Tech Topic #4

February 1, 2010



Today’s Objectives

* Leveraging one-to-many delivery

 Wednesday Is project updates
— 15 min meetings on Wednesday (between 7am and 11am)
— Informal assignment is to work on paper outline
— Send me email with slot preference (first come, first served)

e Schedule is updated
— Monday is gaming

— Tech topics on multimedia for mobile devices and
multimedia for wireless devices



Where the Replication Happens

« With multicast, (native, hierarchical or ALM), the

challenge is to get people interested in receiving the
same content

— For streaming, hard to do on-demand service
— For content delivery, reliability and congestion control are hard

* For one-to-many distribution today, the key is
(number_of receivers x stream_bandwidth)

— If the product is large (either component), one-to-many makes
sense



Streaming Applications

Not much demand for actual streaming
— Except maybe video conferencing and gaming

— There, solutions are more typically an
exploder/replicator/aggregator

“Streaming” now is more of a progressive download
— Even buffering is of limited necessity

— Key is greater bandwidth than playout rate
« Then only small buffer is necessary

With cheap memory and disk space, prefetching is an
easier solution than coordinating receivers



IMJ Novel Aspects

 Tradeoff between number of channels and on-demand
like service

— The more channels, the less time a user would have to wait

 Distributed server architecture
— Multicast source could be located anywhere

 Practical issues

— Content capture was packet trace and replay
— Service involving real copyrighted content



Reliability

e Pretty intuitive that any kind of retransmission scheme
for wide-scale file delivery is hard
— Kills scalability

— All manner of solutions have been proposed to offload the
repair work from the primary distribution server

* Another problem is synchronizing receivers to the
transmission
— The Starburst Case Study

* Inthe late 1990s, work was moving towards some kind
of parity or forward error correction (FEC) approach



Network Coding

Lots of different schemes for how to mix original data
with redundant data
— Factor is the characteristics of the loss and how bursty it is
— Another is how large the original block of data is

Even some hybrid solutions
— Mix of NACK and FEC (the predecessor to Sigcomm ‘98)
— Data carousel combined with FEC

Proposal was for a “digital fountain”



Applicable Network Coding

 Reed Solomon
— Spread k packets worth of data over n transmitted packets
— Receive any k packets, to re-construct file
— If loss is high enough, may not receive n of k packets
— Can cycle through n packets again
— Basic idea: basic mix of data elements from file

 Tornado codes
— Faster
— But have to receive >n packets
— Basic idea: more like a logic problem of XORed bits

e Basic tradeoff is processing v. overhead/bandwidth
— Good observation in analyses that tradeoff has changed



Tornado Codes into a Protocol

e Some very nice features
— Receivers can just join the group, no need to inform source
— Though source probably wants to know for tracking
— Receiver can stay as long as necessary

— For certain kinds of applications (software updates), stream of
packets can be sent continually

— If no receivers, multicast tree is pruned back to the source



Additional Comments

* Not sure why the evaluation had to be so opaque

« Large files are easy to deal with
— Break them into smaller files: pyramid broadcasting

 Handled congestion via layered multicast
— As it turns out, not a particularly effective solution
— Attempt to mimic TCP backoff through layering

— Congestion control for multicast is hard
e Hard to mimic TCP AIMD (and therefore, hard to be fair)

— Lots of “leave latency” associated with multicast



Next Challenge

o Great theoretical technigue, hard to apply in practice
— No multicast

— Would be an interesting study to compare multicast-based
layered DF approach to unicast

— Could also compare to other distribution techniques
» What would the metrics be?

 To overcome the problem of no native multicast,
develop a unicast-based approach

— Instead of a traditional server delivering content, think of a
specialized piece of hardware that is super efficient at
supporting lots of TCP connections



Scalable TCP

Use the Tornado codes on unicast data

Instead of buffering data on the server side, draw from
an endless supply of Tornado code-generated data
— Even for retransmissions, a different packet can be sent

How Is this better than UDP?

— Congestion control, reliability, used existing protocol, no
firewall filtering, no multicast required

— Any lack of one of these features would have made the
solution a non-starter

Final determinant of deployability becomes simplicity



