
MOP: An Efficient and Generic Runtime Verification Framework ∗

Feng Chen Grigore Roşu

University of Illinois at Urbana-Champaign

{fengchen,grosu}@cs.uiuc.edu

Abstract
Monitoring-Oriented Programming (MOP1) [19, 16, 20, 17]
is a formal framework for software development and analy-
sis, in which the developer specifies desired properties using
definable specification formalisms, along with code to ex-
ecute when properties are violated or validated. The MOP
framework automatically generates monitors from the spec-
ified properties and then integrates them together with the
user-defined code into the original system.

The previous design of MOP only allowed specifications
without parameters, so it could not be used to state and mon-
itor safety properties referring to two or more related ob-
jects. In this paper we propose a parametric specification-
formalism-independent extension of MOP, together with an
implementation of JavaMOP that supports parameters. In
our current implementation, parametric specifications are
translated into AspectJ code and then weaved into the appli-
cation using off-the-shelf AspectJ compilers; hence, MOP
specifications can be seen as formal or logical aspects.

Our JavaMOP implementation was extensively evaluated
on two benchmarks, Dacapo [13] and Tracematches [8],
showing that runtime verification in general and MOP in
particular are feasible. In some of the examples, millions
of monitor instances are generated, each observing a set of
related objects. To keep the runtime overhead of monitor-
ing and event observation low, we devised and implemented
a decentralized indexing optimization. Less than 8% of the
experiments showed more than 10% runtime overhead; in
most cases our tool generates monitoring code as efficient as
the hand-optimized code. Despite its genericity, JavaMOP is
empirically shown to be more efficient than runtime verifica-
tion systems specialized and optimized for particular speci-
fication formalisms. Many property violations were detected
during our experiments; some of them are benign, others in-
dicate defects in programs. Many of these are subtle and hard
to find by ordinary testing.

∗ This material is based upon work supported by the National Science Foun-
dation under Grant No. 0448501 and Grant No. 0509321. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.
1 Not to be confused with “meta-object protocol” [33].

1. Introduction
Runtime verification [28, 41, 10] aims at combining test-
ing with formal methods in a mutually beneficial way. The
idea underlying runtime verification is that system require-
ments specifications, typically formal and referring to tem-
poral behaviors and histories of events or actions, are rig-
orously checked at runtime against the current execution of
the program, rather than statically against all hypothetical
executions. If used for bug detection, runtime verification
gives a rigorous means to state and test complex temporal
requirements, and is particularly appealing when combined
with test case generation [5] or with steering of programs
[34]. A large number of runtime verification techniques, al-
gorithms, formalisms, and tools such as Tracematches [2],
PQL [37], PTQL [26], MOP [17], Hawk/Eraser [21], MAC
[34], PaX [27], etc., have been and are still being developed,
showing that runtime verification is increasingly adopted not
only by formal methods communities, but also by program-
ming language designers and software engineers.

We present a parametric extension together with a ma-
ture, optimized and thoroughly evaluated implementation of
monitoring-oriented programming (MOP). MOP was first
proposed in 2003 [19] as a software development and anal-
ysis framework based on runtime verification intuitions and
techniques. It was further described and extended in [16, 20,
17], but, up to now, it was not able to handle parameters in
specifications, and was not shown, through large-scale per-
formance tests measuring run-time overhead, to be feasible
in practice. An implementation of JavaMOP was carried out
to support these, together with decentralized monitor index-
ing algorithms for reducing the runtime overhead.

As shown in this paper, MOP is expressive, generic, and
efficient. MOP logic-plugins encapsulate monitor synthesis
algorithms for logics of interest; these allow users comfort-
able with formal notation to declare properties using high-
level or application-specific requirements specification for-
malisms. Specifications using any of the logic-plugins are
allowed to have parameters; this way, multiple monitor in-
stances for the same property can coexist, one per collection
of objects of interest. MOP also allows its users to imple-
ment monitors manually, using the full strength of the target
language. In other words, MOP supports and encourages the
use of formal specifications, but it does not require it. Since
the safety properties are precisely the monitorable ones [40],
MOP can therefore handle any safety property.

1 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

class Resource {
/*@

scope = class
logic = PTLTL
{

event authenticate: end(exec(* authenticate()));
event access: begin(exec(* access()));
formula: access -> <*> authenticate;

}
violation handler { @this.authenticate(); }

@*/
void authenticate() {...}
void access() {...}
...
}

Figure 1. MOP specification for resource safety

1.1 Examples

Let us consider a simple and common safety property for
a shared resource, namely that any access to the resource
should be authenticated. For simplicity, suppose that all
the operations on the shared resource are implemented
in the class Resource, including methods access() and
authenticate(). Then the safety property can be speci-
fied as a trivial “always past” linear temporal logic (LTL)
formula over method invocations, namely

access -> <*> authenticate,
stating that “if access then authenticateheld in the past”
(“<*>” reads “eventually in the past”); the “always” part is
implicit, since MOP properties are continuously monitored.

Using MOP like in Figure 1, one can enforce this policy
to hold in any system that manages the resource via the
Resource class; by “enforce” we mean that MOP ensures
that the system will satisfy the property even though it was
not originally programmed (intentionally or not) to satisfy it.

The first line of the MOP specification in Figure 1 states
that this property is a class invariant, i.e., it should hold
in the scope of this class (specification attributes are dis-
cussed in Section 4.1). The second line chooses a desired
formalism to express the corresponding formal requirement,
in this case past-time LTL (PTLTL); MOP allows users
to “plug-and-play” new specification formalisms, provided
that they respect the standardized interface of logic-plugins
(these are discussed in Section 3.1). The content enclosed
by the curly brackets is specific to the chosen formalism.
For PTLTL, the user needs to first build an abstraction that
maps runtime events into logical elements, e.g., the in-
vocation of authenticate() being mapped to an event
authenticate. Using the elements produced by the ab-
straction, a PTLTL formula is given to describe the desired
property. The last part of the MOP specification contains the
code that will be triggered when the specification is violated
and/or validated. It may be as simple as reporting errors,
or as sophisticated as taking recovery actions to correct the
execution to avoid crashes of the system. In this example,
when the safety property is violated, i.e., when some access
is not authenticated, we enforce the authentication simply by
making a call to authenticate(). The MOP tool is able to
analyze this specification, generate monitoring code for the

/*+MonitorAspect+*/
public aspect MonitorAspect {

/*+ Generated by JavaMOP for javamop.monitor PTLTL_0 */
public boolean[] Resource.PTLTL_0_pre = new boolean[1];
public boolean[] Resource.PTLTL_0_now = new boolean[1];
pointcut PTLTL_0_Init(Resource thisObject):
execution(Resource.new(..)) && target(thisObject);

after(Resource thisObject): PTLTL_0_Init(thisObject) {
boolean authenticate = false;
boolean access = false;
thisObject.PTLTL_0_now[0] = authenticate;

}
pointcut PTLTL_0_authenticate0(Resource thisObject):
target(thisObject) && execution(* Resource.authenticate());

after (Resource thisObject) returning:
PTLTL_0_authenticate0(thisObject) {

boolean authenticate = false;
boolean access = false;
authenticate = true;
thisObject.PTLTL_0_pre[0] = thisObject.PTLTL_0_now[0];
thisObject.PTLTL_0_now[0] = authenticate ||

thisObject.PTLTL_0_pre[0];
if (access && ! thisObject.PTLTL_0_now[0]){

thisObject.authenticate(); }
}

pointcut PTLTL_0_access0(Resource thisObject):
target(thisObject) && execution(* Resource.access());

before (Resource thisObject):
PTLTL_0_access0(thisObject) {

boolean authenticate = false;
boolean access = false;
access = true;
thisObject.PTLTL_0_pre[0] = thisObject.PTLTL_0_now[0];
thisObject.PTLTL_0_now[0] = authenticate ||

thisObject.PTLTL_0_pre[0];
if (access && ! thisObject.PTLTL_0_now[0]){

thisObject.authenticate(); }
}

/* Generated code ends +*/
}

Figure 2. Generated monitor for the property in Figure 1

formula, and insert the monitor with the recovery handler
into appropriate points of the program.

