
1

Understanding the End-to-End Performance Impact
of RED in a Heterogeneous Environment

Yin Zhang, Lili Qiu
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA�

yzhang, lqiu � @cs.cornell.edu

Abstract— Random Early Detection (RED) is the recommended active
queue management scheme for rapid deployment throughout the Internet.
As a result, there have been considerable research efforts in studying the
performance of RED. However, previous studies have often focused on rel-
atively homogeneous environment. The effects of RED in a heterogeneous
environment are not thoroughly understood. In this paper, we use extensive
simulations to explore the interaction between RED and various types of
heterogeneity, as well as the impact of such interaction on the user-perceived
end-to-end performance. Our results show that overall RED improves per-
formance at least for the types of heterogeneity we have considered.

Keywords—Random early detection (RED), explicit congestion notifica-
tion (ECN), simulation, performance evaluation

I. INTRODUCTION

The Internet Research Task Force (IRTF) is promoting de-
ployment of active queue management to improve the perfor-
mance of today’s Internet [3]. In particular, random early de-
tection, better known as RED [10], is singled out as the recom-
mended scheme for use in the Internet.

With RED, a router will detect congestion before the queue
overflows, and provide an indication of this congestion to the
end nodes. It may use one of several methods for indicating
congestion to end-nodes. One is to use packet drops. Alterna-
tively, it can set a Congestion Experienced (CE) bit in a packet
header as an indication of congestion, instead of relying solely
on packet drops. The latter methods is commonly referred to
as explicit congestion notification (ECN) [15], [34], [35]. The
major advantage of active queue management mechanisms like
RED is that the transport protocols with congestion control (e.g.,
TCP) do not have to rely on buffer overflow as the only indi-
cation of congestion. This can potentially reduce unnecessary
queuing delay for all traffic sharing that queue.

There have been considerable research efforts in studying
the performance of RED [6], [7], [8], [10], [18], [26], [24],
[25], [38]. However, most previous studies only consider rel-
atively homogeneous environment. Moreover, as pointed out in
[6], the performance metrics have largely been network-centric
measures such as network link utilization and aggregate TCP
throughput. The end-to-end performance impact of RED in a
heterogeneous environment has not been thoroughly explored.

It is well-known that the Internet is a highly heterogeneous
environment and that heterogeneity can have significant impact
on the network performance. Therefore, in order to understand
the performance of RED in the real Internet, it is crucial to con-
sider heterogeneity. In this paper, we use extensive simulations
to explore the end-to-end effects of RED in a heterogeneous en-
vironment. In particular, we are interested in understanding the

interaction between RED and different types of heterogeneity
and quantifying the impact of such interaction on user-perceived
end-to-end performance.

We consider the following five types of heterogeneity in this
paper:�

Mix of long-lived and short-lived TCP connections. Numer-
ous measurements show that the Internet traffic is now dom-
inated by short flows involving small Web objects 10-20KB
in size [20], [37] (the so called mice). Even with Persistent
HTTP [31], the flow length is unlikely to change significantly,
because the average Web document is only around 30KB [23].
While most Internet flows are short-lived, the majority of the
packets and bytes belong to long-lived flows (the so called ele-
phants), and this property persists across several levels of ag-
gregation [4], [5], [37], [19]. Therefore, it is very important to
understand the performance of RED on a workload consisting of
both long-lived bulk transfers and short-lived Web data transfers.�

Mix of TCP and UDP traffic. Due to the proliferation of
streaming media content over the Internet, UDP-based real-time
traffic forms a significant portion of today’s Internet traffic [40].
Real-time traffic is often sensitive to network latency and packet
losses, but is not necessarily responsive to network congestion.
Therefore, it is important to understand the performance impact
of RED in an environment with both TCP and UDP traffic.�

Mix of ECN-capable and non-ECN-capable TCP connections.
With ECN, a router set the CE bit in the packet header as an
indication of congestion, instead of dropping the packet. The
use of the CE bit would allow the receiver(s) to receive the
packet, avoiding the potential for excessive delays due to re-
transmission after packet losses. However, ECN has not yet
been widely deployed in today’s Internet. If it is ever going to
be widely deployed, the deployment will be incremental. That
is, ECN-capable and non-ECN-capable TCP connections will
coexist for a long period of time. Therefore, it is important to
understand the effect of RED in an environment with competing
ECN-capable and non-ECN-capable TCP traffic.�

Different roundtrip times. In the real Internet, different flows
sharing the same bottleneck link can have different roundtrip
times (RTT’s). It is well-known that TCP has bias against long
roundtrip time connections. We are interested in understanding
whether RED can reduce such discrimination compared with the
Drop-Tail (DT) policy.�

Two-way traffic. In the real Internet, there is typically data
traffic in both directions. It is well-known that the presence of
two-way traffic can cause ACK-compression [41], which can in

2

turn make TCP traffic much more bursty than in the one-way
traffic case. In order to understand the performance of RED in
the real Internet, it is important to consider the effect of two-way
traffic.

The remainder of this paper is organized as follows. In Sec-
tion II, we provide a more in-depth introduction to the RED al-
gorithm. In Section III, we briefly overview the literature on the
performance evaluation of RED. In Section IV we describe our
simulation setup. In Section V, we present detailed simulation
results. We end with conclusions and future work in Section VI.

II. BACKGROUND

Consider a router with a buffer size of
�

packets. With the
RED buffer management scheme, a router detects congestion by
the average queue length (��), which is estimated using an expo-
nentially weighted moving average: ��������
	������� ����������� ,
where � is a fixed (small) parameter and � is the instantaneous
queue length. When the average queue length exceeds a mini-
mum threshold (�������!), incoming packets are probabilistically
dropped or marked with the Congestion Experienced bit [15],
[34], [35]. The probability that a packet arriving at the RED
queue is either dropped or marked depends upon several control
parameters of the algorithm. An initial drop/mark probability "$#
is computed using a drop function % based on the average queue
length �� and three control parameters �'&)(+* , �'��� �! , and �,&-(�! .
The actual probability is a function of the initial probability and
a count of the number of packets enqueued since the last packet
was dropped: "�.0/1"2#43 ����	6587�9;:=<?> "2# � .

In the original RED scheme, % � ��@� / � if ��BA �,&-(��! , which
means all incoming packets are dropped or marked when the av-
erage queue length exceeds �,&-(��! . As shown by Firoiu et al.[8],
this can lead to oscillatory behavior. Recently, Floyd recom-
mended using the ‘gentle ” variant of RED [17], which uses the
following modified dropping function % (illustrated in Fig. 1):

% � ��)� /
CDDE DDF

G
if ��IH �'���J�! � if ��IALKM� �'&)(+�! N8O;P�Q RTSVUP�WYX8SVU2O�P�Q R�S�U � �,&-(* if ��IZ\[�'���J�! �]Y�,&-(+�!)^N8O;P�W_X8S�UP�W_X4SVU �@�Y��	 �,&-(* �`� �'&)(* otherwise

q

B2*max_thmax_thmin_th

max_p

1

D(q)
_

_

Fig. 1. Drop function of RED with the “gentle ” modification.

