
Random network Coding on the iPhone: Fact or Fiction? 

The authors begin by describing the general design principal of network coding.  That is the 

transmission of random linear combinations of blocks.  They also recognize that this technique can 

improve unicast performance when multiple paths are used simultaneously.  They mention the 

computational complexity of such calculations and the energy consumption that is required and how 

this may limit potential practical use of such techniques.  The authors promise a real world 

implementation on the Apple iPhone, and iTouch devices.  They also promise an in depth investigation 

of the difficulties encountered including processor and hardware limitations, as well as their tuning 

efforts.  They define three metrics: coding performance, energy consumption, and CPU usage. 

Not bad for an abstract.  I feel like they got a lot of work done already.  However, I am not an expert in 

network coding and I will need to see a clear definition of network coding performance.  Also they 

heavily implied that multiple paths would be used.  I expect that the testbed must include at least four 

devices so that there will be a minimum of two paths.  Any less would not allow them to convince me 

that their network coding implementation really increases unicast performance.  That being said, I 

suppose they could also go the route of saying that the proof of network coding increasing unicast 

performance has already been proven by previous works and that they simply prove that they can 

achieve improved network coding performance over their testbed.  I recall a paper from Elizabeth's 

class, “XORs in the air” that covered this topic.  Anyways, good abstract, I look forward to the 

introduction. 

The authors begin the introduction with a few references.  They cite the XORs in th air paper as proof 

that network coding can improve unicast end-to-end throughput, as long as there are multiple paths that 

can be used simultaneously.  So at this point, I am convinced that all they need to do is show that they 

can achieve “improved network coding performance”, however, this still needs to be clearly defined. 

The authors continue on to say the “no real-world implementation” has been done.  Then they spend 

the next few paragraphs qualifying this statement by citing three previous “real world” 

implementations of network coding.  The citations fall into two classes.  First, those that use PC 

hardware: Chachulski, where they used PC's with wireless network cards, and Kattie, where they used 

PC's with Zigbee software radios.  Secondly and most similar to this work is Pederson, where they 

implemented an XOR encoding scheme over Nokia mobile phones.  This work takes advantage of the 

idea that XOR-only encoding can increase unicast throughput when multiple intersecting flows exist. 

Now the authors spend some time justifying the use of random network coding over XOR-only 

network coding.  They specifically list three: more flexibility, allowing coding over symbols, and the 

ability to use  multiple paths.  I am not sure what “more flexibility” means, and I am not clear why the 

use of symbols is better (perhaps if I was more expert in this field I would know that one), and I assume 

that by multiple paths they mean that intersections are not required.  This alone is a big enough 

advantage.  They continue on to cite literature examples to prove their case.  Finally, they state that 

random network coding is more computationally expensive than XOR-only because it involves random 

linear combinations on the Galois Field. 

For further motivation they offer the Avalanche P2P system which uses random network encoding. 

Minor literary criticism:  It seems like the first sentence of the third paragraph belongs as part of the 

second paragraph where they were talking about motivations for using random network encoding.  

Anyways, I am thoroughly motivated at this point and think that the work is significant. 



The balance of this paragraph seems like a pitch to give phones public IP's so that they won't be treated 

as “second class citizens”.  I have no idea where this came from.  It hardly seems relevant to the paper 

and breaks the flow.  If the authors feel that mobile phones must have a public IP in order to use 

random network encoding then they should simply state that and not start talking about classes of 

citizenship ;^) 

In the next paragraph the authors offer a justification for the iPhone platform.  I didn't think that the 

iPhone needed justification given it's popularity but lets see what they have for us.  First, they offer the 

advanced technology of the iPhone platform.  In fact they state that it is the “most” state-of-the-art 

hardware platform for multimedia technologies because it has an ARMv6 processor, has support for 

WiFi, EDGE, and 3G connections, and an excellent software development platform.  Hmmm, this 

sounds a little like apple snobbery to me.  (my apologies to the authors ;^)  I am not a hardware expert 

but I do know that there are several competing phones that are very capable e.g., Motorola's Droid, and 

especially the latest Nokia which has an entire linux kernel.  Secondly, the ARM processor is widely 

used in mobile devices (This is very true) and finally that the iPhone has already been used for 

streaming multimedia from the web. 

I feel that this paragraph was unnecessary and debatable.  The authors should have used more care in 

writing it and acknowledged that their reviewers might not all be from amongst the ranks of the Apple 

faithful ;^) 

The authors then talk about the difficulty level of implementation on an iPhone.  I'm sure this is true, 

but I am not so certain that their optimization techniques will be useful on other platforms.  They state 

the array of tradeoffs that they consider in their work.  These are network coding configuration vs. CPU 

usage, energy consumption rates, battery life. 

