
Tep liP Performance over Satellite Links
Craig Partridge and Timothy J. Shepard

BBN Technologies

. Abstract
Achieving high data rates using TCP liP over satellite networks can be difficult. This
article explains some of the reasons TCP liP has difficulty with satellite links. We
present solutions to some problems, and describe the state of the research on some
of the unsolved problems.

Ilof TCP/IP impact performance. We then pre
'sent issues specific to satellites aninformal)
about how well TCP/IP performs over satellite
links. Some reports indicate TCP/IP throughput

is poor. Others report that TCP/IP throughput is quite good.
It is very difficult to determine which reports deserve more
credence.

This article tries to clarify the situation. Our approach is to
first discuss TCP/IP performance analytically, indicating what
features of TCP/IP impact performance. We then present
issues specific to satellites and their solutions, if known.

An Overview of Tep and IP Performance

TCP/IP is a surprising complex protocol suite and more than
one person has written an entire book on the details of its

operation. 1 Rather than try to summarize all of TCP/IP, our
goal in this section is to present those aspects of TCP/IP that
most directly affect TCP/IP throughput. More specifically, we
will focus on a particular aspect of throughput, namely the
effective transmission rate of valid data (sometimes called
goodput) that a TCP/IP connection can achieve.

IP Throughput Issues
IP (the Internet Protocol) is the network layer protocol in the
TCP/IP protocol suite. IP's function is to provide a protocol
to integrate heterogeneous networks together. In brief, a
media-specific way to encapsulate IP datagrams is defined for
each media (e.g., satellite, Ethernet, or Asynchronous Trans
fer Mode). Devices called routers move IP datagrams between
the different media and their encapsulations. Routers pass IP
datagrams between different media according to routing infor
mation in the IP datagram. This mesh of different media
interconnected by routers forms an IP internet, in which all.

This work was funded by NASA Lewis Research Center.

1 Two very good books on the subject are [ll and [2j.

44 0890-8044/97/$10.00 © 1997 IEEE

hosts on the integrated mesh can communicate with each
other using IP.2

The actual service IP implements is unreliable datagram
delivery. IP simply promises to make a reasonable effort to
deliver every datagram to its destination. However IP is free
to occasionally lose datagrams, deliver datagrams with errors
in them, and duplicate and reorder datagrams.

Because IP provides such a simple service, one might
assume that IP places no limits on throughput. Broadly speak
ing, this assumption is correct. IP places no constraints on
how fast a system can generate or receive datagrams. A sys
tem transmits IP datagrams as fast as it can generate them.
However, IP does have two features that can affect through
put: the IP Time to Live and IP Fragmentation.

IP Time To Live - In certain situations, IP datagrams may
loop among a set of routers. These loops are sometimes tran
sient (a datagram may loop for a while and then proceed to
its destination) or long-lived. To protect against datagrams
circulating semipermanently, IP places a limit on how long a
datagram may live in the network.

The limit is imposed by a Time To Live (TTL) field in the
IP datagram. The field is decremented at least once at every
router the datagram encounters and when the TIL reaches
Lero, the datagram is discarded.

Originally, the IF specification also required that the TTL also
be decremented at least once per second. Since the TTL field is
8-bits wide, this means a datagram could live for approximately
4.25 minutes. In practice, the injunction to decrement the TTL
once a second is ignored, but, perversely, specifications for high
er layer protocols like TCP usually assume that the maximum
time a datagram can live in the network is only two minutes.

2 The tenn internet is a generic word for a group of interconnected net
works. The internet is the global IP internet. Recently the tenn intranet has
evolved from its original meaning (an adjective meaning on a single physi
cal network [3l) into a popular way to describe an IP internet entirely
within an olganization.

IEEE Network • September/October 1997

The significance of the maximum datagram lifetime is
that it means higher layer protocols must be careful not to
send two similar datagrams (in particular, two datagrams
which could be confused for each other) within a few min
utes of each other. This limitation is particularly impor
tant for sequence numbers. If a higher layer protocol·
numbers its datagrams, it must ensure that it does not
generate two datagrams with the same sequence number
within a few minutes of each other, lest IP deliver the sec
ond datagram first and confuse the receiver. We discuss
this issue more in the next section when we discuss TCP
sequence space issues.

