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ABSTRACT

Monitoring and troubleshooting a large wireless mesh network (WMN) presents several challenges. Diagnosis of problems
related to wireless access in these networks requires a comprehensive set of metrics and network monitoring data. Collection
and offloading of a large amount of data are infeasible in a bandwidth constrained mesh network. Additionally, the processing
required to analyze data from the entire network restricts the scalability of the system and impacts the ability to perform
real-time fault diagnosis. To this end, we propose MeshMon, a network monitoring framework that includes a multi-tiered
method of data collection. MeshMon dynamically controls the granularity of data collection based on observed events in the
network, thereby achieving significant bandwidth savings and enabling real-time automated management. Our evaluation
of MeshMon on a real testbed shows that we can diagnose a majority (87%) of network faults with a 66% savings in
bandwidth required for network monitoring. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large scale IEEE 802.11 mesh networks promise to be
a significant method of providing Internet connectivity in
several cities and towns. In addition to these metro-scale
deployments, wireless mesh networks (WMNs) have been
proposed to provide connectivity in rural environments, es-
pecially in developing countries around the world. Such
large scale mesh networks consist of hundreds to thousands
of mesh routers and may be used by thousands of users.
The presence of numerous wireless devices, including mesh
routers and client devices, in a single administrative domain
increases the complexity of the difficult task of managing
these large scale mesh networks.

We believe the network administrator’s ability to manage
and troubleshoot these networks in real-time is a critical
factor that contributes to the success of WMNs. These ad-
ministrative tasks, however, present several new challenges
compared to traditional wireline networks. In particular,
the design of a network monitoring system is non-trivial be-
cause of the multi-hop architecture of these mesh networks
and the inherent wireless-related properties of 802.11-
based devices. For instance, the performance of the devices
in these networks may be impacted by entities outside
the network, i.e., the surrounding environment or devices

that are not part of the network but share the frequency
spectrum. In addition, the large number of proprietary pro-
tocols and algorithms used by different IEEE 802.11 client
vendors and the interaction among these clients is not well
understood. Unlike in WLANs, the backhaul links used
for communication between mesh routers and the Internet
Gateway consist of relatively low bandwidth multi-hop
wireless links. Therefore, control traffic required for remote
monitoring and administration of these mesh routers must
be minimal, so as not to consume a significant portion of
the available bandwidth. The unreliable nature of wireless
links may result in gaps in the collected data, preventing
the timely measurement analysis. Finally, unlike wired net-
works, the physical location of the mesh routers provides
a strong spatial aspect to all data used in management and
troubleshooting of mesh networks. Therefore, data from
different routers that share spectrum in a geographical re-
gion may need to be analyzed in correlation with each other.

Although traditional infrastructure WLANs present sim-
ilar monitoring challenges and requirements, network mon-
itoring solutions developed for WLANs cannot be directly
applied to WMNs. Most monitoring solutions for commer-
cial WLANs only use a small fixed subset of the large set of
available metrics to minimize the data collection and pro-
cessing overhead. This approach may fail to capture data
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needed to diagnose a detected problem. Previous research
has shown that the diagnosis and root cause analysis of many
network faults requires a complete trace of the packets in the
network [1,2]. Unfortunately, the capture and remote analy-
sis of all data packets is infeasible in a mesh network as the
bandwidth requirements are prohibitive. Further, monitor-
ing systems that use a large set of metrics (or detailed packet
traces) require resource intensive computation and thus may
be unsuitable for real-time identification and remediation
of problems. From our own experience in the development
of a real-time network visualization tool, we found that the
speed of metric collection/generation, rather than visual ren-
dering of the data, is the computational bottleneck [3].

For the above reasons, there is a need for a methodol-
ogy of monitoring and metric collection in WMNs that is
bandwidth-efficient, scalable with respect to the number of
devices in the network, and able to provide a comprehen-
sive set of metrics that can be used to identify all problems
in the network. Such a solution would facilitate centralized
administration of a large network and also enable the use of
tools, such as network visualization, to monitor the network
health in real-time.

In this paper, we present MeshMon, a network moni-
toring framework that enables real-time identification and
troubleshooting of problems in WMNs. A key observation
that guides the design of MeshMon is that comprehensive
metric collection is required only when there are problems
in the network. A small subset of these metrics, called base-
line metrics, is sufficient when the network performance
is satisfactory, and can be used for coarse identification
of potential problems. We propose a stateful method that
intelligently adapts the metric collection process to capture
the most relevant set of metrics. When the baseline metrics
indicate the possible presence of a problem, the system
transitions to collect a more detailed set of metrics. The
goal of this methodology of metric collection is to reduce
the volume of data that needs to be collected and processed
without sacrificing the ability to diagnose problems in the
network.

For the collection of metrics in a WMN, we incorpo-
rate our idea of dynamic and scalable hierarchical metric
collection in a WLAN [4]. In our previous work, we pro-
posed the basic idea of hierarchical metric collection and
presented a simple feasibility analysis for the scheme in
WLANs. In this work we develop our idea in the context of
mesh networks. Mesh networks offer additional complexity
because a monitoring system should address problems that
affect mesh routers as well as those that affect client devices.
Therefore, MeshMon incorporates metrics associated with
mesh routing and connectivity into the hierarchical metric
collection, in addition to metrics associated with client de-
vices. Our design ensures that even in situations where a
problem scenario is reflected in both sets of metrics (mesh
related and client access related), MeshMon can success-
fully isolate the root cause of the problem. The bandwidth
constrained environment of WMNs requires a shift from
our previous centralized monitoring approach to a hybrid
(partly distributed and partly centralized) approach.

Our contributions in this work are as follows:

� We present a classification of WMN metrics in a hierar-
chical structure to assist in automated fault diagnosis.

� We present the detailed design, implementation, and
evaluation of the entire MeshMon system.

� We have implemented a prototype of MeshMon on the
UCSB MeshNet testbed.† The prototype system is ca-
pable of identification and diagnosis of a variety of
common problems that occur in WMNs. Our evalua-
tion of MeshMon indicates that we diagnose 87% of
the problems with a 66% reduction in the bandwidth
required for monitoring data.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related work. We present the motivation for
a hierarchical monitoring solution through measurement
analysis in Section 3. A detailed description of the design of
MeshMon is provided in Section 4. Section 5 discusses the
implementation and evaluation of our system. We conclude
the paper in Section 6.