This was a good introduction, the motivation for the work is solid and I think it is significant.  

However, I think that some of the space in the final paragraphs was wasted and could have been put to 

better use.  I agree that the iPhone is an excellent platform, however, like most Apple products it is also 

very proprietary which is a solid drawback. 

In section two the authors present a concise introduction to random network coding.  This section is 

very welcome, at least for me, because I am unfamiliar with the details of the technique.  Data to be 

coded is first divided into n blocks of equal byte size, then a coefficient for each block is independently 

and randomly chosen.  It then produces a coded block of k bytes.  A receiving node decodes as soon as 

it has n linear independent coded blocks.  It does this by forming an n x n coefficient matrix using the 

coefficients in each coded block.  It then recovers the data in the original blocks using: b = C^-1 * x 

(the product of the inverse of C and x).  The inverse of C is computed using Gaussian elimination 

which is of complexity n^3 and requires that matrix C be of full rank.  Optimization of the 

multiplication operation here is possible here because addition in Galois Field is equivalent to an XOR 

operation.  The authors present a C coded function that accomplishes this multiplication optimization.

In the next paragraph the authors present the challenges and solutions of their design.  Aha!  Here is the 

acknowledgment of other devices that use the same processor ;^)  Of course the droid and the Nokia 

are here as well as many other devices.  This does a lot to assuage the effects of the apple snobbery as 

well as to make the case that the techniques presented here are applicable to other devices ;^)  The 

authors are looking for feasibility, and maximum optimization of performance.  However, I still haven't 

seen a precise definition of network coding performance.  Also, why is it maximum?  Maximum 



compared to what?  To what is possible on the iPhone platform?  Maximum amongst all the devices?  

This will make the difference between a weak accept and a strong accept for me. 

The authors go on to describe their implementation of table based multiplication which requires 

multiple access to the lookup tables.  In their previous work they used a loop based approach which is 

more costly than the traditional approach (8 iterations) but easier to parallelize.  Current smartphone 

platforms are single core.  The authors will investigate the benefits of parallelization on the current 

single core architecture. 

In Section 2.1 the authors begin an evaluation of table-based coding techniques by describing some of 

the difficulties they encountered with the iPhone SDK (incidentally this would not have been a problem 

on the new Nokia SDK ;^) and then describe their baseline for performance measurements.  They use 

128 blocks of 4096 bytes which gives a segment size of 512KB (about 5.33 seconds).  I agree that this 

is a reasonable buffering delay.  Preliminary experiments show an encoding rate of 16.4 KB/s and 

decoding of 60 KB/s.  This disproportionate rates are due a memory access pattern generated by the 

authors design that did not work well with the ARMv6 cache architecture.  The authors changed their 

algorithm from column-by column to row-by-row and this improved the encoding rate to 66.7 KB/s on 

par with the decoding rate.  This shows that without optimization the ARMv6 will not be able to keep 

up with a 96 KB/s (768 Kbs) multimedia stream. 

Okay, I think I see where their baseline performance measurement is coming from.  They are going to 

compare their optimizations to this and show that they are better.  I find this reasonable, however, I will 

be even more impressed if these optimizations are not iPhone specific and can be used on any ARMv6 

device. 

In Section 2.2 the authors look into using SIngle Multiple Data (SIMD) vector instructions, however, 

they discovered that the ARMv6 used in the iPhone that they used has a ARM1176JZF-S processor 

which they used has a limited SIMD implementation which only allows operations on the half word 

boundry and 32-bit registers.  They were expecting 128 bit registers.  The authors implemented a 

version of their multiplication algorithm using the smaller registers.  The code is quite compact and 

when tested with 128 blocks of 4096 bytes each (the baseline ;-) encoding of 86.6 KB/s and decoding 

of 81.9 KB/s (1.3 & 1.37 percent improvement).  Still short of 96 KB/s but getting closer ;^) 

In Section 3, the authors investigate the use of the Thumb vs. ARM instruction sets.  The Thumb

instruction set is a limited 16 bit instruction set space that implements a subset of the full 32 bit ARM

instruction set.  It is the default because it generally produces code sizes 35% smaller than the 32 bit 

ARM instruction set.  However, it does not allow predicated instructions (which are tagged for 

conditional execution) instead requiring two instructions to accomplish the task.  Also it does not allow 

the use of the barrel shifter which shifts data from the registers on its way to the ALU.  When tested 

against the baseline setting the authors found an increase of 50% and 26% to 100.4 KB/s encoding and 