IP Fragmentation - Different network media have differ
ent limits on the maximum datagram size. This limit is
typically referred to as the Maximum Transmission Unit
(MTU). When a router is moving a datagram from one
media to another, it may discover that the datagram,which
was of legal size on the inbound media, is too big for the
outbound media. To get around this problem, IP supports
fragmentation and reassembly, in which a router can break
the datagram up into smaller datagrams to fit on the out
bound media. The smaller datagrams are reassemhled into
the original larger datagram at the destination (not the
intermediate hops).

Fragments are identified using a fragment offset field
(which indicates the offset of the fragment from the start of
the original datagram). Datagrams are uniquely identified by
their source, destination, higher layer protocol type, and a 16-
bit IP identifier (which must be unique when combined with
the source, destination and protocol type).

Observe that there's a clear link between the TTL field and
the IP identifier (first identified by [41). An IP source must
ensure that it does not send two datagrams with the same IP
identifier to the same destination, using the same protocol
within a maximum datagram lifetime, or fragments of two dif
ferent datagrams may be incorrectly combined. Since the IP
identifier is only 16 bits, if the maximum datagram lifetime is
two minutes, we are limited to a transmission rate of only 546
datagrams per second. That's clearly not fast enough. The
maximum IP datagram size is 64 KB, so 546 datagrams is, at
best, a bit less than 300 Mb/s.

The problem of worrying about IP identifier consumption
has largely been solved by the development of MTU Discov
ery a technique for IP sources to discover the MTU of the
path to a destination [5]. MTU Discovery is a mechanism that
allows hosts to determine the MTU of a path reliably. The
existence of MTU discovery allows hosts to set the Don't
Fragment (DF) bit in the IP header, to prohibit fragmenta
tion, because the hosts will learn through MTU discovery if
their datagrams are too big. Sources that set the DF bit need
not worry about the possihility of having two identifiers active
at the same time. Systems that do not implement MTU dis
covery (and thus cannot set the DF bit) need to be careful
about this problem.

Tep. Throughput Issues
The Transmission Control Protocol (TCP) is the primary
transport protocol in the TCP/IP protocol suite. It imple
ments a reliable byte stream over the unreliable datagram
service provided by IP. As part of implementing the reliable
service, TCP is also responsible for flow and congestion con
trol: ensuring that data is transmitted at a rate consistent
with the capacities of both the receiver and the intermediate
links in the network path. Since there may be multiple TCP
connections active in a link, TCP is also responsible for
ensuring that a link's capacity is responsibly shared among

TPPP 1\Tphvnrk • Sp.ntpmhpr/Octohcr 1997

• Figure 1 . TCP and IP header fields that affect throughput.

the connections using it. As a result, most throughput issues
are rooted in TCP.

This section examines the major features of TCP that affect
performance. Many of these performance issues have been
discovered over the past few years as link transmission speeds
have increased and so called high delay-bandwidth paths3

(paths where the product of the path delay and available path
bandwidth is big) have become common. To begin to illustrate
the challenge, consider that in the 1970s when TCP was being
developed, the typical long link was a 56 kb/s circuit across the
United States, with a delay-bandwidth product of approxi
mately 0.250 x 56,000 bits or 1.8 KB, while today's Internet
contains 2.4 ObIs circuits crossing the US, which boast a
delay-bandwidth product of 75 MB.

Throughput Expectations - Before presenting the performance
issues for TCP, it is worth talking briefly about throughput
goals.

TCP throughput determines how fast most applications can
move data across a network. Application protocols such as
HTTP (the World Wide Web protocol), and the File Transfer
Protocol (FTP), rely on Tep to carry their data. So Tep per
formance directly impacts application performance.

While there are no formal TCP performance standards,
TCP experts generally expect that, when sending large
datagrams (to minimize the overhead of the TCP and IP
headers), a TCP connection should be able to fill the avail
able bandwidth of a path and to share the bandwidth with
other users. If a link is otherwise idle, a TCP connection is
expected to be able to fill it. If a link is shared with three
other users, we expect each TCP to get a reasonable share
of the bandwidth.

