of these
real-time flows, state information and immersive
voice communication. It also identifies a generic
set of requirements for the underlying network
and server infrastructure to support these applica-
tions and propose a new design, called switched
overlay networks, for this purpose.

INTRODUCTION

The convergence of Internet and entertainment
is poised to radically alter both the nature of
entertainment applications and the underlying
networks supporting them. Networked entertain-
ment is likely to lead to new forms of group
interaction. The degree of interactivity may
range from simple Web-style point-and-click
(e.g., to get information about a performer in an
iTV application) to more substantive and immer-
sive interaction that involves virtual participation
and presence in a networked virtual environ-
ment (e.g., a multiplayer game). The latter cate-
gory is the subject of this article and hereafter
referred to as participatory entertainment (PE).
Participatory entertainment applications differ
from the usual Web access in fundamental ways.
Many users interact with the application (and
through it with each other) in real time and across
a large geographical span. Unlike the Web, which

is primarily about retrieval of precomputed con-
tent, the visual and audio content associated with
PE is dependent on actions of participants, created
in real time, and highly dynamic.

PE applications often require a number of
conceptually distinct but interrelated traffic flows.
State information flows represent the actions of
participants (moving, rotating, shooting, etc.) and
are used to update the status of the virtual envi-
ronment. As the level of immersion increases,
other real-time flows, such as voice, video, ges-
tures, and haptics, may be needed to create a bet-
ter communication environment.

As discussed later, these flows have distinct
requirements in terms of network and server
designs. Nevertheless, they are real-time flows,
and the key issue for their proper distribution
and computation is managing latency. As the
geographical spread of participants increases, the
unavoidable rise in propagation delay will make
controlling latency of paramount importance.

RESOURCE- AND
LATENCY-DRIVEN DISTRIBUTIONS

Let us refer to distribution of processing load in
response to scarcity of resources as resource-driv-
en distribution (RDD). A common example is
grid computing. To make the obvious point,
RDD only makes sense if the available resources
in the current or default location are insufficient.

There is another reason for distribution of
computation: latency constraints. When control-
ling latency is critical, running the application in
a single location — even with unlimited
resources — may lead to unsatisfactory perfor-
mance. We refer to this situation as latency-driv-
en distribution (LDD). Note that LDD becomes
critical only when the size of a network (in terms
of propagation delay) exceeds the acceptable
latency constraints of the application.

In this article we demonstrate that LDD will be
essential for large-scale deployment of PE applica-
tions. We consider two different types of PE com-
putation: that associated with state information,
and voice and video communication. Analytical

106

0163-6804/05/$20.00 © 2005 IEEE

IEEE Communications Magazine * May 2005

Time (a)

Time (b)

M Figure 1. a) Central and b) distributed servers for state information processing and the associated time diagrams.

and simulation results are presented to show that
the performance of a single server architecture
will not be satisfactory even under ideal conditions
(abundance of bandwidth and processing capacity,
no packet loss or jitter). We then develop suitable
models for LDD of servers in each section and
show that under a reasonably broad set of assump-
tions, the improvement in performance is quite
significant. We identify common ingredients for
LDD and propose a new infrastructure that can
simplify the task of writing PE applications by pro-
viding generic functions that support LDD. We
believe that in conjunction with RDD technolo-
gies, such as task dispatching and load balancing
over a sever cluster, the proposed LDD-enabled
infrastructure can provide a powerful platform for
supporting the next generation of entertainment
applications over the Internet.

RESPONSIVENESS AND CONSISTENCY

The current instances of PE applications, such as
multiplayer games, often use a central server for
processing state information. Large geographical
participant spread, however, may deteriorate
application responsiveness to user inputs with a
single server. For this reason, most subscription-
based commercial multiplayer games deploy
independent virtual worlds in different locations
to reach their clients.

Computation of a new state in response to
the invocation of actions by participants involves
modification of certain variables associated with
the virtual environment. Consider the example
of Fig. 1a with two participants, P1 and P2, and
a central server, S. When P1 performs an action,
an action order is emitted toward S, which makes
a decision about this action and then sends an
answer back to P1. Let us define the response
time as the participant’s waiting time for the
server’s reply. It can easily be shown that for this
simple example the response time is bounded by
the network delays from P1 and P2 to S.