As shown by Rosolen et al.[32], [33], the “gentle ” option
makes the RED much more robust to the setting of the param-
eters �'&)(+�! and �,&-(* . Therefore, we turn it on for all simula-
tions in this paper.

RED has four control parameters: �����;�! , �,&-(a�! , �,&-(* , and�� . How to properly configure these parameters has been the

subject of many studies [6], [8], [11], [16]. The focus of our
work is on understanding the interaction between RED and dif-
ferent types of heterogeneity. Therefore, instead of proposing
any new recommendations on configuring RED parameters, we
closely follow the guidelines by Floyd [16]. More specifically,
we always use the recommended values of �,&-(�! /cb��'�d� �! ,�,&-(e*�/ G�f � , and � / GJf G@G K . The recommended value for the
last parameter �'�d�g�! is 5 packets. However, as noted in [16], the
optimal setting for �'�����! also depends partly on the link speed,
propagation delay, and maximum buffer size. Therefore, besides
the recommended value of 5 packets, we also experiment with
two different values of �'���g�! based on the buffer size:

� 3-h and� 3-i , where
�

is the maximum buffer size.

III. PREVIOUS WORK

Since RED was initially proposed in 1993 by Floyd et al.[10],
there has been a vast volume of research on studying the per-
formance of RED [6], [7], [8], [10], [18], [26], [24], [25], [38].
There have also been numerous proposed modifications and al-
ternatives to RED, such as BLUE [12], SRED (Stabilized RED)
[28], Adaptive RED [11], FRED (Fair Random Early Drop)
[22], and BRED (Balanced RED) [2]. The results from these
studies have provided valuable insights to the RED algorithm.
Unfortunately, they also suffer from some notable limitations:�

Most previous studies have focused on relatively homoge-
neous environment. Many studies either only consider a mod-
erate number of long-lived TCP connections such as (huge) file
transfers (e.g., [11], [38]), or only examine the environment
where all flows are short-lived data transfers (e.g., [6]). There
are some studies that did consider some types of heterogene-
ity. For example, recent work at INRIA has studied the effect
of RED on mixes of “bursty” (TCP) and “smooth” (UDP) traffic
[24]. However, the types of heterogeneity considered are often
limited. In particular, the effect of two-way traffic is rarely ex-
amined. Moreover, little efforts have been made on pinpointing
the interaction of RED with each particular type of heterogene-
ity.�

As pointed out in [6], the performance metrics used in pre-
vious studies have largely been network-centric measures such
as the network link utilization and aggregate TCP throughput.
While such information is valuable for network operators and
service providers, end users tend to be more interested in the
performance received by each individual flow.�

Most previous studies have focused on the performance of
RED in absence of the “gentle ” modification. This, of course,
is largely due to the fact that the “gentle ” modification was not
proposed until very recently. The “gentle ” option makes RED
much more robust to the setting of the parameters �'&)(��! and�,&-(* . It can significantly reduce the unwanted effects due to
parameter misconfiguration. Therefore, it is important to run
simulations with the “gentle ” variant of RED.

In this paper, we address these limitations by conducting
extensive simulations to explore the effects of RED (with the
“gentle ” modification) on the user-perceived end-to-end perfor-
mance in a heterogeneous environment.

3

IV. SIMULATION SETUP

To study the performance impact of RED in a heterogeneous
environment, we conduct extensive simulations on a variety of
network topologies and workload using the ns network simu-
lator [27]. In this section, we give an overview of the network
topology and various simulation settings. Then we describe the
performance metrics used in evaluation.

A. Simulation Topology

In order to thoroughly investigate the interaction between
RED and various types of heterogeneity, we believe it is nec-
essary to keep the simulation topology relatively simple, yet
sufficiently representative. Fig. 2 illustrates a simple single-
bottleneck network topology that we use for most of our sim-
ulations. The bottleneck bandwidth (

���
) is either 1.544 Mbps

or 10 Mbps. The one-way propagation delay (%) of the bottle-
neck link is either 25 msec, 50 msec, or 100 msec. As suggested
in [38], the bottleneck router has a maximum buffer size (

�
) of

either 1, or 1.5, or 2 times the bandwidth-delay product. (Since
our topology is symmetric, the bandwidth-delay product equalsK,> ��� > %). All the other links have 10 Mbps capacity and
1 msec one-way propagation delay. Normally, data traffic is only
present in the forward path (from left to right in Fig. 2). When
studying the effect of two-traffic, we also consider data traffic in
the reverse path (from right to left in Fig. 2).

Source 1

Source 2

Source n

Dest 1

Dest 2

Dest n

Bottleneck Link

Router S Router D

10 Mbps, 1ms

Fig. 2. Simulation topology.

For interest of space, in this paper we only present the
results for the scenario where

��� / 1.544 Mbps, % /
50 msec, and

� / K > ��� > % . The results for the other
network scenarios are qualitatively similar to what we present
here.

B. Queue Management Schemes

In all simulations, the bottleneck router uses either the Drop-
Tail FIFO queue management or the RED queue management
(with or without support for ECN). As noted in Section II, we
closely follows the guidelines by Floyd [16] when configur-
ing various RED parameters. More specifically, we always use�,&-(�! / b��'�d� �! , �,&-(e* / GJf � , and � / G�f G G K . For the last
parameter ����� �! , besides the recommended value of 5 packets,
we also experiment with two different values based on the buffer
size:

� 3-h and
� 3)i , where

�
is the maximum buffer size. The

details for different queue management schemes used in this pa-
per are summarized in Table I.

C. Traffic Source Models

We consider the following four types of traffic sources in our
simulations:

Scheme Type �'�d���!
dt DT (Drop-Tail) N/A
r1 RED w/o ECN

�
/6

r2 RED w/o ECN
�

/9
r3 RED w/o ECN 5 packets
r1e RED with ECN

�
/6 (same as r1)

r2e RED with ECN
�

/9 (same as r2)
r3e RED with ECN 5 packets (same as r3)

TABLE I

DIFFERENT QUEUE MANAGEMENT SCHEMES.

