
CircuitBoard: Sketch-Based Circuit Design and Analysis
Shane W. Zamora

University of California, Santa Barbara
Department of Computer Science

Santa Barbara, CA, 93107
char42@cs.ucsb.edu

Eyrún A. Eyjólfsdóttir
University of California, Santa Barbara

Department of Computer Science
Santa Barbara, CA, 93107

eyrun@umail.ucsb.edu

ABSTRACT
Digital logic circuit design is an inherently computable
process that can greatly benefit from real-time feedback and
evaluation. This paper presents CircuitBoard, an application
for designing and testing hand drawn digital logic circuits
using a sketch-based interface, such as on a Tablet PC. Our
system aims to provide these tools to a paper-like interface,
an environment shown to be natural and conducive to
design conceptualization. We outline our low-level
strategies for stroke segmentation and logic element
recognition, as well as our high-level approaches to circuit
evaluation and the motivations behind our system's user
interface design.

Author Keywords
Sketch recognition, circuit design, user interfaces.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces; J.6 [Computer-aided
engineering]: Computer-aided design; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis. -
Object recognition;

INTRODUCTION
While high-tech computer-aided design (CAD) applications
are critical tools in the development of any complex digital
logic system, industry professionals, researchers, and
students alike prefer to begin their design process on low-
tech devices such as a whiteboard or a sheet of paper. The
simplicity of paper-based systems provides a more suitable
environment for brainstorming and drafting digital logic
circuits when compared to computer-based environments.
Handwriting a prototype allows the user to quickly and
intuitively externalize their thought process where the
complexities of CAD applications ultimately constrain the
ability of the designer to express their ideas. Whiteboards

also provide an environment conducive for multi-user
collaboration on the logic design and brainstorming
process.

Although a hand drawn approach is well suited for drafting
digital logic circuits, CAD applications can provide vital
tools for automating the visualization, simulation, and
debugging process. As debugging a circuit drawn on a
whiteboard or sheet of paper can take intensive
investigation and multiple cycles of trial and error, a CAD
application that can provide tools to assist this process can
be invaluable.

In this paper we present CircuitBoard, a sketch-based
application for designing digital logic circuits that aims to
combine the freedom of whiteboard-like interfaces and the
debugging tools provided by modern CAD development
environments. CircuitBoard uses a modeless pen-based
interface for composing hand drawn logic gates and wires
in arbitrary configurations, scales, and orientations.
Although mouse input is supported, CircuitBoard is
designed for the stylus-based input of Tablet PCs in order to
capture the feel and benefits of a traditional pen-and-paper-

Figure 1. A digital logic circuit design hand drawn in
CircuitBoard. Simulation mode is active, and the circuit
is being simulated. Tapping the square figures on the left
will toggle the inputs of the circuit, providing an intuitive
interface for interaction. The boolean value of each gate
and wire is indicated by its color – red is true and black
is false. The final outputs of the circuit and their values
are indicated by the circular figures on the right.

based interface as described. Our system presents an
intuitive and minimal interface for editing and simulating
these circuits and provides the user with valuable tools
previously accessible only by meticulous translation of a
design into a CAD environment.

In the following sections we will discuss our
implementation of CircuitBoard. We will present and
explain the motivations behind our user interface design,
and describe our system's implementation. We will focus on
its three major components: stroke segmentation, symbol
recognition, and circuit evaluation. The difficulties
encountered and the robustness of our solution to each of
these topics will be discussed. We present the results of a
user case study and evaluate of the overall accuracy of our
recognition process. Finally, we will discuss further
development of CircuitBoard that could increase its
completeness, scope, and usability in academia and
industry.

RELATED WORK
CAD applications such as Logisim [5] and commercial
Verilog/VHDL simulators such as ModelSim and VCS
have been available for years and provide the sort of real-
time debugging features we have outlined for CircuitBoard.
These systems, however, are prohibitively unsuitable for
draft work due to their formality and cumbersome, modal
interfaces. These factors hinder the brainstorming process
and are often the environments that drive engineers away
from the computer and back to paper-based interfaces for
their initial logic design work.

