
United States Patent [19]

Leighton et ai.

[54] GLOBAL HOSTING SYSTEM

[75] Inventors: F. Thomson Leighton, Newtonville;
Daniel M. Lewin, Cambridge, both of
Mass.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No.: 09/314,863

[22] Filed: May 19, 1999

Related U.S. Application Data
[60] Provisional application No. 60/092,710, Jul. 14,1998.

[51] Int. CI? .. G06F 13/00
[52] U.S. CI. 709/226; 709/105; 709/219;

709/223; 709/224; 709/235
[58] Field of Search 707/10,2, 104,

[56]

4,922,417
5,287,499
5,341,477
5,542,087
5,638,443
5,646,676
5,715,453
5,740,423
5,751,961
5,761,507
5,774,660
5,777,989
5,802,291
5,832,506
5,856,974
5,870,559
5,878,212
5,884,038
5,903,723
5,919,247

707/203, 500, 501, 511, 512, 513, 515;
709/200, 201, 203, 218, 219, 230, 235,

238, 245, 246, 226, 224, 105, 220; 7111118,
119, 120, 122, 126, 130, 200, 202, 216

References Cited

U.S. PATENT DOCUMENTS

5/1990 Churm et al. 707/1
2/1994 Nemes .. 707/2
8/1994 Pitkin et al. 709/226
7/1996 Neimat et al. 707/10
6/1997 Stefik et al. 705/54
7/1997 Dewkett et al. 348/7
2/1998 Stewart 707/104
4/1998 Logan et al. 707/10
5/1998 Smyk 709/217

12/1999 Govett 395/684
6/1998 Brendel et al. 709/201
7/1998 McGarvey 370/254
9/1998 Balick et al. 709/202

11/1998 Kuzma 707/200
1/1999 Gervais et al. 370/392
2/1999 Leshem et al. 709/224
3/1999 Civanlar et al. 709/203
3/1999 Kapoor 709/226
5/1999 Beck et al. 709/200

12/1999 Van Hoff et al. 709/217

111111 111
US006108703A

[11] Patent Number:

[45] Date of Patent:

6,108,703
Aug. 22, 2000

5,933,832
5,945,989
5,956,716
5,961,596
5,991,809
6,003,030
6,006,264

8/1999 Suzuoka et al. 707/101
8/1999 Freishtat et al. 345/329
9/1999 Kenner et al. 707/10

10/1999 Takubo et al. 709/224
11/1999 Kriegsman 709/226
12/1999 Kenner et al. 707/10
12/1999 Colby et al. 709/226

FOREIGN PATENT DOCUMENTS

2202572 10/1998 Canada.
865180A2 9/1998 European Pat. Off ..

9804985 2/1998 WIPO.

OTHER PUBLICATIONS

Shaw, David M. "A Low Latency, High Throughput Web
Service Using Internet-wide Replication." Department of
Computer Science, Johns Hopkins University, Aug. 1998,33
pgs.

(List continued on next page.)

Primary Examiner---nung C. Dinh
Assistant Examiner-Abdullahi E. Salad
Attorney, Agent, or Firm---navid H. Judson

[57] ABSTRACT

The present invention is a network architecture or frame­
work that supports hosting and content distribution on a
truly global scale. The inventive framework allows a Con­
tent Provider to replicate and serve its most popular content
at an unlimited number of points throughout the world. The
inventive framework comprises a set of servers operating in
a distributed manner. The actual content to be served is
preferably supported on a set of hosting servers (sometimes
referred to as ghost servers). This content comprises HTML
page objects that, conventionally, are served from a Content
Provider site. In accordance with the invention, however, a
base HTML document portion of a Web page is served from
the Content Provider's site while one or more embedded
objects for the page are served from the hosting servers,
preferably, those hosting servers near the client machine. By
serving the base HTML document from the Content Pro­
vider's site, the Content Provider maintains control over the
content.

34 Claims, 2 Drawing Sheets

CONTENT
PROVIDER

SITE

6,108,703
Page 2

OlliER PUBLICATIONS

Amir, Yair, et al. "Seamlessly Selecting the Best Copy from
Internet-Wide Replicated Web Servers." Department of
Computer Science, Johns Hopkins University, Jun. 1998, 14
pgs.
Bestavros, Azer. "Speculative Data Dissemination and Ser­
vice to Reduce Server Load, Network Traffic and Service
Time in Distributed Information Systems." In Proceedings
of ICDE '96: The 1996 International Conference on Data
Engineering, Mar. 1996,4 pgs.
Carter, J. Lawrence, et al. "Universal Classes of Hash
Function." Journal of Computer and System Sciences, vol.
18, No.2, Apr. 1979, pp. 143-154.
Chankhunthod, Anawat, et al. "A Hierarchical Internet
Object Cache." In Usenix Proceedings, Jan. 1996, pgs.
153-163.
Cormen, Thomas H., et al. Introduction to Algorithms, The
MIT Press, Cambrdige, Massachusetts, 1994, pgs. 219-243,
991-993.
Deering, Stephen, et al. "Multicast Routing in Datagram
Internetworks and Extended LANs." ACM Transactions on
Computer Systems, vol. 8, No.2, May 1990, pgs. 85-110.
Devine, Robert. "Design and Implementation of DDH: A
Distributed Dynamic Hashing Algorithm." In Proceedings
of 4th International Conference on Foundations of Data
Organizations and Algorithms, 1993, pgs. 101-114.
Grigni, Michelangelo, et al. "Tight Bounds on Minimum
Broadcasts Networks." SIAM Journal of Discrete Math­
ematics, vol. 4, No.2, May 1991, pgs. 207-222.
Gwertzman, James, et al. "The Case for Geographical Push­
Caching." Technical Report HU TR 34-94(excerpt), Har­
vard University, DAS, Cambridge, MA 02138, 1994, 2 pgs.
Gwertzman, James, et al. "World-Wide Web Cache Consis­
tency." In Proceedings of the 1996 USENIX Technical
Conference, Jan. 1996, 8 pgs.
Feeley, Michael, et al. "Implementing Global Memory Man­
agement in a Workstation Cluster." In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
1995, pgs. 201-212.
Floyd, Sally, et al. "A Reliable Multicast Framework for
Light-Weight Sessions and Application Level Framing." In
Proceeding of ACM SIGCOMM'95, pgs. 342-356.
Fredman, Michael, et al. "Storing a Sparse Table with 0(1)
Worst Case Access Time." Journal of the Association for
Computing Machinery, vol. 31., No.3, Jul. 1984, pgs.
538-544.
Karger, David, et al. "Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web." In Proceedings of the
Twenty-Ninth Annual A CM Symposium on Theory of Com­
puting ,May 1997, pgs. 654-663.
Litwin, Withold, et al. "LH-A Scale able, Distributed Data
Structure." ACM Transactions on Database Systems, vol.
21, No.4, Dec. 1996, pgs. 480-525.

Malpani, Radhika, et al. "Making World Wide Web Caching
Servers Cooperate." In Proceedings of World Wide Web
Conference, 1996,6 pgs.

Naor, Moni, et al. "The Load, Capacity and Availability of
Quorum Systems." In Proceedings of the 35th IEEE Sym­
posium on Foundations of Computer Science, Nov. 1994,
pgs. 214-225.

Nisan, Noam. "Psuedorandom Generators for Space­
Bounded Computation." In Proceedings of the Twenty­
Second Annual ACM Symposium on Theory of Computing,
May 1990, pgs. 204-212.

Palmer, Mark, et al. "Fido: A Cache that Learns to Fetch."
In Proceedings of the 17th International Conference on Very
Large Data Bases, Sep. 1991, pgs. 255-264.

Panigraphy, Rina. Relieving Hot Spots on the World Wide
Web. Massachusetts Institute of Technology, Jun. 1997, pgs.
1-66.

Peleg, David, et al. "The Availability of Quorum Systems."
Information and Computation 123, 1995, 210-223.

Plaxton, C. Greg, et al. "Fast Fault-Tolerant Concurrent
Access to Shared Objects." In Proceedings of 37th IEEE
Symposium on Foundations of Computer Science, 1996, pgs.
570-579.