These expectations reflect a mix of practical concerns.
When users of TCP acquire faster data lines, they expect their
TCP transfers to run faster. And users acquire faster lines for
different reasons. Some need faster lines because as their
aggregate traffic has increased, they have more applications
that need network access. Others have a particular application
that requires more bandwidth. The requirement that TCP
share a link effectively reflects the needs of aggregation; all
users of a faster link should see improvement. The require
ment that TCP fill an otherwise idle link reflects the needs of
more specialized applications.
rep Sequence Numbers - TCP keeps track of all data in
transit by assigning each byte a unique sequence number. The
receiver acknowledges received data by sending an acknowl-

3 To avoid confusion, we note that the data netlVorking community, unlike
some engineering communities, uses the tenn bandwidth interchangeably
with bitrate.

45

edgment which indicates that the receiver has received all
data up to a particular byte number.

TCP allocates its sequence numbers from a 32-bit
wraparound sequence space. To ensure that a given sequence
number uniquely identifies a particular byte, TCP requires that
no two bytes with the same sequence number be active in the
network at the same time. Recall the early discussion of IP
datagram lifetime indicated a datagram was assumed to live
for up to two minutes. Thus when TCP sends a byte in an IP
datagram, the sequence number of that byte cannot be reused
for 1wo minutes. Unfortunately, a 32-bit sequence space spread
over two minutes gives a maximum data rate of only 286 Mb/s.

To fix this problem, the Internet End-to-End Research
Group devised a set of TCP options and algorithms to extend
the sequence space. These changes were adopted by the Inter
net Engineering Task Force (IETF) and are now part of the
TCP standard. The option is a timestamp option [6] which
concatenates a timestamp to the 32-bit sequence number.
Comparing timestamps using an algorithm called PAWS (Pro
tection Against Wrapped Sequence numbers) makes it possi
ble to distinguish between two identical sequence numbers
sent less than two minutes apart.

Depending on the actual granularity of the timestamp (the
IETF recommends between 1 second and 1 millisecond), this
extension is sufficient for link speeds of between 8 Gb/s and 8
This (terabits per second).

Tep Transmission Window - The purpose of the transmission
window is to allow the receiving 'fCP to control how much
data is being sent to it at any given time. The receiver adver
tises a window size to the sender. The window measures, in
bytes, the amount of unacknowledged data that the sender
can have in transit to the receiver. The distinction between
the sequence numbers and the window is that sequence num
bers are designed to allow the sender to keep track of the
data in flight, while the window's purpose is to allow the
receiver to control tne rate at which it receives data.

Obviously, if a receiver advertises a small windo~ (due, per
haps, to buffer limitations) it is impossible for TCP to achieve
high transmission rates. And many implementations do not
offer a very large window size (a few kilobytes is typical).

However, there is a more serious problem. The standard
TCP window size cannot exceed 64 KB, because the field in
the TCP header used to advertise the window is only 16 bits
wide. This limits the TCP effective bandwidth to 216 bytes
divided by the round-trip time of the path [7]. For long delay
links, such as those through satellites with a geosynchronous
orbit (GEO), this limit gives a maximum data rate of just
under 1 Mb/s.

As part of the changes to add timestamps to the sequence
numbers, the End-To-End Research Group and IETF also
enhanced TCP to negotiate a window scaling option. The
option multiplies the value in the window field by a constant.
The effect is that the window can only be adjusted in units of
the multiplier. So if the multiplier is 4, an increase of 1 in the
advertised window means the receiver is opening the window
by 4 bytes.

The window size is limited by the sequence space (the win
dow must be no larger than one half of the sequence space so
that it is unambiguously clear that a byte is inside or outside
the window). So the maximum multiplier permitted is 214.
This means the maximum window size is 230 and the maxi
mum date rate over a GEO satellite link is approximately 15
Gb/s. Given we have achieved Tb/s data rates in terrestrial
fiber, this value is depressingly small, but in the absence "of a
major change to the TCP header format it is not clear how to
fix the problem.

46

Slow Start - When a TCP connection starts up, the TCP
specification requires the connection to be conservative and
assume that the available bandwidth to the receiver is small.
TCP is supposed to use an algorithm called slow start [8], to
probe the path to learn how much bandwidth is available.

The slow start algorithm is quite simple and based on data
sent per round trip. At the start, the sending TCP sends one
TCP segment (datagram) and waits for an acknowledgment.
When it gets the acknowl~dgment, it sends two segments.
Many TCPs acknowledge every other segment they receive,4 so
the slow start algorithm effectively sends 50 percent more data
every round trip. It continues this process (sending 50 percent
more data each round trip) until a segment is lost. This loss is
interpreted as indicating congestion and the connection scales
back to a more conservative approach (described in the next
section) for probing bandwidth for the rest of the connection.