75.8 KB/s decoding.  However, when combined with the loop based tuning they achieve 89% and 93% 

to 163.8 KB/s and 157.8 KB/s for encoding and decoding.  This improvement was from reducing the 

code size from 17 to 10 in the loop by using the ARM instruction set as well as from and because the 

loop based implementation makes heavy use of logical and shift based operations and thus benefited 

from the use of the barrel shifter.  Note that the language in the last two sentences is a little 

inconsistent.  The authors say, “This improvement is essentially due...”, talking about the reduced code 

base and then, “The loop-based implementation has achieved a more substantial gain...”.  Nice 

improvement though ;^) 



Finally, in Section 2.4 the authors hand tuned the compiler output for efficiency.  The tuning was 

comprised of things like changing instructions to 16-by-32 bit instructions and hand tuning the code to 

ensure integrity through the rest of the contribution.  Explicit use of the barrel shifter and reordering 

the instruction based on timing to prevent pipeline stalls.  This improved encoding to 181.3 KB/s and 

decoding to 175.3 Kb/s.  The final hand tuning makes use of a SIMD instruction uadd8 to replace two 

instructions (compiled into a single machine instruction) and shifts more data at a time.  This provided 

a 4% improvement bringing the total to 188 KB/s encoding and 182.3 KB/s decoding. 

The first three improvements seem like they could work generally on ARMv6, however, the last one 

with it's reordering of instructions according to register latency is certainly specific to the 

ARM1176JZF processor and therefore is only good for this generation of processors. 

At the end of the day this section has defined some very clever software optimizations and produced 

some substantial coding performance benefits.  Some of these optimizations may not be transferable (or 

even necessary/desirable on later generation processors but this is the case for any kind of 

optimizations at this level.  The authors goal was to determine the feasibility of using random network 

coding on the current generation of processors and they have achieved this goal. 

In Section three the authors evaluate the performance of hand tuned random network coding 

implementation on the iPhone 3G and 2
nd

 generation iPod iTouch devices.  They evaluate against 

metrics such as coding bandwidth, CPU usage, and energy consumption using fully dense coding 

matrices with non-zero coefficients. 

When investigating coding performance the authors used a range of 128 bytes to 16 KB per block with 

64, 128, and 256 blocks.  They measured both the encoding and decoding bandwidth using both the 

table based and loop based approach detailed in the previous sections.  The measurements are produced 

by taking the total bytes of all the generated coded/decoded blocks with an (n. k) coding setup over 1 

second.  The authors state that the graphs show encoding achieves it's peak performance across all 

settings.  I am not sure what they mean by this.  However, I do notice that for a large number (256) of 

blocks both the approaches fail to achieve the 96 KB/s feasibility threshold.  The authors note that a 

decline in performance occurs with block sizes beyond k = 256 at n = 64 and k = 128 at n = 128.  They 

theorize that this decline is due to the L1 cache size in the ARM1176JZF processor being limited to 

16K.  However, they were unable to find the specification in the public domain documentation of the 

ARM1176JZF of the iPhone platform.  (This is another huge drawback of working with Apple 

hardware.  Everything is undocumented in public domain ;^)  However, they were able to use an 

undocumented interface to measure the L1 cache size and determine that it is indeed 16KB.  They 

calculate that the in order to achieve their top rate of 415 KB/s the number of executed instructions is 

470.2 Mega Instructions Per Second (MIPS).  This represents about 88% of the capability of the 

ARM1176JZF indicating that the key bottleneck here is the processor speed.  It simply can't go any 

faster.  This is indeed impressive, they have squeezed almost every drop of performance out of the 

processor. 

In Section 3.2 the authors the coding performance of the iPhone vs. the iTouch.  Both devices use the 

ARM1176JZF processor however the iTouch is clocked at 412 Mhz with a 103 Mhz bus while the 

iPhone is clocked at 533 Mhz with a 133 Mhz bus (about 29% faster).  This graph shows that the 

coding performance difference is roughly equivalent to the processing speed difference. 

In Section 3.2 the authors prepare for their feasibility experiment.  The four (or more) device testbed 

that I had envisioned earlier does not exist, although the authors seem like they are interested in moving 



in that direction ;^)  They will investigate the feasibility of using random network coding from the 

perspective of CPU usage, and energy consumption.  The authors will vary the network coding settings 

looking for a feasibile setting.  However, I still do not know what feasible means.  They will need to 

define this. 

In order to get a baseline performance measurement the authors profiled the performance of receiving 

and playback of 3 video streams with different properties.  They used WiFi connectivity and the iTouch 

because this combination provides the best performance.  They used the Instuments application in the 

iPhone IDE to do the monitoring.  They found that the YouTube process is only active when the user is 

interacting with the GUI.  The mediaserverd process handles the encoding and decoding and the 

springboard process which manages the matrix of applications consumes about 2% of the CPU.  In 

addition there is a DTMobileIS process which collects measurements and consumes about 6% of the 

CPU.  The table shows that only a small portion of the CPU resources are used in decoding and 

playback.  This implies that the more complex operations are handed of to a GPU leaving a lot of 

available CPU for random network coding ;^)  Also the ingress rates are a little higher than the video 

rate.  This is because of streaming protocol overhead. 