Digital logic circuit diagrams are well suited for automatic
detection in sketch-based environments. There are a small
number of well-defined symbols, with explicit relationships
and behavior. While many researchers use logic circuits or
other sorts of electrical circuits as examples of potential
applications of their sketch-based frameworks [2,6,9]
surprisingly few projects have been developed specifically
geared toward this domain. SketchySPICE, an example
CAD tool within the SATIN toolkit [7] recognizes logic
gates but is intended to be a simple proof-of-concept
application and is limited in its set of recognized gates.
Alvarado et al. developed a more advanced system for
sketch-based circuit recognition [1] that handles all types of
logic gates. CircuitBoard is designed to incorporate more
features than these applications, namely circuit simulation.

Liwicki and Knipping [8] developed a system that
recognizes and simulates sketched logic circuits, provides a
clock mechanism, and allows the user to consolidate and
save a circuit as a labeled gate that can later be instantiated.
Their system, however, constrains the user to a subset of
logic circuits, specific stroke patterns for gate recognition
(stroke must begin and end on the input side of the gate),
and a modal input method. CircuitBoard aims to provide a
modeless interface and a reduction of constraints on the

user's input style is part of our core design philosophy.

Alvarado conducted two user-focused studies into the
domain of sketched digital logic circuit design. [14]
explores different methods of triggering gate recognition
and providing recognition feedback, providing valuable
conclusions into the expectations of users when they
interact with a sketch-based system for logic design. [3]
uses a large user case study to analyze real-world hand
drawn logic gates and suggests several criteria for robust
gate recognition based on the observed patterns and
findings of the study. CircuitBoard uses strategies for gate
recognition that heed Alvarado's conclusions and adheres to
a user interface design principle that should be effectively
targeted to its users.

SYSTEM OVERVIEW
CircuitBoard is written in Java 1.6 and uses the JPen library
[15] for accessing the eraser features of the Tablet's stylus.
Figure 1 is a screenshot of CircuitBoard demonstrating the
simulation of a hand-drawn logic circuit. This screenshot
was taken on our primary testing machine, an HP tx2000
Tablet PC running Windows Vista. The system can be
broken down into four major components – the user
interface (UI), which provides a minimal set of controls
built upon research into practical sketch UI, stroke
segmentation for the simplification of arbitrarily noisy input
data, gate recognition for interpreting the drawn logic
elements, and circuit evaluation for providing the
debugging tools exclusive to our application.

USER INTERFACE
The primary philosophy behind CircuitBoard's user
interface design decisions is providing a clean, minimal
interface to the user. The simplicity of this interface
provides the environment conducive to the type of work
done on a whiteboard or sheet of paper. Alvarado et al.'s
research into the expectations of users during their
interactions with a sketch-based system [14] emphasizes
that the system should stay out of the user's way until
recognition functionality is requested. We will describe in
this section how our interface adheres to this philosophy.

The first key design decision is the modeless process of
composing logic circuits. The converse of this, for example,
would choose one pen mode for gates, another for wires,
etc. CircuitBoard does not require the user to specify a
“mode” for types of input, rather, the high-level work of
grouping sketched primitives into wires and gates is left to
the system. This modelessness creates a consistent and
unobstructed interface for draft work.

As CircuitBoard is intended to augment hand-drawn logic
circuits with information, this visualization must provide
data regarding the circuit's interpretation and simulation
while adhering to the policy of not interfering with the user.
We have concluded that there are two visual models of the

logic circuit that are relevant to the user – reviewing the
system's interpretation of the drawn logic circuit, and the
debugging process itself. While CircuitBoard is modeless in
its input, we have designed CircuitBoard to be modal in its
visualization – the user can switch between “Normal”
mode, “Gate” mode, and “Simulation” mode at any time to
visualize their circuit's interpretation and simulation. The
user can continue to edit the circuit as normal regardless of
the current visualization mode.

“Normal mode” is the default mode of CircuitBoard. It's
intended to provide a clean interface with minimal
intrusiveness to encourage an unimpeded flow of thought.
Each visualization mode is a superset of the functionality of
“Normal mode” - the user is able to edit the circuit during
any state of the system. Although the stroke segmentation
system of CircuitBoard can handle the beautification of
noisy stroke data, all sketched figures in CircuitBoard are
drawn as-is, without beautification. Beautification has
several negative impacts on the user's interaction with the
system. The automatic nature of beautification removes
control from the user, violating the philosophy of our UI
design. Furthermore, the more “perfect” nature of
beautified sketch fragments can make circuit elements seem
'finalized,' and can discourage the user from making
changes or even questioning what has been drafted. [10] An
exception to our aversion to automated, immediate
feedback is shown in Figure 2. When a new logical gate is
recognized, a label showing the type of recognized gate
quickly fades in and out, to signify both the recognition of

the gate and its type. Additionally, tapping the label when it
is visible will change the value of the gate to its next most
likely interpretation, based on CircuitBoard's gate
recognition system. This provides a shortcut for users to
quickly correct interpretation errors.