There are two problems with the slow start algorithm on
high-speed networks. First, the probing algorithm can take a
long time to get up to speed. The time required to get up to
speed is R(I + 10g1.5 (DBII)), where R is the round-trip time,
DB is the delay-bandwidth product and I is the average seg
ment length. If we are trying to fill a pipe with a single TCP
connection (and, if the TCP connection is the sole user of the
link, filling the link is considered the canonical goal), then DB
should be the product of the bandwidth available to the con
nection and the round-trip time.

An important point is that as the bandwidth goes up or
round-trip time increases, or both, this startup time can be
quite long. For instance, on a Gb/s GEO satellite link with a 0.5
second round-trip time, it takes 29 round-trip times or 14.5 sec
onds to finish startup. If the link is otherwise idle, during that
period most of the link bandwidth will be unused (wasted).

Even worse is that, in many cases, the entire transfer will
complete before the slow start algorithm has finished. The
user will never experience the full link bandwidth. All the
transfer time will be spent in slow start. This problem is par
ticularly severe for HTTP (the World Wide Web protocol),
which is notorious for starting a new TCP connection for
every item on a page.s This poor protocol design is a (major)
reason Web perfomlance on the Internet is perceived as poor:
the Web protocols never let TCP get up to full speed.

Currently, the IETF is in the early stages of considering a
change to allow TCPs to transmit more than one segment (the
current proposal permits between two and four segments) at
the beginning of the initial slow start. If there is capacity in
the path, this change will reduce the slow start by up to three
round-trip times. This change mostly benefits shorter transfers
that never get out of slow start.

The second problem is interpreting loss as indicating con
gestion. TCP has no easy way to distinguish losses due to
transmission errors from losses due to congestion, so it makes
the conservative assumption that all losses are due to conges
tion. However, as was shown in an unpublished experiment at
MIT, given the loss of a TCP segment early in the slow start
process, TCP will then set its initial estimate of the available
bandwidth far too low. And since the probing algorithm
becomes linear rather than exponential after the initial esti
mate is set, the time to get to full transmission rate can be
very long. On a gigabit GEO link, it could be several hours!

4 TCP acknowledgments are cumulative, so one acknowledgment can
acknowledge mUltiple segments. Sending one acknowledgment for every
two segments reduces the retum path bandwidth consumed by the
acknowledgments.

5 A problem now being alleviated by the HTTP 1.1 specification [9].

IEEE Network • September/October 1997

• Table 1 . Summary of satellite and l'CP interactions.

Congestion Avoidance - Throughout a TCP connection, TCP
runs a congestion avoidance algorithm which is similar to the
slow start algorithm and was described in the same paper by
Jacobson [8]. Essentially, the sending TCP maintains a conges
tion window, an estimate of the actual available bandwidth of the
path to the receiver. This estimate is set initially by the slow start
at the start of the connection. Then the estimate is varied up and
down during the life of the connection based on indications of
congestion (or the absence thereof). In general, congestion is
assumed to be indicated by loss of one or more datagrams.

The basic estimation algorithm is as follows. Every round
trip, the sending TCP increases its estimate of the available
bandwidth by one maximum-sized segment. Whenever the
sender either finds a segment was lost (conservatively assumed
to be due to congestion) or receives an indication from the
network (e.g., an ICMP Source Quench) that congestion
exists, the sender halves its estimate of the available band
width. The sender then resumes the one segment per round
trip probing algorithm. (In certain, extreme, loss situations,
the sender will do a slow start).

Like the slow start algorithm, the major issue with this
algorithm is that over high-delay-bandwidth links, a datagram
lost to transmission error will trigger a low estimate of the
available bandwidth, and the linear probing algorithm will
take a long time to recover.

Another issue is that the rate of improvement under con
gestion avoidance is a function of the delay-bandwidth prod
uct. Basically congestion avoidance allows a sender to increase
its window by one segment, for every round-trip time's worth
of data sent. In other words, congestion avoidance increases
the transmission rate by [IDE each round trip [10, 11].

Selective Acknowledgments - Recently the Internet Engineer
ing Task Force has approved an extension to TCP called
Selective Acknowledgments (SACKs) [12]. SACKs make it
possible for TCP to acknowledge data received out of order.
Previously TCP had only been able to acknowledge data
received in order.