2. RELATED WORK

Wireless mesh network management has surprisingly re-
ceived little research attention. The only work in the re-
search community of which we are aware is a trace-driven
approach mesh network troubleshooting approach by Qiu
et al. [5]. This paper makes the case that troubleshooting
multi-hop wireless networks is challenging, and presents
a diagnostic system that employs trace-driven simulations
to detect faults and perform root cause analysis. This ap-
proach is applied to diagnose performance problems caused
by packet dropping, link congestion, external noise, and
MAC misbehavior. While this work shares our goal of au-
tomating fault diagnosis, the problem set that considered
is significantly smaller than what we consider here. We ac-
count for problems that can occur in the client tier as well as
problems unique to a multi-hop network. Finally, the trace-
driven simulation approach inherently restricts the real-time
capabilities of their system.

Network management, health monitoring, and fault di-
agnosis in WLANs has been an area of active research in
recent years. Meng et. al. [6] describe their work on build-
ing a packet capture tool for wireless LANs that can detect
unauthorized users. The authors also use the concept of
hierarchical monitoring to enforce accountability in wire-
less LANs by building multi-level, multi-resolution trace
files of events and designing a flow net methodology [6].
MOJO [7] is an 802.11 troubleshooting system that out-
lines the importance of detailed physical layer metrics for
problem diagnosis and demonstrates that many higher layer
symptoms are manifestations of problems at the PHY layer.
Adya et al. [8] propose modifications to all clients in the

† http://moment.cs.ucsb.edu/meshnet
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network to assist in troubleshooting. APs in the network
act as ‘software’ sensors by capturing wireless metrics and
thereby avoid the cost of deploying special sensors. The au-
thors also propose that clients associated with APs can act
as a conduit for diagnostic traffic from clients not associ-
ated with APs. WiFiProfiler [9] uses a similar client conduit
approach but troubleshooting can be done in a peer–peer
fashion. However, given the heterogeneous client devices,
instrumenting all of them may not be possible. Our solution
does not assume any assistance from client devices.

Jigsaw [1] is a comprehensive fault diagnosis system that
uses a large set of dedicated wireless radio monitors to ob-
serve and record every transmission in a WLAN. The radio
monitors send the captured packet trace to a central reposi-
tory where the packet traces are merged to produce a single
time-synchronized trace that provides a detailed view of the
sequence of events. The Jigsaw system was later extended to
provide automated cross-layered diagnosis of problems [2].
Although Jigsaw provides a complete view of the events in
the network, it requires high overhead in terms of infras-
tructure. The dedicated wireless radio monitors require a
backhaul network connection that consumes roughly five
times the actual network traffic [2]. The high bandwidth re-
quirements for Jigsaw make it unsuitable for a multi-hop
mesh network. Additionally, the scaling properties of the
trace merging process in a larger or heavily used network
are not clear.

In addition to work from the research community, there
are several commercial network management tools [10--12].
The proprietary nature of these tools restricts the available
information to feature-sets. Based on the available docu-
mentation, we hypothesize that some tools use high level
metrics accessed through SNMP MIBS [10] and other tools
such as AirMagnet [12] use special radio monitors deployed
throughout the network to collect packet traces.

MeshMon is a framework that determines the metrics to
be collected by the health monitoring system based on the
current state of the network. This methodology of metric
collection ensures that the system collects the appropriate
level of details for effective fault diagnosis. In effect, Mesh-
Mon may transit from a minimal set of metrics to a level
that provides the same comprehensive details as Jigsaw.

3. A CASE FOR HIERARCHICAL
MONITORING

Modern enterprise networks are of such complexity that
even simple faults can be difficult to diagnose [2]. A prob-
lem occurring on the wireless network could arise for a
variety of reasons, including RF interference, link-layer
variability, dynamic addressing and authorization, incorrect
VLAN setup, as well as the myriad of complexities of the
wired network itself. While infrastructure WLANs present
complexity, the task of troubleshooting is further daunting
when the backhaul is a multi-hop wireless link. Apart from
the challenges of a single hop wireless network that persist
in a mesh network, additional complexities of a multi-hop

network, such as routing, traffic flows, link congestion, and
interference from neighboring networks and devices, must
be addressed.

Network management systems are built to aid the ad-
ministrator in the task of troubleshooting networks. These
systems constantly monitor the network and report a set of
metrics [10--12] that they are configured to monitor. How-
ever, they face the drawback that when faults occur, all in-
formation necessary to diagnose the root cause is not avail-
able. The range of interactions and the lack of sufficient
information often results in manual diagnosis.

Recent research has shown that automated fault diag-
nosis is possible by using detailed link layer traces [1,2].
While fault detection systems that take link layer traces as
their input are able to achieve better diagnosis and automa-
tion capabilities, they suffer from the drawback of imposing
high overhead. These systems are reported to collect up to
100 GB of monitoring data, five times as much as the data
traffic, over a period of 24 h. While a high bandwidth Ether-
net connection can sustain such overhead, a mesh network
that has wireless links on the backhaul typically lacks the
needed bandwidth.

In this paper, we propose a light-weight fault detection
system for mesh networks that does not incur the high over-
head of existing automated solutions, yet can provide the
detailed metrics when problem occurs. Our solution is based
on the central idea that faults occur intermittently and net-
works are well functioned a majority of the time. When a
network is functioning well, little monitoring overhead is
necessary. However, when a fault occurs, more monitoring
data need to be collected in order to diagnose the cause of
the fault. A monitoring system that adapts its monitoring
granularity can benefit significantly in terms of bandwidth
savings and reduction of complexity for the administrator.

To justify an adaptive monitoring system, the question
that we would like to investigate is whether faults occur in-
termittently. Ideally, we would like to analyze a real mesh
deployment, but because of the lack of any public mesh net-
work traces, we restrict our analysis to WLAN traces and
mesh testbed experiments. We analyze traces from a large
scale conference network to isolate the times when the net-
work performance can be deemed as faulty. We follow this
with baseline experiments on a mesh testbed deployment
and perform similar analysis.

3.1. Trace Description

We use data we collected from the 67th IETF meeting held
in San Diego in November 2006. The IETF network con-
sisted of 55 Cisco and D-Link Access Points (APs), spread
across the conference hotel. Thirty-eight APs were installed
in the conference rooms and each device was equipped with
one 802.11a and one 802.11b/g radio. The meetings were
held in two separate sessions, the day and the late evening
sessions, the latter of which is also called the plenary. We
used the vicinity sniffing technique to collect data from the
MAC layer [13,14]. We monitored the network for 4 days
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of the conference during both the day and plenary sessions.
Details about the trace collection methodology that are rel-
evant to the analysis presented in this paper are outlined
below.

Day session: The day sessions were held between 09:00
and 17:30 h from 6–10 November 2006. The day session
was divided into six to eight parallel tracks, each of which
was held in one of the conference rooms. During the day
sessions, we collected usage statistics in the beginning of
the day and ranked the APs based on the number of users
associated with each. We configured the sniffers to monitor
the top 12 ranked APs for the entire day. Some of the sniffers
were thus configured on the 802.11g network, while the rest
were on 802.11a, depending on the usage.