Figure 3 depicts “Gate mode”, which primarily allows the
user to review the correctness of CircuitBoard's
interpretation of the hand drawn logic circuit. Each gate
shown in the figure has a label on top of it displaying the
type of the gate, as well as a box surrounding this label.
Tapping this box will also change the gate to its next most
likely interpretation, based on the gate recognition system.
The second feature of “Gate mode” allows the user to
visualize the signal flow through the logic circuit.
Cascading colors travel through the wires of the circuit
from inputs to outputs, a still frame of which can be
observed in Figure 3. These two forms of visualization
allows the user to review and correct the interpretation of
the logic gates, as well as review the connectivity of the
circuit and observe unintended wire omissions or system
misinterpretations.

“Simulation mode”, as shown in Figure 1, is the primary
feature of CircuitBoard. The square figures on the left side
of the figure attach themselves to the free inputs of the
circuit, and the circular figures on the right side on the
figure attach themselves to the free outputs of the circuit.
Elements of the circuit drawn in black evaluate to 0 or false,
and elements drawn in red evaluate to 1 or true. Interacting
with the circuit involves toggling the circuit's inputs, which
is achieved by simply tapping the input areas with the
stylus. While other systems that have implemented
automated circuit evaluation requires the user to draw a 1 or

Figure 2. The top figure shows an AND gate being
drawn and appended to two input wires. The coloring
of the gate indicates that the users pen has not yet
been released from the tablet surface. Once the pen
has been released, as depicted in the lower figure, a
label quickly fades in and out that states the type of
logic gate that was interpreted. This automated
feedback indicates to the user that recognition has
occurred, and allows them to review the accuracy of
the interpretation. Tapping the label before it fades
out changes the gate to its next most likely
interpretation.

Figure 3. This screenshot of CircuitBoard shows the
Gate visualization mode. The types of each logic gate
are floated on top of their body within a bounding area
that, when tapped, will change the gate to its next most
likely interpretation. Signal flow through the circuit is
being represented by a cascading color sweep from
inputs to outputs that cannot be visualized well in a
screenshot.

0 next to circuit inputs, [8] our system provides a natural,
and intuitive manner of interacting with the circuit that is
conducive to informal review and debugging of the logic
circuit design.

Several methods of changing visualization modes are made
available to the user. The most notable are the large buttons
to the left of the drawing pane. These buttons change their
functionality based on the current visualization mode, such
that the two buttons always provide transitions into the two
alternate modes. While research into the practicality of
WIMP-based (Windows, Icons, Menus, Pointers) elements
in sketch-based systems, such as buttons, suggest
alternatives to their use, [4] we feel that only the size and
subsequent accessibility of traditional WIMP interactions
make them unsuitable for sketch-based applications. Large
buttons as used by CircuitBoard can still be accessible, even
with a stylus. While gestures for changing modes are
possible alternatives to buttons, gestures in the context of
CircuitBoard could not be robustly disambiguated from
potentially intended circuit elements. Furthermore, the
physical presence of the buttons on the screen serve to both
remind the user of the available tools to assist their draft
work and free the user from needing to remember program
features and arbitrary pen gestures.

In addition to the on-screen buttons, the user has the option
of using keyboard commands to change modes. As the
visualization modes are understood as temporary visual
augmentations to the drafting of the circuit, modifier keys
such as Control and Shift match this convention. Holding
down Control will allow the user to briefly review gate
mode for quick examination, and holding down Shift will
allow the user to briefly view the simulation of their logic
circuit. Releasing these keys allows the user to return to an
unobstructed design environment. As debugging a circuit
can require more extended interaction, Caps Lock will
toggle Simulation mode, to complement the understood
functionality of the Shift key.

RECOGNITION PROCESS
The critical element of CircuitBoard is the system that
recognizes the sketched digital logic gates and
interconnecting wires that comprise the logic circuit. Our
solution involves two steps: a scale-space based algorithm
introduced by Sezgin et al. [12] to segment the inputted pen
stroke data into simplified fragments, and a computer vision
algorithm using shape contexts to match groups of stroke
fragments to digital logic gates.