SACKs have two major benefits. First, they improve the
efficiency of TCP retransmissions by reducing the retransmis
sion period. Historically, TCP has used a retransmission algo
rithm that emulates selective-repeat ARQ using the
information provided by in-order acknowledgments. This algo
rithm works, but takes roughly one round-trip time per lost
segment to recover. SACK allows a TCP tu retransmit multi
ple missing segments in a round trip. Second, and more
importantly, work by Mathis and Mahdavi [12] has shown that
with SACKs a TCP can better evaluate the available path
bandwidth in a period of successive losses and avoid doing a
slow start.

Inter-Relations - It is important to keep in mind that all the
various TCP mechanisms are interrelated, especially when
applied to problems of high performance. If the sequence
space and window size are not large enough, no improvement
to congestion windows will help, since TCP cannot go fast

TFPF Nptwmk • S~nt~mh~T/OctoheT 1997

enough anyway. Also, if the receiver chooses a small window
size, it takes precedence over the congestion window, and can
limit throughput.

More broadly, tinkering with TCP algorithms tends to show
odd interrelations. For instance, the individual TCP Vegas
performance improvements [13, 14] were shown to work only
when applied together applying only some of the changes
actually degraded performance. And there are also known
TCP syndromes where the congestion window gets misesti
mated, causing the estimation algorithm to briefly thrash
before converging on a congestion window. (The best known
is a case where a router has too little buffer space, causing
bursts of datagrams to be lost even though there is link capac
ity to carry all the datagrams).

Satellites and Tep lIP Throughput

For the rest of this article we apply the general discussion of
the previous section to the specific problem of achieving

high throughput over satellite links. First, we point out the
need to implement the extensions to the TCP sequence space
and window size. Then we discuss the relationship between
slow start and performance over satellite links and some pos
sible solutions.

Currently satellites offer a range of channel bandwidths,
from the very small (a compressed phone circuit of a few kb/s)
to the very large (the Advanced Communications and
Telecommunications Satellite with 622-Mb/s circuits). They
also have a range of delays, from relatively small delays of low
earth orbit (LEO) satellites to the much larger delays of GEO
satellites. Our concern is making Tc;P/IP work well over those
ranges.

General Performance
Many of the problems described in the previous section on
TCP/IP performance were ones that became acute only over
high-delay-bandwidth paths. One of the first things to note is
that all but the slowest satellite links are, by definition, high
delay-bandwidth paths, because the transmission delays to and
from the satellite from the Earth's surface are large.

Table 1 illustrates for a range of common bandwidths,
when the TCP enhancements of PAWS and large windows are
required to fully utilize the bandwidth on a LAN link with 5
ms one-way delay, a LEO link (100 ms one-way) and GEO
(250 ms one-way) link, for a range of link speeds. We also
indicate how long slow start takes to get to full link speed,
assuming 1 KB data grams (a typical size) are transmitted and
how much data is transferred during the slow start phase.

The table highlights some key challenges for satellites (and
also for transcontinental terrestrial links, which have delays
similar to LEO satellite links). One simply cannot get a
TCP/IP implementation to perform well at higher speeds
unless it supports large windows, and at speeds past about 100
Mb/s, PAWS. Thus anyone who has not had their TCP/IP
software upgraded with PAWS and large windows will not be
able to achieve high performance over a satellite link.

47

• Table 2. Approximate number of bits sent over GEO link dur
ing congestion avoidance.

Slow Stort Revisited

Another point of Table 1 is that the initial slow start period
can be quite long and involve large quantities of data.Particu
larly striking is the column for 155 Mb/s transfers. Between 8
and 21 megabytes of data are sent over a satellite link during
slow start at 155 Mb/s. Even at 1.5 Mb/s a GEO link must
carry nearly 200 KB before slow start ends. Few data transfers
on the Internet are megabytes long. Many are a few kilobytes.
All of which says that satellite links will look slow and ineffi
cient for the average data transmission. Interestingly enough,
long-distance terrestrial links will also look slow. Their delays
are comparable to those of LEO links.

Furthermore, observe that the table helps explain the varia
tion in reported TCP goodput over satellite links. Short data
transfers will never achieve full link ratc. In many cases, a
gigabyte file transfer or larger is probably required to ensure
throughput figures are not heavily influenced by slow start.

Obviously some sort of solution to reduce the slow start
transient would be desirable. But finding a solution isn't easy.