Type 1. Long-lived TCP traffic sources. Traffic sources of this
type belong to FTP sessions with an infinite amount of data to
transmit.
Type 2. Short-lived Web-like TCP traffic sources. We use the
following simple source model to mimic the behavior of Web
sessions: Each connection repeatedly make short file transfers.
Between two consecutive transfers, there is a think-time that
starts after the last byte of the first file has been acknowledged.
The transfer size is kept at 30 KB, which is the average web
transfer size (including inline images) [23]. The think times are
drawn uniformly between 1 and 3 seconds. When restarting data
flow after an idle period, the sender always uses the slow start
procedure [21] to probe the network available bandwidth. Our
model is by no means realistic. However, we believe that it does
capture the essence of Web data transfers, that is, a significant
amount of time is spent during the slow start phase.
Type 3. Constant-Bit-Rate (CBR) UDP traffic sources. To as-
sess the effect of RED on relatively “smooth” real-time traffic,
we consider UDP traffic sources sending at a constant bit rate
of 24 Kbps. The packet size for the CBR sources is set to 210
bytes, which is the default value in ns.
Type 4. ON/OFF UDP traffic sources. The ON/OFF times are
drawn from Pareto distributions with the “shape” parameters set
to 1.5, which is the default value in ns. The mean ON time is 1
second and the mean OFF time is 2 seconds. During ON times,
the sources transmit with a rate of 24 Kbps. Like for the CBR
traffic sources, we use the default packet size of 210 bytes for the
ON/OFF UDP sources. It has been reported by Park et al.[30]
that WWW-related traffic tends to be self-similar in nature. Will-
inger et al.[39] show that self-similar traffic may be created by
using several ON/OFF UDP sources whose ON/OFF times are
drawn from heavy-tailed distributions such as the Pareto distri-
bution. That’s why we study ON/OFF traffic in our simulations.

D. TCP Configurations

For all TCP connections, we use the ns TCP/Reno and
TCP/Sack1 (TCP with support for selective acknowledgments
(SACK)) simulation code, which closely models the conges-
tion control behavior of most of the TCP implementations in
widespread use. For this study, we disable delayed acknowl-
edgments, although we have repeated several of our experiments
with delayed acknowledgments enabled and our results are qual-
itatively similar.

The size of TCP data packets is set to 500 bytes, which is
typical for wide-area TCP connections. The size of the TCP ac-

4

knowledgments is set to 40 bytes. The timer granularity is set
to 100 msec, which is default in ns. The maximum conges-
tion window size is set to 100 KB (200 packets). As suggested
by Floyd et al.[9], in order to explore properties of network be-
havior unmasked by the specific details of traffic phase effects,
we always add a random processing time at the TCP sender,
which is uniformly chosen between zero and the bottleneck ser-
vice time for a TCP data packet.

E. Performance Metrics

We use the goodput as the primary performance metric for
TCP flows. For a single TCP flow, its goodput is defined as the
number of good bits received by the receiver (excluding unnec-
essary retransmissions) in unit time. For a set of TCP flows,
their aggregate goodput is defined as the number of good bits
received by all receivers in unit time. The average goodput for a
set of TCP flows is defined as their aggregate goodput divided by
the number of flows. Goodput can be easily translated into other
metrics such as the completion time. Compared with network-
centric like network link utilization , goodput is often what end
users really care about.

For UDP flows, we focus on the loss rate for this study. Be-
sides the aggregate loss rate seen by all UDP flows, we also look
at the distribution of the loss rate seen by each UDP flow.

V. SIMULATION RESULTS

In this section, we evaluate the end-to-end performance im-
pact of RED with different types of heterogeneity we identify in
Section I.

A. Mix of Short-Lived and Long-Lived TCP Connections

We conduct the following experiments to assess the effects
of different queue management schemes summarized in Table I
on a workload with both long-lived and short-lived TCP con-
nections: In each experiment, a set of foreground Web sessions
(Type 2 in Section IV-C) compete with a fixed number of back-
ground FTP sessions (Type 1 in Section IV-C). To avoid de-
terministic behavior, besides adding random processing time at
the TCP senders, we also include six telnet sessions competing
with the main flows. The inter-arrival times for telnet sessions
are drawn from the “tcplib” distribution as implemented in ns.
Each simulation run lasts 200 sec. All connections start ran-
domly from within the initial two seconds. We record the aver-
age goodput for both Web sessions and FTP sessions in the final
150 sec. For each simulation configuration, we report the mean
1 of 5 runs of an experiment with different random seeds.

Fig. 3 summarizes the results for TCP/Reno when the number
of short-lived TCP connections varies from 2 to 40 and the num-
ber of FTP sessions is kept at 5. As we can see, the Web sessions
receive 10-30% higher average goodput with RED than with DT,
regardless of the RED parameters used. As a result, the FTP ses-
sions receives slightly lower goodput with RED than with DT
(because the total amount of bandwidth consumed by all flows
remains constant after the bottleneck link get saturated).

We originally conjectured that this is because with DT, short
flows tend to get more than their share of losses. This is not

�

The variation is in general very small compared to the mean.

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions

dt
r1
r2
r3

r1e
r2e
r3e

(a) Average goodput of short-lived TCP connections (Web sessions).

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions

dt
r1
r2
r3

r1e
r2e
r3e

(b) Average goodput of long-lived TCP connections (FTP sessions).

Fig. 3. Effect of RED on the mix of short-lived and long-lived TCP connections.
The number of short-lived TCP connections varies from 2 to 40 while the
number of competing FTP sessions is kept at 5. 6 telnet sessions are used to
avoid deterministic behavior. TCP/Reno is used for all TCP connections.

the case with RED, which distributes losses uniformly across all
flows. Consequently, Web sessions receives higher goodput with
RED than with DT. However, this turns out to be not the case.
With a large number of TCP flows, the statistical multiplexing
level is very high. Consequently, there is little difference in the
loss rates experienced by the Web sessions and the FTP sessions
even with DT. This can be illustrated by Fig. 4, which compares
the packet drops vs. the throughput received by each individual
flow in a simulation run. (The same type of diagram is also
used by Floyd et al.in [9]). As we can see, there is not much
difference between dt and r1. (The results for the other RED
configurations are very similar.)

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10 11 12 13 14

D
ro

ps
 (

%
)

Throughput (%)

Web (dt)
FTP (dt)
Web (r1)
FTP (r1)

y = x

Fig. 4. Packet drops vs. throughput for each flow in one simulation run. 10 Web
sessions compete with 5 FTP sessions. 6 telnet sessions are used to avoid
deterministic behavior. The queue management scheme is either dt or r1 as
defined in Table I. TCP/Reno is used for all TCP connections.

The actual reason is as follows. RED reduces the average
queue length, and consequently, increases the packet loss rate.
The increase in packet loss rate has a greater impact on the FTP
sessions, which typically have more outstanding packets in a
roundtrip time than the Web sessions. (Note that as the num-

5

ber of outstanding packets increases, so does the probability of
getting at least one loss in one roundtrip time.) Consequently,
the FTP sessions receive lower throughput, which in turn creates
more bandwidth available to the Web sessions. Similar effects
can be achieved by reducing the buffer size at a Drop-Tail gate-
way. As illustrated in Fig. 5, as we vary the ratio of the buffer
size over the bandwidth-delay product (

���
) from 1.4 down to 0.2,

the average goodput received by the Web sessions experiences a
10-30% increase.

