Tech Topic #7

February 22, 2010

<u>Outline</u>

• Mohapatra paper

- Write-up suggestions
- Preliminary presentation details
- Exam decisions
 - Over what period of time to do it (start and finish time)

Multimedia + Device Flexibility

- Multimedia
 - A variety of factors that allow the bandwidth and complexity of the data to be altered: encoding method, quality, size, etc.
 - Because multimedia does not require 100% accuracy, there is also the flexibility of various amounts and types of redundancy
- Mobile Devices
 - Are battery constrained
 - Main consumers of power: CPU, display, and network
 - Worthwhile to investigate the tradeoffs between quality and battery consumption
- Also interesting to look at multimedia generation

Multimedia + Device Flexibility

- Different network architectures
- One example:

- Typically a proxy
- Can have multi-hop wireless network

Mohapatra Contributions

- Integrating techniques at different levels
 - Hardware, OS, middleware, user/application
 - "architecture tuning knobs" and "compilation techniques"
 - Tradeoffs of dynamic voltage scaling
- Feedback-based middleware for admission control, quality, and transcoding
- Power v. quality tradeoffs
 - "extensive survey results"
- Evaluation of network power gains

Extensive Survey Results

• How many people tested?

$\operatorname{Quality}$	Transformation Parameters	Avg. Power (Windows CE)
Like Original (No improvement required)	SIF, 30fps, 650Kbps	4.42 W
Excellent	SIF, 25fps, 450Kbps	4.37 W
Very Good	SIF, 25fps, 350Kbps	4.31 W
Good	HSIF, 24fps, 350Kbps	4.24 W
Fair	HSIF, 24fps, 200Kbps	4.15 W
Poor	HSIF, 24fps, 150Kbps	4.06 W
Bad	QSIF, 20fps, 150Kbps	3.95 W
Terrible (poorer quality not acceptable)	QSIF, 20fps, 100kbps	3.88 W

- Useful translation between power levels and different bandwidth rates
 - How does number of watts translate to battery lifetime?

Architecture Analysis

• Used a power simulator (wattch)

 "We briefly discuss the components identified above and suggest some additional improvements as part of future work."

Cache Size & Voltage Scaling

- "The best configuration of the cache is not easily predictable"
 - Do an exhaustive search of the space to find best value
 - Best value improves performance by 10%-20%
- "Our results are along the line suggested in previous work."
- Same for Dynamic Voltage Scaling
- Suggestion seems to be that if the parameters are known, they can reduce battery consumption
 - But how to know them in practice?

<u>Middleware</u>

- Energy-aware admission control
 - Not sure what that is
- Stream transformation
 - Standard proxy behavior
- Network traffic regulation
 - Seems to suggest sending video in bursts and then sleeping between bursts
 - Requires a great deal of coordination and an understanding of other traffic (not sure I believe their analysis)

Evaluation

• Lots of graphs and results...

• Power savings by network bursts

Mohapatra Contributions

- Integrating techniques at different levels
 - Hardware, OS, middleware, user/application
 - "architecture tuning knobs" and "compilation techniques"
 - Tradeoffs of dynamic voltage scaling
- Feedback-based middleware for admission control, quality, and transcoding
- Power v. quality tradeoffs
 - "extensive survey results"
- Evaluation of network power gains

<u>Summary</u>

- Most important parts of the paper were insights on places for improvement...
 - ...and the way they thought about what could be done
 - ...and the way they did the evaluation
- Any one of these aspects could be investigated more deeply in another paper
- Ask the question: which of these techniques are most reasonable in practice?

CoolSpots

- WiFi: more bandwidth and range, requires more power
- Bluetooth: less bandwidth, range, and power
- Use Bluetooth for certain apps and WiFi for others

CoolSpots

- Idea was fairly limited in scope
- Part of the challenge is developing a believable evaluation
 - Measuring battery consumption is hard
 - Can do it with simulation (unreliable) or with monitor (which creates its own problems)
- In the end, the conclusions were pretty obvious
- Could have done a better job opening the door for future work

Random Coding on iPhone

- Network coding adds overhead and complexity, but increases resiliency to loss, what impact does it have on decode requirements?
- Study went into hardware details that demonstrated a nice balance of details without being redundant or stating the obvious
- General conclusions:
 - Network coding does add to CPU processing, and thereby increase power consumption
 - A modest increase for fairly high bandwidth video
 - Places limits on current hardware, but authors recognize hardware is evolving quickly
- Overall, a really nice study

What Haven't We Covered?

What Haven't We Covered?

- More cross layer design
 - Multimedia has tremendous flexibility between quality and bandwidth and lots can be done between layers
- More on multimedia encoding techniques (and transforms)
- Work on measuring human perception
- Multimedia in different network architectures (cellular)
- Other disciplines
 - OS support for multimedia
- Other "topics"
 - QoS, multimedia routing, congestion control, buffer mgt

Preliminary Project Reports

- Three aspects on which to focus
 - Background (problem, related work, motivation)
 - Idea
 - Evaluation
- The flow doesn't have to be the same temporally as the way you developed your idea
 - Sometimes you have an idea that needs a problem
 - Sometimes what you emphasize as the problem changes given what you realize you can and cannot evaluate
 - Sometimes your idea evolves based on what you learn in your evaluation

But Pay Attention to Flow

- The things you say in the introduction should be supported by the rest of the paper
 - Write rough intro first and then revise to match rest of paper
- "Things":
 - Problem: most logical to derive from weaknesses or limits of existing work
 - The solution must address these problems
 - The evaluation must quantify the improvement for a particular
 - Advantages: must be demonstratable through an evaluation
 - The "types of advantage" must match your metrics
- Just today, we've seen examples of papers with various strengths and weaknesses in this respect

Presentation

- Let the listener know what is coming:
 - "We now proceed to evaluate the performance of our handtuned implementation of random network coding, on an iPhone 3G and a second-generation iPod Touch. The focus of our attention is on the coding bandwidth, CPU usage, and energy consumption, in the context of a realistic application scenario for media streaming."
- Use an outline slide
 - Maybe not for preliminary presentation (to save time)
- The same goes for the paper and the reader
 - How many papers have you read this quarter where you didn't know where the authors were going?

Presentation Details

- We are starting at exactly 9am... be here 5 min early
- Presenters get exactly 12 minutes
 - Schedule shows start times 13 minutes apart
- Can either send me PPT and we'll use the classroom PC or you can use your own PC
 - Transitioning between the two comes out of your time
- I would keep presentations simple for this one and focus on background, idea, and evaluation (goals)
- Final presentations will be twice as long
 - Any interest in doing presentations during finals week?

Presentation Schedule

- 9:00 Troy+Peter
- 9:13 Lara
- 9:26 Neer+Damon+Julian
- 9:39 Daniel
- 9:52 Zak+Chris
- 10:05 David
- 10:18 Derek
- 10:31 Bryce
- 10:44 Hans+Per+Fahad
- 10:57 END

<u>Exam</u>

- How much time do you want?
 - Two extremes: four days or four hours
- When should it start?
 - See below
- When should it end?
 - Want to finish by Tuesday night
 - Best time would probably be midnight
- Class on Wednesday will be to "grade" exams