Rabin, Michael. "Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance." Journal of
the ACM, vol. 36, No.2, Apr. 1989, pgs. 335-348.

Ravi, R., "Rapid Rumor Ramification: Approximating the
Miniumum Broadcast Time." In Proceedings of the 35th
IEEE Symposium on Foundations of Computer Science,
Nov. 1994,pgs. 202-213.

Schmidt, Jeanette, et al. "Chernoff-Hoeffding Bounds for
Applications with Limited Independence." In Proceedings
of the 4th ACS-SIAM Symposium on Discrete Algorithms,
1993, pgs. 331-340.

Tarjan, Robert Endre, et al. "Storing a Sparse Table."
Communications of the ACM, vol. 22, No. 11, Nov. 1979,
pgs. 606-611.

Vitter, Jeffrey Scott, et al. "Optimal Pre fetching via Data
Compression." In Proceedings of the 32nd IEEE Symposium
on Foundations of Computer Science, Nov. 1991, pgs.
121-130.

Wegman, Mark, et al. "New Hash Functions and Their Use
in Authentication and Set Equality." Journal of Computer
and System Sciences vol. 22, Jun. 1981, pgs. 265-279.

Yao,Andrew Chi-Chih. "Should Tables be Sorted?" Journal
of the Association for Computing Machinery, vol. 28, No.3,
Jul. 1981, pgs. 615-628.

Beavan, Colin "Web Life They're Watching You." Esquire,
Aug. 1997, pgs. 104-105.

Beavan, Colin "Web Life They're Watching You." Esquire,
Aug. 1997,pp. 104-105.

u.s. Patent

30
30

30

10

30

D

CLIENT

FIG. 3

Aug. 22, 2000

CLIENT
14

30

BROWSER
APPLICATION

28

FIG. 1

FIG. 2

30

Sheet 1 of 2

SERVER

18

OS ~20

I WEB SERVER ~ 22

I API ~26

6,108,703

CONTENT
PROVIDER

SITE

35

u.s. Patent Aug. 22, 2000 Sheet 2 of 2 6,108,703

FIG. 4 ~ HASH VALUE INPUT
...--__ ...L..-__ ---.

PREPEND VI RTUAL 54
SERVER HOST NAME

...--__ ...L..-__ ---.
~ HASH VALUE INPUT

PREPEND HASH
VALUE AS FINGERPRINT 56

5 4

FIG. 5

6,108,703
1

GLOBAL HOSTING SYSTEM
2

mirroring requires Content Providers to waste economic and
other resources on functions that are not relevant to their
core business of creating content.

Moreover, Content Providers also desire to retain control
This application is based on Provisional Application No.

60/092,710, filed Jul. 14, 1998. This application includes
subject matter protected by copyright.

BACKGROUND OF THE INVENTION

1. Technical Field
This invention relates generally to information retrieval in

a computer network. More particularly, the invention relates
to a novel method of hosting and distributing content on the
Internet that addresses the problems of Internet Service
Providers (ISPs) and Internet Content Providers.

5 of their content. Today, some ISPs are installing caching
hardware that interrupts the link between the Content Pro­
vider and the end-user. The effect of such caching can
produce devastating results to the Content Provider, includ­
ing (1) preventing the Content Provider from obtaining

2. Description of the Related Art

10 accurate hit counts on its Web pages (thereby decreasing
revenue from advertisers), (2) preventing the Content Pro­
vider from tailoring content and advertising to specific
audiences (which severely limits the effectiveness of the
Content Provider's Web page), and (3) providing outdated
information to its customers (which can lead to a frustrated

15 and angry end user).
There remains a significant need in the art to provide a

decentralized hosting solution that enables users to obtain
Internet content on a more efficient basis (i.e., without

20 burdening network resources unnecessarily) and that like­
wise enables the Content Provider to maintain control over

The World Wide Web is the Internet's multimedia infor­
mation retrieval system. In the Web environment, client
machines effect transactions to Web servers using the Hyper­
text Transfer Protocol (HTTP), which is a known application
protocol providing users access to files (e.g., text, graphics,
images, sound, video, etc.) using a standard page description
language known as Hypertext Markup Language (HTML).
HTML provides basic document formatting and allows the
developer to specify "links" to other servers and files. In the
Internet paradigm, a network path to a server is identified by 25

a so-called Uniform Resource Locator (URL) having a
special syntax for defining a network connection. Use of an
HTML-compatible browser (e.g., Netscape Navigator or
Microsoft Internet Explorer) at a client machine involves
specification of a link via the URL. In response, the client 30

makes a request to the server identified in the link and, in
return, receives a document or other object formatted
according to HTML. A collection of documents supported
on a Web server is sometimes referred to as a Web site.

It is well known in the prior art for a Web site to mirror 35

its content at another server. Indeed, at present, the only
method for a Content Provider to place its content closer to
its readers is to build copies of its Web site on machines that
are located at Web hosting farms in different locations
domestically and internationally. These copies of Web sites 40

are known as mirror sites. Unfortunately, mirror sites place
unnecessary economic and operational burdens on Content
Providers, and they do not offer economies of scale.
Economically, the overall cost to a Content Provider with
one primary site and one mirror site is more than twice the 45

cost of a single primary site. This additional cost is the result
of two factors: (1) the Content Provider must contract with

its content.
The present invention solves these and other problems

associated with the prior art.

BRIEF SUMMARY OF THE INVENTION

It is a general object of the present invention to provide a
computer network comprising a large number of widely
deployed Internet servers that form an organic, massively
fault-tolerant infrastructure designed to serve Web content
efficiently, effectively, and reliably to end users.

Another more general object of the present invention is to
provide a fundamentally new and better method to distribute
Web-based content. The inventive architecture provides a
method for intelligently routing and replicating content over
a large network of distributed servers, preferably with no
centralized control.

Another object of the present invention is to provide a
network architecture that moves content close to the user.
The inventive architecture allows Web sites to develop large
audiences without worrying about building a massive infra­
structure to handle the associated traffic.

Still another object of the present invention is to provide
a fault-tolerant network for distributing Web content. The
network architecture is used to speed-up the delivery of
richer Web pages, and it allows Content Providers with large
audiences to serve them reliably and economically, prefer­
ably from servers located close to end users. a separate hosting facility for each mirror site, and (2) the

Content Provider must incur additional overhead expenses
associated with keeping the mirror sites synchronized.

A further feature of the present invention is the ability to
50 distribute and manage content over a large network without

disrupting the Content Provider's direct relationship with the
end user.

In an effort to address problems associated with mirroring,
companies such as Cisco, Resonate, Bright Tiger, F5 Labs
and Alteon, are developing software and hardware that will
help keep mirror sites synchronized and load balanced.
Although these mechanisms are helpful to the Content 55

Provider, they fail to address the underlying problem of
scalability. Even if a Content Provider is willing to incur the
costs associated with mirroring, the technology itself will
not scale beyond a few (i.e., less than 10) Web sites.

In addition to these economic and scalability issues, 60

mirroring also entails operational difficulties. A Content
Provider that uses a mirror site must not only lease and
manage physical space in distant locations, but it must also
buy and maintain the software or hardware that synchronizes
and load balances the sites. Current solutions require Con- 65

tent Providers to supply personnel, technology and other
items necessary to maintain multiple Web sites. In summary,

Yet another feature of the present invention is to provide
a distributed scalable infrastructure for the Internet that
shifts the burden of Web content distribution from the
Content Provider to a network of preferably hundreds of
hosting servers deployed, for example, on a global basis.

In general, the present invention is a network architecture
that supports hosting on a truly global scale. The inventive
framework allows a Content Provider to replicate its most
popular content at an unlimited number of points throughout
the world. As an additional feature, the actual content that is
replicated at anyone geographic location is specifically
tailored to viewers in that location. Moreover, content is
automatically sent to the location where it is requested,
without any effort or overhead on the part of a Content
Provider.

6,108,703
3

It is thus a more general object of this invention to provide
a global hosting framework to enable Content Providers to
retain control of their content.