40

50

60

70

80

90

100

110

120

130

140

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions

dt (br=0.2)
dt (br=0.4)
dt (br=0.6)
dt (br=0.8)
dt (br=1.0)
dt (br=1.2)
dt (br=1.4)

Fig. 5. The average goodput of Web sessions. 10 Web sessions compete with 5
FTP sessions. 6 telnet sessions are used to avoid deterministic behavior. The
bottleneck router uses the Drop-Tail FIFO queue management. The ratio of
the buffer size over the bandwidth-delay product (���) varies from 0.2 to 1.4.
TCP/Reno is used for all TCP connections.

Fig. 6 summarizes the results for the same experiment in
Fig. 3 except that TCP/Sack1 is used for all connections instead
of TCP/Reno. For brevity, we only show the average goodput
for the Web sessions. The performance for the FTP sessions can
be easily inferred because the total amount of bandwidth con-
sumed by all flows is almost constant after the bottleneck link
get saturated. The most interesting part of Fig. 6 is that with dt,
the Web sessions receive 10% lower goodput when all flows use
TCP/Sack1 instead of TCP/Reno. In contrast, SACK makes lit-
tle difference in terms of the average goodput with other queue
management schemes.

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions

dt
r1
r2
r3

r1e
r2e
r3e

Fig. 6. Average goodput of the Web sessions. The simulation settings are the
same as in Fig. 3 except that TCP/Sack1 instead of TCP/Reno is used for all
TCP connections.

We believe such discrepancy can be explained as follows.
Compared with the Web sessions, the FTP sessions typically
have larger congestion windows, and consequently, higher prob-
ability of getting multiple losses in a roundtrip time. When
packet losses are bursty (as is the case with DT), TCP/Reno of-
ten needs to use timeout to recover from multiple losses in a
roundtrip time. With SACK, this is no longer necessary. There-
fore, with DT, FTP sessions benefit more from SACK than the

Web sessions. As a result, FTP sessions get higher average
goodput, which in turn reduces the amount of bandwidth avail-
able to Web sessions. In contrast, with RED, losses tend to be
less bursty than with DT. In this case, even TCP/Reno can often
recover from multiple packet losses in the same roundtrip time.
Consequently, the benefit of SACK is much smaller.

To summarize, short-lived TCP flows tend to receive higher
goodput with RED than with DT when competing with long-
lived TCP flows. This is desirable because in the real Internet,
short data transfers typically belong to interactive Web browsing
sessions, which is delay-sensitive. Meanwhile, with DT, SACK
tends to benefit long-lived flows more than short-lived flows. In
contrast, with RED, SACK has very little performance impact.

B. Mix of TCP and UDP Traffic

In this section, we study the performance impact of RED in
an environment with both TCP and UDP traffic. We focus on
the loss rate for the UDP traffic.

Recent work at INRIA [24] has shown that RED can signif-
icantly increase the loss rate for “smooth” CBR UDP traffic.
However, [24] only look at the average loss rate aggregated over
all UDP flows. We are more interested in the distribution for
the loss rate seen by each individual UDP flow. We conduct
the following experiment with a set of CBR UDP flows (Type 3
in Section IV-C) competing with FTP sessions (Type 1 in Sec-
tion IV-C). Each run of the experiment lasts 200 sec. We record
the loss rate in the final 150 sec for each UDP flow. Then we
plot the cumulative distribution for all such loss rates recorded
for 15 simulation runs.

Fig. 7 summarizes the results for 20 CBR UDP flows compet-
ing with 10 FTP sessions. (We have also conduct the same ex-
periment with different number of UDP and FTP sessions. Our
results are qualitatively similar.) We consider both fixed and
random inter-arrival times for the CBR traffic. We make two
observations:�

The use of SACK or ECN for TCP flows can significantly in-
crease the loss rate for UDP traffic. The use of RED without
ECN can also increase the loss rate for UDP traffic, but the rela-
tive impact is always smaller or comparable to the use of SACK
with DT. This is because with RED/ECN/SACK, TCP flows are
less likely to have timeouts, and consequently, become more ag-
gressive.�

When the CBR traffic has fixed inter-arrival times, there is
a much bigger tail (� ���
) at the high loss rate region (loss
rate � G�f �) with DT than with RED, which means a significant
number of UDP flows suffer from high loss rate. Currently we
are still investigating the exact cause for this. But reducing the
tail at the high-loss region is clearly beneficial for applications.

Fig. 8 summarizes the results for an experiment with the same
simulation settings as in Fig. 7 except that ON/OFF UDP traffic
replaces the CBR UDP traffic. Again, we find that the use of
RED with ECN and/or SACK can significantly increase the loss
rate for UDP traffic compared to the case when TCP/Reno and
DT are used. This is because TCP becomes more aggressive
with SACK and/or ECN. On the other hand, the use of RED
without ECN actually reduces the loss rate for UDP traffic. This
is because RED can reduces the bias against bursty traffic by
distributing losses uniformly across all connections. (Note that

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

dt
r1
r2
r3

r1e
r2e
r3e

(a) CBR traffic with fixed inter-arrival times. FTP uses TCP/Reno.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03 0.04 0.05 0.06 0.07 0.08 0.09

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

dt
r1
r2
r3

r1e
r2e
r3e

(b) CBR traffic with random inter-arrival times. FTP uses TCP/Reno

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03 0.04 0.05 0.06 0.07 0.08 0.09

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

dt
r1
r2
r3

r1e
r2e
r3e

(c) CBR traffic with random inter-arrival times. FTP uses TCP/Sack1.

Fig. 7. Cumulative distribution for the loss rate experienced by CBR UDP flows.
20 CBR UDP flows (Type 3 in Section IV-C) compete with 10 FTP sessions
(Type 1 in Section IV-C). The CDF is obtained from 15 simulation runs. In
(a) the inter-arrival-times remain constant. In (b) and (c), the inter-arrival
times are uniformly distributed between

��� �����
and � � �	��� , where T is the

inter-arrival time in (a).

the ON/OFF UDP traffic is more bursty than TCP traffic in that
it does not respond to network congestion.)

To summarize, the use of SACK and/or RED with ECN for
TCP flows always significantly increases the loss rate for UDP
traffic. The use of RED without ECN tends to reduce the loss
rate for bursty UDP traffic, as well as increase the loss rate for
smooth UDP traffic (The increase is less significant compared
to the case when SACK is used with DT). Moreover, RED can
reduce the tail at the high loss rate region for CBR traffic with
fixed inter-arrival times, which is beneficial.

C. Mix of ECN-Capable and Non-ECN-Capable Traffic

To assess the effect of RED on mixes of both ECN-capable
and non-ECN-capable traffic, we consider a set of K �+: TCP
flows competing for the same bottleneck link. Half of the flows
are ECN-capable, while the other half are not. We then report
the ratio between the average goodput for ECN-capable flows
over the average goodput for non-ECN-capable flows.