There are two important observations regarding the ex-
ample above, each reflecting a crucial aspect of MOP:

1. By synthesizing monitoring code from specifications and
automatically integrating it together with the recovery
code at relevant points in the program, the developer
can and should have quite a high confidence that the
resource is used correctly throughout the system. In fact,
if we trust that the MOP tool generates and integrates the
monitoring code correctly, then we can also trust that the
resulting system is correct w.r.t. this safety property, no
matter how complicated the system is.

2. Suppose that authentication-before-access was not a re-
quirement of the system originally, but that it became a
desired feature later in the development process (e.g., be-
cause of a larger number of clients). Suppose also that,
as a consequence, one wants to add authentication to
an initial implementation of the system that provided
no support and no checking for authentication. Using
MOP, all one needs to do is to add an (unavoidable)
authenticate()method, together with the MOP spec-
ification in Figure 1. This way, the MOP specification to-
gether with its violation handler added non-trivial func-
tionality to the system, in a fast, elegant and correct way.

2 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

/*@
scope = class
logic = ERE
{

[static int counter = 0; int writes = 0;]
event open : end(call(* open(..))) {writes = 0;};
event write : end(call(* write(..))) {writes ++;} ;
event close : end(call(* close(..)));
formula : (open write write* close)*

}
violation handler{ @RESET; }
validation handler{ synchronized(getClass()){

File.log((++counter) + ":" + writes); } }
@*/

Figure 3. MOP specification for file profiling

Monitors corresponding to specifications may need to ob-
serve the execution of the program at many different points,
which can be scattered all over the system. In this sense, ev-
ery monitor can be regarded as a crosscutting feature, like in
aspect-oriented programming (AOP) [32]. MOP can be re-
garded as a specialized instance of AOP, in which aspects
are (formal) specifications. Existing AOP tools provide cru-
cial support for MOP to integrate generated monitoring code
as well as recovery code into the system. From this point of
view, MOP acts as a supplier of aspects: it converts specifi-
cations into concrete aspects that can be handled by existing
AOP tools. For instance, our MOP front-end for Java dis-
cussed in Section 3.2, JavaMOP, translates the specification
in Figure 1 into the AspectJ code in Figure 2 (that code is
further compiled using off-the-shelf AspectJ compilers).

Comparing Figure 1 with Figure 2, one can see that MOP
provides an abstract programming environment, hiding un-
derlying implementation details. Low-level error-prone tasks
such as transforming formulae into monitors or choosing ap-
propriate join points to integrate monitors and recovery code
are all automatically handled by the MOP framework; this
way, the user is freed to focus on the interesting and impor-
tant aspects of the system.

The example above shows an “event-harmless” MOP
specification, i.e., one that executes no auxiliary code when
events are observed (except running the generated monitor),
with a violation handler encapsulating all desired recovery
code. Figure 3 depicts a more intrusive MOP specification
with both violation and validation handlers, also showing
how MOP can be used for profiling. The logic-plugin used
this time is for extended regular expressions (ERE), that is,
regular expressions extended with complement (no comple-
ment is needed here, but the ERE plugin generates optimal
monitors also for ordinary regular expressions).

Two auxiliary variables are defined as part of the MOP
specification, a static counter and a per-object writes. The
desired pattern to profile is (open write+ close)*, that
is, how many times we see an open followed by one or more
writes followed by a close. Each open event resets the
writes, which is then incremented at each write event. The
validation handler, which in the case of EREs is triggered
whenever the automaton monitor reaches its final state, logs
the writes and increments the static counter; note that this

/*@
scope = global
logic = ERE
SafeEnum (Vector v, Enumeration+ e) {

[String location = "";]
event create<v,e>: end(call(Enumeration+.new(v,..))) with (e);
event updatesource<v>: end(call(* v.add*(..))) \/

end(call(* v.remove*(..))) \/ ...
{location = @LOC;}

event next<e>: begin(call(* e.nextElement()));
formula : create next* updatesource updatesource* next
}
validation handler { System.out.println("Vector updated at "

+ @MONITOR.location); }
@*/

Figure 4. MOP specification for safe enumeration

handler needs to synchronize on the class to avoid potential
races. The violation handler, which for EREs is triggered
whenever the automaton monitor cannot advance to a next
state (in our case, that most likely happens when a file is
open then closed without any writes), resets the monitor to
its initial state using the MOP reserved command @RESET.

Both MOP specifications above are class scoped: they re-
fer to behaviors of individual objects. There are, however,
many safety properties of interest that refer to collections
of two or more objects. Some of these are considered so
important that language designers feel it appropriate to in-
clude corresponding runtime safety checks as built-in part
of programming languages. For example, Java 5 raises a
ConcurrentModificationExceptionwhen running

Vector v = new Vector();
v.add(new Integer(10));
Iterator i = v.iterator();
v.add(new Integer(20));
System.out.println(i.next());

That is because the Iterators returned by Vector’s iterator
methods are assumed fail-fast in Java: the Vector is not al-
lowed to be modified while the Iterator accesses its elements
However, the Enumerations returned by Vector’s elements
method are not assumed fail-fast in Java 5, and, obviously,
neither are any other user-defined iterator-like objects. One
can easily imagine many other similar tight relationships
among two or more objects, either language-specific as
above or application-specific. For example, a security policy
in an application can be: for any password p, string s and file
f , it is never the case that s is the decrypted version of p (as
returned by some decrypt method) and s is written on f .

To support such important properties referring to groups
of objects, MOP now provides a generic mechanism allow-
ing for universal parameters to requirements specified using
any of the logic-plugins. Figure 4 shows an MOP specifi-
cation making enumeration objects corresponding to vectors
also fail-fast. Note that this time the MOP specification is
globally scoped, because it refers to more than one object.
The property to check, which is also given an optional name
here, SafeEnum, has two parameters: a Vector v and an
Enumeration+ e; the “+” says that the property (and its
monitors) is inherited by all subclasses of Enumeration.

The event create<v,e> is parametric in both v and
e, and is generated whenever enumeration e is created for

3 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

vector v. The event updatesource<v> is generated when
methods that modify the vector are called; to save space,
we did not list all of them in Figure 4. The location (file
and line number) of the update is also stored in the variable
location, using the MOP reserved variable @LOC. An ERE
formula expresses the faulty pattern: an updatesource
event is seen after create and before a next; events in
this pattern are assumed parameterized as above.