4
technique for distributing the embedded object requests. In
particular, each embedded object URL is preferably modi­
fied by prepending a virtual server hostname into the URL.
More generally, the virtual server hostname is inserted into The hosting framework of the present invention com­

prises a set of servers operating in a distributed manner. The
actual content to be served is preferably supported on a set
of hosting servers (sometimes referred to as ghost servers).
This content comprises HTML page objects that,
conventionally, are served from a Content Provider site. In
accordance with the invention, however, a base HTML
document portion of a Web page is served from the Content
Provider's site while one or more embedded objects for the
page are served from the hosting servers, preferably, those
hosting servers nearest the client machine. By serving the
base HTML document from the Content Provider's site, the
Content Provider maintains control over the content.

5 the URL. Preferably, the virtual server hostname includes a
value (sometimes referred to as a serial number) generated
by applying a given hash function to the URL or by encoding
given information about the object into the value. This
function serves to randomly distribute the embedded objects

10 over a given set of virtual server hostnames. In addition, a
given fingerprint value for the embedded object is generated
by applying a given hash function to the embedded object
itself. This given value serves as a fingerprint that identifies
whether the embedded object has been modified. Preferably,

The determination of which hosting server to use to serve

15 the functions used to generate the values (i.e., for the virtual
server hostname and the fingerprint) are applied to a given
Web page in an off-line process. Thus, when an HTTP
request for the page is received, the base HTML document
is served by the Web site and some portion of the page's

a given embedded object is effected by other resources in the
hosting framework. In particular, the framework includes a
second set of servers (or server resources) that are config­
ured to provide top level Domain Name Service (DNS). In
addition, the framework also includes a third set of servers
(or server resources) that are configured to provide low level
DNS functionality. When a client machine issues an HTTP
request to the Web site for a given Web page, the base 25

HMTL document is served from the Web site as previously
noted. Embedded objects for the page preferably are served
from particular hosting servers identified by the top- and
low-level DNS servers. To locate the appropriate hosting
servers to use, the top-level DNS server determines the 30

user's location in the network to identify a given low-level
DNS server to respond to the request for the embedded
object. The top-level DNS server then redirects the request

20 embedded objects are served from the hosting servers near
(although not necessarily the closest) to the client machine
that initiated the request.

to the identified low-level DNS server that, in turn, resolves
the request into an IP address for the given hosting server 35

that serves the object back to the client.
More generally, it is possible (and, in some cases,

desirable) to have a hierarchy ofDNS servers that consisting
of several levels. The lower one moves in the hierarchy, the 40

closer one gets to the best region.
A further aspect of the invention is a means by which

content can be distributed and replicated through a collec­
tion of servers so that the use of memory is optimized
subject to the constraints that there are a sufficient number 45

of copies of any object to satisfy the demand, the copies of
objects are spread so that no server becomes overloaded,
copies tend to be located on the same servers as time moves
forward, and copies are located in regions close to the clients
that are requesting them. Thus, servers operating within the 50

framework do not keep copies of all of the content database.
Rather, given servers keep copies of a minimal amount of
data so that the entire system provides the required level of
service. This aspect of the invention allows the hosting
scheme to be far more efficient than schemes that cache 55

everything everywhere, or that cache objects only in pre­
specified locations.

The global hosting framework is fault tolerant at each
level of operation. In particular, the top level DNS server
returns a list of low-level DNS servers that may be used by 60

the client to service the request for the embedded object.
Likewise, each hosting server preferably includes a buddy
server that is used to assume the hosting responsibilities of

The foregoing has outlined some of the more pertinent
objects and features of the present invention. These objects
should be construed to be merely illustrative of some of the
more prominent features and applications of the invention.
Many other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the Pre-
ferred Embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven­
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 is a representative system in which the present
invention is implemented;

FIG.2 is a simplified representation of a markup language
document illustrating the base document and a set of embed­
ded objects;

FIG. 3 is a high level diagram of a global hosting system
according to the present invention;

FIG. 4 is a simplified flowchart illustrating a method of
processing a Web page to modified embedded object URLs
that is used in the present invention;

FIG. 5 is a simplified state diagram illustrating how the
present invention responds to a HTTP request for a Web
page.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A known Internet client-server system is implemented as
illustrated in FIG. 1. A client machine 10 is connected to a
Web server 12 via a network 14. For illustrative purposes,
network 14 is the Internet, an intranet, an extranet or any
other known network. Web server 12 is one of a plurality of
servers which are accessible by clients, one of which is
illustrated by machine 10. A representative client machine
includes a browser 16, which is a known software tool used its associated hosting server in the event of a failure condi­

tion.
According to the present invention, load balancing across

the set of hosting servers is achieved in part through a novel

65 to access the servers of the network. The Web server
supports files (collectively referred to as a "Web" site) in the
form of hypertext documents and objects. In the Internet

6,108,703
5

paradigm, a network path to a server is identified by a
so-called Uniform Resource Locator (URL).

A representative Web server 12 is a computer comprising
a processor 18, an operating system 20, and a Web server
program 22, such as Netscape Enterprise Server. The server 5

12 also includes a display supporting a graphical user
interface (GUI) for management and administration, and an
Application Programming Interface (API) that provides
extensions to enable application developers to extend and/or
customize the core functionality thereof through software 10

programs including Common Gateway Interface (CGI)
programs, plug-ins, servlets, active server pages, server side
include (SSI) functions or the like.

A representative Web client is a personal computer that is
x86-, PowerPC®-or RISC-based, that includes an operating 15

system such as IBM® OS/2® or Microsoft Windows '95,
and that includes a Web browser, such as Netscape Navi­
gator 4.0 (or higher), having a Java Virtual Machine (JVM)
and support for application plug-ins or helper applications.
A client may also be a notebook computer, a handheld 20

computing device (e.g., a PDA), an Internet appliance, or
any other such device connectable to the computer network.

As seen in FIG. 2, a typical Web page comprises a markup
language (e.g. HTML) master or base document 28, and
many embedded objects (e.g., images, audio, video, or the 25

like) 30. Thus, in a typical page, twenty or more embedded
images or objects are quite common. Each of these images
is an independent object in the Web, retrieved (or validated
for change) separately. The common behavior of a Web
client, therefore, is to fetch the base HTML document, and 30

then immediately fetch the embedded objects, which are
typically (but not always) located on the same server.
According to the present invention, preferably the markup
language base document 28 is served from the Web server
(i.e., the Content Provider site) whereas a given number (or 35

perhaps all) of the embedded objects are served from other
servers. As will be seen, preferably a given embedded object
is served from a server (other than the Web server itself) that
is close to the client machine, that is not overloaded, and that
is most likely to already have a current version of the 40

required file.
Referring now to FIG. 3, this operation is achieved by the

hosting system of the present invention. As will be seen, the
hosting system 35 comprises a set of widely-deployed
servers (or server resources) that form a large, fault-tolerant 45

infrastructure designed to serve Web content efficiently,
effectively, and reliably to end users. The servers may be
deployed globally, or across any desired geographic regions.
As will be seen, the hosting system provides a distributed
architecture for intelligently routing and replicating such 50

content. To this end, the global hosting system 35 comprises
three (3) basic types of servers (or server resources): hosting
servers (sometimes called ghosts) 36, top-level DNS servers
38, and low-level DNS servers 40. Although not illustrated,
there may be additional levels in the DNS hierarchy. 55

Alternatively, there may be a single DNS level that com­
bines the functionality of the top level and low-level servers.
In this illustrative embodiment, the inventive framework 35
is deployed by an Internet Service Provider (ISP), although
this is not a limitation of the present invention. The ISP or 60

ISPs that deploy the inventive global hosting framework 35
preferably have a large number of machines that run both the
ghost server component 36 and the low-level DNS compo­
nent 40 on their networks. These machines are distributed
throughout the network; preferably, they are concentrated 65

around network exchange points 42 and network access
points 44, although this is not a requirement. In addition, the

6
ISP preferably has a small number of machines running the
top-level DNS 38 that may also be distributed throughout
the network.

Although not meant to be limiting, preferably a given
server used in the framework 35 includes a processor, an
operating system (e.g., Linux, UNIX, Windows NT, or the
like), a Web server application, and a set of application
routines used by the invention. These routines are conve­
niently implemented in software as a set of instructions
executed by the processor to perform various process or
method steps as will be described in more detail below. The
servers are preferably located at the edges of the network
(e.g., in points of presence, or POPs).