CircuitBoard is able to recognize the full set of logic gates –
AND, OR, NOT, NAND, NOR, XOR, and XNOR. These
gates can be drawn with any dimensions, and in any
number of strokes. There are no temporal, directional, or
stroke order constraints on the drawing of gates, providing
the user the maximum amount of flexibility. The
recognition process executes when an input stroke is

complete; when the pen is released from the tablet surface.
The responsiveness of the system is largely dependent on
the length of the input stroke as opposed to the complexity
of the scene. However, lengths that would cause noticeable
latency (complex polygons, extended polylines, etc.) are
not common in the domain of digital logic circuits. In the
average case, with complex scenes with many logic gates,
wires, and orphaned strokes on the screen, the common
latency time is ½ to 1 second. Although this number can
seem high, the latency does not interfere with the pen down
event that begins the next stroke. This allows the user to
chain one stroke into another without the system imposing
a need to pause. Additionally, this latency time usually
elapses before the next step in the logic circuit drafting
process has been decided or begun by the user.
CircuitBoard also handles cyclic digital circuits, and is able
to detect unstable logic configurations. Erasure is supported
that makes use of the stylus' eraser, providing a familiar
method of correcting input or design mistakes.

CircuitBoard has a small amount of basic features that
remain incomplete. We are able to accurately test for the
presence of arbitrarily rotated logic gates, but detecting the
angle of their orientation requires further development time.
The left half of Figure 4 shows examples of our recognition
system on eight correctly identified gates in arbitrary
orientations. In the meantime, CircuitBoard assumes gates
are pointing to the right.

Additionally, the splitting of wires to provide inputs to

Figure 4. Complex cases of digital logic design to be
handled in the near future by CircuitBoard. The left
figure shows examples of arbitrarily rotated logic gates.
CircuitBoard is able to accurately identify these gates,
and the coloration of each of the eight figures indicate
the correct interpretation. Robustly detecting their
orientation, however, requires further development.
The right figure shows how wire splitters introduce
ambiguity to an otherwise well defined domain – in this
example, the top and bottom endpoints of the wire could
equally be considered the “input”, where a control
should be provided to the user in “Simulation” mode for
debugging purposes.

multiple gates requires a complex approach to reach a
satisfiable level of robustness. While logic circuits are well
defined in their operation, splitting wires introduces
ambiguity to the system – certain areas of circuits, or even
entire networks of wires, can have no well defined input.
The right half of Figure 4 shows one such case, where two
possible inputs to the circuit are present, where in
“Simulation” mode only one controllable input will be
expected. While work has been made in implementing this
feature, further integration, debugging, and handling of
many potential degenerate cases will need to be done before
this can be complete.

STROKE SEGMENTATION
The first step in gate recognition is to simplify and segment
stroke data inputted into the system. Pointer-based input is
inherently noisy, due to machine imprecision or the
imperfect muscle control of the user. Although the user may
intend to draw a straight line, without a filter to interpret the
stroke data on a high level, the system will only be able to
interpret this raw stroke data as an erratic set of points, with
potentially large amounts of local curvature at points along
strokes intended to be straight. Sezgin et al.'s scale-space
based algorithm [12] filters out this noise by using a
Gaussian filter and segments strokes into line segments and
3rd order Bézier curves.

Sezgin et al.'s algorithm graphs the curvature of the stroke
against the sample points of the stroke, and applies a large
range of Gaussian filters with increasing values. For
each filtered curvature signal, local maxima are chosen to
be the feature points of the signal and a graph is made of
the amount of feature points against the range of
values. A final value is chosen by splitting this feature
point count vs. filter range graph into two ranges, fitting an
ODR line to each region, combining the orthogonal least
squares error for both lines, and finally choosing a
value that minimizes this error. The feature points of this
filtered signal are used to segment the stroke, and each
segment is individually classified as linear or curved.

Classifying the segment under Sezgin et al.'s algorithm
considers the Euclidean distance between the endpoints of
the segment against the total length of the stroke between
these points. For linear segments this ratio will be close to
1, and along curved segments this ratio will be noticeably
larger than 1. Sezgin et al. describes in an earlier paper [13]
a method of fitting a 3rd order Bézier curve to curved
segments. The curve can also be recursively decomposed
into smaller, tighter fitting Bézier curves to minimize error
to a desired threshold.