LDD of state servers can improve response
time. Figure 1b shows a distributed version of the

previous example where two servers, S1 and S2,
are located closer to the participants. Both
servers are authoritative and synchronize their
states by exchanging state synchronization pack-
ets. When P1 invokes an action, the action order
is processed by S1. Assume, for the time being,
that S1 responds to P1 immediately and then
sends an update to S2. Clearly, the response time
from the perspective of P1 is improved. Howev-
er, the states of S1 and S2 remain inconsistent
while the synchronization message is on the way.
If, during this period of inconsistency, S2 makes
a decision that is incompatible with S1’s decision,
the virtual environment may enter a paradoxical
state. For the virtual environment to make sense,
paradoxes must be either healed or avoided, as
described below [1]. Both strategies require
servers S1 and S2 to be time synchronized and to
timestamp every decision they make.

Rollback (or timewarp): In this case, servers
S1 and S2 save their virtual environment states
at regular intervals called checkpoints. After
making a “bad” decision because of a short-term
inconsistency, the server detects its error once it
receives the timestamped state synchronization
message. It rolls back to the latest compatible
saved checkpoint and recomputes the correct
game state. Note that although paradoxes are
fixed, they still occur and may be perceptible.

Server local lag: Before sending their
response to participants, servers wait a certain
time interval, called a server local lag (shown in
Fig. 1b). In perfect network conditions (no pack-
et loss or jitter) a server local lag equal to the
network delay between S1 and S2 would avoid
any paradoxes. However, local lag increases the
response time and to some degree negates the
impact of server distribution.

LATENCY-DRIVEN
DISTRIBUTION OF STATE SERVERS

Our investigations show that effective distribu-
tion of state information processing can lead to
improvements in response time. To this end, we

IEEE Communications Magazine ¢ May 2005

107

Average number of rollbacks

T T T T T T T T T 200
— Average number of rollbacks
- = = Average response time 4180
Central server response time (for comparison) 160
P {140 2
JPtiae o
o S 4 120 E
P4 =1
wet 2
et 4100 §
- Q.
- p - 4 80 >
.- o
Pt ©
r- 1 60 :?"
- 4 40
1 20
i i i i L L L L 0
0 10 20 30 40 50 60 70 80 90 100
Local lag (ms)

M Figure 2. Tuning local lag-response time and rollback.

have selectively used the above techniques in
conjunction with the following observations. All
the forthcoming results were computed using a
distributed game simulator developed by us. The
same network topology (4 servers, 12 players)
was used in every run simulating an average of
120 s of game. Figures were drawn based on the
average of 100 simulations with identical local
lag conditions and random initial seeds [2].
Tuning the Local Lag — Conservative high
values for the server local lag will result in com-
plete paradox avoidance, which might be overkill.
The aim should be to find the right balance
between probability of paradox appearance and
its impact on the perceived utility of the applica-
tion. For a given genre of PE applications and
particular network conditions, it might be possi-
ble to tune the local lag between the extremes of
Fig. 1b to achieve optimum performance.

Figure 2 shows the variations of the average

number of rollbacks forced by the appearance of
paradoxes, and the average response time when the
local lag increases. For this experiment, the conser-
vative value for local lag based on maximum net-
work delay between servers is 100 ms. However, for
this scenario a lower value such as 50 ms would
result in a negligible number of rollbacks but signif-
icant improvement in average response time
(110-160 ms). For comparison, distributed servers
provide a better response time than an optimally
placed central server under most conditions.

Unbinding State Parameters — In current dis-
tributed applications, all virtual world state
parameters are synchronized using the same
scheme. However, different parameters of the vir-
tual world may represent totally different con-
cepts with dissimilar requirements in terms of
response time and paradox avoidance. In other
words, not all actions are equal. For example, it
may be beneficial to provide good response time
to avatar movements with little or no local lag,
knowing that inconsistency of the location param-
eter rarely results in a paradox. On the other
hand, an avatar’s life state parameter, if not treat-
ed consistently, could often lead to undesirable
outcomes. It is therefore important to tailor the
balance between responsiveness and consistency
for each category of action independently.

