Tech Topic #2

January 25, 2010

Today's Objectives

- Video coding techniques
 - We'll leave audio...
 - Most of what happens in video happens in audio
- We are not (yet) covering
 - Error (network errors) recovery techniques

Video Basics

- Represented by 3 8-bit values
 - RGB: Red, Green, Blue
 - YUV: Luma (Y) and two chrominance values (UV) Cr and Cb
- HDTV as an example
 - 1920 x 1080 x 24 bpp x 30 fps = 1.5 Gbps (60 Hz interlaced)
- Other smaller formats
 - NTSC: 352x240 @ 30fps
 - PAL: Source Input Format (SIF): 352x288 @ 25 fps
 - Quarter Common Intermediate Format (QCIF): 176x144
 - Sub QCIF: 128x96
 - 4CIF: 704x576
 - 16CIF: 1408x1152

- Three mechanisms used as part of encoding/compression scheme
 - Spatial: similarities around a given location of a frame
 - Temporal: similarities around a given location across time
 - Lossy: eliminate details not visible to the naked eye

Spatial Redundancy

- Take advantage of the fact that most video has similar values in nearby positions
- One option is to use differential encoding
 - Assume that the next value is the same and encode only the difference
- Compress the resulting stream of bits
 - More later

Temporal Redundancy

- Check for similarities between video frames
- If no other frames exist (single image) or no temporal redundancy is used, the frame is intra-encoded (sometimes called an I-frame)

Temporal Redundancy

- Predicted images (P-frames) are based on other I-or P- frames
 - Encoder does an expanding ring search to find image components (motion compensation)
 - How far from original location to look corresponds to how much processing is necessary and how much compression is had (key reason encoder is more complex)
- Bi-directionally predicted images (B-frames) are based on combination of forward and backward prediction
 - If imagine component is in Location A now and Location C in the future. Half way between now and then, it should be in Location B (interpolation).
 - Encode the "error": the difference between predicted Location B and where it actually is

Temporal Redundancy

- Thresholds are used for P and B frames
 - If there are enough differences (e.g., a scene change) such that an P or B frame would not result in any less data, encode frame as an I frame
- Typically use a pattern of I, P, and B frames
 - Ex: IBBPBBPBB...IBBPBBPBB... repeat
 - Could encode all I frames (essentially motion JPEG)
- For real-time video, typically no B frames
 - B frames depend on future frames, can't encode and send until the future I frame is generated (so adds delay)
- For compressed and stored video, different I/P/B patterns can be tried

Transform Coding

- Transform coding is used to convert spatial image pixel values to transform coefficient values
 - No information is lost, the number of coefficients produced is equal to the number of pixels transformed
- The result is that most of the energy in the image will be contained in a few large transform coefficients
 - Generally, only a few coefficients will contain most of the energy in a block
 - Smaller coefficients can be coarsely quantized or deleted without doing visible damage to the reproduced image

Transform Coding

- Many types of transforms have been tried for picture coding
 - Fourier, Karhonen-Loeve, Walsh-Hadamard, lapped orthogonal, discrete cosine, and wavelets
- Goal is to have the most concentration of energy and least number of artifacts

- The level of quantization provides clearest tradeoff between quality and level of compression
 - More quantization means more compression which means less bandwidth but more artifacts
- Quantization can be adjusted dynamically
 - Constant Bit Rate (CBR): same amount of bandwidth no matter the amount of energy/action in a picture
 - Variable Bit Rate (VBR): bandwidth requirements vary based on complexity and motion in video
- Use of quantization is the source of noise/error in a compressed stream (different than network data loss)

- Coding error: the difference between the source picture and the reproduced picture
- Coding error is measured as the root-mean-square between the two values
 - A common metric for evaluating the performance of an encoding system

Huffman/Run-Length Coding

• An example block of 8x8 DCT samples:

12	34	0	54	0	0	0	0
87	0	0	12	0	0	0	0
16	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Zig-zag scanning is used to create single sequence
 12 34 87 16 0 0 54 0 0 0 0 0 12 0 0 3 0 0 0

Huffman/Run-Length Coding

- Zig-zag scanning is used to create single sequence:
 12 34 87 16 0 0 54 0 0 0 0 0 12 0 0 3 0 0 0
- Could apply quantization:
 - $12\ 36\ 88\ 16\ 0\ 0\ 56\ 0\ 0\ 0\ 0\ 0\ 12\ 0\ 0\ 0\ 0\ 0\ \dots$
- Or eliminate elements
 - <u>http://www.john-wiseman.com/technical/MPEG_tutorial.htm</u>
 - See Figures 7-14
- Then use combination of Huffman and Run-Length
 - Huffman: most common sequence conversion
 - Run-Length: runs of single value