The validation handler here simply reports the location
where the vector was wrongly updated (this info is useful
for debugging); the MOP reserved keyword @MONITOR gives
a reference to the corresponding monitor instance, which
has the declared monitor variables (only location here) as
fields. MOP will create as many monitors for this property
as corresponding instances of v and e are generated during
the execution of the application, and will dispatch the events
correspondingly; for example, if several enumerations are
created for the same vector v, then an updatesource<v>
event is sent to each instance monitor corresponding to each
enumeration of v. JavaMOP generates about 200 lines of
AspectJ code from the specification in Figure 4.

1.2 Contributions

As already mentioned, the basic idea of MOP and a first
JavaMOP prototype have already been discussed in several
places [19, 16, 17, 20]. However, the previous design and im-
plementation of MOP lacked parameters and thus had lim-
ited practical use. In particular, the safe enumerator example
in Figure 4, the examples supported by other runtime ver-
ification systems such as Tracematches [2], PQL [37] and
PTQL [26], as well as most of the examples in Sections 6
were previously not possible to define in MOP using formal
specifications. Our contributions in this paper are:

(1) Universal parameters, decentralized indexing
We present a generic technique to add universal param-

eters to trace-based logics, together with an optimized im-
plementation based on decentralized indexing. Logical for-
malisms used in runtime verification and monitoring have
traces as models; in particular, all our MOP logic-plugins
are trace-based. However, existing runtime verification sys-
tems supporting parametric properties use centralized mon-
itors and indexing, that is, all monitors are stored in a com-
mon pool and parametric events are resolved and dispatched
at this centralized level, incurring unavoidable runtime over-
head when the pool contains many objects. Our decentral-
ized indexing technique is logic-independent, so it can be
adopted by any runtime verification system. As empirically
shown in Section 6, despite its genericity wrt logical for-
malisms, MOP with decentralized indexing is more efficient
than the current state-of-the-art runtime verification systems
specialized and optimized for particular trace-based logics.

(2) New MOP language, raw MOP specifications
We defined a new MOP specification language, which al-

lows not only specification of parametric properties using

MOP logic-plugins, but also definition of raw MOP spec-
ifications. Raw MOP specifications require no logic-plugin
and consequently no logical formula, so they need to be ex-
plicitly implemented by users in the target language (e.g.,
Java); in this case, the MOP framework provides a useful
abstraction allowing users to define monitor variables and/or
event actions, to generate and handle violation or validation
signals, to use MOP reserved keywords and commands, etc.;
the developer of raw MOP specifications can fully utilize
the strength of the target language. Raw MOP specifications
may be preferred by users who are not comfortable with for-
mal notation. We use them to write hand-optimized monitors
for the experiments in Section 6. Due to its new enriched
specification language, MOP now captures many other run-
time verification frameworks as specialized instances (these
are discussed in Section 2); this genericity comes at no per-
formance penalty (on the contrary). Therefore, MOP is now
a viable generic platform for runtime verification projects,
allowing experimentation with new logics for monitoring,
safety policies, monitor synthesis algorithms, and so on.

(3) Evaluation and Experiments
A large number of experiments have been carried out to

evaluate the feasibility and effectiveness of MOP: we used
JavaMOP to check more than 100 property-program pairs.
The results are encouraging: in most cases, the runtime over-
head was negligible; only 8% of experiments showed noti-
cable slow-down of 10% or more. In some purposely de-
signed extreme cases, the runtime overhead was still less
than 200%, but we were able to write raw MOP specifica-
tions for the same properties, reducing the overhead below
30%. We did not focus on error detection,in the sense that
no test generation techniques were used. However, many vi-
olations of specified properties were revealed; some of these
are benign (but still interesting to be aware of), others in-
dicate possible defects of programs: an inappropriate us-
age of StringWriter leads to a write-after-close violation
in Xalan [42]; possible resource leaks in Eclipse [23] GUI
packages; a violation of SafeEnum caused by concurrency
in jHotDraw [31]; etc. (see Section 6.2). These subtle prob-
lems are difficult to detect using ordinary testing, but Java-
MOP provided good support to locate their root causes. Our
experiments show that runtime verification in general and
MOP in particular are feasible and effective in practice. Both
JavaMOP and the experiments are publicly available at [18].

2. Related Work
We next discuss relationships between MOP and other re-
lated paradigms, including AOP, design by contract, runtime
verification, and other trace monitoring approaches. Broadly
speaking, all the monitoring approaches discussed below
are runtime verification approaches; however, in this section
only, we group into the runtime verification category only
those approaches that explicitly call themselves runtime ver-
ification approaches. Interestingly, even though most of the

4 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

systems mentioned below target the same programming lan-
guages, no two of them share the same logical formalism
for expressing properties. This observation strengthens our
belief that probably there is no silver bullet logic (or super
logic) for all purposes. A major objective in the design of
MOP was to avoid hardwiring particular logical formalisms
into the system. In fact, as shown in Sections 3 and 4, MOP
specifications are generic in four orthogonal directions:

MOP[logic, scope, running mode, handlers].
The logic answers how to specify the property. The scope
answers where to check the property; it can be class invari-
ant, global, interface, etc. The running mode answers where
the monitor is; it can be inline, online, offline. The handlers
answer what to do if; there can be violation and validation
handlers. For example, a particular instance can be

MOP[ERE, global, inline, validation],
where the property is expressed using the ERE logic-plugin
for extended regular expressions (EREs), the corresponding
monitor is global and inline, and validation of the formula
(pattern matching in this case) is of interest.

Most approaches below can be seen as such special-
ized instances of MOP for particular logics, scopes, running
modes and handlers. There are, or course, details that make
each of these approaches interesting in its own way.

2.1 Aspect Oriented Programming (AOP) Languages

Since its proposal in [32], AOP has been increasingly
adopted and many tools have been developed to support
AOP in different programming languages, e.g., AspectJ and
JBoss [30] for Java and AspectC++ [4] for C++. Built on
these general AOP languages, numerous extensions have
been proposed to provide domain-specific features for AOP.
Among these extensions, Tracematches [2] and J-LO [14]
support history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the ex-
ecution of certain code by specifying a regular pattern of
events in a computation trace, where the events are defined
over entry/exit of AspectJ pointcuts. When the pattern is
matched during the execution, the associated code will be
executed. In this sense, Tracematches supports trace-based
pointcuts for AspectJ. J-LO is a tool for runtime-checking
temporal assertions. These temporal assertions are speci-
fied using LTL and the syntax adopted in J-LO is similar
to Tracematches except that the formulae are written in dif-
ferent logics. J-LO mainly focuses on checking at runtime
properties rather than providing programming support. In J-
LO, the temporal assertions are inserted into Java files as an-
notations that are then compiled into runtime checks. Both
Tracematches and J-LO support parametric events, i.e., free
variables can be used in the event patterns and will be bound
to specific values at runtime for matching events.