Fig. 9 shows the results when all flows are long-lived FTP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

dt
r1
r2
r3

r1e
r2e
r3e

(a) TCP/Reno is used for FTP sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

C
um

ul
at

iv
e

F
ra

ct
io

n

Loss Rate

dt
r1
r2
r3

r1e
r2e
r3e

(b) TCP/Sack1 is used for FTP sessions

Fig. 8. Cumulative distribution for the loss rate experienced by ON/OFF UDP
flows. The simulation settings are the same as in Fig. 7 except that ON/OFF
UDP flows (Type 4 in Section IV-C) are used instead of the CBR traffic.

sessions (Type 1 in Section IV-C). : varies from 1 to 20 (thus
the total number of competing flows varies from 2 to 40). It is
evident from the figure that ECN-capable sources consistently
out-performs non-ECN-capable sources by 5-30%. Meanwhile,
as the congestion level increases, the goodput ratio initially in-
creases and later decreases. The peak occurs when on average
each flow has roughly 3-4 outstanding packets during each round
trip. This is reasonable because when the average congestion
window size (which is the number of outstanding packet during
each RTT) decreases, the relative performance benefit of avoid-
ing an early drop at the RED gateway increases. But when the
average congestion window drops below 3, fast retransmission
breaks down even with a single loss. Consequently, the timeout
penalty becomes the dominant factor, which limit the relative
performance benefit of ECN.

Fig. 10 summarizes the results for the Web sessions (Type 2
in Section IV-C). As we can see, the shape of the curve is very
similar to Fig. 9 (a), except that the peak goodput ratio is much
smaller. This is because the short-lived flows spend a significant
amount of time probing the network available bandwidth during
slow start, which limit the relative benefit of ECN.

To summarize, ECN-capable TCP flows almost always have
higher goodput than non-ECN-capable TCP flows. For bulk
transfers, the relative performance benefit is greatest when
on average each flow has around 3-4 outstanding packets per
roundtrip time. For short-lived flows, the relative benefit of ECN
is much smaller.

D. Effect of Different RTT’s

In this section, we explore the effect of different queue man-
agement schemes on flows with different RTT’s. We start with
the simplist scenario in which there are only two different RTT

7

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40

G
oo

dp
ut

 R
at

io

Total Number of FTP Sessions

r1e
r2e
r3e

(a) The goodput ratio between two groups

0

2

4

6

8

10

12

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40

N
um

be
r

of
 P

ac
ke

ts

Total Number of FTP Sessions

r1e
r2e
r3e

y = 4

(b) Average number of outstanding packets in an RTT for each flow.

Fig. 9. Effect of RED on an ensemble of � ECN-capable and � non-ECN-
capable FTP sessions. � varies from 1 to 20. TCP/Reno is used for all
connections. (The results for TCP/Sack1 is very similar.)

0.9

0.95

1

1.05

1.1

1.15

1.2

0 10 20 30 40 50 60 70 80 90 100

G
oo

dp
ut

 R
at

io

Total Number of Web Sessions

r1e
r2e
r3e

Fig. 10. The ratio between the average goodput of � ECN-capable and � non-
ECN-capable Web sessions. � varies from 1 to 50. TCP/Reno is used for
all connections. (The results for TCP/Sack1 is very similar.)

values and all flows are long-lived FTP sessions that can reach
their steady state (in Section V-D.1). We then consider more
complicated scenarios where either there are more that two dif-
ferent RTT values (in Section V-D.2) or all flows are short-lived
Web sessions, which can hardly ever reach their steady state (in
Section V-D.3). We use TCP/Reno for all simulations in this
section.

D.1 Bulk Transfers with 2 Different RTT’s

We divide all TCP flows into two equal-sized groups
���

and���
. All flows within the same group

���
have the same two-way

propagation delay " % � (� = 1, 2). We vary " % � while keeping" % � fixed. This can be achieved by properly adjusting the one-
way propagation delay on the high-bandwidth (10 Mbps) links in
Fig. 2. For each simulation run, we record the average queuing
delay () experienced by all packets. Then we can estimate the
average roundtrip time for flows in group

� �
, as
��� � / " % � �	 . We also record

� 7-7�����9g< � , the average goodput for flows
in group

���
. The goal is to study how � � 7-7�����9g< � 3 � 7-7�����9g< � �

changes with respect to �
���� � 3�
��� � � .
Fig. 11 shows the results 6 competing FTP sessions with the

Drop-Tail FIFO queue management. The bottleneck link has T1
capacity and 50 msec one-way propagation delay. " % � is kept
at 102 msec. (We do not consider scenarios in which the RTT
ratio is A � , which is unlikely to happen in the real Internet.)
As we can see, the goodput ratio always satisfies Equation (1).
(Extensive simulations with many different settings also give the
same result.)

GJf ��>��
��� �
��� K��
��� � 7-7�����9g< �� 7-7�����9g< � � �
���� �
���� K��

�
(1)

0

5

10

15

20

25

1 1.5 2 2.5 3 3.5 4 4.5 5

Y
: G

oo
dp

ut
2/

G
oo

dp
ut

1

X: RTT1/RTT2

Y=X^2
Y=0.5*X^2

Fig. 11. The effect of Drop-Tail queue (dt in Table I) on 6 FTP sessions with 2
different RTT’s. The bottleneck link has T1 capacity and 50 msec one-way
propagation delay. ��� � varies while ��� � is kept at 102 msec.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

cw
nd

Time (sec)

long-RTT flow (T1)
short-RTT flow (T2)

Fig. 12. The congestion window evolution of two TCP flows
�

� and
� � with

Drop-Tail FIFO queue management. ! � � �#" ! � � � .
To explain (1), we need to thoroughly understand the synchro-

nization effect of Drop-Tail gateways. For brevity, let us only
consider two competing TCP flows. All our analysis still applies
when there are more than two competing TCP flows. Fig. 12 il-
lustrates the evolution of the congestion window size (54��:$�) for
two competing TCP flows � � and � � (with
���� � �%
��� �) un-
der Drop-Tail FIFO queue management. As we can see, the syn-
chronization effect on � � and � � is more complicated than the
frequently mentioned “global synchronization” for TCP connec-
tions with the same RTT [36]. For � � , whenever the bottleneck
buffer becomes full, it will get a loss within one roundtrip time
(
��� �) when it increases its congestion window. It takes an-
other roundtrip for � � to detect the loss by 3 duplicated ACK’s
and reduce its sending rate by halving its 58��:$� . It takes yet
a third roundtrip for such rate reduction to actually take effect.
Therefore, on average it takes roughly K f �,>
���� � for the rate
of � � ’s packets arriving at the bottleneck router to decrease.
When � � increases its 58��:$� , the extra packet sent by � � will

8

get dropped only if it arrives at the bottleneck queue before the
arrival rate of packets sent by � � decreases. With the random
processing time at the sender, this extra packet can arrive at the
bottleneck queue at any time within
��� � after the queue be-
comes full. Therefore, we can estimate the drop probability for
this extra packet as �'��� ���] K f ��>
���� � 3�
���� � � , which is within[GJf �] � ^ when
���� � 3�
���� � Z6[�] � ^ . Or equivalently,

#drops seen by � � in unit time
#drops seen by � � in unit time

Z6[G�f �] � ^ (2)

Assuming that at steady state, the 54��:$� of connection � �
grows from

� �
to K > � � during each epoch, then � � sees a

drop every
� � >
���� � . Consequently, (2) becomes

� � >
��� �
� � >
��� � Z6[G�f �] � ^ (3)

Meanwhile, the goodput for � � can be approximated as:� 7-7�����9g< � / b > � �K�>
���� � � = 1, 2. (4)

From (3) and (4), we immediately get (1).
�

Now we considered the effect of RED queue management. It
is well-known that

� 7-7�����9g< � is roughly inversely proportional
to
���� ��� � � , where � � is the packet loss rate for flow � [29].
With RED, different flows roughly experience the same packet
loss rate under steady state. Consequently, we have:� 7-7�����9g< �� 7-7�����9g< ���
��� �
��� � (5)

The validity of (5) can be best illustrated by Fig. 13.