Typical Encoder

Standards

- MPEG-1 (1993)
 - Designed up to 1.5 Mbps
 - Standard CD-ROM, NTSC video quality
- MPEG-2 (1995)
 - Designed for between 1.5 and 15 Mbps
 - Standard for DVD, HDTV
- MPEG-4 (1999)
 - Object-based compression
- MPEG-7 (2002)
 - Provides framework for adding descriptive information about video contents: uses XML to store meta-data
- MPEG-21(2001)
 - Adds digital rights/permissions/restrictions

Other Standards

- MPEG came out of ISO
- Also CCITT (which became ITU)
 - Early on, principally designed encoding for low-bit rate video conferencing (Ex: H-261, H-263, H-264, etc.)
 - Typically use the same components (e.g., temporal, spatial, etc.) in the encoding scheme
- Typically there are separate standards for audio and video and then for a combination of the two

MPEG-1

- Consists of 5 parts:
 - Systems (storage and synchronization of video, audio, and other data together)
 - Video (compressed video content)
 - Audio (compressed audio content)
 - 3 different layers, the third is most commonly used (MP3)
 - Conformance testing (testing the correctness of implementations of the standard)
 - Reference software (example software showing how to encode and decode according to the standard)

- Pictures is made up of pixels (RGB values)
- Block is 8x8 array of pixels
 - Uses YUV and sub-sampling
 - Eye is most sensitive to changes in luminance, and less sensitive to variations in chrominance
- a:b:c (Luma:Cr:Cb)
- 4:2:0 (X=Luma, O=Cr and Cb) [Reduction from 12 to 6]

XXXXXXXX

0 0 0 0

X X X X X X X X X X

- Pictures is made up of pixels (RGB values)
- Block is 8x8 array of pixels
 Uses YUV and sub-sampling
- a:b:c (Luma:Cr:Cb)
- 4:2:2 (X=Luma, O=Cr and Cb, Z=Y, Cr and Cb) Z X Z X Z X Z X

 $\mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X}$

 $\mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X}$

$\mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X} \mathsf{Z} \mathsf{X}$

- Pictures are made up of pixels (RGB values)
- Block is 8x8 array of pixels
 - Uses YUV and sub-sampling
 - Basis for DCT coding
- Macroblock is 16x16 array of blocks
- Slice is typically a row of macroblocks

- Pictures are either "frame picture" or "field picture"
 - "frame picture": complete frame
 - "field picture": half of interlaced frame
- Has a header
 - Picture type (I, P, B)
 - Temporal reference information
 - Motion vector search range
 - Optional user data
- Group of Pictures (GOP)
 - Series of I, P, and B frames

- Sequence is a group of GOP
 - Has header including:
 - picture size
 - aspect ratio
 - frame rate and bit rate
 - optional quantizer matrices
 - required decoder buffer size
 - chroma pixel structure
- Need, for example, when changing channels

MPEG Transmission

- Not designed for transmission over networks where losses can occur
 - What happens when part of an I frame or P frame is lost
 - What happens when header information is lost
- There are steps that can be taken to improve the resiliency to network losses, but there are better formats
 - Basic idea is to have fewer critical elements (header information) sent only once
 - Increase redundancy means less susceptible to loss, but at the tradeoff of sending more information

- Definitely a dense paper
- Required some very close reading and definitely some background in the area
- Basic idea is how to do scalable video coding

Scalable Video Coding

- Create set of dependent layers such that each additional layer adds detail and clarity
- Very useful for creating and sending a video stream to lots of people simultaneously but who have different end-to-end throughput levels
 - Useful when combined with multicast
 - Each layer is sent as different group
 - Join group transmitting base layer and then join additional layers as capacity allows
- Alternative is to send separately encoded streams
 - Same stream encoded at different levels
 - Compare between complexity, bandwidth required, performance, and overhead

- Definitely a dense paper
- Required some very close reading and definitely some background in the area
- Basic idea is how to do scalable video coding
 - Additional B frames can be added
 - Additional B frames are dependent on the higher level B frames directly on either side of the current level

- Definitely a dense paper
- Required some very close reading and definitely some background in the area
- Basic idea is how to do scalable video coding
 - Additional B frames can be added
 - Additional B frames are dependent on the higher level B frames directly on either side of the current level

- Lots of experiments
 - Effects for different GOP configurations
 - Bandwidth savings and overhead
 - PSNR values for different combinations of layers
 - Additional tradeoffs that can be made
 - Different types of video