
 University of California, Santa Barbara

HITCON Enterprise
August 27th, 2015

A Dozen Years of Shellphish
From DEFCON to the

Cyber Grand Challenge

Antonio Bianchi antoniob@cs.ucsb.edu

3A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live demonstration!

● Towards the Cyber Grand Challenge Finals

4A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live demonstration!

● Towards the Cyber Grand Challenge Finals

5A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

● Who are we?
○ a team of security enthusiasts
■ do research in system security
■ play Capture the Flag competitions

6A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ Started (in 2004) at:
■ SecLab: University of California, Santa Barbara

7A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ expanded to:
■ Northeastern University: Boston

■ Eurecom: France
■ ...

8A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CTF competitions

● Security competitions

● Different challenges
○ exploit a vulnerable service
○ exploit a vulnerable website
○ reversing a binary
○ …

● Different formats
○ Jeopardy ‒ Attack-Defense
○ Online ‒ Live

9A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

10A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ We do not only play CTFs

○ We also organize them!
■ UCSB iCTF
● Attack-Defense format
● every year, since 2002!

■ References:
● http://ictf.cs.ucsb.edu
● https://github.com/ucsb-seclab/ictf-framework
● Vigna, et al., "Ten years of ictf: The good, the bad,

and the ugly." 3GSE, 2014.

11A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish

○ If you want to know more about Shellphish:
■ Attend the talk of my “colleague”:

Yan Shoshitaishvili

■ Saturday, August 29th (14:20 − 15:10)
HITCON Community

12A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live-demonstration!

● Towards the Cyber Grand Challenge Finals

13A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Cyber Grand Challenge (CGC)

● 2004: DARPA Grand Challenge
○ Autonomous vehicles

● 2014: DARPA Cyber Grand Challenge
○ Autonomous hacking!

14A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Cyber Grand Challenge (CGC)

● Started in 2014

● Qualification event: June 3rd, 2015, online
○ ~70 teams → 7 qualified teams

● Final event: August 4th, 2016 @ DEFCON (Las Vegas)

15A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC ‒ Rules

● Attack-Defense CTF

● No human intervention

● Develops a system that automatically
○ Exploit vulnerabilities in binaries
○ Patch binaries, removing the vulnerabilities

16A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Qualification Event ‒ Rules

● Every team has to:
○ Generate exploits
■ an input to a binary
● the binary crashes (invalid memory access)
● encoded as a list of recv/send/… operations

○ Patch binaries
■ fix the vulnerabilities
■ preserve the original binary’s functionality
■ performance impact is evaluated
● CPU time, memory consumption, disk space

17A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Qualification Event ‒ Rules

● Architecture: Intel x86, 32bit

● Operating System: DECREE
○ Linux-like
○ only 7 syscalls

■ terminate (exit)
■ transmit (write)
■ receive (read)
■ fdwait (select)
■ allocate (mmap)
■ deallocate (munmap)
■ random

○ no signal handling, no not-executable stack, no ASLR, …

● DECREE VM
○ standard Linux ELF binaries
○ CGC binaries

18A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live demonstration!

● Towards the Cyber Grand Challenge Finals

19A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish CRS

vulnerable
binary

patched
binary

exploit

Cyber
Reasoning
System

20A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish CRS

vulnerable
binary

proposed
patches

proposed
exploits

Shellphish CRS

Automatic
Testing

exploit

patched
binary

Automatic
Patching

Automatic
Vulnerability

Finding

Automatic
Vulnerability

Finding

21A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live demonstration!

● Towards the Cyber Grand Challenge Finals

22A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Automatic Vulnerability Discovery

“How do I crash a binary?”

“How do I trigger a condition X in a binary?”

Dynamic Analysis/Fuzzing Symbolic Execution

23A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing

● How do I trigger the condition: “You win!” is printed?

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

24A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing

● How do I trigger the condition: “You win!” is printed?

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

● Try “1” → “You lose!”

● Try “2” → “You lose!”

● …

● Try “10” → “You win!”

25A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Dynamic Analysis/Fuzzing

● How do I trigger the condition: “You win!” is printed?

x = int(input())
if x >= 10:

if x == 123456789012:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

26A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

● Interpret the binary code, using symbolic variables for
user-input

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables
x = ???

Constraints
{}

27A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State A

Variables
x = ???

Constraints
{}

State AA

Variables
x = ???

Constraints
{x >= 10}

State AB

Variables
x = ???

Constraints
{x < 10}

● Follow all feasible paths, tracking "constraints" on
variables

28A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

State AB

Variables
x = ???

