
Tech Topic #4

February 1, 2010

Today’s Objectives

• Leveraging one-to-many delivery

• Wednesday is project updates
– 15 min meetings on Wednesday (between 7am and 11am)
– Informal assignment is to work on paper outline
– Send me email with slot preference (first come, first served)– Send me email with slot preference (first come, first served)

• Schedule is updated
– Monday is gaming
– Tech topics on multimedia for mobile devices and

multimedia for wireless devices

Where the Replication Happens

• With multicast, (native, hierarchical or ALM), the
challenge is to get people interested in receiving the
same content
– For streaming, hard to do on-demand service
– For content delivery, reliability and congestion control are hard– For content delivery, reliability and congestion control are hard

• For one-to-many distribution today, the key is
(number_of_receivers x stream_bandwidth)
– If the product is large (either component), one-to-many makes

sense

Streaming Applications

• Not much demand for actual streaming
– Except maybe video conferencing and gaming
– There, solutions are more typically an

exploder/replicator/aggregator

• “Streaming” now is more of a progressive download• “Streaming” now is more of a progressive download
– Even buffering is of limited necessity
– Key is greater bandwidth than playout rate

• Then only small buffer is necessary

• With cheap memory and disk space, prefetching is an
easier solution than coordinating receivers

IMJ Novel Aspects

• Tradeoff between number of channels and on-demand
like service
– The more channels, the less time a user would have to wait

• Distributed server architecture
– Multicast source could be located anywhere– Multicast source could be located anywhere

• Practical issues
– Content capture was packet trace and replay
– Service involving real copyrighted content

Reliability

• Pretty intuitive that any kind of retransmission scheme
for wide-scale file delivery is hard
– Kills scalability
– All manner of solutions have been proposed to offload the

repair work from the primary distribution server

• Another problem is synchronizing receivers to the
transmission
– The Starburst Case Study

• In the late 1990s, work was moving towards some kind
of parity or forward error correction (FEC) approach

Network Coding

• Lots of different schemes for how to mix original data
with redundant data
– Factor is the characteristics of the loss and how bursty it is
– Another is how large the original block of data is

• Even some hybrid solutions• Even some hybrid solutions
– Mix of NACK and FEC (the predecessor to Sigcomm ‘98)
– Data carousel combined with FEC

• Proposal was for a “digital fountain”

Applicable Network Coding

• Reed Solomon
– Spread k packets worth of data over n transmitted packets
– Receive any k packets, to re-construct file
– If loss is high enough, may not receive n of k packets
– Can cycle through n packets again
– Basic idea: basic mix of data elements from file– Basic idea: basic mix of data elements from file

• Tornado codes
– Faster
– But have to receive >n packets
– Basic idea: more like a logic problem of XORed bits

• Basic tradeoff is processing v. overhead/bandwidth
– Good observation in analyses that tradeoff has changed

Tornado Codes into a Protocol

• Some very nice features
– Receivers can just join the group, no need to inform source
– Though source probably wants to know for tracking
– Receiver can stay as long as necessary
– For certain kinds of applications (software updates), stream of

packets can be sent continually
– If no receivers, multicast tree is pruned back to the source

Additional Comments

• Not sure why the evaluation had to be so opaque

• Large files are easy to deal with
– Break them into smaller files: pyramid broadcasting

• Handled congestion via layered multicast• Handled congestion via layered multicast
– As it turns out, not a particularly effective solution
– Attempt to mimic TCP backoff through layering
– Congestion control for multicast is hard

• Hard to mimic TCP AIMD (and therefore, hard to be fair)

– Lots of “leave latency” associated with multicast

Next Challenge

• Great theoretical technique, hard to apply in practice
– No multicast
– Would be an interesting study to compare multicast-based

layered DF approach to unicast
– Could also compare to other distribution techniques

• What would the metrics be?

• To overcome the problem of no native multicast,
develop a unicast-based approach
– Instead of a traditional server delivering content, think of a

specialized piece of hardware that is super efficient at
supporting lots of TCP connections

Scalable TCP

• Use the Tornado codes on unicast data

• Instead of buffering data on the server side, draw from
an endless supply of Tornado code-generated data
– Even for retransmissions, a different packet can be sent

• How is this better than UDP?
– Congestion control, reliability, used existing protocol, no

firewall filtering, no multicast required
– Any lack of one of these features would have made the

solution a non-starter

• Final determinant of deployability becomes simplicity