Conceptually, both Tracematches and J-LO can be cap-
tured by MOP, because both regular expressions and LTL are
supported in MOP. In fact, their regular patterns and tempo-

ral assertions can be easily translated into MOP specifica-
tions that contain only action events and validation handlers.
Moreover, in addition MOP provides class-scoped proper-
ties, outline and offline monitor settings, and more. Fixing a
logic allows for developing static analysis and logic-specific
optimizations. We have not attempted to devise any logic-
specific optimizations yet in MOP, because we do not regard
MOP’s runtime overhead as a bottleneck yet. In Section 6,
we show that the MOP instance MOP[ERE, class/global, in-
line, validation] using decentralized indexing adds signifi-
cantly less runtime overhead than Tracematches with static
analysis enabled. It is also worth mentioning that Trace-
matches and J-LO are implemented using Java bytecode
compilation and instrumentation, while MOP acts as an as-
pect synthesizer, making it easier to port to different target
languages provided that they have AOP tool support.

2.2 Runtime Verification

In runtime verification, monitors are automatically synthe-
sized from formal specifications, and can be deployed offline
for debugging, or online for dynamically checking proper-
ties during execution. MaC [34], PathExplorer (PaX) [27],
and Eagle [11] are runtime verification frameworks for logic
based monitoring, within which specific tools for Java –
Java-MaC, Java PathExplorer, and Hawk [21], respectively
– are implemented. All these runtime verification systems
work in outline monitoring mode and have hardwired spec-
ification languages: MaC uses a specialized language based
on interval temporal logic, JPaX supports just LTL, and Ea-
gle adopts a fixed-point logic. Java-Mac and Java PathEx-
plorer integrate monitors via Java bytecode instrumentation,
making them difficult to port to other languages. Our ap-
proach supports inline, outline and offline monitoring, al-
lows one to define new formalisms to extend the MOP
framework, and is adaptable to new programming languages.

Temporal Rover [22] is a commercial runtime verification
tool based on future time metric temporal logic. It allows
programmers to insert formal specifications in programs via
annotations, from which monitors are generated. An Auto-
matic Test Generation (ATG) component is also provided to
generate test sequences from logic specifications. Temporal
Rover and its successor, DB Rover, support both inline and
offline monitoring. However, they also have their specifica-
tion formalisms hardwired and are tightly bound to Java.

Although our current JavaMOP prototype does not sup-
port all these techniques yet, it is expected that all the RV
systems would fall under the general MOP architecture, pro-
vided that appropriate logic-plugins are defined.

2.3 Design by Contract

Design by Contract (DBC) [38] is a technique allowing one
to add semantic specifications to a program in the form
of assertions and invariants, which are then compiled into
runtime checks. It was first introduced by Meyer as a built-
in feature of the Eiffel language [24]. Some DBC extensions

5 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

have also been proposed for a number of other languages.
Jass [12] and jContractor [1] are two Java-based approaches.

Jass is a precompiler which turns the assertion comments
into Java code. Besides the standard DBC features such as
pre-/post- conditions and class invariants, it also provides
refinement checks. The design of trace assertions in Jass
is mainly influenced by CSP [29], and the syntax is more
like a programming language. jContractor is implemented as
a Java library which allows programmers to associate con-
tracts with any Java classes or interfaces. Contract methods
can be included directly within the Java class or written as
a separate contract class. Before loading each class, jCon-
tractor detects the presence of contract code patterns in the
Java class bytecode and performs on-the-fly bytecode instru-
mentation to enable checking of contracts during the pro-
gram’s execution. jContractor also provides a support library
for writing expressions using predicate logic quantifiers and
operators such as Forall, Exists, suchThat, and implies. Us-
ing jContractor, the contracts can be directly inserted into the
Java bytecode even without the source code.

Java modeling language (JML)[35] is a behavioral inter-
face specification language for Java. It provides a more com-
prehensive modeling language than DBC extensions. Not
all features of JML can be checked at runtime; its runtime
checker supports a DBC-like subset of JML, a large part of
which is also supported by JavaMOP. Spec# [9] is a DBC-
like extension of the object-oriented language C#. It extends
the type system to include non-null types and checked ex-
ceptions and also provides method contracts in the form of
pre- and post-conditions as well as object invariants. Us-
ing the Spec# compiler, one can statically enforce non-null
types, emit run-time checks for method contracts and invari-
ants, and record the contracts as metadata for consumption
by downstream tools.

We believe that the logics of assertions/invariants used in
DBC approaches fall under the uniform format of our logic
engines, so that an MOP environment following our princi-
ples would naturally support monitoring DBC specifications
as a special methodological case. In addition, our MOP de-
sign also supports outline monitoring, which we find impor-
tant in assuring software reliability but which is not provided
by any of the current DBC approaches that we are aware of.

2.4 Other Related Approaches

Acceptability-oriented computing [39] aims at enhancing
flawed computer systems to respect basic acceptability prop-
erties. For example, by augmenting the compiled code
with bounds checks to detect and discard out-of-bound
memory accesses, the system may execute successfully
through attacks that trigger otherwise fatal memory errors.
Acceptability-oriented computing is mainly a philosophy
and methodology for software development; one has to de-
vise specific solutions to deal with different kinds of failures.
We do believe though that MOP can serve as a platform
to experiment with and support acceptability-oriented com-

puting, provided that appropriate specification formalisms
express the “acceptability policy” and appropriate recovery
ensures that it is never violated.

Program Query Language (PQL) allows programmers
to express design rules that deal with sequences of events
associated with a set of related objects [37]. Both static and
dynamic tools have been implemented to find solutions to
PQL queries. The static analysis conservatively looks for
potential matches for queries and is useful to reduce the
number of dynamic checks. The dynamic analyzer checks
the runtime behavior and can perform user-defined actions
when matches are found, similar to MOP handlers.

PQL has a “hardwired” specification language based
on context-free grammars (CFG) and supports only in-
line monitoring. CFGs can potentially express more com-
plex languages than regular expressions, so in principle
PQL can express more complex safety policies than Trace-
matches. There is an unavoidable trade-off between the gen-
erality of a logic and the efficiency of its monitors; ex-
periments performed by Tracematches colleagues [6] and
confirmed by us (see Section 6) show that PQL adds, on
average, more than twice as much runtime overhead as
Tracematches. We intend to soon take a standard CFG-to-
pushdown-automata algorithm and to implement it as an
MOP logic-plugin; then MOP will also support (the rare)
CFG specifications that cannot be expressed using para-
metric extended regular expressions or temporal logics, and
MOP[CFG,global,inline,validation] will provide an alterna-
tive and more general implementation of PQL.

Program Trace Query Language (PTQL) [26] is a lan-
guage based on SQL-like relational queries over program
traces. The current PTQL compiler, Partiqle, instruments
Java programs to execute the relational queries on the fly.
PTQL events are timestamped and the timestamps can be
explicitly used in queries. PTQL queries can be arbitrary
complex and, as shown in [26], PTQL’s runtime overhead is
acceptable in many cases; however, it can sometimes slow-
down programs hundreds of times. PTQL properties are
globally scoped and their running mode is inline. PTQL pro-
vides no support for recovery, its main use being to detect er-
rors. It would be interesting to investigate the possibility of
developing an SQL logic-plugin for MOP and then to com-
pare the corresponding MOP instance to Partiqle.