One obvious solution is to dispense with slow start and just
start sending as fast as one can until data is dropped, and then
slow down. This approach is known to be disasterous. Indeed,
slow start was invented in an environment in which TCP
implementations behaved this way and were driving the Inter
net into congestion collapse. As one example of how this
scheme goes wrong, consider a Obis capable TCP launching
severallOOs of megabits of data over a path that turns out to
have only 9.6 kb/s of bandwidth. There's a tremendous band
width mismatch which will cause datagram:; to be discarded or
suffer long queuing delays.

As this example illustrates, one of the important problems
is that a sending TCP has no idea, when it starts sending, how
much bandwidth a particular transmission path has. In the
absence of knowledge, a TCP should be conservative. And
slow start is conservative - it starts by sending just one data
gram in the first round trip.

However, it is clear that somehow we need to be able to
give TCP more information about the path if we are to avoid
the peril of having TCP chronically spend its time in slow
start. One nice aspect of this problem is that it is not specific
to satellites. Terrestrial lines need a solution too, and thus if
we can find a general solution that works for both satellites
and terrestrial lines, everyone will be happy to adopt it.

Improving Slow Start - If the TCP had more information
about the path, it could presumably skip at least some of
the slow start process possibly by starting the slow start at a
somewhat higher rate than one datagram. (The IETF initia
tive to use a slightly larger beginning transmission size for
the initial slow start is a step in this direction). But actually
learning the properties of the path is hard. IP keeps no
path bandwidth information, so TCP cannot ask the net
work about path properties. And while there are ways to
estimate path bandwidth dynamically, such as packet-pair
[12, 13 J, the estimates can easily be distorted in the pres
ence of cross traffic.

48

rep Spoofing - Another idea for getting around slow start is
a practice known as "TCP spoofing," described in [14]. The
idea calls for a router near the satellite link to send back
acknowledgments for the TCP data to give the sender the illu
sion of a short delay path. The router then suppresses acknowl
edgments returning from the receiver, and takes responsibility
for retransmitting any segments lost downstream of the router.

There are a number of problems with this scheme. First, the
router must do a considerable amount of work after it sends an
acknowledgment. It must buffer the data segment because the
original sender is now free to discard its copy (the segment has
been acknowledged) and so if the segment gets lost between
the router and the receiver, the router has to take full responsi
bility for retransmitting it. One side effect of this behavior is
that if a queue builds up, it is likely to be a queue of TCP seg
ments that the router is holding for possible retransmission.
Unlike IP datagrams, this data cannot be deleted until the
router gets the relevant acknowledgments from the receiver.

Second, spoofing requires symmetric paths: the data and
acknowledgments must flow along the same path through the
router. However, in much of the Internet, asymmetric paths
are quite common [15].

Third, spoofing is vulnerable to unexpected failures. If a path
changes or the router crashes, data may be lost. Data may even
be lost after the sender has finished sending and, based on the
router's acknowledgments, reported data successfully transferred.

Fourth, it doesn't work if the data in the IP datagram is encrypt
ed because the router will be unable to read the TCP header.

Cos coding rep - Cascading TCP, also know as split TCP, is
a idea where a TCP connection is divided into multiple TCP
connections, with a special TCP connection running over the
satellite link. The thought behind this idea is that the TCP
nmning over the satellite link can be modified, with knowl
edge of the satellite's properties, to run faster.

Because each TCP connection is terminated, cascading
TCP is not vulnerable to asymmetric paths. And in cases
where applications actively participate in TCP connection
management (such as Web caching) it works well. But other
wise cascading TCP has the same problems as TCP spoofing.

Error Rotes for Sotellite Poths
Experience suggests that satellite paths have higher error
rates than terrestrial lines. In some cases, the error rates are
as high as 1 in 10-5.

Higher error rates matter for two reasons. First, they cause
errors in datagrams, which will have to bc retransmitted. Sec
ond, as noted above, TCP typically interprets loss as a sign of
congestion and goes back into a modified version of slow
start. Clearly wc need to either reduce the error rate to a level
acceptable to TCP or find a way to let TCP know that the
datagram loss is due to transmission errors, not congestion
(and thus TCP should not reduce its transmission rate).