Trace analysis: We analyze the traces from all the day
sessions. Each parallel track had between 30 and 100 users,
with an average of 15 users per AP. The medium utilization
during these sessions is plotted in Figure 1(a). The x-axis in
the figure represents the airtime or the percentage of time
that the medium was utilized by transmissions. The y-axis
represents the percentage of time for each airtime bin on
the x-axis, computed as an average over 1 min intervals.
The percentage values are computed over the span of all
day sessions during the 4 days. We only include non-zero
airtime values in the plot. As can be seen from the figure,
the network was not highly utilized, with only 10% utiliza-
tion up to 60% of the time. The network was moderately
congested for about 25% of the time and highly congested
for only about 1% of the time [14].

We now consider the performance and connectivity con-
ditions of this network. To characterize the performance,
we study the loss rates. Figure 1(b) shows the CDF of the
loss percentage for the entire trace period. Up to 50% of the
time, the loss rate was under the 5% threshold that has been
used for fault detection in prior research [8]. Only about
15% of the time was over 10% loss experienced.

We next analyze the amount of 802.11 management over-
head traffic that clients experienced in this network. These
include the probes, association and authentication requests
and responses. The overhead index is defined as the number
of management packets that are transmitted for every byte
of data transmitted. The overhead index provides a sense
of connectivity issues that exist in the network. Figure 1(c)

plots the average overhead index for the entire trace du-
ration. The x-axis in the figure represents the per minute
average of overhead across all the clients. The overhead
indices are ordered in increasing order for visual clarity
with exceedingly low values omitted. From the figure, we
see that clients experienced low overhead a majority of the
time; only for about an hour was the overhead index higher
than 1.

The results suggest that networks experience faulty con-
ditions for only a fraction of time and function normally
in the typical case. Intuitively, networks function well for a
majority of the time since large scale networks are deployed
with careful planning to deliver a baseline performance. The
frequency of network faults depends on a variety of factors
involving deployment and usage. However, we expect simi-
lar trends in any planned wireless network. A fault detection
system that takes advantage of this fact can benefit signifi-
cantly by reducing the monitoring overhead. Such a system
would collect a few metrics that ensure the network is func-
tioning well, and when problems arise it would increase the
granularity to collect those metrics that could identify the
potential problem.

To verify that the observations from a WLAN analysis
also hold in a mesh network, we conduct experiments on
the mesh network at UCSB. A brief description of the
testbed, the experiments, and results is presented.

3.2. Testbed Description

We start with a brief description of the mesh testbed. All
experiments described in this paper were conducted on the
UCSB MeshNet, an indoor wireless mesh testbed that con-
sists of 15 wireless nodes [15]. All nodes in the testbed use
802.11a/b/g cards based on the Atheros chipset. The nodes
use the IEEE 802.11b/g CSMA protocol for medium ac-
cess control and SRCR [16] is used as the routing protocol.
Several nodes in the testbed have multiple radios: one for
the mesh tier and the other for client access tier. We config-
ured each of the radios on orthogonal 802.11b/g channels.
The nodes use Linux (kernel version 2.4) as their operating
system. We use the open source MadWifi driver v0.9.2 to
control the cards. RTS/CTS is disabled for all the radios.
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Figure 1. Analysis of WLAN traces from 67th IETF wireless network. (a) Medium utilization; (b) packet loss; (c) overhead index.
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Figure 2. Study of throughput, RTT and, loss variations in UCSB MeshNet. (a) Variation of throughput from the highest 90th percentile;
(b) variation of RTT values from the lowest 90th percentile; (c) variation of packet loss percentage from the lowest 90th percentile.

The nodes are placed in different locations on three floors
of the building. The testbed coexists with an 802.11g wire-
less LAN that provides Internet connectivity throughout the
building.

3.3. Baseline Experiment

Using constant rate flows, we perform experiments on the
mesh network to study the variations in throughput, loss,
and delay values.

The experiment consisted of eight client laptops, placed
at different locations and connected to the mesh network
on the client access tier. The laptops were used to run eight
UDP sessions of constant 1 Mbps bitrate with the gateway.
The corresponding receiver for each session was the gate-
way node. Since the clients were connected to the gateway
through a variable number of hops, the average throughput
achieved varied from 1 Mbps to 300 kbps. The flows were
measured over a period of 4 h and the achieved throughput,
RTT, and packet losses were measured over every 1 min
interval during this period.

Figure 2 shows the results from the experiment. The
x-axis in each graph represents the variation, which we
define to be the difference between the observed value and
the 90th percentile value of that metric. We observe that
in the mesh network, similar to the WLAN, the problems
were restricted to a small percentage of time. For instance,
in Figure 2(a), we see that about 50% of the time the nodes
achieved the 90th percentile throughput, and up to 70%
of the time achieved throughput within 50% variation.
Similarly, from Figure 2(b) and (c) we see that up to 60%
of the time, the nodes had the no loss variation and up to
70% of the time they no delay variation.

These instances clearly indicate that much can be gained
from having an intelligent monitoring system that adapts the
monitoring granularity based on the network conditions. To
this end, we design MeshMon, a light-weight mesh moni-
toring system that runs on the mesh nodes and provides real-
time fault detection capabilities. We design such a system
using a hierarchical structure of metrics and demonstrate its
usefulness in monitoring the MeshNet.

4. DESIGN OF MeshMon

In this section we first present the network architecture in
which MeshMon operates. We then present a brief overview
of the design philosophy, followed by a detailed description
of the design. Some aspects of the baseline design were
first presented in our previous work [4]. For the sake of
completeness, we outline those details again in this paper,
and describe the evolution of our design for mesh networks.

4.1. Network Attributes

Our solution is designed for a multi-hop IEEE 802.11-based
mesh network. We assume that each mesh router is equipped
with two radios—one used for the backhaul connectivity
to the Internet and the second radio as an AP that services
client 802.11 devices. This network architecture of separate
client access layer and network backhaul layer is commonly
used by several commercial mesh router manufacturers.‡

Some networks from the research community (e.g., MIT
Roofnet§ [16]) also adopt this logical separation of network
backhaul and client access layers. Traffic to the client de-
vices is routed, using the backhaul layer, from the gateway
to the mesh node to which the client is associated. The client
access radio at this node is then used to transmit the traffic
to the client device. We believe that minor modifications to
the current design of MeshMon, specifically to the decision
tree (presented in Section 4.6), will also enable its use in sin-
gle radio mesh networks wherein both backhaul and client
access layers use the same radio. The challenge in such sin-
gle radio systems is the isolation of the source of a problem
due to the complex interactions between the two network
layers. We do not address such networks in this paper.