Figure 3 presents the results of simulations
where the local lags for moving and shooting
actions have been independently increased on ver-
tical and horizontal axes, respectively. The con-
tours in Fig. 3a represent the number of rollbacks,
those in Fig. 3b the response time. It is clear that
decreasing the local lag for moving actions has a
minimal positive influence on rollbacks and a huge
negative impact on response time. On the other
hand, decreasing the local lag for shooting actions
provides sizeable reduction of rollbacks with little
impact on the response time. Therefore, in this
case we might apply small values of local lag to
moving and larger values to shooting actions. For
example, if the moving and shooting local lags are
set at 20 and 50 ms, respectively, we achieve much

100

90

80

70

60

50

40

Moving local lag (ms)

30

20

100

90

80

70

60

50

40 |

Moving local lag (ms)

30

20

\ a
130 0\
\720 \73

\150 T T T

—_— ——

40\
1
7 504

140.
O\ g

1304
\

110

\720
7 10\\7
20

710\

\
100. T
\

80. 90

7 \80
0\7n \8

907

0

Shooting local lag (ms)

(a)

10 20 30 40 50 60

Shooting local lag (ms)

(b)

70 80 90 100

B Figure 3. a) Rollbacks and b) response time due to shooting and moving local lags.

108

IEEE Communications Magazine * May 2005

better response time (85 ms compared to 110 ms)
with no appreciable increase in number of roll-
backs, compared to a situation when both local
lags are set at 50 ms (Figs. 2 and 3).

Controlling Network Delay between
Servers — The network delay between the dis-
tributed servers can be controlled by the applica-
tion provider. In Figs. 1a and 1b the application
provider may have little to no control over the
path between participants and servers, but it may
be able to provide a better-quality route for
interserver communications.

The above observations enable us to envisage
a new model for LDD of state parameter pro-
cessing for PE applications:

*Developers may be able to categorize differ-
ent actions/parameters of the virtual environ-
ment based on required response time,
consistency, and paradox impact.

*The PE application provider has access to a
set of distributed servers around the Internet.
These servers may be wholly owned by the appli-
cation provider or hired from other server pro-
viders. The (virtual) servers can communicate
with each other either using best effort Internet
routed paths or, in some cases, through provi-
sioned network paths such as a virtual private
network with quality of service (QoS) guarantees.

* With support from the LDD “middleware”
(to be described later), the application will be
able to distribute authoritative state processing
modules for each category of action with tailor-
ing of local lag parameters based on the action
category and the measured network delay
between servers. Not all modules need to be dis-
tributed in the same way. Some that require
good responsiveness may be distributed widely,
while others that demand strict paradox avoid-
ance may be more centralized.

MULTIMEDIA
GRouP COMMUNICATION

In the previous section we explored the ramifica-
tions of geographical scaling of PE applications
with respect to state information processing and
demonstrated that LDD could play an important
role in enhancing participants’ interactions. In
this section we consider the creation of real-time
multimedia content for natural group communi-
cation within a PE application. For brevity we
focus on voice, but similar arguments would also
apply to video and gesture communications.

Several research groups have investigated
suitable models for voice communication in net-
worked virtual environments (e.g., [3]). Our
research team has developed an immersive voice
communication environment for this purpose
called the Dense Immersive Communication
Environment (DICE). DICE can scale to crowd-
ed virtual spaces even when the access band-
width of each client is limited.

DICE is immersive because participants can
hear a realistic and personalized mix of others’
voices in their “hearing range” in perfect harmo-
ny with the visual representation of speakers
(spatial placement with respect to the listener).
This requires real-time delivery of all the rele-

Audio server

State information flow

Client i Voice communication flow

M Figure 4. DICE with a central audio server.

vant voice streams within the hearing range and
spatially placing the source of each voice at a
point that perceptually matches the virtual loca-
tion of the speakers with respect to the listener.
All of this is highly dynamic as avatars move in
the virtual environment. The audio content for
each participant, therefore, has to be created in
real time from a dynamic set of dispersed sources.

CENTRAL AUDIO SERVER

Assuming that DICE is desirable for some PE
applications, various models can be envisaged
for its Internet-wide delivery [4]. For several rea-
sons, including access bandwidth constraints,
scalability, and privacy, we have focused on a
server-based model, the simplest of which is to
use a central audio server. Many different roles
can be envisaged for this server. One possible
approach that has been developed by us is shown
in Fig. 4. The voice of each participant is cap-
tured and sent to the central audio server as a
mono stream. The audio server also obtains
information pertaining to location and status of
avatars from the state information server (sepa-
ration of these servers is conceptual, and in
some cases it might be suitable to run both func-
tions on the same hardware).