3. Overview of MOP and JavaMOP
We here briefly introduce MOP and JavaMOP. Interested
readers are referred to [17, 16] for more details, and also
to [18] for tool downloads and the latest development news.

3.1 MOP: An Extensible Monitoring Framework

MOP separates monitor generation and monitor integration
by adopting the layered architecture in Figure 5. This ar-
chitecture is especially designed to facilitate extending the
MOP framework with new formalisms or new programming

6 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

Interfaces

Logic Engines
for LTL

Logic Engines
for ERE

Specification Processors

Language Shells

Logic Engines

Java Shell
for LTL

C Shell
for LTL

Java Shell
for JML

Java Shell
for ERE

C Shell
for ERE

Java Specification
Processor

C Specification
Processor

GUI IDE
Web-Based

Interface
Command-line

Interface
…

…

…

… …

Figure 5. MOP architecture

languages. By standardizing the protocols between layers,
new modules can be added easily and independently. Mod-
ules on lower layers can be reused by upper-level modules.

The topmost layer, called the interface layer, provides
user friendly programming environments. For example, the
reader is encouraged to try the web-based interface for Java-
MOP at [18] (no download needed, examples provided). The
second layer contains specification processors, which han-
dle monitor integration. Each specification processor is spe-
cific to a target programming language and consists of a pro-
gram scanner and a program transformer. The scanner ex-
tracts MOP specifications from the program and dispatches
them to appropriate modules on the lower layer to process.
The transformer collects the monitoring code generated by
the lower layer and integrates it into the original program.
AOP plays a critical role here: the program transformer syn-
thesizes AOP code and invokes AOP compilers to merge
the monitors within the program. In particular, as discussed
in Section 3.2, JavaMOP transforms generated monitoring
code into AspectJ code.

The two lower layers contain the logic-plugins, which
allow the user to add, remove, or modify specification for-
malisms. Logic-plugins are usually composed of two mod-
ules: a language shell on the third layer and a logic engine
on the bottom layer. The former generates programming lan-
guage and specification formalism specific monitoring code
in a standardized format, which can be understood by the
specification processor on the upper layer. The logic engine,
acting as the core of monitor generation, synthesizes mon-
itors from specifications in a programming language inde-
pendent way, e.g., as state machines. This way, logic engines
can be reused across different programming languages.

3.2 JavaMOP

JavaMOP is an MOP development tool for Java. It pro-
vides several interfaces, including a web-based interface, a
command-line interface and an Eclipse-based GUI, provid-
ing the developer with different means to manage and pro-
cess MOP specifications. To flexibly support these various

interfaces, as well as for portability reasons, we designed
JavaMOP following a client-server architecture(see [17]) as
an instance of the general MOP architecture in Figure 5. The
client part includes the interface modules and the JavaMOP
specification processor, while the server contains a message
dispatcher and logic-plugins for Java. The specification pro-
cessor employs AspectJ for monitor integration. In other
words, JavaMOP translates outputs of logic-plugins into As-
pectJ code, which is then merged within the original pro-
gram by the AspectJ compiler. The message dispatcher is re-
sponsible for the communication between the client and the
server, dispatching requests to corresponding logic-plugins.
The communication can be either local or remote, depending
upon the installation of the server.

An immediate advantage of this architecture is that one
logic server can provide and cache monitor generation ser-
vices, which can require intensive computation, to multiple
clients. Also, our clients are implemented in Java to run on
different platforms, while some of the logic engines are im-
plemented in non-conventional languages and consequently
run best on Linux or Unix. Therefore, this architecture in-
creases portability, since the client and the server are allowed
to run on different platforms; also the server can cache mon-
itors for common formulae.

Four logic-plugins are currently provided with JavaMOP:
Java Modeling Language (JML) [35], Extended Regular Ex-
pressions (ERE) and Past-Time and Future-time Linear Tem-
poral Logics (LTL) (see [17] for more details).

4. The MOP Specification Language
MOP provides a specification language to define safety
properties. The design of this language was driven by two
factors: uniformity in supporting different formalisms and
languages, and the ability to control monitor behaviors.
Language-specific and logic-specific notations are carefully
distinguished from other notations in MOP specifications.
The developer is also given the possibility to directly pro-
gram the monitor if she/he wants to fully control the mon-
itoring process (see Section 4.4). The MOP specification
language can be regarded as a specialized AOP language,
tuned to support specifying monitors either formally using
logics or informally by programming.

MOP specifications can be either embedded into the
source code as special annotations or stored in separate
files. Each format has different advantages. Annotations are
more suitable for properties related to specific positions in
the source code, e.g., assertions and pre-/post-conditions for
methods. On the other hand, separate specification files are
conceptually clearer when their corresponding properties re-
fer to multiple places in the program, e.g., global properties.
JavaMOP supports both kinds of specifications.

Figure 6 shows the syntax of MOP specifications. An
MOP specification is composed of three parts: the header,
the body and the handlers. We next discuss each of these.

7 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

〈Specification〉 ::= /*@ 〈Header〉 〈Body〉 〈Handlers〉 @*/
〈Header〉 ::= 〈Attribute〉*[scope =〈Scope〉][logic =〈Logic〉]
〈Attribute〉 ::= static | outline | offline | centralized
〈Scope〉 ::= global | class | interface | method
〈Name〉 ::= 〈Identifier〉
〈Logic〉 ::= 〈Identifier〉
〈Body〉 ::= [〈Name〉][(〈Parameters〉)]{〈LogicSpecificContent〉}
〈Parameters〉 ::= (〈Type〉 〈Identifier〉)+
〈Handlers〉 ::= [〈ViolationHandler〉] [〈ValidationHandler〉]
〈ViolationHandler〉 ::= violation handler { 〈Code〉 }
〈ValidationHandler〉 ::= validation handler { 〈Code〉 }

Figure 6. Syntax of MOP specifications

4.1 Header: Controlling Monitor
Generation and Integration

The header contains generic information to control monitor
generation and integration, consisting of optional attributes,
the scope, and the name of the formalism (or logic-plugin)
used in the specification.

Attributes are used to configure monitors with different in-
stallation capabilities. They are orthogonal to the actual
monitor generation but determine the final code generated by
the MOP tool. Four attributes are available. One is static,
which has an effect only upon class/interface scoped prop-
erties, and says that the specification refers to the class, not
to the object. For a static specification, only one monitor
instance is generated at runtime and is shared by all the ob-
jects of the corresponding class. By default, monitors are
non-static, meaning that objects will be monitored individ-
ually. In JavaMOP, the variables used to represent the state
of the monitor are added to the corresponding class as ei-
ther static or non-static fields, according to staticness of the
monitor; inserting new class fields is done through the inter-
type member declaration of AspectJ (e.g., the declaration of
Resource.PTLTL 0 pre in Figure 2). To avoid name con-
flicts, these fields are renamed by the specification processor.