Several factors may determine where the hosting servers
are placed in the network. Thus, for example, the server
locations are preferably determined by a demand driven
network map that allows the provider (e.g., the ISP) to
monitor traffic requests. By studying traffic patterns, the ISP
may optimize the server locations for the given traffic
profiles.

According to the present invention, a given Web page
(comprising a base HTML document and a set of embedded
objects) is served in a distributed manner. Thus, preferably,
the base HTML document is served from the Content
Provider that normally hosts the page. The embedded
objects, or some subset thereof, are preferentially served
from the hosting servers 36 and, specifically, given hosting
servers 36 that are near the client machine that in the first
instance initiated the request for the Web page. In addition,
preferably loads across the hosting servers are balanced to
ensure that a given embedded object may be efficiently
served from a given hosting server near the client when such
client requires that object to complete the page.

To serve the page contents in this manner, the URL
associated with an embedded object is modified. As is
well-known, each embedded object that may be served in a
page has its own URL. Typically, the URL has a hostname
identifying the Content Provider's site from where the object
is conventionally served, i.e., without reference to the
present invention. According to the invention, the embedded
object URL is first modified, preferably in an off-line
process, to condition the URL to be served by the global
hosting servers. A flowchart illustrating the preferred
method for modifying the object URL is illustrated in FIG.
4.

The routine begins at step 50 by determining whether all
of the embedded objects in a given page have been pro­
cessed. If so, the routine ends. If not, however, the routine
gets the next embedded object at step 52. At step 54, a virtual
server hostname is prepended into the URL for the given
embedded object. The virtual server hostname includes a
value (e.g., a number) that is generated, for example, by
applying a given hash function to the URL. As is well­
known, a hash function takes arbitrary length bit strings as
inputs and produces fixed length bit strings (hash values) as
outputs. Such functions satisfy two conditions: (1) it is
infeasible to find two different inputs that produce the same
hash value, and (2) given an input and its hash value, it is
infeasible to find a different input with the same hash value.
In step 54, the URL for the embedded object is hashed into
a value xx,xxx that is then included in the virtual server
hostname. This step randomly distributes the object to a
given virtual server hostname.

The present invention is not limited to generating the
virtual server hostname by applying a hash function as
described above. As an alternative and preferred

6,108,703
7

embodiment, a virtual server hostname is generated as
follows. Consider the representative hostname
aI234.g.akamaitech.net. The 1234 value, sometimes
referred to as a serial number, preferably includes informa­
tion about the object such as its size (big or small), its 5

anticipated popularity, the date on which the object was
created, the identity of the Web site, the type of object (e.g.,
movie or static picture), and perhaps some random bits
generated by a given random function. Of course, it is not
required that any given serial number encode all of such 10

information or even a significant number of such compo­
nents. Indeed, in the simplest case, the serial number may be
a simple integer. In any event, the information is encoded
into a serial number in any convenient manner. Thus, for
example, a first bit is used to denote size, a second bit is used 15

to denote popularity, a set of additional bits is used to denote
the date, and so forth. As noted above in the hashing
example, the serial number is also used for load balancing
and for directing certain types of traffic to certain types of
servers. Typically, most URLs on the same page have the 20

same serial number to minimize the number of distinguished
name (DN) accesses needed per page. This requirement is
less important for larger objects.

8
hashed into numbers between 0 and 99,999, although this
range is not a limitation of the present invention. An
embedded URL is then switched to reference the virtual
ghost with that number. For example, the following is an
embedded URL from the Provider's site:
<IMG SRC=http://www.provider.com/TECH/images/

sp ace. story. gif>
If the serial number for the object referred to by this URL

is the number 1467, then preferably the URL is rewritten to
read:
<lMG SRC=http://ghost467.ghosting.akamai.com/

www.provider.com/TECH/images/sp ace.story.gif>.
The use of serial numbers in this manner distributes the

embedded URLs roughly evenly over the 100,000 virtual
ghost server names. Note that the Provider site can still
personalize the page by rearranging the various objects on
the screen according to individual preferences. Moreover,
the Provider can also insert advertisements dynamically and
count how many people view each ad.

According to the preferred embodiment, an additional
modification to the embedded URLs is made to ensure that
the global hosting system does not serve stale information.
As previously described, preferably a hash of the data
contained in the embedded URL is also inserted into the Thus, according to the present invention, a virtual server

hostname is prepended into the URL for a given embedded
object, and this hostname includes a value (or serial number)
that is generated by applying a given function to the URL or
object. That function may be a hash function, an encoding
function, or the like.

25 embedded URL itself. That is, each embedded URL may
contain a fingerprint of the data to which it points. When the
underlying information changes, so does the fingerprint, and
this prevents users from referencing old data.

Turning now back to the flowchart, the routine then
continues at step 56 to include a given value in the object's
URL. Preferably, the given value is generated by applying a
given hash function to the embedded object. This step
creates a unique fingerprint of the object that is useful for
determining whether the object has been modified.
Thereafter, the routine returns to step 50 and cycles.

With the above as background, the inventive global
hosting framework is now described in the context of a
specific example. In particular, it is assumed that a user of a
client machine in Boston requests a Content Provider Web
page normally hosted in Atlanta. For illustrative purposes, It
is assumed that the Content Provider is using the global
hosting architecture within a network, which may be global,
international, national, regional, local or private. FIG. 5
shows the various components of the system and how the
request from the client is processed. This operation is not to
be taken by way of limitation, as will be explained.

The second hash takes as input a stream of bits and
30 outputs what is sometimes referred to as a fingerprint of the

stream. The important property of the fingerprint is that two
different streams almost surely produce two different fin­
gerprints. Examples of such hashes are the MD2 and MD5
hash functions, however, other more transparent methods

35 such as a simple checksum may be used. For concreteness,
assume that the output of the hash is a 128 bit signature. This
signature can be interpreted as a number and then inserted
into the embedded URL. For example, if the hash of the data
in the picture space.story.gif from the Provider web site is

40 the number 28765, then the modified embedded URL would
actually look as follows:
<IMGSRC=http://ghost1467.ghosting.akamai.com/28765/

www.provider.com/TECH/images/space.story.gif .. >.
Whenever a page is changed, preferably the hash for each

45 embedded URL is recomputed and the URL is rewritten if
necessary. If any of the URL's data changes, for example, a
new and different picture is inserted with the name
space.story.gif, then the hash of the data is different and

Step 1: The browser sends a request to the Provider's Web
site (Item 1). The Content Provider site in Atlanta receives 50

the request in the same way that it does as if the global
hosting framework were not being implemented. The dif­
ference is in what is returned by the Provider site. Instead of
returning the usual page, according to the invention, the Web
site returns a page with embedded object URLs that are 55

modified according to the method illustrated in the flowchart

therefore the URL itself will be different. This scheme
prevents the system from serving data that is stale as a result
of updates to the original page.

For example, assume that the picture space.story.gif is
replaced with a more up-to-date version on the Content
Provider server. Because the data of the pictures changes,
the hash of the URL changes as well. Thus, the new
embedded URL looks the same except that a new number is

of FIG. 4. As previously described, the URLs preferably are
changed as follows:

inserted for the fingerprint. Any user that requests the page
after the update receives a page that points to the new
picture. The old picture is never referenced and cannot be

60 mistakenly returned in place of the more up-to-date infor-
Assume that there are 100,000 virtual ghost servers, even

though there may only be a relatively small number (e.g.,
100) physically present on the network. These virtual ghost
servers or virtual ghosts are identified by the hostname:
ghostxxxxx.ghosting.com, where xxxxx is replaced by a
number between 0 and 99,999. After the Content Provider
Web site is updated with new information, a script executing 65

on the Content Provider site is run that rewrites the embed­
ded URLs. Preferably, the embedded URLs names are

mation.
In summary, preferably there are two hashing operations

that are done to modify the pages of the Content Provider.
First, hashing can be a component of the process by which
a serial number is selected to transform the domain name
into a virtual ghost name. As will be seen, this first trans­
formation serves to redirect clients to the global hosting

6,108,703
9

system to retrieve the embedded URLs. Next, a hash of the
data pointed to by the embedded URLs is computed and
inserted into the URL. This second transformation serves to
protect against serving stale and out-of-date content from the
ghost servers. Preferably, these two transformations are 5

performed off-line and therefore do not pose potential per­
formance bottlenecks.