All nodes in the mesh network run MeshMon and com-
municate with a central controller. The central controller

‡ Strix Systems - http://www.strixsystems.com, BelAir Networks-
http://www.belair.com, FireTide - http://www.firetide.com
§ For MIT Roofnet, the client access layer uses Ethernet instead of the
second 802.11 radio.
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performs the following functions: it collects data from the
mesh nodes and stores the data in a database; it issues com-
mands to mesh nodes to control the data collection; and it
provides data to the network administrator. The data col-
lected by the controller may also be accessed by a network
health monitoring tool such as SCUBA [3], and can be used
for automatic rule-based remediation of problems.

We assume the client devices to be autonomous and
largely outside the control of the network administrator.
As part of our future work, we intend to incorporate statis-
tics collected from cooperative client devices, i.e., devices
that can communicate with the MeshMon controller. Cur-
rently, we restrict the focus of the metric collection system
to the wireless access part of the network and do not con-
sider metrics from high layers (e.g. events from DHCP, DNS
queries).

4.2. Design Rationale

The basic idea in the design of MeshMon is to use a few
baseline metrics that capture the general health of the net-
work. When problems are detected, the system intelligently
increases metric collection to capture only those metrics that
are needed to diagnose the root cause of the problem. The
principle behind the design of such a system is that in the
general case networks are in a stable state, during which
time it is sufficient to have a light-weight monitoring sys-
tem. On the other hand, when a problem arises, collection
of detailed metrics in the area where the problem is detected
can facilitate fine-tuned problem diagnosis.

In the design of MeshMon, we use the concept of tiers
of metrics, wherein each tier collects a level of detail more
than the previous level. The system goal is to diagnose the
network problem at the lowest possible tier, i.e., with the
minimum level of detail necessary. When diagnosis cannot
be made with certainty at a particular tier, the next tier is
triggered to collect more metrics. The biggest challenge
in designing a multi-tiered metric collection system is to
identify the metrics that are necessary and sufficient for
making decisions at each tier for the particular problem set
that the system should handle. The classification of metrics
into tiers is presented in Section 4.6.

One design consideration is whether to make the monitor-
ing system centralized or distributed or use a hybrid control
mode. The intelligence to transition the metric collection
among the different tiers can be either at the central con-
troller or at the mesh nodes. The latter option provides a dis-
tributed approach that scales better as the size of the network
increases. The metric collection process is more responsive
to local events. Further, a distributed approach can reduce
monitoring and related control traffic. On the other hand,
the central controller has a global view of the network and
may be able to correlate symptoms of nearby mesh nodes.
This ability to detect non-localized problems is critical in
a mesh network. For example, an event such as high traffic
load at a mesh node close to the gateway would impact the
performance of other nodes routing through it. Therefore,

we choose to use a hybrid model of control wherein the
mesh nodes attempt to diagnose the problem locally when
possible, and in other cases communicate with the central
controller to coordinate metric collection among the various
mesh nodes.

Even in situations where the mesh node can diagnose the
problem locally, we send the metrics associated with the
diagnosis to the central conroller. This data is stored in the
central database and used for audits and post-mortem anal-
ysis. The transmission of this data is considered optional;
however, the system currently does not support automated
remediation schemes. We therefore believe that the data
associated with the problem diagnosis is essential for the
network administrators in order to fix the problem.

Next we describe the system architecture of MeshMon,
followed by the classification of metrics into tiers and the
rules/triggers that govern the transition of the metric collec-
tion among the different tiers.

4.3. MeshMon Architecture

Figure 3 illustrates the architecture of the MeshMon system.
At each mesh node, the MeshMon system is comprised of
three main components—the monitoring engine, the analy-
sis engine, and the communication engine. The monitoring
engine takes as input a list of metrics to collect. The list of
metrics to collect depends on the current metric collection
tier for the node. The collected metrics are output to the
analysis engine and also to the communication engine.

The analysis engine is responsible for generating the list
of metrics to collect at the node. For this purpose, the data
collected by the monitoring engine are processed using a
repository of rules. The rules are specifications of network
conditions or events that trigger a transition in the metric
collection tiers. Each rule represents the possible presence
of a problem in the network and is usually described in
terms of conditional statements that compare current metric
values against pre-determined threshold values. Since each
rule is inherently associated with a tier of metric collection,
the set of rules form a structure similar to a decision tree.
Section 4.6 provides a detailed discussion of the rules and
the decision tree. A second output of the analysis engine is
the diagnosis of faults in the network. Based on the problem
hypothesis presented by the rules and the corresponding
metrics, the analysis engine can perform root cause analysis
in the network and suggest potential remedial actions.

The third component of the system is the communication
engine and is responsible for communication between the
node and other nodes in the network, including the gate-
way node. For reasons outlined in Section 4.2, the metrics
collected by the monitoring engine are sent to the central
controller via the gateway. In a mesh network, the problem
diagnosis may require metrics from neighboring, upstream
or downstream mesh nodes, in addition to metrics collected
locally. The communication and actions required to trigger
this non-local metric collection are handled by the commu-
nication engine.
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Figure 3. Architecture of MeshMon showing mesh nodes and gateway. MeshMon runs on each mesh router.

4.4. Baseline Metrics

In order to characterize the performance of wireless net-
works, a plethora of metrics have been studied: throughput,
medium utilization, control overhead, loss rates, retransmis-
sions, data rate, and received signal strength are all good
candidates. When a change occurs in the network condi-
tion, it is often reflected in one or more of these metrics.
Conversely, when the value of a metric changes, several
other metrics are needed to find the problem that caused the
change.

To select a baseline set of metrics, we consider the
typical performance goals of a mesh network [17].
Broadly, there are two goals that a WMN tries to achieve:
(1) provide connectivity to clients within the network’s
coverage area and (2) ensure high quality routes to the
gateway. We note that ubiquitous coverage is a goal during
the deployment phase of a network; we are concerned
with detecting performance issues during post-deployment
operation. Therefore, the ultimate objective is to ensure
clients are able to connect to the network and obtain good
performance from the mesh network.

These objectives lead us to three baseline metrics: maxi-
mum client overhead index (Omax), load-aware WCETT (L-
WCETT), and minimum client throughput (Tmin). The over-
head index is defined as the ratio of control and management
traffic (in bytes) to data traffic (in bytes) [18]. When a client
has connectivity problems, Omax will be high. The second
metric, L-WCETT, provides a measure of the mesh perfor-
mance. As we describe later in Section 4.5, L-WCETT at a
mesh router is closely related to the mesh path throughput
achieved between the mesh router and its gateway. A high
value of L-WCETT indicates reduced path throughput for a

mesh router. The third baseline metric, Tmin, tracks the per-
formance of connected clients. When a client obtains low
throughput, Tmin will be low.‖ We piggyback these baseline
metrics on a heartbeat message sent by each mesh node to
the central controller. The baseline metrics can be tailored
based on the goals of the network. If one of the objectives of
the network is to support Voice-over-IP applications, then
low packet delay is another goal of the network. In such
networks, packet delay would be the fourth baseline met-
ric. In this paper, we consider networks that are unaware of
specific traffic type.