Hmmm, all this is very nice but I still don't have a definition of feasibility.  Clearly feasible would 

mean something less than the remaining CPU after the video receiving and playback functions are 

taken care of but what is it?  Eighty percent?  Ninety?  Fifty?  I think they should have defined this 

more clearly (or at least explicitly) and should do the same for energy consumption.  Make a definition 

and then justify why it was chosen.  For instance, feasible energy consumption means the application 

will not bleed the battery in less than 2 hours because this is how long an average movie plays.  

Whatever, just some number and a justification. 

In Section 3.3.2 the authors define their experiment to determine if random network coding on the 

iPhone is feasible according to CPU usage.  They built an application that performs network coding 

and decoding at rates corresponding to a realistic P2P media streaming scenario.  I guess this means 

768 Kbs (96KB/s).  Also the iPhone does not allow third party applications to run in the background so 

it is not possible for the authors to run the actual YouTube application at the same time.  The authors 

choose a segment size of 256 KB because this results in a buffering delay of 3-7 seconds with the 3 

videos chosen for the experiment.  They will evaluate this segment size with two network coding 

settings (n=128, k=2048) and (n=64, k=4096).  A deployed P2P network coded streaming system 

would need decode the incoming stream and encode a new stream for a small number of neighbors.  

The authors will conduct experiments with 1, 2, and 4 outgoing streams.  However, based on their 

coding performance results the ARM1176JZF does not have the power to decode one stream while 

encoding four more at the same time.  To remedy this the authors vary the density of the random 

network coding.  They give a citation which shows that density can be reduced to as much as 10% of 

the original without increasing the risk of linear dependence among the coded blocks.  This seems like 

it should have been mentioned at some earlier point in the paper.  Why didn't they use this technique on 

the earlier experiments?  It seems very effective.  If it can increase efficiency by ~ %400 why not use it 

from the start?  I guess I would have to look at the reference to find out but at this point I am willing to 

just believe them and trust that there is some reason for this.  Anyways, they use a density of 1/d for d

downstream nodes. 

The results from this experiment are shown in a table next to an estimated CPU usage of R/BW_dec + 

R/BW_enc.  The rates for d=1 (1 decoding stream and 1 downstream node) match the estimates very 

closely and (n=64, k=4096) has about half the CPU usage as (n=128, k=2048) as expected.  However, 

as d increases the actual results beat the estimates.  This is because as the matrices become sparcer the 



efficiencies become greater.  The authors also evaluate the CPU usage at d=0 reflecting a node that 

does not wish to, or does not have the battery capacity to serve other nodes.  This setting provides an 

additional ~50% CPU performance advantage.  The authors also present a graph of the CPU usage over 

the course of one of the experiments.  This shows that other tasks are sometimes using the CPU during 

the experiment (sending the CPU to 100% usage) and that the random network coding usage exhibits a 

sawtooth pattern.  This sawtooth pattern is due to varying complexity of the Gauss-Jordan elimination 

computation. 

In Section 3.3.3 the authors investigate the energy consumption characteristics of their random network 

coding design.  They were unable to do this with Apples IDE and had to use some unofficial header 

files to do so.  Also because Apple does not allow third party apps to run in the background they had to 

jailbreak the device so that they could run the video and the network coding and the monitoring 

software at the same time.  They tested at (n=64, k=1024).  I would have liked to see some justification 

for this choice but there is none.  They tested video playback without network coding, video playback 

with network decoding at 77.5 KB/s, and video playback with both encoding and decoding at 77.5 

KB/s over a 31 minute period.  The results show ~33% of the consumption is due to encoding and ~ 

15% is due to decoding.  However, the authors admit that this is only a first order approximation 

because the accuracy of the API is limited.  The authors suggest that network coding with 64 blocks is 

suitable for the current generation of iPhone platform. 

In section four the authors give their conclusions.  They restate what they did in the paper.  They also 

state that it is possible to take advantage of random network coding on the current generation of mobile 

devices.  They recommend a setting of 64 blocks of 4096 bytes each.  They have shown that decoding 

for rates of up to 620 Kbps will cause an increase of 22% CPU usage.  Adding encoding for 4 

downstream nodes will increase the additional CPU usage to 35%.  The authors do note that in a real 

deployment that tradeoffs between CPU usage and energy consumption may lead to different design 

decisions.  However, as hardware platforms improve network coding efficiencies will also improve 

making it more likely that network coding will be deployed.  What they do not mention is that 

bandwidth may increase faster than hardware efficiency, making the added complexity of little value. 