Generalizing, the preferred URL schema is as follows.
The illustrative domain www.domainname.com/
frontpage.jpg is transformed into: 10

XXXX. yy. zzzz. ne t/ a aa a/www.domainname.com/
frontpage.jpg,
where:
xxxx=serial number field

10
Thus, for example, when a request comes in to a top level

DNS for a resolution for a1234.g.akamaitech.net, the top
level DNS looks at the return address of the requester and
then formulates the response based on that address accord­
ing to a network map. In this example, the a1234 is a serial
number, the g is a field that refers to the lower level DNS,
and akamaitech refers to the top level DNS. The network
map preferably contains a list of all Internet Protocol (IP)
blocks and, for each IP block, the map determines where to
direct the request. The map preferably is updated continually
based on network conditions and traffic.

After determ ining where in the network the request
originated, the top level DNS server redirects the DNS
request to a low level DNS server close to the user in the

yy=lower level DNS field
zzzz=top level DNS field
aaaa=other information (e.g., fingerprint) field.

If additional levels of the DNS hierarchy are used, then
there may be additional lower level DNS fields, e.g.,
XXXX'Y1Yl'Y2Y2 zzz.net/aaaa/

15 network. The ability to redirect requests is a standard feature
in the DNS system. In addition, this redirection can be done
in such a way that if the local low level DNS server is down,
there is a backup server that is contacted.

Step 2: After receiving the initial page from the Content 20

Provider site, the browser needs to load the embedded URLs
to display the page. The first step in doing this is to contact
the DNS server on the user's machine (or at the user's ISP)
to resolve the altered hostname, in this case:
ghost1467.ghosting.akamai.com. As will be seen, the global 25

hosting architecture of the present invention manipulates the
DNS system so that the name is resolved to one of the ghosts
that is near the client and is likely to have the page already.
To appreciate how this is done, the following describes the
progress of the DNS query that was initiated by the client. 30

Step 3: As previously described, preferably there are two
types of DNS servers in the inventive system: top-level and
low-level. The top level DNS servers 38 for ghosting. com
have a special function that is different from regular DNS
servers like those of the .com domain. The top level DNS 35

servers 38 include appropriate control routines that are used
to determine where in the network a user is located, and then
to direct the user to a akamai.com (i.e., a low level DNS)
server 40 that is close-by. Like the .com domain, akamai­
.com preferably has a number of top-level DNS servers 38 40

spread throughout the network for fault tolerance. Thus, a
given top level DNS server 38 directs the user to a region in
the Internet (having a collection of hosting servers 36 that
may be used to satisfy the request for a given embedded
object) whereas the low level DNS server 40 (within the 45

identified region) identifies a particular hosting server within
that collection from which the object is actually served.

More generally, as noted above, the DNS process can
contain several levels of processing, each of which serves to
better direct the client to a ghost server. The ghost server 50

name can also have more fields. For example,
"a123.g.g.akamaitech.net" may be used instead of
"a123.ghost.akamai.com." If only one DNS level is used, a
representative URL could be "a123.akamai.com."

Although other techniques may be used, the user's loca- 55

tion in the network preferably is deduced by looking at the
IP address of the client machine making the request. In the
present example, the DNS server is running on the machine
of the user, although this is not a requirement. If the user is
using an ISP DNS server, for example, the routines make the 60

assumption that the user is located near (in the Internet
sense) this server. Alternatively, the user's location or IP
address could be directly encoded into the request sent to the
top level DNS. To determine the physical location of an IP
address in the network, preferably, the top level DNS server 65

builds a network map that is then used to identify the
relevant location.

Preferably, the TTL (time to live) stamp on these top level
DNS redirections for the ghosting. com domain is set to be
long. This allows DNS caching at the user's DNS servers
and/or the ISP's DNS servers to prevent the top level DNS
servers from being overloaded. If the TTL for ghosting. aka­
mai.com in the DNS server at the user's machine or ISP has
expired, then a top level server is contacted, and a new
redirection to a local low level ghosting.akamai.com DNS
server is returned with a new TTL stamp. It should be noted
the system does not cause a substantially larger number of
top level DNS lookups than what is done in the current
centralized hosting solutions. This is because the TTL of the
top level redirections are set to be high and, thus, the vast
majority of users are directed by their local DNS straight to
a nearby low level ghosting.akamai.com DNS server.

Moreover, fault tolerance for the top level DNS servers is
provided automatically by DNS similarly to what is done for
the popular .com domain. Fault tolerance for the low level
DNS servers preferably is provided by returning a list of
possible low level DNS servers instead of just a single
server. If one of the low level DNS servers is down, the user
will still be able to contact one on the list that is up and
running.

Fault tolerance can also be handled via an "overflow
control" mechanism wherein the client is redirected to a
low-level DNS in a region that is known to have sufficient
capacity to serve the object. This alternate approach is very
useful in scenarios where there is a large amount of demand
from a specific region or when there is reduced capacity in
a region. In general, the clients are directed to regions in a
way that minimizes the overall latency experienced by
clients subject to the constraint that no region becomes
overloaded. Minimizing overall latency subject to the
regional capacity constraints preferably is achieved using a
min-cost multicommodity flow algorithm.

Step 4: At this point, the user has the address of a close-by
ghosting.com DNS server 38. The user's local DNS server
contacts the close-by low level DNS server 40 and requests
a translation for the name ghost1467.ghosting.akamai.com.
The local DNS server is responsible for returning the IP
address of one of the ghost servers 36 on the network that is
close to the user, not overloaded, and most likely to already
have the required data.

The basic mechanism for mapping the virtual ghost names
to real ghosts is hashing. One preferred technique is
so-called consistent hashing, as described in U.S. Ser. No.
09/042,228, filed Mar. 13, 1998, and in U.S. Ser. No.
09/088,825, filed Jun. 2, 1998, each titled Method And
Apparatus For Distributing Requests Among A Plurality Of

6,108,703
11

Resources, and owned by the assachusetts Institute of
Technology, which applications are ncorporated herein by
reference. Consistent hash functions ake the system robust
under machine failures and crashes. It also allows the system
to grow gracefully, without changing where most items are 5

located and without perfect information about the system.
According to the invention, the virtual ghost names may

be hashed into real ghost addresses using a table lookup,
where the table is continually updated based on network
conditions and traffic in such a way to insure load balancing 10

and fault tolerance. Preferably, a table of resolutions is
created for each serial number. For example, serial number
1 resolves to ghost 2 and 5, serial number 2 resolves to ghost
3, serial number 3 resolves to ghosts 2,3,4, and so forth. The
goal is to define the resolutions so that no ghost exceeds its
capacity and that the total number of all ghosts in all 15

resolutions is minimized. This is done to assure that the
system can take maximal advantage of the available memory
at each region. This is a major advantage over existing load
balancing schemes that tend to cache everything everywhere
or that only cache certain objects in certain locations no 20

matter what the loads are. In general, it is desirable to make
assignments so that resolutions tend to stay consistent over
time provided that the loads do not change too much in a
short period of time. This mechanism preferably also takes
into account how close the ghost is to the user, and how 25

heavily loaded the ghost is at the moment.
Note that the same virtual ghost preferably is translated to

different real ghost addresses according to where the user is
located in the network. For example, assume that ghost
server 18.98.0.17 is located in the United States and that 30

ghost server 132.68.1.28 is located in Israel. A DNS request
for ghost1487.ghosting.akamai.com originating in Boston
will resolve to 18.98.0.17, while a request originating in
Tel-Aviv will resolve to 132.68.1.28.

12
on one of the ghosts. The TTL is a parameter that can be
manipulated by the system to insure a balance between
timely response to high load on ghosts and the load induced
on the low level DNS servers. Note, however, that even if
the TTL for the low level DNS translation is set to 1-2
minutes, only a few of the users actually have to do a low
level DNS lookup. Most users will see a DNS translation
that is cached on their machine or at their ISP. Thus, most
users go directly from their local DNS server to the close-by
ghost that has the data they want. Those users that actually
do a low level DNS lookup have a very small added latency,
however this latency is small compared to the advantage of
retrieving most of the data from close by.