We believe that these metrics are sufficient at the high
level to detect a network problem. Three of the most impor-
tant problems related to wireless network access are connec-
tivity problems, performance problems, and authentication
problems [8]. Connectivity and authentication problems re-
sult in high Omax, whereas performance problems result in
a high L-WCETT, a low Tmin or both. In a mesh network, a
problem that is manifest on the client access tier could be
either because of a faulty condition on the client access tier
or the mesh backbone.¶ While performance problems man-
ifest in a variety of other metrics, such as data rates, loss
rates, and signal strength, these metrics can be used to pro-
vide a deeper understanding of the cause of low throughput
and thus are not first tier metrics.

‖ In order to distinguish clients with little or no offered load, we only
consider active clients (defined by a minimum activity threshold in bytes
transferred) for computation of Tmin.
¶ This challenge remains in case of a single radio mesh as well, wherein
both the tiers are on a common frequency, but the root cause of the
problems is disparate.
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4.5. Metric Collection

A large number of metrics such as throughput, goodput,
packet loss, delay, signal strength, ETX, and ETT are
available to indicate the performance of the network.
These metrics serve as indicators to potential problems in
different layers of the network stack. In this section, we
present the metrics that are monitored in MeshMon, along
with an outline of the implementation description.

Load-aware WCETT (L-WCETT): The end-to-end throu-
ghput from a mesh node to the gateway is the path through-
put for the node, and serves of the indication of the mesh
performance. Path throughput cannot be measured directly
since a node does not have information about the packet
reception at the other nodes. Hence we need a metric that a
mesh node can access, and that has a good correlation with
the path throughput.

One likely metric for this purpose is round trip
time (RTT). Prior work has shown that a correlation exists
between RTT and TCP throughput [19]. In order to verify
that the relation holds in a WMN as well, we conducted
TCP tests on the UCSB Meshnet. The experiment consists
of saturation throughput measurements between 10 mesh
nodes to the gateway. We ran 5 min TCP sessions upstream
and downstream between each of the 10 mesh nodes and the
gateway using the iperf utility and measured the end-to-end
throughput and RTT. Figure 4 shows the average through-
put and RTT over 20 s intervals. We observe the relationship
between RTT and throughput closely follows the model de-
scribed by Padhye et al. [19] and conclude that RTT can
indeed serve as a good indicator of throughput.

The measurement of RTT, however, requires transmis-
sion of probe packets and proactive measurement of RTTs.
Probes can be avoided through the use of a routing met-
ric such as WCETT [20] as a measure of path throughput.
Since the mesh backbone is on a single channel, we use
the definition of WCETT without the channel diversity, as
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Figure 4. Measure of throughput as a function of round trip time
(RTT) and load-aware WCETT (L-WCETT). Throughput and RTT
are measured by saturating the link using iperf measurements.
L-WCETT is computed as the sum of the ETT measurements and

the queuing delays along the path.

given by:

WCETT =
n∑

i=1

ETTi

Here, n is the number of links in the path. WCETT was
originally designed to be load independent, since the rout-
ing algorithm should be resilient to route flapping. How-
ever, for the purpose of detecting network faults, we would
like to be able to account for the throughput degradation
due to network load. We do this by adding to WCETT the
queuing and contention delays along the path. We call this
metric load-aware WCETT (L-WCETT). Figure 4 shows
the variation of throughput with L-WCETT for the same
experiments. We observe that L-WCETT has a high degree
of correlation with RTT. The degree of correlation is high
(linear correlation coefficient of 0.96) in the region where
throughput is less than 4 Mbps, which is a region of interest
in the diagnosis of performance problems. Therefore, we
choose to use L-WCETT, a metric that can be calculated
locally in collaboration with the routing module, to model
the backhaul layer throughput. Note that L-WCETT is used
only by MeshMon; the routing algorithm continues to use
the WCETT metric.

Airtime: We use the term Airtime (A) to denote the frac-
tion of time that a node senses the medium as unavailable for
transmission. This includes the time during which the chan-
nel is busy, and the additional wait time the 802.11 MAC
spends for the DIFS, SIFS, and backoff periods. High air-
time is an indication of high transmit or receive times at
a node due to high traffic or high contention. The airtime
metric is thus a good indicator of medium congestion.

Loss: Loss (L) is used to indicate the MAC layer losses.
To compute loss, we modify the driver to report the number
of packets that are retransmitted at the MAC layer. The
loss rate of a link is used to diagnose problems such as
congestion and poor signal strength.

Signal strength: Signal strength (S) is used to refer to the
RSSI measurements reported by the card.

Transmit rate: Transmit rate (R) is the data rate or the
modulation rate at which a packet is transmitted.

Overhead index: Overhead index (O) is the number of
management frames that a mesh node transmits. Man-
agement frames include association and reassociation re-
sponses, probe responses, disassociation, authentication,
and deauthentication frames. Management overhead (M)
is used to represent the overhead computed for each man-
agement frame type.

4.6. Decision Tree

The set of metrics to collect at each tier, together with the
rules that trigger the transition between tiers, can be visu-
alized as a decision tree. A rule is essentially a threshold
check to look for the manifestation of a network problem,
indicated through one or more metrics.
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Based on the network model described in Section 4.1, we
note that the operation of the backhaul layer and the client
access layer of the nodes are largely independent of each
other. In other words, although the symptoms of a problem
in the backhaul layer may be reflected in metrics associated
with the client layer (and sometimes vice-versa), the diag-
nosis of the problem does not require detailed client layer
metrics. Therefore we use two logical decision trees—one
for the client access layer and one for the network backhaul
layer. Both these trees are active simultaneously and the tiers
of metric collection may be different in each depending on
the problem suspected.

Algorithm 1 Client layer decision algorithm.