We assume that the audio server is aware of
the access bandwidth limitations of each client.
Typically, the state information exchange con-
sumes a large portion of this bandwidth, so we
can only support a limited number (k; for partici-
pant i) of voice streams in the downstream direc-
tion. For example, only a maximum of three voice
streams can be sent to client p in this figure (k, =
3). When the number of avatars in p’s hearing
range is greater than three, the audio server
groups these into three separate clusters and per-
forms a partial audio mixing operation for each
cluster. The server also calculates the center of
activity of each cluster. This is the location of an
imaginary audio source from which the cluster
mix should emanate. This information is then sent
to the client, and the client renders the audio
scene by spatially placing each mixed audio at its
center of activity. By using intelligent methods for

IEEE Communications Magazine ¢ May 2005

109

clustering and center of activity calculation, giving
higher weight to nearby avatars, it is possible to
create perceptually accurate audio scenes even
when k; is rather small.

The central audio server is obviously a pro-
cessing bottleneck and a single point of failure.
RDD techniques could be used to tackle these
issues. But the server also introduces additional
delay due to sending and receiving voice streams
to/from the audio server, which becomes signifi-
cant over a large-scale infrastructure.

With a single server, the network delay is
dependent on the relative position of the central
server with respect to the locations of participants.
For example, if we choose to minimize the total
average delay, the best location for the audio serv-
er would be the nearest possible server site to the
center of mass (in terms of network delay) of the
participants whose avatars are not isolated.

An application provider could choose a server
site according to this criterion based on the best
knowledge on distribution of potential partici-
pants. However, these estimates are seldom accu-
rate, and may render the selected location
ineffective. Changes in the physical distribution of
participants can also happen due to time zone dif-
ferences on a daily basis or on a longer timescale
due to unpredictability in the uptake of service.

2.4

Ratios of interactive delay and network resources
of the fixed server vs. the optimal server

0.9

0.8

0.7

0.6

0.5

0.4

Ratios of interactive delays of distributed
locale servers vs. optimal central server

0.3

—A-Delay ratio 7
-+-Resource cost ratio

10 15 20
Time interval number

(a) Central server

——a—— T & = I
==——
R ST S- - __ > - - S

BRRE T N SR
S=adbonoo o 3

——Correlation
-+-Correlation
<>~ Correlation
- B Correlation
—A—Correlation

NN
(%] v

ocococo-—-

5

10 15 20
Number of distributed servers

(b) Distributed locale servers

B Figure 5. a) The effect of changes in participant distribution on interactive
delay and network resource usage; b) the effect of number of servers and cor-
relation on latency.

We have developed a simulation environment
that creates both the physical and virtual worlds.
The network is a transit-stub graph of 600 nodes,
comprising three transit domains corresponding
to North America, Europe, and Asia. Potential
audio processing servers are chosen and partici-
pants distributed around this network. Uniform
or cluster distributions are used to populate the
virtual world with avatars.

Figure 5a shows the simulation results for total
group communication delay based on a given dis-
tribution of participants in North America, Europe,
and Asia that changes on a 4-hourly cycle [5]. As
can be seen, the total group delay can increase by
as much as 100 percent even when the initial serv-
er location is optimal. The network resource usage
also increases as both the upstream and down-
stream audio streams have to be shipped over
longer distances to/from the server.

In other words, an optimal audio server loca-
tion can have a significant impact on latency reduc-
tion. However, in practice this location is not fixed.
If the application provider has access to a set of
potential sites, the location of audio processing
may be altered in response to variations in distri-
bution of participants [S]. When the spread of par-
ticipants is over a large geographical span, however,
it is best to use LDD of the audio server.

LATENCY-DRIVEN DISTRIBUTION OF THE
AUDIO SERVER

Again, we assume that the PE application
provider will be able to hire a distributed virtual
server infrastructure with sufficient resources in
key locations associated with their customer
base. To improve the delay performance of
DICE, we have investigated two possible dis-
tributed architectures for the audio server: dis-
tributed locale servers and distributed proxies.