As noted above, fault tolerance for the low level DNS
servers is provided by having the top level DNS return a list
of possible low level DNS servers instead of a single server
address. The user's DNS system caches this list (part of the
standard DNS system), and contacts one of the other servers
on the list if the first one is down for some reason. The low
level DNS servers make use of a standard feature of DNS to
provide an extra level of fault tolerance for the ghost servers.
When a name is translated, instead of returning a single
name, a list of names is returned. If for some reason the
primary fault tolerance method for the ghosts (known as the
Buddy system, which is described below) fails, the client
browser will contact one of the other ghosts on the list.

Step 5: The browser then makes a request for an object
named a123.ghosting.akamai.com/ .. ./www.provider.com/
TECH/images/space.story.gif from the close-by ghost. Note
that the name of the original server (www.provider.com)
preferably is included as part of the URL. The software
running on the ghost parses the page name into the original
host name and the real page name. If a copy of the file is
already stored on the ghost, then the data is returned
immediately. If, however, no copy of the data on the ghost
exists, a copy is retrieved from the original server or another

The low-level DNS servers monitor the various ghost
servers to take into account their loads while translating
virtual ghost names into real addresses. This is handled by

35 ghost server. Note that the ghost knows who the original
server was because the name was encoded into the URL that

a software routine that runs on the ghosts and on the low
level DNS servers. In one embodiment, the load information
is circulated among the servers in a region so that they can 40

compute resolutions for each serial number. One algorithm

was passed to the ghost from the browser. Once a copy has
been retrieved it is returned to the user, and preferably it is
also stored on the ghost for answering future requests.

As an additional safeguard, it may be preferable to check
that the user is indeed close to the server. This can be done
by examining the IP address of the client before responding
to the request for the file. This is useful in the rare case when
the client's DNS server is far away from the client. In such
a case, the ghost server can redirect the user to a closer
server (or to another virtual address that is likely to be
resolved to a server that is closer to the client). If the redirect
is to a virtual server, then it must be tagged to prevent further
redirections from taking place. In the preferred embodiment,
redirection would only be done for large objects; thus, a
check may be made before applying a redirection to be sure
that the object being requested exceeds a certain overall size.

Performance for long downloads can also be improved by
dynamically changing the server to which a client is con­
nected based on changing network conditions. This is espe­
cially helpful for audio and video downloads (where the
connections can be long and where quality is especially
important). In such cases, the user can be directed to an
alternate server in mid-stream. The control structure for
redirecting the client can be similar to that described above,
but it can also include software that is placed in the client's
browser or media player. The software monitors the perfor­
mance of the client's connection and perhaps the status of
the network as well. If it is deemed that the client's con-

for computing resolutions works as follows. The server first
computes the projected load (based on number of user
requests) for each serial number. The serial numbers are then
processed in increasing order of load. For each serial 45

number, a random priority list of desired servers is assigned
using a consistent hashing method. Each serial number is
then resolved to the smallest initial segment of servers from
the priority list so that no server becomes overloaded. For
example, if the priority list for a serial number is 2,5,3,1,6, 50

then an attempt is made first to try to map the load for the
serial number to ghost 2. If this overloads ghost 2, then the
load is assigned to both ghosts 2 and 5. If this produced too
much load on either of those servers, then the load is
assigned to ghosts 2,3, and 5, and so forth. The projected 55

load on a server can be computed by looking at all resolu­
tions that contain that server and by adding the amount of
load that is likely to be sent to that server from that serial
number. This method of producing resolutions is most
effective when used in an iterative fashion, wherein the 60

assignments starts in a default state, where every serial
number is mapped to every ghost. By refining the resolution
table according to the previous procedure, the load is bal­
anced using the minimum amount of replication (thereby
maximally conserving the available memory in a region). 65 nection can be improved by changing the server, then the

system directs the client to a new server for the rest of the The TTL for these low level DNS translations is set to be
short to allow a quick response when heavy load is detected connection.

6,108,703
13

Fault tolerance for the ghosts is provided by a buddy
system, where each ghost has a designated buddy ghost. If

14

a ghost goes down, its buddy takes over its work (and IP
address) so that service is not interrupted. Another feature of
the system is that the buddy ghost does not have to sit idle 5

waiting for a failure. Instead, all of the machines are always
active, and when a failure happens, the load is taken over by
the buddy and then balanced by the low level DNS system

site performance. In contrast to current content distribution
systems, the inventive global hosting solution does not
require expensive backbone links to carry redundant traffic
from the Content Provider's Web site to the network
exchange and access points.

A summary of the specific advantages afforded by the
inventive global hosting scheme are set forth below:

1. Decreased Operational Expenses for Content Provid­
ers: to the other active ghosts. An additional feature of the buddy

system is that fault tolerance is provided without having to 10

wait for long timeout periods.
Most competing solutions require Content Providers to

purchase servers at each Web site that hosts their content. As
a result, Content Providers often must negotiate separate
contracts with different ISPs around the world. In addition,
Content Providers are generally responsible for replicating
the content and maintaining servers in these remote loca­
tions.

As yet another safety feature of the global hosting system,
a gating mechanism can be used to keep the overall traffic
for certain objects within specified limits. One embodiment
of the gating mechanism works as follows. When the 15

number of requests for an object exceeds a certain specified
threshold, then the server can elect to not serve the object.
This can be very useful if the object is very large. Instead,
the client can be served a much smaller object that asks the
client to return later. Or, the client can be redirected. Another 20

method of implementing a gate is to provide the client with

With the present invention, ISPs are primarily responsible
for the majority of the aspects of the global hosting. Content
Providers preferably maintain only their single source
server. Content on this server is automatically replicated by
software to the locations where it is being accessed. No

a "ticket" that allows the client to receive the object at a
prespecified future time. In this method, the ghost server
needs to check the time on the ticket before serving the
object.

intervention or planning is needed by the Provider (or, for
that matter, the ISP). Content Providers are offered instant
access to all of the servers on the global network; there is no

25 need to choose where content should be replicated or to
purchase additional servers in remote locations. The inventive global hosting scheme is a way for global

ISPs or conglomerates of regional ISPs to leverage their
network infrastructure to generate hosting revenue, and to
save on network bandwidth. An ISP offering the inventive
global hosting scheme can give content providers the ability 30

to distribute content to their users from the closest point on
the ISPs network, thus ensuring fast and reliable access.
Guaranteed web site performance is critical for any web­
based business, and global hosting allows for the creation of

2. Intelligent and Efficient Data Replication:
Most competing solutions require Content Providers to

replicate their content on servers at a commercial hosting
site or to mirror their content on geographically distant
servers. Neither approach is particularly efficient. In the
former situation, content is still located at a single location
on the Internet (and thus it is far away from most users). In
the latter case, the entire content of a Web site is copied to

a service that satisfies this need.
Global hosting according to the present invention also

allows an ISP to control how and where content traverses its
network. Global hosting servers can be set up at the edges
of the ISP's network (at the many network exchange and
access points, for example). This enables the ISP to serve
content for sites that it hosts directly into the network
exchange points and access points. Expensive backbone
links no longer have to carry redundant traffic from the
content provider's site to the network exchange and access
points. Instead, the content is served directly out of the ISP's
network, freeing valuable network resources for other traffic.

Although global hosting reduces network traffic, it is also
a method by which global ISPs may capture a piece of the
rapidly expanding hosting market, which is currently esti­
mated at over a billion dollars a year.

The global hosting solution also provides numerous
advantages to Content Providers, and, in particular, an
efficient and cost-effective solution to improve the perfor­
mance of their Web sites both domestically and internation­
ally. The inventive hosting software ensures Content Pro­
viders with fast and reliable Internet access by providing a
means to distribute content to their subscribers from the
closest point on an ISP's network. In addition to other
benefits described in more detail below, the global hosting
solution also provides the important benefit of reducing
network traffic.