Parameters: Tt ,St ,Lt ,At

Current Set = {}
—— For each monitoring cycle do:
Tier 1: Current Set = {Tmin, Omax}
if (Tmin < Tt) then go to Tier 2
Tier 2:

if Tmin < Tt then Current Set += {A, L}
else if O > Ot for each client i Current Set +=

{O, Oi};
if A < At and L < Lt and O < Ot then go to Tier

1
else go to Tier 3

Tier 3:
if A > At then for each client i Current Set +=

{Ai}
if L > Lt then for each client i Current Set +=

{Li}
textbfif Oi > Ot then for each client i Current Set

+= {Mi}
if

∑n

i=0 Ai < A then EXTERNAL INTERFER-
ENCE

if for all clients i A < At and L < Lt and Oi < Ot

then go to Tier 2

else go to Tier 4
Tier 4:

if
∑n

i=0 Ai > At then for all clients i Current Set

+= {Ri, Si}
if Mi > Mt then

if Association responses high
then ASSOCIATION PROBLEM
else if Auth/Deauth messages high then

AUTH PROBLEM
if for all clients i Si > St and Ri < Rt then CON-

GESTION
else if for all clients i Si < St and Ri < Rt then

POOR LINK
else Packet traces

—— On diagnosis, go to Tier 1

Note that the tiers represent a logical organization of the
various metrics for the purpose of diagnosing a fault. In our
implementation of MeshMon, the state of metric collection

is represented by Current Set. This set is obtained as union
of all the metrics in all the active paths. An active path is the
path in the decision tree based on the current hypothesis of a
problem. If more than one problem is suspected, there may
be more than one path active simultaneously. This enables
MeshMon to detect multiple concurrent problems. Another
scenario wherein multiple paths may be active at once is
as follows. A mesh router may be collecting metrics in the
mesh layer decision tree, under the direction of the central
controller, to diagnose a non-local problem. At the same
time, a problem in the client access layer at the mesh router
itself would trigger metric collection in the client access
decision tree.

Figure 5 presents the visual representation of the hierar-
chy tree. Each of the metrics is described in Section 4.5. In
the normal state of network operation, MeshMon operates
in Tier 1 and the Current Set is comprised of the baseline
metrics. The rules for transition between tiers and the state
of the Current Set in each of these tiers are outlined in Al-
gorithm 1 for the client access layer and Algorithm 2 for
the mesh access layer.

When a baseline metric for the mesh layer crosses its
threshold, only the mesh layer decision tree is activated.
However, when a problem is detected in the client layer,
both the client access tree and the mesh access tree are ac-
tivated, since the fault could lie in either tier. If the problem
lies in the client layer, all information required for diagnos-
ing is present locally and hence fault diagnosis occurs on
the mesh node. However, when the fault lies in the mesh
layer, a mesh node attempts to locally diagnose a problem.
If unsuccessful, it contacts the gateway, which in turn will
turn on the diagnosis on the other mesh nodes on the node’s
upstream path.

As an example, consider the scenario where a mesh
node’s throughput has dropped below the threshold because
a mesh router further up the route to the gateway is con-
gested. Tier 2 of metric collection is triggered to collect
the node’s local airtime and ETX metrics. Both these met-
rics would not indicate the problem that lies upstream. At
this point, the mesh router triggers the gateway to initiate
centralized diagnosis, and the gateway triggers the collec-
tion on each mesh router along the node’s upstream path.
Congestion will be detected by the gateway since

n∑

i=0

LETTi < LETTt

where LETTi is the per-link load aware ETT (L-ETT) value
along the path and L-ETTt is the threshold computed. This
is shown in Algorithm 2.

4.7. Choosing Parameters

We now discuss the selection of the two parameters that
influence performance of the monitoring system: threshold
values and periodicity of monitoring.
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Figure 5. Multi-tiered metric collection decision tree implemented in the analysis engine. The numbers at the top indicate the tier of
metric collection. White boxes represent the metrics collected at each tier. Arrows indicate the triggers used to transition between

tiers. Black boxes indicate the fault diagnosis. (a) Client layer decision tree. (b) Mesh layer decision tree.

Algorithm 2 Mesh tier decision algorithm.

Parameters: lwcettt , lETTt ,St , Rt ,At

Current Set = {}
—— For each monitoring cycle do:
Tier 1:
Current Set += {lwcett}

if lwcett < lwcettt then
Has there been a route change?
if yes then go to Tier 1
else go to Tier 2

Tier 2:
Current Set = {A, ETX}
if A < At and ETX < ETXt then go to Tier 1
else if P < Pt and A < At and ETX < ETXt

then TRIGGER CENTRAL DIAGNOSIS
else go to Tier 3;

Tier 3:
if A > At then Current Set += {Ai}

if
∑n

i=0 Ai < A then INTERFERENCE
else CONGESTION

if lETTi > lETT then CONGESTION
if

∑n

i=0 lETTi > lETTt thenCurrent Set +=
{Si, Ri}

if for all links i Si > St and Ri < Rt then INTER-
FERENCE

else if for all links i Si < St and Ri < Rt then
POOR LINK
—— On diagnosis, go to Tier 1

Thresholds: An important aspect of the decision tree is
the choice of thresholds used in the triggers. Thresholds can
be of two types: static thresholds and dynamic thresholds.
A static threshold is one that does not change with the net-
work usage or condition, and is used for a metric that has
a well-defined threshold value. An example is throughput;
the network has a minimum throughput goal that should be
met at all times. A dynamic threshold is one that is com-

puted online by the system and is used for a metric that
does not have a well defined threshold. Examples include
signal strength and transmit rate. For these metrics, we track
the history and dynamically compute a threshold. For every
monitoring cycle, the new value of the metric is compared
against this dynamic threshold to check whether the value
has degraded by a statistically significant quantity, indicat-
ing a potential problem.

The static metrics in our design are throughput and over-
head index. We derive some thresholds from the network
goals, e.g., minimum throughput for a connected client
is obtained from the network deployment goal. For the
testbed evaluations, we fixed this threshold to be the min-
imum average per-client throughput achieved during con-
trolled throughput measurements in the testbed. Prior re-
search [18], Reference [21] has guided us to arrive at a
threshold for the overhead metric. Clients operating in
highly congested networks are shown to have high overhead
of 1–1000. Since we want to identify connectivity problems,
we fix the threshold for overhead index to 1.

For the remaining metrics, we compute the thresholds
dynamically to distinguish between normal and anomalous
network conditions. The metric values are summarized us-
ing the exponentially decaying moving average (EDMA)
statistics. EDMA has been used in the past to dynamically
study temporal sequences [22,23]. This method allows us to
store only four floating point values and derive from these
values the number of data points collected, their average
value, and their variance (the square of the standard devia-
tion). The technique to compute the EDMA is outlined in
the Appendix.

A desirable property of MeshMon is to have minimal
false negatives in problem identification, i.e., we do not
want to miss detection of a fault. On the other hand, too
many false positives (i.e., transitions to collect detailed
metrics when there are no problems in reality) will generate
a large number of alerts and reduce the usefulness of the
system. While the EDMA technique facilitates tracking
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a sudden change in the metric by computing thresholds
online, it is not completely resilient to transient spikes.
However, the hybrid architecture of MeshMon is such that
the only result of a false positive will be to collect metrics
on the next tier. Since the decision making is local, no
bandwidth overhead is incurred and the only result of a false
positive is to send an alert . For the mesh layer, however,
false positives should be avoided since they can potentially
turn on centralized diagnosis. We can easily overcome this
by introducing a dampening factor to the EDMA model. We
introduce a small window of k points and compare the be-
havior in this window to the EDMA model for the preceding
points.