Two other attributes, outline and offline, are used to
change the running mode of the monitor. Different properties
may require different running modes. For example, a moni-
tor can be executed in the context (thread) of the monitored
system, or it can run outside of the monitored system, as a
standalone process or thread. We call the former an inline
monitor, which is also the default mode of the specification,
and the latter an outline monitor. An inline monitor can inter-
act with the system directly, facilitating information retrieval
and error recovery, but some problems, e.g., deadlocks, can-
not be detected by inline monitors. Besides, inline monitors
may cause significant runtime overhead when running the
monitor involves intensive computation. An outline monitor
provides a better solution for such cases. In the outline mode,
the monitored system sends messages that contain relevant
state information to the monitor. However, communication
with outline monitors may reduce the performance of the
system and, equally importantly, an outline monitor cannot

access the internal state of the monitored system, limiting its
capability for error recovery.

Another way to check an execution trace, which can
sometimes make expensive monitoring feasible by allow-
ing random access to the trace, is offline monitoring: log the
trace in a file and make it available to the “monitor”. Since
such monitors can run after the monitored system ceases,
they are called offline monitors. Offline monitors are suit-
able for properties that can be decided only after the system
stops or properties that require a backward traversal of the
trace; they may also be useful for debugging and analysis.

These running modes impose different requirements on
monitor synthesis. In JavaMOP, inline monitors are merged
into the program by encapsulating the monitoring code as an
aspect, such as the example in Figure 1 and Figure 2. For
outline and offline monitors a standalone monitor class is
synthesized, which can run independently as a new thread
or process. The MOP tool then generates aspects contain-
ing either message passing code (in outline mode) or event
logging code (in offline mode).

The last attribute, named centralized from “central-
ized indexing”, can only be combined with global paramet-
ric specifications. The default indexing is “decentralized” in
MOP, that is the references to monitors are piggybacked into
states of some objects in order to reduce the runtime over-
head. This technique is discussed in Section 5. As seen also
in Section 6, there are situations when a centralized pool of
monitors is more suitable; we therefore allow the users the
possibility to choose centralized indexing.

The scope of specifications defines the working scope of
monitors, determining the points where properties are checked.
Five scopes are supported: global, class, interface,
method, and a default scope. Properties which are global
may involve multiple components/objects in the system.
The scope class says that the property is a class invari-
ant; both global and class properties are checked when
the involved fields are updated or the involved methods are
called. The scope interface denotes a constraint on the
interface, and is checked at every observable state change,
i.e., on boundaries of public method calls; MOP interface-
scoped properties are therefore similar to class invariants in
JML [35]. The scope method is used to specify constraints
on the designated method: pre-, post-, and exceptional con-
ditions. The default scope is “assertion” or “check point”:
the generated monitoring code replaces the specification and
is therefore checked whenever reached during the execution.

The logic name designates the formalism to use in the spec-
ification and also identifies the corresponding logic-plugin.
Logic-plugins should have different names. Presently, the
following logic names can be used in JavaMOP: JML, ERE,
FTLTL and PTLTL. If no logic is designated, the specification
is regarded as a raw MOP specification, where the user pro-
vides his/her own code to monitor the desired property. This
is explained in detail in Section 4.4.

8 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

〈LogicBody〉 ::= [[〈VarDeclaration〉]]〈Event〉* [〈Formula〉]
〈Event〉 ::= 〈EventHeader〉:〈EventDecl〉 [{〈Code〉}];
〈EventHeader〉 ::= event〈Identifier〉[<〈Parameters〉>]
〈EventDecl〉 ::= 〈EventPoint〉[with(〈Type〉 〈Name〉)][&& 〈BExp〉]
〈EventPoint〉 ::= (begin | end)(〈EventPattern〉)
〈EventPattern〉 ::= (call|exec)(〈Method〉) | update(〈Field〉)
〈Formula〉 ::= formula : 〈LogicFormula〉

Figure 7. MOP syntax for trace-based logic formalisms

4.2 Body: Describing Properties

The body of an MOP specification defines the desired prop-
erty, and is sent to the corresponding logic-plugin by the
specification processor. It starts with an optional name and
an optional list of parameters. The name, if provided, can
be useful for documentation purposes or as a reference; oth-
erwise, the MOP tool will generate a unique internal name.
The parameters can only be combined with global proper-
ties. MOP provides a generic, logic-independent way to add
parameters to specifications, discussed in Section 5.

Considering the diversity of specification formalisms, it
is difficult, and also undesirable, to design a uniform syntax
for all possible formalisms. So the syntax of the specifica-
tion body varies with the underlying formalism. For JML,
we adopted its original syntax. Since formalisms used to ex-
press properties over traces, such as ERE and LTL, show
many common features, we designed a general syntax for
all of them, shown in Figure 7. The body is composed of an
optional block for local variable declarations, a list of event
definitions and a formula specifying the desired property.

An execution trace is abstracted as a sequence of events
generated dynamically; they usually correspond to concrete
actions, e.g., invocation of certain methods or updates of
some variables, and contain relevant information about the
state of the program, e.g., values of accessed variables.
Properties of traces are then defined in terms of events.
For example, the property specified in Figure 1 involves
two types of events, namely, the end of the execution of
authenticate() and the beginning of the execution of
access(). Definitions of events are orthogonal to the par-
ticular formalism used to specify the property.

Events are related to entries and exits of actions during
the execution. An action can be one of calling a method
(in the caller’s context), executing a method (in the callee’s
context) and updating a variable. A with clause can be
attached to an event to fetch the return value of the event, i.e.,
the value returned from a method call or a variable update.
In parametric specifications, events can be parametric; the
event parameters, if any, must be a subset of the parameters
of the specification. A boolean expression can be associated
with each event, acting as a condition: the event is generated
only if the boolean expression evaluates to true.

To capture the defined events at runtime, MOP tools need
to statically insert the monitors at appropriate points in the

original program. AOP plays a critical role here: the MOP
tool chooses instrumentation points according to the event
definitions and then uses the AOP compiler to integrate the
monitor into the program. In order to ease the translation
from event definitions to join points in AOP, the syntax of the
〈Method〉 and 〈Field〉 may adopt the syntax of the employed
AOP tool. For example, JavaMOP uses AspectJ syntax.

Events can be used as atoms in formulae. During monitor
synthesis, the language shell extracts and sends the formula
to the logic engine, which then generates the monitoring
code from the formula. The monitor generated by the logic
engine can use some pseudo code that is independent of any
specific programming language. It will then be translated
into the target language by the language shell. Therefore,
the syntax of the formula varies with the formalisms. No
formula is needed for raw MOP specifications.

The developer can declare local variables in the specifica-
tion and associate actions to event definitions. The declared
variables are called monitor variables and are only visible
inside the monitor. They can be used in event actions and
in handlers. Event actions can be any code and are executed
upon occurrences of the corresponding events. Using moni-
tor variables and event actions, one can specify more com-
plex properties and implement more powerful handlers. For
example, one may add counters into regular expressions to
express properties like AB3A. Events defined in the specifi-
cation body are also monitor variables: they can be used in
event actions and handlers as boolean variables.

