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Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr →  Live demonstration!

● Towards the Cyber Grand Challenge Finals
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Shellphish

● Who are we?
○ a team of security enthusiasts
■ do research in system security
■ play Capture the Flag competitions
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Shellphish

○ Started (in 2004) at:
■ SecLab: University of California, Santa Barbara
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Shellphish

○ expanded to:
■ Northeastern University: Boston

■ Eurecom: France
■ ...
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CTF competitions

● Security competitions 

● Different challenges
○ exploit a vulnerable service
○ exploit a vulnerable website
○ reversing a binary
○ …

● Different formats
○ Jeopardy ‒ Attack-Defense
○ Online ‒ Live
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Shellphish
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Shellphish

○ We do not only play CTFs

○ We also organize them!
■ UCSB iCTF
● Attack-Defense format
● every year, since 2002!

■ References:
● http://ictf.cs.ucsb.edu
● https://github.com/ucsb-seclab/ictf-framework
● Vigna, et al., "Ten years of ictf: The good, the bad, 

and the ugly."  3GSE, 2014.



11A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ If you want to know more about Shellphish:
■ Attend the talk of my “colleague”: 

Yan Shoshitaishvili

■ Saturday, August 29th (14:20 − 15:10)
HITCON Community
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Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live-demonstration!

● Towards the Cyber Grand Challenge Finals
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Cyber Grand Challenge (CGC)

● 2004: DARPA Grand Challenge
○ Autonomous vehicles

● 2014: DARPA Cyber Grand Challenge
○ Autonomous hacking!
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Cyber Grand Challenge (CGC)

● Started in 2014

● Qualification event: June 3rd, 2015, online
○ ~70 teams → 7 qualified teams

● Final event: August 4th, 2016 @ DEFCON (Las Vegas)
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CGC ‒ Rules

● Attack-Defense CTF

● No human intervention

● Develops a system that automatically
○ Exploit vulnerabilities in binaries
○ Patch binaries, removing the vulnerabilities
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CGC Qualification Event ‒ Rules

● Every team has to:
○ Generate exploits
■ an input to a binary
● the binary crashes (invalid memory access)
● encoded as a list of recv/send/… operations

○ Patch binaries
■ fix the vulnerabilities
■ preserve the original binary’s functionality
■ performance impact is evaluated
● CPU time, memory consumption, disk space



17A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Qualification Event ‒ Rules

● Architecture: Intel x86, 32bit

● Operating System: DECREE
○ Linux-like
○ only 7 syscalls

■ terminate (exit)
■ transmit (write)
■ receive (read)
■ fdwait (select)
■ allocate (mmap)
■ deallocate (munmap)
■ random

○ no signal handling, no not-executable stack, no ASLR, …

● DECREE VM
○ standard Linux ELF binaries
○ CGC binaries
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Shellphish CRS
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Automatic Vulnerability Discovery

“How do I crash a binary?”

“How do I trigger a condition X in a binary?”

Dynamic Analysis/Fuzzing Symbolic Execution
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Dynamic Analysis/Fuzzing

● How do I trigger the condition: “You win!” is printed?

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"
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Dynamic Analysis/Fuzzing

● How do I trigger the condition: “You win!” is printed?

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

● Try “1” → “You lose!”

● Try “2” → “You lose!”

● …

● Try “10” → “You win!”
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Dynamic Analysis/Fuzzing

● How do I trigger the condition: “You win!” is printed?

x = int(input())
if x >= 10:

if x == 123456789012:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"
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Symbolic Execution

● Interpret the binary code, using symbolic variables for 
user-input

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables
x = ???

Constraints
{}
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Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables
x = ???

Constraints
{}

State AA

Variables
x = ???

Constraints
{x >= 10}

State AB

Variables
x = ???

Constraints
{x < 10}

● Follow all feasible paths, tracking "constraints" on 
variables
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Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

State AB

Variables
x = ???

Constraints
{x < 10}

● Follow all feasible paths, tracking "constraints" on 
variables
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Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

● Follow all feasible paths, tracking "constraints" on 
variables
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Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

State AAA

Variables
x = ???

Constraints
{x >= 10, x < 100}

State AAB

Variables
x = ???