Constraints
{x < 10}

● Follow all feasible paths, tracking "constraints" on
variables

29A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

● Follow all feasible paths, tracking "constraints" on
variables

30A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AA

Variables
x = ???

Constraints
{x >= 10}

State AAA

Variables
x = ???

Constraints
{x >= 10, x < 100}

State AAB

Variables
x = ???

Constraints
{x >= 10, x >= 100}

● Follow all feasible paths, tracking "constraints" on
variables

31A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

x = int(input())
if x >= 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

State AAA

Variables
x = ???

Constraints
{x >= 10, x < 100}

State AAA

Variables
x = 99

Concretization

● Concretize the constraints on the symbolic variables

32A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

● How did we use Symbolic Execution for CGC?

● We used the symbolic execution engine of
Angr: a binary analysis platform developed at UCSB

33A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

● How did we use Symbolic Execution for CGC?

● Symbolically execute the binaries checking if one of
these two conditions is true

Memory accesses outside
allocated regions

“Unconstrained” instruction
pointer (e.g., controlled by
user input)

● We used the symbolic execution engine of
Angr: a binary analysis platform developed at UCSB

34A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Symbolic Execution

● How did we use Symbolic Execution for CGC?

● Symbolically execute the binaries checking if one of
these two conditions is true

Memory accesses outside
allocated regions

“Unconstrained” instruction
pointer (e.g., controlled by
user input)

● We used the symbolic execution engine of Angr:
 the binary analysis platform developed at UCSB

35A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live demonstration!

● Towards the Cyber Grand Challenge Finals

36A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr

● Binary analysis platform,
 developed at UCSB

● Open-source:
https://github.com/angr (please “star” it!)

● Written in Python!
○ installable with one single command!
○ interactive shell (using IPython)

● Architecture independent
○ x86 (ELF, CGC, PE), amd64, mips, mips64, arm, aarch64,

ppc, ppc64

37A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

● CADET_00001

38A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

● CADET_00001

39A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

int check(){

 char string[64];

 receive_delim(0, string, 128, '\n')

 //check if the string is palindrome

//...

 return result;

}

● CADET_00001: a classic buffer overflow

40A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

import angr
p = angr.Project("CADET_00001")
pg = p.factory.path_group(immutable=False,

save_uncontsrained=True)
while len(pg.unconstrained)==0:
 pg.step()
crash_state = pg.unconstrained[0].state
crash_state.posix.dumps(0)

● CADET_00001: a classic buffer overflow

41A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

#define EASTEREGG "\n\nEASTER EGG!\n\n"

//the “caret” character (“^”) triggers the Easter Egg

if(string[0] == '^'){

 transmit_all(1,EASTEREGG, sizeof(EASTEREGG)-1)

}

● CADET_00001: triggering the “Easter Egg”

42A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

● CADET_00001: triggering the “Easter Egg”

43A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Angr ‒ Demonstration

import angr
p = angr.Project("CADET_00001")
pg = p.factory.path_group(immutable=False)
pg.explore(find=0x804833E)
pg.found[0].state.posix.dumps(0)

● CADET_00001: triggering the “Easter Egg”

44A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Agenda

● Shellphish

● The DARPA Cyber Grand Challenge

● Shellphish’s Cyber Reasoning System

● Automatic Vulnerability Discovery
○ Angr → Live-demonstration!

● Towards the Cyber Grand Challenge Finals

45A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

● 7 teams passed the qualification phase

● Shellphish is one of them! :-)

● We exploited 44 binaries out of 131

● Every qualified team received 750,000$!

CGC Quals ‒ Results

46A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● The system will need to be 100% automated
○ no possibility of bug fixing after competition’s start

● Partially different rules
○ An exploit needs to
■ set a specific register to a specific value
■ leak data from a specific memory region
■ we need to implement more “realistic” exploits
● Angr automatic ROP-chain builder!

○ Network-level monitoring and defenses

47A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● Every team will have access
to a cluster of:
○ 1280 cores
○ 16 TB of RAM
○ 128 TB of storage

48A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

CGC Finals

● Money prices!
○ First place: 2,000,000$
○ Second place: 1,000,000$
○ Third place: 750,000$

● The winning team will compete against human teams at
DEFCON CTF Finals :-)

49A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

Shellphish CGC Team

50A Dozen Years of Shellphish – from DEFCON to the Cyber Grand Challenge

“That’s all folks!”

 Questions?

References:
this presentation: http://goo.gl/3ulxRa
angr: https://github.com/angr/angr
HITCON Community talk: Saturday, August 29th (14:20 − 15:10)
emails: antoniob@cs.ucsb.edu ‒ yans@cs.ucsb.edu