A major issue in implementing Sezgin's scale-space
algorithm involves the amount of pen accuracy generated
by the system. Figure 5 in [12] shows Sezgin's feature point
count vs. Gaussian filter strength graph generated by a
simple drawn figure. At lower filter strengths, the order of

100 feature points are detected in the signal. This
granularity results in a well formed curve for the line fitting
process that determines the final filter strength. However, in
our implementation, the average feature point count of a
logic gate with minimal filter strength is on the order of 15.
This number does not lend itself well for a rounded curve
such as Figure 5 in [12], and ends up being inconducive for
accurate line fitting. The result is that stroke segmentation
is often unreliable.

The primary source of this problem comes from tablet
polling rate. Test runs would pass the first dozen input
strokes as properly segmented, but would begin failing
without exception as the test would continue. Our
conclusion was that the amount of time taken to draw the
scene using standard Swing components was beginning to
impede on the tablet's ability to poll the position of the
stylus. Our solution was to batch the visual representations
of all gates, wires and orphaned line fragments into an
offscreen buffer that could be drawn once to the screen
instead of calling the drawLine() function k*n times for n
gate, wire and orphaned line segments, with k as the amount
data points per element. Implementing this system in a
hardware accelerated framework such as OpenGL would be
an even better solution, but this was not possible due to
time constraints on our project.

Various tweaks to Sezgin's algorithm increased its accuracy
in the domain of sketched circuits (which ideally consist of
very few fragments). We check the height of local maxima
in the filtered curvature graph as a percentage of the global
maximum of the signal, and do not accept a feature point if
this percentage is below a certain threshold. We also
discard feature points near both ends of strokes, where tiny
accidental pen flicks upon lifting or setting down the pen
would often occur.

Additionally, choosing the first, kth, and last points on the
graph to find two lines on the filter strength vs. feature
point graph, as opposed to fitting two ODR lines within
these regions, resulted in more accurate results.

Once CircuitBoard segments the input stroke, and classifies
each segment as linear or curved, adjacent colinear lines
can be combined if their slopes are within a certain
threshold. Finally, this list of fragments is then to the gate
recognition system.

GATE RECOGNITION
At this point of recognition, the scene consists of a list of
input strokes decomposed into linear and curved segments.
The temporality of these events is preserved by listing them
in the order in which they are received. Our gate
recognition system will analyze this list of events and
determine the presence of logic gates.

Search for gates
As the recognition process and subsequent gate

identification will be triggered by the most recent stroke
event, we can assume that at least one of the fragments of
the recent stroke belongs to the gate that will be recognized.
As the user should be allowed draw gates and wire
segments within a single stroke, we cannot assume that the
beginning or final segments of the stroke will belong to a
gate. The first step of this process is to detect a closed
shape. We consider each fragment of the recent stroke
event, and scan backwards through the list of events and
fragments to locate a closed form. We also consider the
'closeness' of the ends of temporally adjacent fragments
based on the size of the fragments, as opposed to a fixed
threshold. This allows closed shapes to be detected at any
scale.

Once a closed shape has been found we send it to the
classifier, which matches the shape to training data for
AND, OR and NOT gates. This returns the errors of the
figure for each type of gate. If the error of the best
matching gate is within a certain threshold, the appropriate
gate is instantiated and the consumed fragments removed
from the list of events. This allows other fragments of the
recent stroke event to form other circuit elements. Since
other gates types are composed of AND and OR gates, we
do not test for them at this juncture.

To recognize XOR gates we test for a series of fragments
parallel to and within a certain range of an OR gates input
side. The new XOR then consumes these elements and
replaces the OR gate in the scene. Recognizing negated
gates (NAND, NOR and XNOR) involves detecting
bubbles within a bounding box attached to the output end of
an invertible gate which is scaled relative to gate's size.
CircuitBoard accepts NOT gates as triangles without a
bubble on the output, allowing users to casually represent
them in this manner. We note that an orphaned NOT gate
represented as a triangle can be intended to be oriented in
three possible directions, and a bubble attached to a NOT
gate can resolve this ambiguity.

Classification
As there are many ways in which users can draw a single
logic gate, and because of the flexibility our system
provides for how the user can draw their circuitry, using
the types of fragments (line segments and curves) that
make up the gate's structure is insufficient to classify it.
CircuitBoard would need to be custom fit to many different
styles of drawing gates, and could never handle the full
range of styles. This would also hinder our ability to handle
user error. We instead use a computer vision based method
on the closed shape, focusing only on the shape of the
figure independent of the way it was drawn.