Constraints
{x >= 10, x >= 100}

● Follow all feasible paths, tracking "constraints" on 
variables
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Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AAA

Variables
x = ???

Constraints
{x >= 10, x < 100}

State AAA

Variables
x = 99

Concretization

● Concretize the constraints on the symbolic variables
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Symbolic Execution

● How did we use Symbolic Execution for CGC?

● We used the symbolic execution engine of
Angr: a binary analysis platform developed at UCSB
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Symbolic Execution

● How did we use Symbolic Execution for CGC?

● Symbolically execute the binaries checking if one of 
these two conditions is true

Memory accesses outside 
allocated regions

“Unconstrained” instruction 
pointer (e.g., controlled by 
user input)

● We used the symbolic execution engine of
Angr: a binary analysis platform developed at UCSB
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Symbolic Execution

● How did we use Symbolic Execution for CGC?

● Symbolically execute the binaries checking if one of 
these two conditions is true

Memory accesses outside 
allocated regions

“Unconstrained” instruction 
pointer (e.g., controlled by 
user input)

● We used the symbolic execution engine of Angr:
 the binary analysis platform developed at UCSB
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Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
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● Towards the Cyber Grand Challenge Finals

 



36A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr

● Binary analysis platform,
 developed at UCSB

● Open-source:
https://github.com/angr (please “star” it!)

● Written in Python!
○ installable with one single command!
○ interactive shell (using IPython)

● Architecture independent
○ x86 (ELF, CGC, PE), amd64, mips, mips64, arm, aarch64, 

ppc, ppc64
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Angr ‒ Demonstration

● CADET_00001
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Angr ‒ Demonstration

● CADET_00001
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Angr ‒ Demonstration

int check(){

   char string[64];

   receive_delim(0, string, 128, '\n')

   //check if the string is palindrome

//...

   return result;

}

● CADET_00001: a classic buffer overflow
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Angr ‒ Demonstration

import angr
p = angr.Project("CADET_00001")
pg = p.factory.path_group(immutable=False,

save_uncontsrained=True)
while len(pg.unconstrained)==0:
    pg.step()
crash_state = pg.unconstrained[0].state
crash_state.posix.dumps(0)

● CADET_00001: a classic buffer overflow
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Angr ‒ Demonstration

#define EASTEREGG "\n\nEASTER EGG!\n\n"

   

//the “caret” character (“^”) triggers the Easter Egg

if(string[0] == '^'){ 

      transmit_all(1,EASTEREGG, sizeof(EASTEREGG)-1)

}

● CADET_00001: triggering the “Easter Egg”
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Angr ‒ Demonstration

● CADET_00001: triggering the “Easter Egg”
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Angr ‒ Demonstration

import angr
p = angr.Project("CADET_00001")
pg = p.factory.path_group(immutable=False)
pg.explore(find=0x804833E)
pg.found[0].state.posix.dumps(0)

● CADET_00001: triggering the “Easter Egg”
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● 7 teams passed the qualification phase

● Shellphish is one of them! :-)

● We exploited 44 binaries out of 131

● Every qualified team received 750,000$ !

CGC Quals ‒ Results
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CGC Finals

● The system will need to be 100% automated
○ no possibility of bug fixing after competition’s start

● Partially different rules
○ An exploit needs to
■ set a specific register to a specific value
■ leak data from a specific memory region
■ we need to implement more “realistic” exploits
● Angr automatic ROP-chain builder!

○ Network-level monitoring and defenses
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CGC Finals

● Every team will have access 
to a cluster of:
○ 1280 cores
○ 16 TB of RAM
○ 128 TB of storage
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CGC Finals

● Money prices!
○ First place: 2,000,000$
○ Second place: 1,000,000$
○ Third place: 750,000$

● The winning team will compete against human teams at 
DEFCON CTF Finals :-)
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Shellphish CGC Team
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“That’s all folks!” 

          Questions?

References:
this presentation: http://goo.gl/3ulxRa
angr: https://github.com/angr/angr
HITCON Community talk: Saturday, August 29th (14:20 − 15:10)
emails: antoniob@cs.ucsb.edu ‒ yans@cs.ucsb.edu


