CITS Seminar

Darren Hardy October 2005

<u>Technology management</u>
 Environmental policy change
 My research

Trade-offs in Engineering

Technology Lifecycle

	<u>Music</u>	Communications	
Bleeding Edge	podcasting	CrowdSurfer	
Leading Edge	iPod	BlackBerry	
State of the Art	CD	mobile	
Dated	cassette	CB	
Obsolete	8-track	telegraph	

Technology Adoption

wikipedia.org

Moore, 1991. Crossing the Chasm

Technology Diffusion

wikipedia.org

Theory: S-curve

wikipedia.org

Technology management
 Environmental policy change
 My research

Environmentalism

Scope

Power

Preservation	Conservation	Ecosystem	Post Modern
1890 - 1920	1920 - 1960	1960 - 1980	1980 - 2000
Forest, Parks	Use, Pollution	NEPA, Air	Superfund
Technical	Corporate	Middle-class	Participatory
Negotiations	Pressure	politics	democracy

Lester 1995

Public policy

Actors Public Interest Groups Elite Policymakers Courts

Local State Federal International

Institutions

Environmental

SBCC CEQA Clean Air Act Kyoto

Public policy change

- **Cyclical thesis**
- fairly predictable pattern: private vs. public remedies
 Backlash
- major changes based on reaction to prior policies
 Advocacy Coalition Framework
 conflicting, informed groups responding to events

Focusing events

- What?
 - Rare, harmful, & sudden
 - Known <u>simultaneously</u> by public & policymakers
- **Kinds**?
 - Natural Disasters (earthquakes, hurricanes, floods)
 Unnatural Disasters
 - Three Mile Island (1979); Chernobyl (1986); Exxon Valdez (1989); Kuwati Oil Wells (1991)

Agenda

Technology management
 Environmental policy change
 My research

Wireless Sensors

Sensor types:

movement, light, force,
 temperature, audio, proximity,
 humidity

Examples:

- DigiClip, eSeal, µParts

(Beigl 2004)

Implications of Wireless

Sensor networks

- Massively instrumented environments for monitoring, forecasting, and research
- Ubiquitous computing
 - Reduce barriers to civic participation
 - Facilitate mobilization & information flow

Premise

 Environmental policy domain is largely removed from public
 Advocacy coalitions require evermore resources & expertise
 Large-scale access enables wide participation: "Think locally, act globally"
 Networked multimedia content improves outreach potential

Hypothesis

Increase in participatory democracy would affect environmental policy change positively

Distributed collaboration technology can improve quality of participation

Example

- 1. Major environmental disaster occurs
- Citizen participation → flood of new media content blogs, images, video, speeches, events, etc.
- 3. Collaboration network refines into "influential" assets
- 4. Advocacy coalitions leverage assets in policymaking

Research Questions

Effectiveness of distributed collaboration framework to facilitate policy change? Better outcomes?

Collaborative content production yield higher-valued assets?

Useful types of data to affect environmental policy change? Limiting factors?