Accoptable Error Rates - What is an acceptable link error
rate in a TCP/IP environment? There is no hard and fast
answer to this problem. This section presents one way to think
about the problem for satellites: looking at TCP's natural fre
quency of congestion avoidance starts, and seeking an error
ratc that is substantially less than that frequency.

Suppose we consider the performance of a single estab~
lished TCP over an otherwise idle link. Once past the initial
slow start, the established TCP connection with data to send
will alternate between two modes:
• Performing congestion avoidance until a segment is

dropped, at which point the TCP falls back to half its win
dow size and resumes congestion avoidance

IEEE Netw'ark • September/October 1997

• Occasionally performing a slow start when loss becomes severe.
During much of the congestion avoidance phase, the TCP

will typically be using the path at or near full capacity. Rough
ly speaking this phase lasts p round-trip times, where p is the
largest value such that the following inequality is truc:

p

Li~b
j=l

where b is the buffering in segments at the bottleneck in the
path. (Why this equation? In congestion avoidance the TCP is
sending an additional segment every round trip. Suppose we
start congestion avoidance at exactly the right window size,
namely the delay-bandwidth product. In the first round trip of
congestion avoidance the TCP will be sending one segment
more than the capacity of the path, so this segment will end
up sitting in a queue. In the second round trip, the TCP will
send two segments more than the capacity and thesc two seg
ments will join the first one segment in the queue. And so
forth, until the queue is filled and a segment is dropped.)
Table 2 shows the number of bits sent during the congestion
avoidance phase for a range of GEO link speeds, buffer sizes
and values of p.

Clearly we would like to avoid terminating the congestion
avoidance phase early, since it causes TCP to underestimate
the available bandwidth. Turning this point around, we can
say that a link should have an effective error rate sufficiently
low that it is very unlikely that the congestion avoidance phase
will be prematurely ended by a transmission error. Table 2
suggests this requirement means that satellite error rates on
higher-speed links need to be on the order of 1 in 1012 or bet
ter. That's about the edge of the projected error rates for new
satellites. The ACTS satellite routinely sends 1013 bits of data
without an error. Proposed Ka band systems are aiming for an
effective error rate of about 1 in 1012.

Teaching Tep to Ignore Transmission Errors - As an alterna
tive to, or in conjunction with, reducing satellite error rates
we might wish to teach TCP to be more intelligent about han
dling transmission errors. There are basically two approaches:
either TCP can explicitly be told that link errors are occurring
or TCP can infer that link errors are occurring.

NASA has funded some experiments with explicit error
notification as part of a broader study on very long space links
done at Mitre [16]. One general challenge in explicit notifica
tion is that TCP and IP rarely know that transmission errors
have occurred because transmission layers discard the errored
datagrams without passing them to TCP and IP.

Having TCP infer which errors are due to transmissio.n
errors rather than congestion also presents challenges. One
has to find a way for TCP to distinguish congestion from
transmission errors reliably, using only information provided
by TCP acknowledgments. And the algorithm better never
make a mistake, because a failure to respond to congestion
loss can exacerbate network congestion. So far as we know, no
one has experimented with inferring transmission errors.

Conclusions
('atellite links are today's high-delay-bandwidth paths.
Jromorrow high-delay-bandwidth paths will be everywhere.
(ConSider that somc carriers are already installing terrestrial
OC-768 [40 Obis] network links.) So most of the problems
described in this article need to be solved not just for satel
lites but for high-delay paths in general.

The first step to achieving high performance is making sure
the sending and receive TCP implementations contain all the
modern features (large windows, PAWS, and SACK) and that

IEEE Network • September/October 1997

the TCP window space is larger than the delay-bandwidth
prQductoftpe path. Any user worried about high perfor
mance should take these steps now.

The next step is to find ways to further improve the perfor
mance of TCP over long delay paths and in particular, reduce
the inipact of slow start. Slow start provides an essential ser
vice; the issue is whether there are ways to reduce its start up
time, especially when the connection first starts. Because long
delay satellite links are only an instance of the larger problem
of high-delay bandwidth paths, the authors are less interested
in point solutions that only address the performance problems
for satellites. We look with hope for solutions that benefit
both terrestrial and satellite links.

References
[1] D. E. Comer, Infernetworking with rCP/IP, Vol. I: Principles, Protocols and

Architecture, 2nd ed., Prentice Hall, 1991.
[2] W. R. Stevens, rCP/IP Illustrated, Vol. I, Addison Wesley, .1994.
[3] J. Postel, "Internet Protocol; RFC-791 ," Internet Requests for Comments, no.