0

1

2

3

4

5

6

7

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Y
: G

oo
dp

ut
2/

G
oo

dp
ut

1

X: RTT1/RTT2

r1
r2
r3
r1e
r2e
r3e
Y=X

Fig. 13. The effect of RED gateway on FTP sessions with 2 different RTT’s.
The simulation settings are the same as in Fig. 11 except that the bottleneck
router uses RED queue management.

D.2 Bulk Transfers with 8 Different RTT’s

In this section, we consider 8 competing FTP sessions � �
(� =1,2,...8) all with different RTT’s. The two-way propagation
delay for � � is kept at 102 msec. The propagation delays for all
the other FTP sessions are uniformly chosen between 102 msec
and 300 msec during each simulation run. The configurations
for the bottleneck link and the buffer size are the same as be-
fore. For each run of the experiment, we record goodput ra-
tios

� 7-7�� �;9;< � 3 � 7-7�� �;9;< � and the RTT ratios
���� � 3�
���� � (�
= 2,3,...,8). We then make a scatter plot of all the data points
(
���� � 3�
���� � , � 7-7�����9g< � 3 � 7-7�� �;9;< �) obtained from 15 runs for
each queue management scheme. The results are summarized in
Fig. 14.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Y
: G

oo
dp

ut
1/

G
oo

dp
ut

_i

X: RTT_i/RTT_1

dt
r1
r2
r3
r1e
r2e
r3e
Y=X
Y=0.5*X
Y=1.5*X

Fig. 14. Comparison between the effect of RED gateway and the dropping tail
gateway on 8 TCP flows with all different RTT’s.

As we can see, with dt, the bias against long-RTT flows
is smaller that the case with only two different RTT’s. The
throughput ratios are centered around line � /�� and are well-
bounded by two lines � / � f � � and �c/ GJf � � . In compari-
son, with RED, the throughput ratios are clustered much closer
to line � /	� . This suggests that RED is more fair that DT. To
quantify the fairness of different queue management schemes
for flows with different
���� ’s, we use the normalized fairness
ratio [1], which is defined as follows.

 / ���	��� � � 7-7�����9g< � >
��� � � �:�� ��� � � � 7-7�����9g< � >
���� � � �
Fig. 15 shows the normalized fairness ratio for different queue

management policy. As we can see that DT is significantly less
fair compared to RED.

0.9

0.92

0.94

0.96

0.98

1

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 F
ai

rn
es

s
R

at
io

Run ID

dt
r1
r2
r3
r1e
r2e
r3e

Fig. 15. Normalized fairness ratio using different queue management policies.

D.3 Web Sessions with 2 Different RTT’s

Fig. 16 shows the results for 30 Web sessions (Type 2 in Sec-
tion IV-C) with 2 different RTT’s. As we can see, no matter what
queue management scheme is used,

� 7-7�����9g< � 3 � 7-7�� �;9;< � �
���� � 3�
��� � . This is mainly because for short data transfers,
the required roundtrip times is dominated by the slow start pro-
cedure. Unless two flows have significantly different loss rates,
they tend to require similar number of roundtrip times. Conse-
quently, the goodput ratio is inversely proportional to the RTT
ratio.

To summarize, long-RTT bulk transfers in general tend to
have higher goodput with RED than with DT. For Web sessions,
RED makes very little difference.

E. Effect of Two-way Traffic

In this section, we evaluate the effects of different queue man-
agement schemes when there is data traffic in both the forward

9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 1.5 2 2.5 3 3.5 4 4.5 5

Y
: G

oo
dp

ut
2/

G
oo

dp
ut

1

X: RTT1/RTT2

dt
r1
r2
r3
r1e
r2e
r3e
Y=X

Fig. 16. Effect of different queue management schemes on 30 Web sessions
with 2 different RTT’s.

and the reverse path. We consider three cases: 1. the data traffic
on both directions belongs to FTP sessions (in Section V-E.1);
2. the data traffic in the forward path belongs to Web traffic but
the data traffic in the reverse path belongs FTP sessions (in Sec-
tion V-E.2); and 3. the data traffic on both directions belongs to
Web sessions (in Section V-E.3).

E.1 Bulk Transfers in Both Directions

We first consider the scenario where the forward and the re-
verse paths have the same congestion level. This can be achieved
by keeping the same number of FTP sessions in both directions.

Fig. 17 shows the average goodput for FTP sessions (using
TCP/Reno) in the forward path. The goodput for FTP sessions
in the reverse path is very similar due to the symmetric topology
and the symmetric congestion level. As we can see, the aver-
age goodput is slightly higher with DT than with RED when the
number of competing FTP sessions is small. This is not sur-
prising, because RED reduces the bottleneck queue length by
increases the loss rate. When the number of flows is small, this
leads to link under-utilization. As the number of FTP sessions
increase, the bottleneck link becomes highly utilized. Conse-
quently, there is little difference in the average goodput no mat-
ter which queue management scheme is used. We also conduct
the same experiment with TCP/Sack1. The results are similar.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

G
oo

dp
ut

 (
K

bp
s)

Number of FTP Sessions in Each Direction

dt
r1
r2
r3

r1e
r2e
r3e

BW fair share

Fig. 17. Average goodput for FTP sessions in the forward direction. All flows
use the TCP/Reno flavor without support for SACK.

Besides the average goodput, we are also interested in the dis-
tribution for the goodput received by each individual FTP ses-
sion. For this purpose, we keep the number of FTP sessions
in each direction to be either 4 or 16. For each run of the ex-
periment, we record the goodput received by each individual
FTP session. The we compute the cumulative distribution for
the goodput received by each flow in 15 simulation runs. The
results are summarized in Fig. 18. As we can see, when the

number of competing flows is small, the average goodput with
DT is higher than RED plus ECN, but comparable to RED with-
out ECN. When the congestion level is high, DT gives worse
performance than RED.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350

C
um

ul
at

iv
e

F
ra

ct
io

n

Goodput (Kbps)

dt
r1
r2
r3

r1e
r2e
r3e

(a) 4 FTP sessions in each direction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 50 60 70 80 90 100 110

C
um

ul
at

iv
e

F
ra

ct
io

n

Goodput (Kbps)

dt
r1
r2
r3

r1e
r2e
r3e

(b) 16 FTP sessions in each direction.