Distributed Locale Servers — In this approach the
virtual world is partitioned into small chunks called
locales. One of the servers among the distributed set
will be assigned to this locale to perform the audio
server functions described earlier. To minimize laten-
cy, the physical location of this locale server has to be
optimal with respect to those participants whose
avatars are currently in this locale. If two adjacent
locales are assigned to two different servers, the
servers may need to exchange some voice streams
belonging to those avatars in the boundary that are in
the hearing range of each other.

We have developed optimal models for parti-
tioning of the virtual world into locales and then
assigning a server to each locale with the aim of
minimizing the total interactive communication
delay. We have not assumed any resource limita-
tion on each of these servers. Hence, it is possi-
ble to assign one server to more than one locale
or indeed to the whole virtual environment if no
appreciable improvement is gained by LDD. We
have observed that under a very broad set of
conditions, LDD is beneficial [6].

The interactive delay improvement in this
architecture is especially significant when people
from a particular geographic region aggregate as
a group in the same locale in the virtual world.
In [4] a correlation parameter has been defined
to model the relationship between the distribu-

110

IEEE Communications Magazine * May 2005

tion of participants in the real world and that of

their corresponding avatars in the virtual world.

If the correlation parameter is high (close to

one), people who are geographically close also

tend to gather together in the virtual world (e.g.,

due to language or cultural reasons). If the cor-

relation parameter is low (close to zero), mem-
bers of a virtual crowd are distributed more or
less uniformly across geographical regions.

Figure 5b shows that the improvement in
interactive delay using a distributed locale server
architecture, if any, depends on two factors:

* The number and spread of available locale
Servers

* The correlation parameter described above

This is because:

* The application provider must have access to
a sufficient number of potential locale servers
in different regions for LDD to be effective.

* When the correlation is high, choosing a serv-
er geographically close to participants of that
locale can improve the delay significantly.

The figure shows that reduction in group
communication delay can be as high as 60 and
20 percent compared to an optimally located cen-
tral server for correlation values of 1 and 0.5,
respectively.

The location of the locale server will be opti-
mally selected for the current composition of
participants in that locale. As time passes, how-
ever, movements of avatars between locales may
make the current assignment suboptimal. A key
challenge for the distributed locale server archi-
tecture, therefore, is to be able to reassign the
locale servers in response to avatar movements
(and reroute the associated audio flows after
reassignment). This is one of the capabilities
needed from an LDD-enabled infrastructure.

Distributed Proxies — The second approach for
LDD of the audio server assigns a group of par-
ticipants in a given geographical region to a near-
by server called a proxy. Each proxy will perform
the role of an audio server for its assigned partici-
pants. The proxy must also multicast the captured
voice from its assigned participants to all other
proxies that need this audio for their clients.

In some sense, distributed proxies are the
“dual” of distributed locale servers, one based
on partitioning the physical world (into geo-
graphical regions) and the other based on parti-
tioning the virtual world (into locales) and then
assigning a suitable server to each partition. This
duality also applies to network- and server-level
complexity. With distributed locale servers, the
server reassignment in response to movement of
avatars is complex. In most other situations,
however, audio streams are stable unicast flows
between clients and servers or among the locale
servers. In contrast, the distributed proxy archi-
tecture has no need for reassignment of proxies.
However, movement of avatars in the virtual
world is translated to reconfiguration of multi-
cast flows between the proxies on very short
time scales. For example, based on a random
waypoint model for motion of avatars, it is shown
that for 90 percent of proxies, more than 60 per-
cent of their multicast trees must undergo
changes after avatars move up to 3 percent of
the size of the virtual world from their previous

locations [7]. For details on latency improve-
ments due to this architecture see [8, 9].

INFRASTRUCTURE DESIGN

As discussed in previous sections, LDD of appli-
cations requires knowledge and control of the
spatial location of processing. This is in contrast
to the more familiar RDD, where the actual
location of processing is irrelevant and often hid-
den from the application. There are many RDD
techniques and architectures. For example, scal-
able Web servers use Web switches to intercept
and perform pattern-matching operations on
packets arriving at a server cluster for balancing
the load over the servers within the cluster.