Periodicity: In contrast to a system such a Jigsaw [1]
that captures every packet transmission, MeshMon works
mainly on a statistical view of the network. Thus MeshMon
may be unable to capture transient conditions in the net-
work. Instead it focuses on more persistent problems. The
response time of MeshMon depends on the time granularity
of metric collection. A smaller period of collection makes
the system more responsive to temporary conditions in the
network but increases the bandwidth requirements and the
workload of the central controller. A large window saves
bandwidth but may cause the system to miss some network
faults. In our initial design we chose to collect metrics ev-
ery 5 s. We believe this value provides a balance between
transient fault detection and system responsiveness.

5. EVALUATION

In this section, we evaluate the fault diagnosis capability
of MeshMon. The system prototype implemented on the
mesh testbed is described below. We evaluate the system
under two scenarios, each consisting of a 4 h experiment
run, as described in Section 5.2. The system is evaluated by
injecting faults into the network and comparing the number
of faults detected with the number injected. We then discuss
the implications of incomplete monitoring data as a result
of using the wireless link for monitoring.

5.1. Implementation

A prototype of the MeshMon system has been implemented
on the UCSB Meshnet, described in Section 3.2. The sys-
tem consists of three components: the monitoring engine,
analysis engine, and the communication engine. Each of
these modules runs on every mesh router. The monitoring
engine has been implemented as simple extensions to the
madwifi driver. The analysis engine is a user level program
that parses the incoming data from the monitoring engine,
runs through a rules file to check whether any threshold has
been crossed, and triggers the appropriate level of metric
collection. Communication to the gateway occurs via the
mesh backhaul link. The communication engine is respon-
sible for sending problem notifications and metrics to the
gateway. Similarly, the gateway can issue commands to a

mesh node to collect specific metrics. The metrics are stored
in a relational database at the central controller.

Two basic principles that have guided our implementa-
tion are simplicity and flexibility. Many of the metrics that
we have used are already computed by the driver. The ana-
lytical engine has been implemented to be flexible so as to
plug in any fault detection algorithm.

5.2. Experiment Setup

We use the mesh testbed described in Section 3.2 in all our
evaluations. Eight client laptops are deployed at different
locations in the building. Each laptop is equipped with an
Atheros 802.11b/g card and is associated with the closest
mesh router. Evaluations are conducted with two types of
traffic: (a) constant rate flows as described in Section 3.3,
which we call the CBR traffic and (b) traces from a large
WLAN, which we call the Replay traffic.

In the first scenario, each laptop sends CBR traffic at a
constant rate of 1 Mbps to the gateway. The setup is the
same as the one described in Section 3.3.

In the second scenario, we use the WLAN traces de-
scribed in Section 3.1 to extract link layer data traffic pat-
terns and use this information to replay the traffic on the
mesh testbed. Use of real traces allows us to evaluate the
system for more realistic network usage with varying pe-
riods of low usage and high usage with congestion. From
the entire 4 day trace, a 4 h plenary period is chosen. In this
part of the trace, eight 802.11b/g AP were simultaneously
being used by about 600 users. We extract per-client activ-
ity from these traces and choose traces from the most active
32 clients to be replayed. For each client, we create a traffic
profile consisting of packet size and inter-packet interval
that the client replays to the mesh gateway. Similarly, the
gateway replays traffic to the clients, which in the original
trace were packets from the access point to the client. The
nodes are synchronized to retain the packet sequence in the
original conversation. The client traces from the 32 selected
clients are replayed using eight laptops, so each laptop runs
four conversations with the gateway. We verified that there
is indeed a variation in traffic load from each laptop.

The two traffic scenarios are summarized in Table I.

5.3. Fault Diagnosis

We now evaluate the fault detection capabilities of Mesh-
Mon. Our general evaluation methodology is as follows.
We inject a set of faults into the system. The nodes run

Table I. Description of the two evaluation scenarios.

Traffic Length (h) # of clients Description

CBR 4 8 CBR traffic of
1 Mbps with gateway

Replay 4 8 Most active 32 clients
from IETF traces
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MeshMon and attempt to diagnose the faults through
increased metric collection and send alerts to the central
controller when the fault is detected. We quantify the
diagnosis accuracy by comparing the inferred fault and its
source with the original fault we injected. We inject faults
in both the client access layer and the mesh layer.

The following classes of faults were injected into the
system.

� Congestion (CONG): A link is said to be congested
when the load on the link exceeds its capacity, result-
ing in queue overflows and packet drops. We inject
congestion on a link by starting several high band-
width conversations to the node’s upstream neighbor
using iperf. In our setup, we introduce congestion by
starting seven UDP flows, each flow with an applica-
tion data rate of 25 Mbps. This causes the 1 Mbps CBR
link to drop down to 20–100 Kbps till the duration of
the other flows.

� Poor link (LINK): A poor link is characterized by low
signal strength. We first place the receiver at a distance
where it can just sustain a 1 Mbps throughput. In order
to inject this fault, we use a metal case to cover the
receiver’s radio. This reduces the RSSI by 1–2 dB and
creates a bad link, and the client is unable to sustain a
throughput of 1 Mbps.

� Interference from neighboring networks (INT): A m-
esh network often shares the spectrum with neighbor-
ing Wi-Fi or other mesh networks. The network may
be affected by interference from these neighboring net-
works, resulting in throughput degradation. In order to
create interference of this kind, we setup seven laptops
in ad hoc mode, in the vicinity of the mesh node, and
start several high bandwidth conversations between
them so that the mesh link is unable to sustain the
1 Mbps traffic.

� Non-802.11 interference (EXT): A mesh typically
shares the spectrum with several non-802.11 de-
vices such as microwaves, bluetooth devices, cordless
phones, etc., that operate on the same band. We model
this scenario by operating a microwave oven in the
vicinity of the receiver.

� Connectivity problems (CONN): A client can have
connectivity issues due to inability to associate with
an access point or authentication failure. Association
could fail because of a lossy link, high levels of con-
gestion [18,21], ACLs or whitelists. Authentication
problems could arise due to incorrect keys or missing
or expired certificates. We inject association problems
for a client by excluding its MAC address from the
whitelist and thereby preventing association.