4.3 Handlers: Taking Actions

MOP users can provide special code to be executed when
the property is violated or validated. Although many errors
are related to violations, sometimes it is easier to define pat-
terns of erroneous behaviors (e.g., patterns of security at-
tacks): the match, or validation, of the pattern means “error”.
In MOP, handlers can be associated not only to violations
but also to validations of properties. Even though handlers
support runtime error recovery, they need not necessarily be
“error recovery” code. An MOP specification can therefore
be regarded as a complex branch statement with the speci-
fied property (which can refer to past and future events) as
the condition and the handlers as true/false branches.

The handlers use the target programming language and
will be part of the generated monitoring code. Since mon-
itors are synthesized and integrated into the program after
one writes the handler code, the handlers do not have full
access to information about the context in which the mon-
itor will be executed. To mitigate this problem, MOP pro-
vides several built-in variables and commands: @this refers
to the current object; @RESET resets the state of the monitor
to the initial state; @LOC refers to the current location (file
and line number) – different events take place at different
locations. These variables are replaced with appropriate val-
ues or pieces of code during monitor synthesis. For example,
@this in Figure 1 is renamed to thisObject in Figure 2.

9 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

/*@
scope = global
{
[Set taintedStrings = new HashSet();]
event userInput :

end(call(String ServletRequest.getParameter(..)))
with (String tainted)

{ taintedStrings.put(tainted); }
event propagate :

end(call(StringBuffer StringBuffer.new(String s)))
with (StringBuffer newS)

\/ end(call(StringBuffer StringBuffer.append(String s)))
with (StringBuffer newS)

...
{ if (taintedStrings.contains(s))

taintedStrings.put(newS.toString()); }
event usage :

begin(call(* Statement.executeQuery(Sting s)))
{ if taintedStrings.contains(s) Util.checkSafeQuery(s); }

}
@*/

Figure 8. Raw MOP specification for SQL injection

4.4 Raw MOP Specifications

MOP encourages the use of logical formalisms to specify de-
sired system behaviors concisely and rigorously. However,
there are cases where one may want to have full control over
the monitoring process; for example, some properties can be
difficult or impossible to specify using existing logical for-
malisms, or existing logic-plugins generate inefficient mon-
itoring code. Moreover, there may be developers who wish
to benefit from monitoring but who are not trained to or are
not willing to write formal specifications, preferring instead
to use the programming language that they are familiar with.

MOP supports raw specifications to implement and con-
trol the monitoring process exclusively by ordinary program-
ming, without any reference to or use of logic formalisms
and/or logic-plugins. As an example, Figure 8 shows a raw
MOP specification that detects SQL-injection attacks [3]:
malicious users try to corrupt a database by inserting unsafe
SQL statements into the input to the system.

In SQL injection, a string is “tainted” when it depends
upon some user input; when a tainted string is used as a SQL
query, its safety should be checked to avoid potential attacks.
In Figure 8, a HashSet is declared to store all tainted strings.
Three types of events need to be monitored: userInput
occurs when a string is obtained from user input (by calling
ServletRequest.getParameter()); propagate occurs
when a new string is created from another string; finally,
usage occurs when a string is used as a SQL query.

Appropriate actions are triggered at observed events: at
userInput, the user input string is added to the tainted
set; at propagate, if the new string is created from a
tainted string then it is marked as tainted, too; at usage,
if the query string is tainted then a provided method, called
Util.checkSafeQuery, is called to check the safety of the
query. Thus the safety check, which can be an expensive
operation, is invoked dynamically, on a by-need basis. In
particular, for efficiency and separation of concerns reasons,
a developer may even ignore the SQL injection safety aspect

when writing code; the raw MOP specification above will
take care of this aspect entirely.

This example shows that the event/action abstraction pro-
vided by raw MOP specifications is easy to master and use-
ful for defining interesting safety properties compactly and
efficiently. Event names were not needed here, so they could
have been omitted. No formulae or violation/validation han-
dlers are needed in raw MOP specifications; the developer
fully implements the monitoring process by providing event
actions using the target programming language.

All logical MOP specifications can be translated into raw
specifications; in other words, each specification formalism
can be regarded as syntactic sugar within the raw MOP spec-
ification language. MOP thus provides a focused and expres-
sive AOP language for specifying safety properties and en-
forcing them by means of monitoring and recovery. How-
ever, the correctness of raw specifications is solely based on
the capability of the developer to understand and implement
the safety requirements. Formal specifications and their cor-
responding logic-plugins, on the other hand, can be assumed
(and even formally proved) to generate correct monitoring
code for the specified property. In Section 6 we use raw MOP
specifications to implement “hand-optimized” monitors.

5. Adding Parameters to Specifications
As discussed in Section 1.1, many safety properties of in-
terest in OO applications refer to groups of objects rather
than to individual objects. It is, however, a nontrivial matter
to support and efficiently monitor such parametric specifica-
tions. A natural solution is to use powerful logics that allow
universally quantified formulae (∀x)ϕ and to treat paramet-
ric specifications as particular formulae universally quan-
tified over the parameters. The challenge that techniques
based on this “super-logic” approach face is how to synthe-
size an efficient monitor from a universally quantified for-
mula. Several runtime verification systems follow this ap-
proach explicitly or implicitly, including Eagle/Hawk [21],
Tracematches [2], and PQL[37]. MOP does not prevent the
logic designer from employing logics with universal quanti-
fiers: once a logic-plugin is implemented for such a logic, the
logic can be immediately used to specify parametric proper-
ties in MOP. For example, Eagle or the publicly available
monitoring algorithms of PQL and Tracematches can be or-
ganized as MOP logic-plugins with little effort.

Synthesizing efficient monitors from formulae in logics
allowing quantification is hard. Such monitors need to keep
track of all the instances of all the quantified variables.
Large hash tables or other similar structures may need to be
generated, nested, garbage-collected and accessed multiple
times per event, making it difficult to maintain an acceptably
low runtime overhead in real-life applications. Even if one
disallows nested quantifiers in formulae and even if one
knows how to monitor an unquantified formula ϕ efficiently,
it is still non-trivial to monitor the quantified formula (∀x)ϕ.

10 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

Monitor instances

… …

…

v1

e1

v1 e1v2
v3 v2 e2

e2
e3

{v, e} Map {v} Map {e} Map

Figure 9. Centralized indexing for MOP spec in Figure 4

We next describe a novel logic-independent technique to
support universal, non-nested parameters in specifications
using any trace-related logics with no need to modify the
existing monitoring generation algorithm. One is then able
to write parametric specifications using any of the existing
logic-plugins in MOP. One would expect that such a generic-
ity must come at a performance price. However, as shown in
Section 6, our generic technique presented next, when used
with the ERE logic-plugin, produces significantly less run-
time overhead than Tracematches with all its optimizations
(including static ones) enabled (see Table 4).

In our solution, a monitor instance checking the specified
property will be created for every specific group of values
of parameters; if a monitor instance m is created for a group
of values containing o, then we say that m is related to o.
For the SafeEnum specification in Figure 4, a monitor in-
stance will be created for every pair of concrete v and e if e
is the enumeration of v. When a relevant event occurs, con-
crete values are bound to the event parameters and used to
look up related monitor instances; related monitors are then
invoked to handle the observed event. Several monitors can
be triggered by an event since the event may contain fewer
parameters than the parameters of the enclosing specifica-
tion. For the SafeEnum example, when an updatesource
event occurs, the target Vector object is bound to the pa-
rameter v and used to find all the related monitors to process
updatesource (there may be several enumerations of v).