Controlling the spatial location of processing
for LDD applications dictates the need to have
servers (or server clusters) distributed around the
Internet available for use by the application. To
avoid implementing a new infrastructure for each
application, we are developing mechanisms for
many LDD applications to share the same server
and network infrastructure. This infrastructure bor-
rows from existing concepts (e.g., grid computing
and content switching) to scale applications at each
individual location. However, we introduce the
concept of a new switch to control distribution of
processing between server clusters based on laten-
cy considerations of each application. Since the
application itself is the only entity that can decide
if the delay of a particular flow of packets is impor-
tant, we need a switch that can be controlled by
applications. As shown earlier, each application
will have different requirements for geographical
distribution of processing. Even so, we have identi-
fied a set of generic and elementary functions that
would be required by many LDD models.

Figure 6 shows our proposed infrastructure
design, referred to as a switched overlay network
(SWON). Our description here will be brief;
detailed information can be obtained from [10].
The LDD application provider will hire virtual
server resources in suitable locations based on the
predicted customer base. The servers themselves
might be owned and administered by different
entities, and of course each server in this figure
may be a large cluster for CPU scaling purposes.

Within the virtual servers, the application
resides on top of LDD middleware. Each server is
connected to the Internet through a hardware
switching element referred to as a SWON switch
(Fig. 6). The SWON switch is essentially a specifi-
cally designed label switch that can switch packets
based on two types of labels, forwarding and
application labels. Naturally, most hardware func-
tions can conceptually be implemented in software
too. But by separating the SWON switch from the
middleware, it is possible to relieve the servers of
performing mundane packet-level functions.

The SWON switch provides intercluster
switching resources to each application provider.
It also performs other basic packet-level func-
tions, such as duplication and deletion. Note that
each SWON switch is shared by all the applica-
tions running on the server but allocates differ-
ent label spaces to each and interacts with the
LDD middleware using a control module.

From the perspective of LDD middleware
(and by implication the applications), the collec-

|
The location of the

locale server will be

optimally selected

for the current
composition of

participants in that

locale. As time

passes, however,

movements of

avatars between

locales may make

the current
assignment
suboptimal.

IEEE Communications Magazine ¢ May 2005

@ SWON switch
(LDD switch)

|:| Load dispatcher
(RDD switch)

@ Server cluster

@ Client

Server

Internet

routed path

— Provisioned path NN R

Network
provider A

Network
provider C

B Figure 6. The switched overlay network.

tion of SWON switches is the network. The
application can control and set up unicast and
multicast flows between the distributed servers
using the set of SWON switches that are collo-
cated with the server clusters. The use of SWON
switches is important because it is neither realis-
tic nor prudent to allow applications to speak
directly to Internet routers. This combination
enables more rapid deployment of services with-
out requiring advanced functions within the
underlying network infrastructures. It also miti-
gates concerns on security and stability of the
Internet through a clean segregation of functions
between the network and server infrastructure.

CONCLUSIONS

Latency-driven distribution is likely to play a
crucial role in scaling PE applications to a large
geographical spread of participants. The compu-
tations associated with real-time flows of PE
applications, such as state information and
immersive voice communication, will be dis-
tributed based on specific requirements of each
flow. The distribution is also required to be
responsive to dynamics of the application, such
as changes in the physical and virtual distribu-
tion of participants and variability of latency
constraints on different actions or flows.

We have identified the generic requirements
of an LDD-enabled network and server infra-
structure for these applications. Our model
enables the application provider to use the
shared resources provisioned by various network
and server providers, and deploy customized
LDD designs based on the application require-
ments. We have developed example PE applica-
tions that are currently under customer trial and
are building prototypes of our SWON architec-
ture for their widescale deployment.

REFERENCES

[1] M. Mauve et al., “Local-Lag and Timewarp: Providing
Consistency for Replicated Continuous Applications,”
IEEE Trans. Multimedia, vol. 6, Feb. 2004, pp. 47-57.

[2] J. Brun, F. Safaei, and P. Boustead, “Tailoring Local Lag for
Improved Playability in Wide Distributed Network Games,”
Proc. Australian Telecommun. Networks and Apps. Conf.,
Sydney, Australia, 8-10 Dec. 2004, pp. 519-25.

[3] M. Radenkovic, C. Greenhalgh, and S. Benford, “Deploy-
ment Issues for Multi-User Audio Support in CVEs ,”
Proc. ACM Symp. Virtual Reality Software and Tech.
2002, Hong Kong, China, Nov. 11-13, 2002.