� Non-local problems in mesh layer (CTRL): Specific
to the mesh layer are a class of problems that require
the intervention of the central controller. Consider the
case where a link in a mesh router’s upstream path is
congested. The router will suffer from high L-WCETT
and hence low end-to-end throughput. However, the
router’s local metrics fail to diagnose the problem.

We inject this fault by starting several high bandwidth
conversations with a mesh router in the upstream path.

Note that the CONN faults class is applicable to the client
access layer only, and the CTRL faults class to the mesh
layer only. The other four fault classes are applicable to
both layers. Therefore there are five fault classes for each
layer.

We inject three instances of every fault described above
for both traffic scenarios and we do this on both the client
and the mesh layers. Hence each fault class is injected in
12 instances. Each mesh router runs MeshMon and collects
metrics based on the hierarchical decision tree. When a fault
is detected, the router sends to the central controller an alert
corresponding to the fault and the metrics that support this
diagnosis. For example, when a client is excluded from the
whitelist and this fault is detected, an alert for association
problems, along with the associated metrics of overhead
index, and the number of probe and association requests for
the client is sent to the central controller.

We evaluate the system in terms of the following metrics:

� Faults injected: Since we inject three instances of each
type of fault class described above, on both the mesh
and client access layers, a total of 30 faults is injected in
each traffic scenario during the 4 h experiment. These
faults represent the ground-truth for the experiment
scenarios.

� Faults detected: A fault is said to be detected when
the monitoring system correctly identifies the type and
location of the fault. Ideally, the system should be able
to detect all the injected faults.

� Overhead reduction: We compare the bandwidth sav-
ings of MeshMon with a non-hierarchical approach
that uses the entire set of metrics in every monitor-
ing cycle. In other words, overhead reduction is the
percentage change in the size of the monitoring data.
A high value of overhead reduction is desirable as it
indicates the low bandwidth utilization of MeshMon.

� False positive: A false positive represents the scenario
wherein MeshMon indicates the presence of a fault
when none was injected in reality. We would like to
have a low number of false positives to minimize false
alarms and the associated overhead of metric collec-
tion.

Fault diagnosis accuracy and overhead reduction: The
complete set of results from the experiments is presented
in Table II. Of the total 60 faults injected in the two sce-
narios, 52 were successfully detected by MeshMon. The

Table II. Fault diagnosis performance of MeshMon.

Trace CBR Replay

Faults injected 30 30
Faults detected 27 25
False positives 0 2
Overhead reduction 68% 64%
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average reduction in overhead for the two scenarios was
66%. In other words, MeshMon was able to detect a high
percentage (87%) of faults using only one-third of the mon-
itoring bandwidth as compared to the simple approach of
using all the available metrics. For our simple testbed setup
with 15 nodes and a maximum of one client per mesh node,
the simple monitoring approach collected about 400 MB of
monitoring data for a 4 h period, while MeshMon required
about 134 MB. This is an encouraging result that indicates
that MeshMon can scale better and can support larger mesh
networks.

In order to understand the performance of the hierarchical
metric collection system, we track the highest monitoring
tier at each node during each 5 s monitoring interval. Fig-
ure 6 plots the histogram of the number of intervals for the
highest tier in both the mesh backhaul layer and the client
access layer. We normalize the histogram with respect to the
total number of monitoring intervals in the experiment. We
observe that for a majority of the time, the system operates
at Tier 1. For the client layer, we observe that the fraction of
intervals for the highest monitoring tier decreases with the
increase in the tier number. This is in accordance with our
design hypothesis of hierarchical metric collection. For the
mesh layer, we observe that the system operates for a higher
percentage of time in Tier 3 than Tier 2. This is because we
observed fewer non-local problems in the mesh layer. As
per the decision tree in Figure 5(b), the metric collection
remains at Tier 2 only when the central controller is trig-
gered for non-local fault diagnosis; otherwise it transitions
to Tier 3 to diagnose local faults.

False positives: The results in Table II indicate a high
number of false positives and hence we further investigate
this behavior. Figure 7 plots the time series of mesh layer
events during one of the experiment trials. The data points
in Figure 7(a) represent the injected faults, and data points
in Figure 7(b) represent the alerts recorded. We observe that
for some injected faults, the central controller receives alerts
from multiple mesh routers. MeshMon currently does not
have the capability of correlating alerts posted by multiple
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Figure 6. Percentage of time spent in each tier at the client and
mesh layers.
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Figure 7. Time series of events (faults injected and faults de-
tected) at the mesh layer in a representative experiment trial.

mesh routers. Such a capability would enable MeshMon to
distinguish a fault that simultaneously impacts the perfor-
mance of multiple mesh routers and reduce the misleading
false positive rate.

Fault classes: We now study the fault diagnosis capabili-
ties of MeshMon for each class of faults that were injected.
This study helps us obtain further insight into the behav-
ior of the system and may be used for further tuning of the
thresholds or the decision-trees. Figure 8 plots the various
classes of faults injected and the number of faults detected.
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Figure 8. Number of faults injected and detected at client and
mesh layers. These results include both the CBR and replay
traces. (a) Fault detection at the client layer; (b) fault detection at

the mesh layer.
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We plot this information for the mesh layer faults as well
as the client access layer faults.

We observe that problems such as poor link, connectivity
issues, congestion at the client access layer, local conges-
tion at the mesh layer, and interference from neighboring
802.11 networks can be detected with a high degree of ac-
curacy. Diagnosis of faults such as external non-802.11 in-
terference and non-local problems at the mesh layer is less
accurate and requires further investigation. Our intuition on
the inaccuracy for the non-local problems is that non-local
problems injected on one node is affecting the node further
up in the upstream path; Figure 7 supports this hypothesis.
The detection algorithm required both the type of fault and
source to be identified correctly, resulting in higher false
negatives.

6. CONCLUSION

Management and troubleshooting of a wireless network is a
challenging task because of the variety of problems that may
arise, and the various metrics that characterize these prob-
lems. The multi-hop architecture of the mesh networks adds
to the complexity of this task. In this paper, we described
MeshMon, a network monitoring system specifically de-
signed to address the problem of real-time management of
a WMN. MeshMon employs a dynamic and adaptive metric
collection system. We presented the design of hierarchical
metric collection in a mesh network and the classification
of metrics in tiers.

Our implementation and evaluation of MeshMon demon-
strated the advantages of multi-tiered metric collection, in
terms of significant reduction in the bandwidth requirement.
While we have designed our solution for mesh networks,
we note that a simpler version of MeshMon (specifically,
the decision tree with the client access layer only) can be
used for infrastructure WLANs as well. Currently, Mesh-
Mon addresses the problems of metric collection and real-
time fault diagnosis. As part of our future work we would
like to extend the system to include automated remedial ac-
tions, i.e., based on the fault diagnosis, MeshMon should
apply a pre-configured solution to rectify the problem.
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