Fig. 18. Cumulative distribution for the goodput received by each individual
FTP session in the forward direction. TCP/Reno is used by all FTP sessions.
The distribution is obtained from 15 simulation runs.

Now we consider the scenario in which the forward and the re-
verse paths have different congestion levels. More specifically,
we vary the number of FTP sessions in the forward direction
while keeping the number of FTP sessions in the reverse direc-
tion to be either 5 or 10.

The results are summarized in Fig. 19. As illustrated in
Fig. 19(a), the goodput received by FTP sessions in the for-
ward path is qualitatively similar to the results given in Fig. 17.
In particular, there is very little difference in terms of average
goodput with different queue management schemes. This is not
surprising because the congestion level at the reverse direction
largely remains constant. As the forward path becomes satu-
rated, the average goodput only depends on the number of com-
peting flows. Compared to the forward path, the reverse path
is more interesting. As we can see in Fig. 19(b), with DT, the
average goodput received by FTP sessions in the reverse path
continuously decreases as the congestion level in the forward
path increases. This is not the case with RED, where the good-
put initially decreases but soon stabilizes at a level much higher
than the average goodput with DT.

E.2 Web Sessions in Forward Direction, Bulk Transfers in Re-
verse Direction

Fig. 20 summarizes the results when the number of Web ses-
sions in the forward path varies from 1 to 60 and the number of
FTP sessions in the reverse path is kept at 5. As we can see, dif-
ferent queue management scheme makes very little difference in
terms of average goodput for the Web sessions on the forward.

10

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25

G
oo

dp
ut

 (
K

bp
s)

Number of FTP Sessions in Forward Direction

dt
r1
r2
r3

r1e
r2e
r3e

BW fair share

(a) Average goodput for FTP sessions in the forward path.

105

110

115

120

125

130

135

140

145

0 5 10 15 20 25

G
oo

dp
ut

 (
K

bp
s)

Number of FTP Sessions in Forward Direction

dt
r1
r2
r3

r1e
r2e
r3e

(b) Average goodput for FTP sessions in the reverse path.

Fig. 19. Performance evaluation for the case when the number of FTP sessions
in the forward direction varies from 1 to 25 and the number of FTP sessions
in the reverse path is kept at 10. All flows use TCP/Reno.

For the FTP sessions in the reverse path, with RED, the average
goodput decreases but soon stabilizes as the congestion level in-
creases in the forward path. This is not the case with DT, where
the average goodput continues to decrease.

E.3 Web Sessions in Both Directions

Now we consider the case when the data traffic in both direc-
tions are Web sessions.

Fig. 21 shows the average goodput for the Web sessions in
the forward path when the congestion levels in both directions
are similar. Again, there is very little difference in goodput with
different queue management policies.

Fig. 22 shows the results for the case when the forward path
and the reverse path have different number of Web sessions. The
number of Web sessions in the forward path varies from 1 to 60
while the number of Web sessions in the reverse path is kept at
10. As we can see, the results is qualitatively similar to Fig. 20.

We can summarize the results with two-way traffic as follows.�
When the congestion level in the ACK path is high, TCP tends

to get higher goodput with RED than with DT.�
When the congestion level in the ACK path is low but the

congestion level in the data path is sufficiently high, TCP tends
to get comparable goodput with RED and with DT.�

When the congestion levels in both the ACK path and the data
path are low, TCP tends to get slightly lower but still comparable
goodput with RED than with DT.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we use extensive simulations to explore the in-
teraction between RED and five types of heterogeneity, as well
as the impact of such interaction on the user-perceived end-to-
end performance. Our results show that:

0

50

100

150

200

250

0 10 20 30 40 50 60

G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions in Forward Direction

dt
r1
r2
r3

r1e
r2e
r3e

(a) Average goodput for Web sessions in the forward path.

200

210

220

230

240

250

260

270

280

290

300

310

0 10 20 30 40 50 60

G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions in Forward Direction

dt
r1
r2
r3

r1e
r2e
r3e

(b) Average goodput for FTP sessions in the reverse path.

Fig. 20. Performance evaluation for the case when the number of Web sessions
in the forward path varies from 1 to 60 and the number of FTP sessions in
the reverse path is kept at 5. TCP/Reno is used for all flows.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions in Each Direction

dt
r1
r2
r3

r1e
r2e
r3e

Fig. 21. Average goodput for the Web sessions in the forward direction. The
number of Web sessions in both directions varies from 1 to 60. All flows
use TCP/Reno.�

When competing with long-lived TCP flows, short-lived flows
tend to get higher goodput with RED than with DT. This is de-
sirable because short-lived flows typically belong to interactive
Web browsing sessions.�

When competing with TCP traffic, bursty UDP traffic tends to
get lower loss rate with RED than with DT. Meanwhile, smooth
UDP traffic tends to get higher loss rate with RED than with DT,
but such increase is often less significant compared to the case
when competing with TCP/Sack traffic under DT queue man-
agement.�

When ECN-enabled traffic compete with non-ECN-enabled
traffic, ECN-enabled traffic can receive up to 30% higher good-
put.�

For TCP flows with different RTT’s, RED in general tends to
reduce the bias against long-RTT bulk transfers. For short data
transfers with different RTT’s, RED neither helps nor hurts.�

When the ACK path is congested, TCP gets higher goodput
with RED than with DT.

11

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions in Forward Direction

dt
r1
r2
r3

r1e
r2e
r3e

(a) Average goodput for Web sessions in the forward path.

100

120

140

160

180

200

220

240

0 10 20 30 40 50 60

G
oo

dp
ut

 (
K

bp
s)

Number of Web Sessions in Forward Direction

dt
r1
r2
r3

r1e
r2e
r3e

(b) Average goodput for Web sessions in the reverse path.

Fig. 22. Average goodput for the Web sessions in the reverse path. The number
of Web sessions in the forward path varies from 1 to 60, while the number
of Web sessions in the reverse path is kept at 10. TCP/Reno is used for all
Web sessions.

Therefore, we conclude that overall RED improves perfor-
mance at least for the types of heterogeneity we have consid-
ered.

As for future work, we are interested in considering other
types of heterogeneity such as the presence of random loss and
multiple congested links. We would also like to understand the
aggregate effect of different types of heterogeneity.

VII. ACKNOWLEDGMENTS

Thanks to Sally Floyd for helpful discussions.

REFERENCES

[1] A. Aagarwal, S. Savage, and T. Anderson, “Understanding the Performance
of TCP Pacing,” Proc. IEEE INFOCOM ’2000, Mar. 2000.