[4] P. Boustead and F. Safaei, “Comparison of Delivery
Architectures for Immersive Audio in Crowded Net-
worked Games,” Proc. 14th ACM Int’l. Wksp. Network
and Op. Sys. Support for Digital Audio and Video, Kin-
sale, Ireland, June 16-18, 2004, pp. 22-27.

[5] C. D. Nguyen, F. Safaei, and D. Platt, “On the Provision
of Immersive Audio Communication to Massively Multi-
player Online Games,” Proc. 9th IEEE Symp. Comp. and
Commun., Alexandria, Egypt, June 2004, pp. 1000-05.

[6] C. D. Nguyen, F. Safaei, and P. Boustead, “A Distributed
Server Architecture for Providing Immersive Audio
Communication to Massively Multiplayer Online
Games,"” Proc. IEEE Int’l. Conf. Networks, Singapore,
Nov. 2004.

[7]1 M. Dowlatshahi and F. Safaei, “A Recursive Overlay
Multicast Algorithm for Distribution of Audio Streams
in Networked Games,” Proc. IEEE Int’l .Conf. Networks,
Singapore, Nov. 2004.

[8] C. D. Nguyen, F. Safaei, and P. Boustead, “Performance
Evaluation of a Proxy System for Providing Immersive
Audio Communication to Massively Multiplayer
Games,” Proc. 1st IEEE Int’l. Wksp. Networking Issues
in Multimedia Entertainment, GLOBECOM 2004, Dallas,
TX, Nov. 2004.

[9] C. D. Nguyen, F. Safaei, and P. Boustead, “Comparison of
Distributed Server Architectures in Providing Immersive
Audio Communications to Massively Multiplayer Online
Games,” Proc. Australian Telecommun. Network and Apps.
Conf., Sydney, Australia, 8-10 Dec. 2004, pp. 499-505.

[10] P. Boustead, F. Safaei, and V. Nguyen, “Switched Overlay
Networks (SWON): Switching Support for a Global Network
of Virtual Servers ,"” Smart Internet Tech. CRC tech. rep.,
http://www.titr.uow.edu.au/swon/swon_architecture.pdf

BIOGRAPHIES

FARzAD SAFAEI (farzad@uow.edu.au) graduated from the
University of Western Australia and obtained his Ph.D. in
telecommunications engineering from Monash University,
Melbourne, Australia. He has more than 15 years of experi-
ence in conducting and managing advanced research in
the field of data communications and networks. Currently,
he is professor of telecommunications engineering and
director of the Centre for Emerging Networks and Applica-
tions at the University of Wollongong. He is also program
manager of the Smart Internet Technology Cooperative
Research Centre (CRC).

PAUL BOUSTEAD is a senior research fellow at the Telecom-
munications and IT Research Institute at the University of
Wollongong. He is currently leading projects within the
Smart Internet Technology CRC. He completed a Ph.D. at
the University of Wollongong in 2000 in the area of label
switching protocols for high-speed networks. His current
research interests include network and server support for
the delivery of distributed services over the Internet, net-
work games, and content distribution networks.

CONG Duc NGUYEN received a B.Eng. degree in telecommu-
nications (first class honours) from the University of Wol-
longong in 2000. Since 2001 he has been a Ph.D. candidate
at the Centre for Emerging Networks and Applications,
University of Wollongong. His current research interest is in
the investigation of server and network architectures for
the provision of immersive voice communications to mas-
sively multiplayer online games.

JEREMY BRUN is currently completing his Ph.D. at the
Telecommunication and Information Research Institute at
the University of Wollongong. He received his Master’s in
engineering studies from the University of Wollongong and
his engineering degree from Supelec, France, in 2001. His
reseearch interests include telecommunication network
architecture with an emphasis on real-time network appli-
cations and game server distribution.

MEHRAN DOWLATSHAHI has been working as a research fellow
at the University of Wollongong Smart Internet Technology
CRC since 2003. He has received B.Sc., M.Sc., and Ph.D.
degrees, all in electrical (telecommunication) engineering.
His research interests are in overlay service architectures, IP
telephony, performance analysis of communication net-
works, and peer-to-peer services and architectures.

112

IEEE Communications Magazine * May 2005