Once inexpensive global hosting servers are installed at
the periphery of an ISP's network (i.e., at the many network
exchange and access points), content is served directly into
network exchange and access points. As a result of this
efficient distribution of content directly from an ISP's
network, the present invention substantially improves Web

35 remote servers, even though only a small portion of the
content may actually need to be located remotely. Even with
inexpensive memory, the excessive cost associated with
such mirroring makes it uneconomical to mirror to more
than a few sites, which means that most users will still be far

40 away from a mirror site. Mirroring also has the added
disadvantage that Content Providers must insure that all sites
remain consistent and current, which is a nontrivial task for
even a few sites.

With the present invention, content is automatically rep-
45 licated to the global server network in an intelligent and

efficient fashion. Content is replicated in only those loca­
tions where it is needed. Moreover, when the content
changes, new copies preferably are replicated automatically

50
throughout the network.

3. Automatic Content Management:
Many existing solutions require active management of

content distribution, content replication and load balancing
between different servers. In particular, decisions about
where content will be hosted must be made manually, and

55 the process of replicating data is handled in a centralized
push fashion. On the contrary, the invention features passive
management. Replication is done in a demand-based pull
fashion so that content preferably is only sent to where it is
truly needed. Moreover, the process preferably is fully

60 automated; the ISP does not have to worry about how and
where content is replicated and/or the content provider.

4. Unlimited, Cost Effective Scalability:
Competing solutions are not scalable to more than a small

number of sites. For example, solutions based on mirroring
65 are typically used in connection with at most three or four

sites. The barriers to scaling include the expense of repli­
cating the entire site, the cost of replicating computing

6,108,703
15

resources at all nodes, and the complexity of supporting the
widely varying software packages that Content Providers
use on their servers.

16
already consistently challenged and consumed by the admin­
istrative and operational tasks of managing a single server.
The inventive hosting scheme may be deployed by a global
ISP, and it provides a new service that can be offered to

5 Content Providers. A feature of the service is that it mini-
The unique system architecture of the present invention is

scale able to hundreds, thousands or even millions of nodes.
Servers in the hosting network can malfunction or crash and
the system's overall function is not affected. The global
hosting framework makes efficient use of resources; servers
and client software do not need to be replicated at every
node because only the hosting server runs at each node. In 10

addition, the global hosting server is designed to run on
standard simple hardware that is not required to be highly
fault tolerant.

mizes the operational and managerial requirements of a
Content Provider, thus allowing the Content Provider to
focus on its core business of creating unique content.

9. Effective Control of Proprietary Database sand
Confidential Information:

Many competing solutions require Content Providers to
replicate their proprietary databases to multiple geographi­
cally distant sites. As a result, the Content Provider effec­
tively loses control over its proprietary and usually confi-5. Protection against Flash Crowds:

Competing solutions do not provide the Content Provider
with protection from unexpected flash crowds. Although
mirroring and related load-balancing solutions do allow a
Content Provider to distribute load across a collection of
servers, the aggregate capacity of the servers must be
sufficient to handle peak demands. This means that the
Provider must purchase and maintain a level of resources
commensurate with the anticipated peak load instead of the
true average load. Given the highly variable and unpredict­
able nature of the Internet, such solutions are expensive and
highly wasteful of resources.

The inventive hosting architecture allows ISPs to utilize a
single network of hosting servers to offer Content Providers
flash crowd insurance. That is, insurance that the network
will automatically adapt to and support unexpected higher
load on the Provider's site. Because the ISP is aggregating
many Providers together on the same global network,
resources are more efficiently used.

6. Substantial Bandwidth Savings:
Competing solutions do not afford substantial bandwidth

savings to ISPs or Content Providers. Through the use of
mirroring, it is possible to save bandwidth over certain links
(i.e., between New York and Los Angeles). Without global
hosting, however, most requests for content will still need to
transit the Internet, thus incurring bandwidth costs. The
inventive hosting framework saves substantial backbone
bandwidth for ISPs that have their own backbones. Because
content is distributed throughout the network and can be
placed next to network exchange points, both ISPs and
Content Providers experience substantial savings because
backbone charges are not incurred for most content requests.

7. Instant Access to the Global Network:

15 dential databases. To remedy these problems, the global
hosting solution of the present invention ensures that Con­
tent Providers retain complete control over their databases.
As described above, initial requests for content are directed
to the Content Provider's central Web site, which then

20 implements effective a nd controlled database access.
Preferably, high-bandwidth, static parts for page requests are
retrieved from the global hosting network.

10. Compatibility with Content Provider Software:
Many competing solutions require Content Provider s to

25 utilize a specific set of servers and databases. These
particular, non-uniform requirements constrain the Content
Provider's ability to most effectively use new technologies,
and may require expensive changes to a Content Provider's
existing infrastructure. By eliminating these problems, the

30 inventive global hosting architecture effectively interfaces
between the Content Provider and the ISP, and it does not
make any assumptions about the systems or servers used by
the Content Provider. Furthermore, the Content Provider's
systems can be upgraded, changed or completely replaced

35 without modifying or interrupting the inventive architecture.
11. No Interference with Dynamic Content, Personalized

Advertising or E-Commerce, and No stale content:
Many competing solutions (such as naive caching of all

content) can interfere with dynamic content, personalized
40 advertising and E-commerce and can serve the user with

stale content. While other software companies have
attempted to partially eliminate these issues (such as keeping
counts on hits for all cached copies), each of these solutions
causes a partial or complete loss of functionality (such as the

45 ability to personalize advertising). On the contrary, the
global hosting solution does not interfere with generation of
dynamic content, personalized advertising or E-commerce,
because each of these tasks preferably is handled by the
central server of the Content Provider.

Competing solutions require the Content Provider to
choose manually a small collection of sites at which content
will be hosted and/or replicated. Even if the ISP has numer­
ous hosting sites in widely varied locations, only those sites 50

specifically chosen (and paid for) will be used to host
content for that Content Provider.

12. Designed for the Global Network:
The global hosting architecture is highly scale able and

thus may be deployed on a world-wide network basis.
On the contrary, the global hosting solution of the present

invention allows ISPs to offer their clients instant access to
the global network of servers. To provide instant access to
the global network, content is preferably constantly and
dynamically moved around the network. For example, if a
Content Provider adds content that will be of interest to
customers located in Asia, the Content Provider will be
assured that its content will be automatically moved to
servers that are also located in Asia. In addition, the global
hosting framework allows the content to be moved very
close to end users (even as close as the user's building in the
case of the Enterprise market).

8. Designed for Global ISPs and Conglomerates:
Most competing solutions are designed to be purchased

and managed by Content Providers, many of whom are

The above-described functionality of each of the compo­
nents of the global hosting architecture preferably is imple-

55 mented in software executable in a processor, namely, as a
set of instructions or program code in a code module resident
in the random access memory of the computer. Until
required by the computer, the set of instructions may be
stored in another computer memory, for example, in a hard

60 disk drive, or in a removable memory such as an optical disk
(for eventual use in a CD ROM) or floppy disk (for eventual
use in a floppy disk drive), or downloaded via the Internet
or other computer network.

In addition, although the various methods described are
65 conveniently implemented in a general purpose computer

selectively activated or reconfigured by software, one of
ordinary skill in the art would also recognize that such

6,108,703
17

methods may be carried out in hardware, in firmware, or in
more specialized apparatus constructed to perform the
required method steps.

Further, as used herein, a Web "client" should be broadly
construed to mean any computer or component thereof 5

directly or indirectly connected or connectable in any known
or later-developed manner to a computer network, such as
the Internet. The term Web "server" should also be broadly
construed to mean a computer, computer platform, an
adjunct to a computer or platform, or any component 10

thereof. Of course, a "client" should be broadly construed to
mean one who requests or gets the file, and "server" is the
entity which downloads the file.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is set forth in the 15

following claims:
1. A distributed hosting framework operative in a com­

puter network in which users of client machines connect to
a content provider server, the framework comprising:

a routine for modifying at least one embedded object URL 20

of a web page to include a hostname pretended to a
domain name and path;

a set of content servers, distinct from the content provider
server, for hosting at least some of the embedded
objects of web pages that are normally hosted by the 25

content provider server;
at least one first level name server that provides a first

level domain name service (DNS) resolution; and
at least one second level name server that provides a

second level domain name service (DNS) resolution; 30

wherein in response to requests for the web page, gener­
ated by the client machines the web page including the
modified embedded object URL is served from the
content provider server and the embedded object iden­
tified by the modified embedded object URL is served 35

from a given one of the content servers as identified by
the first level and second level name servers.