We use a modified version of the Shape Context method,
described in [11]. Mori et al. introduce the idea of using
shape context in object recognition, to quickly search a
series of figures for similar shapes. The shape context

Figure 5. The shape context of an AND gate at point
number 48 out of 50. The shape context algorithm
considers the distance from each point to every other
point on the shape. The values of the shape context
vector at each point consist of these distances starting
from the point “to the right”. In this figure, the distance
to point 49 would be the first value of the vector,
followed by point 48's distance from point 50, followed
by the distance from point 1, and so on. The shape
context vector is shown to the right of the image.

algorithm considers n discrete points on the shapes outer
contours, as well as any inner contours if present, sampled
at equal intervals to evenly space the samples. For each of
these points, the distance to every other n-1 points is stored
in a histogram for that point. When a shape is compared to
a set of precomputed shapes (in our case, pretrained AND,
OR and NOT gates) a subset of points on the query image
are chosen; the histograms of these points are compared to
those of the precomputed shapes, and a certain error from
the original shape is determined. Outlying interpretations
with high error can be culled against a given threshold, and
other algorithms can be used for the remaining set of
matches that could better differentiate between closely
matched interpretations.

In CircuitBoard we use a vector of distances instead of a
histogram at each point. This vector stores the distances
from the given point to all other points of the shape. This
modification of the algorithm provides invariance to
rotation. An example of this for an AND gate is shown in
Figure 5. We note that this is only possible due to the logic
gates consisting of shapes of a single contour. To make our
description invariant to scale, we normalize this shape
context vector. We also note and accept the need for O(n2)
space required for the context vector for each shape.

To compare a candidate to the training samples, we select k
points on the candidate figure that are evenly spaced along
its ordered points. For every training sample, we find the
best fitting points to each of these k points on the candidate
figure, and generate an error by taking the average
difference between each pair of vectors found by a

summation of the difference between each element. We
also reverse the shape contexts of the training data to handle
gates outlined by the gate searching stage in the opposite
direction. This step involves a total of 2 × k × n
comparisons.

We then sort the training samples in ascending order with
respect to their error with the candidate figure. The first
sample in this list will be the most likely gate interpretation,
with the remaining elements of the list used by the other
systems of CircuitBoard to determine the “next most likely”
interpretation.

CircuitBoard uses n = 50 and k = 10, which results in
satisfactory results with no noticeable latency. Increasing n
and k could result in better gate recognition at the cost of
speed, and is something yet to be experimented with. We
also provide a way for the user to train the system to their
own handwriting if the default training samples do not
function well for that user. Currently, 9 training samples are
used, 3 for each basic gate type (AND, OR and NOT).

Handling rotation
Our shape context implementation provides a way to match
two figures invariant to rotation, translation, scale and
distortion. However, after two figures have been matched
(again, only be choosing the figure of a minimal error) this
shape context method gives us no information about the
angle at which the gate is orientated. Although the fragment
types that make up the gate (line segments and curves)
could be used to determine the orientation of the gate, this
would require a second recognition process, facing the
same problems as described in the previous section.

Until this problem is solved, our system assumes that gates
are facing to the right once they have been detected. Our
newer approach which remains to be tested will select k
points on the training sample not by best fit, but also spaced
evenly along the figure. Additionally, two points on the
training figure can be marked that denote the corners of the
input side of the gate. The selection of k points on the
candidate figure can then be rotated around the figure, and
the minimal error for the given rotation will be chosen as
the best fitting match. The points denoting the corners of
the candidate gate's input side can then be identified.

CIRCUIT EVALUATION
Gates are then sent to the circuit evaluation system, which
maintains a graph of the circuit. Gates and wires alike are
treated as nodes of the graph, simplifying the design of the
system by having each node manage its own input and
output constraints. This design applies well to the logic
circuit domain, where, for example, NOT gates and forked
wires accept only one input and can have many outputs, and
wires can only take one input and one output. As each node
manages the status of their inputs and outputs, the inputs
and outputs of the overall circuit utilized in “Simulation”

mode can be quickly found with a linear scan through the
circuit's gates.

After every stroke event, depending on whether a gate or
wire was created, the list of orphaned stroke events is
checked to see if any strokes are positioned to be promoted
to a wire. CircuitBoard also handles the event in which this
process can recursively generate a large network of wires.