[2] F. Anjum and L. Tassiulas, “Balanced-RED: An Algorithm to Achieve Fair-
ness in the Internet,” Proc. IEEE INFOCOM ’99, Mar. 1999.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S.
Shenker, J. Wroclawski, and L. Zhang, “Recommendations on Queue Man-
agement and Congestion Avoidance in the Internet,” RFC 2309, Apr. 1998.

[4] M. Crovella and A. Bestavros, “Self-Similarity in World Wide Web Traf-
fic: Evidence and Possible Causes,” IEEE/ACM Transactions on Networking,
5(6):835-846, Dec. 1997.

[5] K. Claffy, H. Braun, and G. Polyzos, “A Parameterizable Methodology for
Internet Traffic Flow Profiling,” IEEE Journal on Selected Areas in Commu-
nications (JSAC), 13(8):1481-1494, Oct. 1995.

[6] M. Christiansen, K. Jeffay, D. Ott, and F. Smith, “Tuning RED for Web
Traffic,” Proc. SIGCOMM ’2000, Aug. 2000.

[7] O. Elloumi and H. Afifi, “RED Algorithm in ATM Networks,”
ftp://ftp.rennes.enst-bretagne.fr/pub/reseau/afifi/red-atm.ps , Technical Re-
port, Jun. 1997.

[8] V. Firoiu, and M. Borden, “A Study of Active Queue Management for Con-
gestion Control,” Proc. IEEE INFOCOM ’2000, Mar. 2000.

[9] S. Floyd and V. Jacobson, “On Traffic Phase Effects in Packet-Switched
Gateways,” Internetworking: Research and Experience, 3(3):115-156,
Sep. 1992.

[10] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Con-
gestion Avoidance,” IEEE/ACM Transactions on Networking, 1(4):397-413,
Aug. 1993.

[11] W. Feng, D. Kandlur, D. Saha, and K. Shin, “A Self-Configuring RED
Gateway,” Proc. IEEE INFOCOM ’99, Mar. 1999.

[12] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A New Class of Active
Queue Management Algorithms,” University of Michigan Technical Report
CSE-TR-387-99, Apr. 1999.

[13] S. Floyd, ECN Web Page, http://www.aciri.org/floyd/ecn.html .
[14] S. Floyd, RED Web Page, http://www.aciri.org/floyd/red.html .
[15] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer

Communication Review, 24(5):10-23, Oct. 1994.
[16] S. Floyd, “RED: Discussions of Setting Parameters,”

http://www.aciri.org/floyd/REDparameters.txt , Nov. 1997.
[17] S. Floyd, “Recommendation on Using the “gentle ” Variant of RED,”

http://www.aciri.org/floyd/red/gentle.html, Mar. 2000.
[18] S. Floyd, “A Report on Some Recent Developments in TCP Conges-

tion Control,” http://www.aciri.org/floyd/papers/TCPreport.ps , in submis-
sion, Jun. 2000.

[19] A. Feldmann, J. Rexford, and R. Caceres, “Efficient Policies for Carry-
ing Web Traffic Over Flow-Switched Networks,” IEEE/ACM Transactions
on Networking, pp. 673-685, Dec. 1998.

[20] S. Gribble, and E. Brewer, “System Design Issues for Internet Middle-
ware Services: Deductions from a Large Client Trace,” Proc. USITS ’97,
Dec. 1997.

[21] V. Jacobson and M. Karels, “Congestion Avoidance and Control,” Proc.
SIGCOMM ’88, Aug. 1988.

[22] D. Lin and R. Morris, “Dynamics of Random Early Detection,” Proc. SIG-
COMM ’97, Sep. 1997.

[23] B. Mah, “An Empirical Model of HTTP Network Traffic,” Proc. IEEE
INFOCOM ’97, Apr. 1997.

[24] M. May, T. Bonald, and J. Bolot, “Analytic Evaluation of RED Perfor-
mance,” Proc. IEEE INFOCOM ’2000, Mar. 2000.

[25] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons Not to Deploy RED,”
Proc. IWQoS ’99, Mar. 1999.

[26] V. Misra, W. Gong, and D. Towsley, “A Fluid-based Analysis of a Network
of AQM Routers Supporting TCP Flows with an Application to RED,” Proc.
SIGCOMM ’2000, Aug. 2000.

[27] UCB/LBNL/VINT Network Simulator - ns (version 2), 1997.
http://www.isi.edu/nsnam/ns/

[28] T. Ott, T. Lakshman, and L. Wong, “SRED: Stabilized RED,” Proc. IEEE
INFOCOM ’99, Mar. 1999.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Through-
put: A Simple Model and Its Empirical Validation.” Proc. SIGCOMM ’98,
Sep. 1998.

[30] K. Park, G. Kim, and M. Crovella, “On the Relationship between
File Sizes, Transport Protocols and Self-Similar Network Traffic,” Proc.
ICNP ’96, Oct. 1996.

[31] V. Padmanabhan and J. Mogul, “Improving HTTP Latency,” Proc. 2nd
International World Wide Web Conference, Oct. 1994.

[32] V. Rosolen, O. Bonaventure and G. Leduc, “Impact of Cell Discard Strate-
gies on TCP/IP in ATM UBR Networks,” Proc. 6th Workshop on Per-
formance Modelling and Evaluation of ATM Networks (IFIP ATM ’98),
Jul. 1998.

[33] V. Rosolen, O. Bonaventure and G. Leduc, “A RED Discard Strategy for
ATM Networks and Its Performance Evaluation with TCP/IP Traffic,” ACM
Computer Communication Review, Jul. 1999.

[34] K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit Congestion
Notification (ECN) to IP,” RFC 2481, Jan. 1999.

[35] K. Ramakrishnan and R. Jain, “A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks,” ACM Transaction on Computer Systems,
8(2):158-181, May 1990.

[36] S. Shenker, L. Zhang, and D. Clark, “Some Observations on the Dynamics
of a Congestion Control Algorithm,” ACM Computer Communication Re-
view, 20(5):30-39, Oct. 1990.

[37] K. Thompson, G. Miller, and R. Wilder, “Wide-Area Internet Traffic Pat-
terns and Characteristics,” IEEE Network, 11(6):10-23, Nov. 1997.

[38] C. Villamizar and C. Song, “High Performance TCP in ANSNET,” ACM
Computer Communications Review, 24(5):45-60, Oct. 1994.

[39] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-Similarity
through High Variability: Statistical Analysis of Ethernet LAN Traffic at the
Source Level,” Proc. SIGCOMM ’95, Aug. 1995.

[40] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy, “Organization-Based Analysis of Web-
Object Sharing and Caching,” Proc. USITS ’99, Oct. 1999.

[41] L. Zhang, S. Shenker, and D. Clark, “Observations on the Dynamics of a
congestion control Algorithm: The Effects of Two-Way Traffic,” Proc. SIG-
COMM ’91, Sep. 1991.