791, Sept. 1981.
[4] c. A. Kent and J. C. Mogul, "Fragmentation Considered Harmful," Proc. of

ACM SIGCOMM '87, Stowe, VT, 11-13, Aug. 1987, pp. 390-401.
[5] J. Mogul and S. Deering, "Path MTU Discovery; RFC-1191," Internet Requests

for Comments, no. 1191, Nov. 1990.
[6] D. Borman, R. Braden, and V. Jacobson, "TCP Extensions for High Perfor

mance; RFC-1323,* Internet Requests for Comments, no. 1323, May 1992.
[7] A. McKenzie, "Problem with the TCP Big Window Option; RFC·111 0," Inter·

net Requests for Comments, no. 1110, Aug. 1989.
[8] V. Jacobson, "Congestion Avoidance and Control/ Proe. ACM 51GCOMM

'88, Stanford, CA, Aug. 1988, pp. 314-329.
[9] H. F. Nielsen et 01., "Network Performance Effects of HTIP/l.l, CSS1, and

PNG," Proc. ACM SIGCOMM '97, Sept. 1997.
[10] S. Floyd and V. Jacobson, "On Traffic phase EFfects in Packet-Switched

Gateways," Internetworking: Research and Experience, vol. 3, no. 3, Sept.
1992.

[111 S. Floyd, Connections with Multiple Congested Gateways in Packet-Switched
Networks Part 1: One-way Traffic., 21, Computer Communication Review,
Oct. 1991.

[12] M. Mathis and J. Mahdavi, "Forward Acknowledgment: Refining TCP Con
gestion Control," Proc. ACM SIGCOMM '96, Aug. 1996, pp. 281-291.

[13]l. S. Brakmo, S. W. O'Malley, and l. l. Peterson, "TCP Vegas: New Tech
niques For Congestion Avoidance and Control," Proc. ACM SIGCOMM '94,
Aug. 1994, pp. 24-35.

[14] Z, Liu et 0/., "Evaluation of TCP Vegas: Emulation and Experiment," Proe.
ACM SIGCOMM '95, Aug. 1995, pp. 185-196.

[15] S. Keshav, "A Control-Theoretic Approach to Flow Control," Proc. ACM
SIGCOMM '91, Zurich, Sept. 1991, pp. 3-16.

[16] J. C. Hoe, "Improving the Start-up Behavior of a Congestion Control
Scheme For TCP," Proc. ACM SIGCOMM '97, Aug. 1996, FP. 270-280.

[17] Y. Zhang et 01., "Satellite Communications in the Globa Internet-Issues,
Pitfalls, and Potential," Proe. tNET '97, 1997.

[18] V. Paxson, "End-to-End Routing Behavior in the Internet," Proe. ACM S/G
COMM '97, Aug_ 1996, pp. 25-38.

[19] R. C. Durst, G. J. Miller, and E. J. Travis, "TCP Extensions for Space Com
munications," Proc. ACM MobiComm '97, Nov. 1996.

Additional Reading
[1] M. Mathis, J. Mahdavi, and S. Floyd, A. Romanow, and TCP Selective

Acknowledgments Options; RfC-2018, Internet Requests for Comments, no.
2018, Oct. 1996.

[21 M. Allman et 0/., "Tep Performance Over Satellite links,N Proc. Fifth IntI.
(onF. on Telecommunications Systems, Nashville, TN, March 1997.

[3] T_ V. lakshman and U. Madhow, "Window-Based Congestion Control in
Networks with High Bandwidth-Delay products," Proc. 3rd ORSA Telecom
munications Conference, March 1995.

Biographies
CRAIG PARTRIDGE [SM] (craig@bbn.~om). is a Princip?1 Scientist at B~N Technolo
gies where he does research on gIgabIt and terabit networks. He IS the former
Editor-in-Chief of IEEE Network and ACM Computer Communication Review. He
is also a consulting associate professor at StanFord University and received his
ph,D. from Harvard University.

TIMOTHY SHEPARD [M] (shep@bbn.coml is a Scientist at BBN Technologies. While
a student at MIT, he studied the performance behavior of TCP implementations,
which led to the development of a graphical method of TCP packet trace analy
sis. His interests are in the engineering of large-scale complex systems, particu
larly those involving microwaves and millions of computers.

49