The logic circuit being drafted is evaluated using an
iterative process with a dirty/clean flag on each node of the
graph. An update method called on each node checks that
node's inputs and updates the output value based on the
node's type (AND, OR, XOR, etc.). This update method
will also set the node's flag to clean. If a node's output is
changed by the update process, each of its output nodes has
its flag set to dirty. One iteration of the circuit evaluation
process will identify all the dirty gates of the circuit and
update them. Each subsequent iteration will identify and
update until no dirty gates are identified in the circuit, or
until some maximum amount of iterations is reached which
indicates an unstable circuit.

The worst case amount of iterations for a stable circuit to
converge without cycles is n, where n is the amount of
nodes in the graph. This is the case given a linear circuit
where in each iteration, the ith node, starting at the input end
of the circuit, is the final node to be evaluated and sets its
outputs to dirty. This causes the value to propagate down
the circuit, one node at a time, over the course of n
iterations. Evaluating the bounds of a cyclic circuit is
beyond the purposes of this paper, but is predicted to be at
least O(n2), as some circuit could possibly be devised where
one such “sweep” through the graph would set one node at
a time to be stable.

USER EVALUATIONS
Our evaluations of CircuitBoard presently consist of an
open demonstration and discussion of the system with
available forms for impressions and suggestions, and a
more formal case study involving PhD students from
ArchLab, a computer architecture lab at UCSB.

Our open demonstration asked our reviewers for their
thoughts on the intuitiveness of our user interface, the
usefulness of the visualization modes, the accuracy of our
system as well as the usefulness of CircuitBoard as a whole.
The verbal responses at the demonstration were favorable,
and six observers who were also involved in sketch-based
development participated in our review.

Users found the system's interface to be intuitive, remarking
on the recognition notification, utility of viewing the signal
flow, simplicity of interacting with the simulation, and
modeless drafting interface. Their review of the systems
accuracy was positive, yet indicated a need for further work
– certain elements of wiring up the circuit was described as
“finicky”, and the types of the drawn gate were sometimes

misinterpreted. Handling gates of different rotations was
also requested.

The usefulness of the program was quite positive. While
our reviewers were limited in their history in logic circuit
design to the classroom, they noted the advantage
CircuitBoard could provide to themselves and other
students in digital logic courses. Our users also expressed a
desire to be able to export their design to some sort of code
or a hardware description language (HDL), and preferred
our system to a traditional CAD application for circuit
design.

The case study at the ArchLab asked users to attempt to
sketch a set of gates before and after training, to determine
the effectiveness of personalized training data. We also
asked users to input a series of five increasingly complex
pre-defined circuits into CircuitBoard, to determine the
effectiveness of our system in practice. Two members of
the lab were available, given time constraints, to participate
in our study.

One observation of the study found that the accuracy of
gate recognition improved as users began to grow
accustomed to the system. Personalized training data made
a significant difference in the system's ability to recognize
the user's input. While the system was shown to need much
improvement in its accuracy for users unfamiliar with
CircuitBoard, some of the final tasks the users attempted
saw much higher accuracy than initial tasks. Many elements
of user input styles were observed that could directly
improve our algorithms and approach to the problem, such
as the order in which XOR gates were drawn, and the shape
of OR gates. We also noted that the users preferred to draw
within one visualization mode (the first user in gate mode,
the second in simulation mode) as opposed to using these
modes for temporary review and verification of the design.

Users did find drafting circuit gates on a tablet PC to be and
obstacle that we did not previously consider. One noted that
they did not want to damage the tablet screen by using the
stylus like they would a pen or whiteboard marker, which
could affect their interactivity with the system. One user
noted that the lowered friction between the stylus and the
screen, when compared to that of a pen and paper or felt-tip
marker and whiteboard, made it harder to stop the stylus
and end strokes at desired points. The users did, however,
find the eraser functionality of the tablet stylus to be
intuitive and useful, and acknowledged the utility of the
system, despite the unfamiliar interface.

As our preliminary user evaluations have been limited,
more extensive user evaluations could be conducted in the
future. Further development of the system to enhance the
robustness of CircuitBoard's features will be needed, as
they greatly affect user impressions of the system.