2. The hosting ramework as described in claim 1 further
including a redundant first level name server.

3. The hosting framework as described in claim 1 further 40

including a redundant second level name server.
4. The hosting framework as described in claim 1 wherein

a given one of the set of servers includes a buddy server for
assuming the hosting responsibilities of the given one of the
set of servers upon a given failure condition.

5. The hosting framework as described in claim 1 wherein
the second level name server includes a load balancing
mechanism that balances loads across a subset of the set of
servers.

45

18
mechanism for maintaining overall traffic for a given
embedded object within specified limits.

11. The hosting framework as described in claim 10
wherein the gating mechanism comprises:

means for determining whether a number of requests for
the given embedded object exceeds a given threshold;
and

means responsive to the determining means for restricting
service of the given embedded object.

12. The hosting framework as described in claim 11
wherein the restricting means comprises means for serving
an object that is smaller than the given embedded object.

13. The hosting framework as described in claim 11
wherein the object is a ticket that allows a client to receive
the given embedded object at a later time.

14. A method of serving a page supported at a content
provider server, the page comprising a markup language
base document having associated therewith a set of embed-
ded objects, each embedded object identified by a URL,
comprising the steps of:

rewriting the URL of an embedded object to generate a
modified URL, the modified URL including a new
hostname prepended to an original hostname, wherein
the original hostname is maintained as part of the
modified URL for use in retrieving the embedded
object whenever a cached copy of the embedded object
is not available;

in response to a request to serve the page received at the
content provider site, serving the page with the modi­
fied URL;

attempting to serve the embedded object from a content
server other than the content provider server as iden­
tified by the new hostname; and

if the cached copy of the embedded object is not available
from the content server, serving the embedded object
from the content provider server.

15. A method of serving a page and an associated page
object, wherein the page is stored on a content provider
server and copies of the page object are stored on a set of
content servers distinct from the content provider server,
comprising the steps of:

(a) modifying a URL for the page object to include a
hostname prepended to a content provider-supplied
domain name and path;

(b) serving the page from the content provider server with
the modified URL;

(c) responsive to a browser query to resolve the hostname,
identifying a given one of the set of content servers
from which the object may be retrieved; and

(d) returning to the browser an IP address of the identified
content server to enable the browser to attempt to
retrieve the object from that content server.

6. The hosting framework as described in claim 5 wherein 50

the load balancing mechanism minimizes the amount of
replication required for the embedded objects while not
exceeding a capacity of any of the set of servers.

16. The method as described in claim 15 wherein the
copies of the page object are stored on a subset of the set of

55

7. The hosting framework as described in claim 1 further
including an overflow control mechanism for minimizing an
overall amount of latency experienced by client machines
while not exceeding the capacity of any given subset of the
set of servers.

8. The hosting framework as described in claim 7 wherein
the overflow control mechanism includes a min-cost multi- 60

commodity flow algorithm.
9. The hosting framework as described in claim 1 wherein

the first level name server includes a network map for use in
directing a request for the embedded object generated by a
client.

10. The hosting framework as described in claim 1
wherein a server in the set of servers includes a gating

65

content servers.
17. A content delivery method, comprising:
tagging an embedded object in a page to resolve to a

domain other than a content provider domain by
prepending given data to a content provider-supplied
URL to generate an alternate resource locator (ARL);

serving the page from a content provider server with the
ARL; and

resolving the ARt to identify a content server in the
domain; and

serving the embedded object from the identified content
server.

6,108,703
19

18. The method as described in claim 17 wherein the step
of resolving the ARL comprises:

20
25. The method as described in claim 24 wherein the

value is generated by encoding given information, the given
information selected from a group of information consisting
essentially of: size data, popularity data, creation data and

utilizing a requesting user's location and data identifying
then-current Internet traffic conditions to identify the
content server. 5 object type data.

19. A content delivery service, comprising: 26. The method as described in claim 4 wherein the given
function randomly associates the embedded object with a
virtual content bucket.

27. The method as described in claim 26 wherein the

replicating a set of page objects across a wide area
network of content servers managed by a domain other
than a content provider domain;

for a given page normally served from the content pro­
vider domain, tagging the embedded objects of the
page so that requests for the page objects resolve to the
domain instead of the content provider domain;

10 given function is an encoding function.

responsive to a request for the given page received at the 15

content provider domain, serving the given page from
the content provider domain; and

28. The method as described in claim 26 wherein the
given function is a hash function.

29. The method as described in claim 23 wherein the
modified URL also includes a fingerprint value generated by
applying a given function to the embedded object.

30. The method as described in claim 29 wherein the
value is a number generated by hashing the embedded
object. serving at least one embedded object of the given page

from a given content server in the domain instead of
from the content provider domain.

31. The method as described in claim 23 wherein the page
20 is formatted according to a markup language.

20. The content delivery method as described in claim 19
wherein the serving step comprises:

32. The method as described in claim 23 further including
the step of rewriting the embedded object URL as the
content provider modifies the page. for each embedded object, identifying one or more con­

tent servers from which the embedded object may be
retrieved.

33. The method as described in claim 23 wherein the step
25 of resolving the hostname includes:

21. The method as described in claim 20 wherein the
identifying step comprises:

resolving a request to the domain as a function of a
requesting user's location.

22. The method as described in claim 21 wherein the 30

identifying step comprises:

resolving a request to the domain as a function of a
requesting user's location and then-current Internet
traffic conditions.

23. A method for Internet content delivery, comprising:

at the content provider server, modifying at least one
embedded object URL of a page to include a hostname
prepended to a domain name and a path normally used
to retrieve the embedded object;

responsive to a request for the page issued from a client
machine, serving the page with the modified embedded
object URL to the client machine from the content
provider server;

35

40

responsive to a request for the embedded object, resolving 45

the hostname to an IP address of a content server, other
than the content provider server, that is likely to host
the embedded object; and

attempting to serve the embedded object to the client from
the content server. 50

24. The method as described in claim 23 wherein the
hostname includes a value generated by applying a given
function to the embedded object.

identifying a subset of content servers that may be avail­
able to serve the embedded object based on a location
of the client machine and current Internet traffic con­
ditions; and

identifying the content server from the subset of content
servers.

34. A content delivery method, comprising:
distributing a set of page objects across a network of

content servers managed by a domain other than a
content provider domain, wherein the network of con­
tent servers are organized into a set of regions;

for a given page normally served from the content pro­
vider domain, tagging at least some of the embedded
objects of the page so that requests for the objects
resolve to the domain instead of the content provider
domain;

in response to a client request for an embedded object of
the page:
resolving the client request as a function of a location

of the client machine making the request and current
Internet traffic conditions to identify a given region;
and

returning to the client an IP address of a given one of
the content servers within the given region that is
likely to host the embedded object and that is not
overloaded.

* * * * *

PATENT NO.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

6,108,703
DATED Aug. 22, 2000

INVENTOR(S): F. Thomson Leighton, Daniel M. Lewin

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

. . Column 11, line 1, delete "assachusetts" and substitute -- Massachusetts __
In Column 11, line 2, delete "ncorporated" and substitute -- incorporated __ .
In Column 11, line 3, delete "ake" and substitute -- make __ . .
In Column 16, line 9, delete "Database sand" and substitute -- Databases and-­
In Column 16, line 20, delete "a nd" and substitute -- and __ .
in Column 16, line 24, delete "Provider s .. and substitute -- Providers __
in Claim 1, Column 17, line 21, delete "pretended" and substitute -- p~epended __ .
In Claim 1, Column 17, line 32, after "machines" insert __ __
In Claim 17, Column 18, line 64, delete "ARt" and substit~te ._- ARL __ .

Attest:

Attesting Officer

Signed and Sealed this

Fifteenth Day of May, 2001

NICHOLAS P. GODICI

Acting Director ol the Un ired States Parent wld Trademark Office