CONCLUSION AND FUTURE WORK
We have discussed the benefits of paper- and whiteboard-
based interfaces for digital logic circuit design, and noted
the benefits of CAD environments for circuit simulation
and debugging. We proposed a sketch-based CAD
environment that combines a natural way of expressing
complex logic circuits with a simulation environment
conducive to debugging such a design. While our
implementation has several features that remain to be
completed or improved in their robustness, CircuitBoard
breaks new ground in digital logic circuit CAD applications
in terms of flexibility and usability.

Once the current feature set of CircuitBoard is complete,
there are more components that could be valuable additions
to CircuitBoard's functionality. AI based algorithms can be
introduced to expand on detecting the users intentions to
draw circuit elements, which should assist the accuracy of
the system. Erasure on a per-pixel level should be
supported, and we would like to experiment with a form of
erasure that leaves behind faint figments of the previous
stroke, not unlike how a pencil eraser will not completely
remove a pencil stroke. A system such as this can provide a
temporal progression of the design as opposed to a
complete elimination of previous design decisions from
sight and mind. We would also like to see CircuitBoard
simulate the behavior of logical gates, in terms of
propagation delay, rise time, fall time etc., to support the
playback of intentional or unintentional behavior reliant on
these additional factors. The addition of a configurable
clock once this modification is implemented would be a
natural evolution to the system. CircuitBoard could also be
expanded to make use of a multi-touch, whiteboard sized
display, to enable multi-user collaboration on logic circuit
design.

Finally, features that would be critical to the scaling of
CircuitBoard to systems with complexity outside that of the
classroom would be the ability to create custom composite
circuits that could be labeled and instantiated by simply
drawing a box around a logic circuit and writing the
circuit's label within it. This object oriented design, which
could allow dynamic creating and editing of circuitry could
be done in a bottom up or top down manner – a box can be
drawn labeled “Processor”; an editing mode for this custom
circuit could be entered and boxes labeled “Control”, “Data
Path”, and so on could be placed within it, etc. Finally,
designs created in CircuitBoard could be exported to
Verilog or VHDL for use in any system that handles digital
logic circuitry.

ACKNOWLEDGMENTS
We'd like to thank Professor Timothy Sherwood and Ryan
Dixon for the instruction, guidance and inspiration involved
in the development of CircuitBoard.

REFERENCES
1.Alvarado, C. Sketch recognition for digital circuit design

in the classroom. Proc. Invited Workshop on Pen-
Centric Computing Research 2007.

2.Alvarado, C. and Davis, R. SketchREAD: a multi-domain
sketch recognition engine. Proc. UIST 2004, 23-32.

3.Alvarado, C. and Lazzareschi, M. Properties of Real-
World Digital Logic Diagrams. Proc. PLT 2007, 12.

4.Apitz, G. and Guimbretière, F. CrossY: a crossing-based
drawing application. Proc. UIST 2004, 930-930.

5.Burch, C. Logisim: a graphical system for logic circuit
design and simulation. Journal on Educational
Resources in Computing 2, 1 (2002), 5-16.

6.Gross, M. and Do, E. Ambiguous intentions: a paper-like
interface for creative design. Proc. UIST 1996,
183-192.

7.Hong, J. and Landay, J. SATIN: A toolkit for informal in-
based applications. UIST 2000, 63–72.

8.Liwicki, M. and Knipping, L. Recognizing and
Simulating Sketched Logic Circuits. Proc. KES 2005,
588-594.

9.Paulson, B. and Hammond, T. PaleoSketch: accurate
primitive sketch recognition and beautification. Proc.
IUI 2008, 1-10.

10.Plimmer, B. and Apperley, M. INTERACTING with
sketched interface designs: an evaluation study. Proc.
CHI 2004, 1337-1340.

11.Mori, G., Belongie, S. and Malik, J. 2001. Shape
Contexts Enable Efficient Retrieval of Similar Shapes.
Proc. CVPR 2001, 723.

12.Sezgin, T., and Davis, R. Scale-space based feature
point detection for digital ink. Proc. Making Pen-
Based Interaction Intelligent and Natural 2004.

13.Sezgin, T., Stahovich, T. and Davis., R. Sketch based
interfaces: Early processing for sketch understanding.
Proc. PUI 2001, 1-8.

14.Wais, P., Wolin, A. and Alvarado, C. Designing a sketch
recognition front-end: user perception of interface
elements. Proc. SBIM 2007, 99-106.

15.Wendt, M. et al. JPen – Java Pen Tablet Access Library.
[Online]. Available: http://jpen.wiki.sourceforge.net/