The monitor lookup process is external to the monitor in
our approach and makes no assumption on the implementa-
tion of the monitor; consequently, it is independent of the
monitor generation algorithm. Also, the monitor does not
need to be aware of the parameter information and can pro-
ceed solely according to the observed event. Hence, the mon-
itoring process for parametric specifications is divided into
two parts in MOP: the logic-specific monitor (generated by
the logic plugin) and the logic-independent lookup process
(synthesized by the specification processor). Consequently,
given any logic-plugin, MOP allows one to write parametric
specifications using that logic with no additional effort.

Current runtime verification approaches supporting log-
ics with universal quantifiers construct a centralized monitor

Map SafeEnum_v_map = makeMap();
pointcut SafeEnum_updatesource0(Vector v) :

call(* Vector.add*(..))&& target(v);
after (Vector v) : SafeEnum_updatesource0(v) {
Map m = SafeEnum_v_map;
Object obj = null;
obj = m.get(v);
if (obj != null){

Iterator monitors = ((List)obj).iterator();
while (monitors.hasNext()) {
SafeEnumMonitor monitor=(SafeEnumMonitor)monitors.next();
monitor.updatesource(v);
if (monitor.suceeded()) {

//validation handler
}

}//end of while
}//end of if

}

Figure 10. Centralized indexing monitoring code generated
by JavaMOP for updatesource (from spec in Figure 4)

whose state evolves according to the parameter information
contained in received events. Our approach, on the contrary,
creates many isolated monitor instances, but it maintains in-
dexing information so that it can quickly find relevant mon-
itors. Experiments (Section 6) show that our “decentralized-
monitoring” strategy performs overall better than the cen-
tralized ones. The rest of this section presents two instances
of our decentralized monitoring technique, both supported
by JavaMOP: one using centralized indexing and the other
using decentralized indexing.

5.1 Centralized Indexing

Efficient monitor lookup is crucial to reduce the runtime
overhead. The major requirement here is to quickly locate all
related monitors given a set of parameter instances. Recall
that different events can have different sets of parameters:
e.g., in Figure 4, all three events declare different param-
eter subsets. Our centralized indexing algorithm constructs
multiple indexing trees according to the event definitions to
avoid inefficient traversal of the indexes; more specifically,
for every distinct set of event parameters found in the speci-
fication, an indexing tree is created to map the set of param-
eters directly into the list of corresponding monitors.

The number and structure of indexing trees needed for a
specification can be determined by a simple static analysis of
event parameter declarations. For example, for the paramet-
ric specification in Figure 4, since there are three different
sets of event parameters, namely <v,e>, <v> and <e>, three
indexing trees will be created to index monitors, as illus-
trated in Figure 9: the first tree uses a pair of v and e to find
the corresponding monitor, while the other two map v and,
respectively, e to the list of related monitors.

We use hash maps in JavaMOP to construct the indexing
tree. Figure 10 shows the generated monitor look up code for
the updatesource event in Figure 4. This code is inserted at
the end of every call to Vector.add or other vector chang-
ing methods, according to the event definition. One parame-
ter is associated to this event, namely, the vector v on which
we invoke the method. A map, SafeEnum v map, is created

11 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

Monitor instances

… …
e1 e2

e3

v.{e} Map v.List e.List

v1 v2 v1 v2 e1 e2

Figure 11. Decentralized indexing for monitor in Figure 9

to store the indexing information for v, i.e., the {v}Map in
Figure 9. When such a method call is encountered during the
execution, a concrete vector object will be bound to v and the
monitoring code will be triggered to fetch the list of related
monitors using SafeEnum v map. Then all the monitors in
the list will be invoked to process the event.

An important question is when to create a new monitor
instance. This is a non-trivial problem in its full general-
ity, because one may need to create “partially instantiated”
monitors when events with fewer parameters are observed
before events with more parameters. While this partial in-
stantiation can be achieved in a logic-independent manner,
motivated by practical needs we adopted a simpler solu-
tion in JavaMOP: we let the logic-plugin tell which events
are allowed to create new monitors; these events are also
required to be parametric by all the specification parame-
ters, such as the create<v,e> event in Figure 4. All MOP’s
logic-plugins have been extended to mark their monitor-
initialization events. Thus, if an event is generated and a
monitor instance for its parameters cannot be found, then
a new monitor instance is created for its parameters only if
the event is marked; otherwise the event is discarded. This
way, no unnecessary monitor instances are created; indeed, it
would be pointless and expensive to create monitor instances
for all vector updates just because they can be potentially as-
sociated with enumerations – monitor instances are created
only when enumerations are actually created.

A performance-related concern in our implementation of
JavaMOP is to avoid memory leaks caused by hash maps:
values of parameters are stored in hash maps as key values;
when these values are objects in the system, this might pre-
vent the Java garbage collector from removing them even
when the original program has released all references to
them. We use weakly referenced hash maps in JavaMOP.
The weakly referenced hash map only maintains weak ref-
erences to key values; hence, when an object that is a key in
the hash map dies in the original program, it can be garbage
collected and the corresponding key-value pair will also be
removed from the hash map. This way, once a monitor in-

List Vector.SafeEnum_v_List = null;
pointcut SafeEnum_updatesource0(Vector v) :

call(* Vector.add*(..))&& target(v);
after (Vector v) : SafeEnum_updatesource0(v) {
if (v.SafeEnum_v_List != null) {

Iterator monitors = (v.SafeEnum_v_List).iterator();
while (monitors.hasNext()) {

SafeEnumMonitor monitor=(SafeEnumMonitor)monitors.next();
monitor.updatesource(v);
if (monitor.suceeded()) {

//validation handler
}

}//end of while
}

}

Figure 12. Decentralized indexing monitoring code auto-
matically generated by JavaMOP for updatesource

stance becomes unreachable, it can also be garbage collected
and its allocated memory released.

5.2 Optimization: Decentralized Indexing

The centralized-indexing-decentralized-monitor approach
above can be regarded as a centralized database of monitors.
This solution proves to be acceptable wrt runtime overhead
in many of the experiments that we carried out; in particular,
it compares favorably with centralized-monitor approaches
(see Figure 13). However, reducing runtime overhead is and
will always be a concern in runtime verification. We next
propose a further optimization based on decentralizing in-
dexing. This optimization is also implemented in JavaMOP.

In decentralized indexing, the indexing trees are piggy-
backed into states of objects to reduce the lookup overhead.
For every distinct subset of parameters that appear as a pa-
rameter of some event, JavaMOP automatically chooses one
of the parameters as the master parameter and uses the other
parameters, if any, to build the indexing tree using hash
maps as before; the resulting map will then be declared as
a new field of the master parameter. For example, for the
updatesource event in Figure 4, since it has only the <v>
parameter, v is selected as master parameter and a new field
will be added to its Vector class to accommodate the list
of related monitor instances at runtime. Figure 11 shows the
decentralized version of the centralized indexing example in
Figure 9, and Figure 12 shows the generated decentralized
indexing monitoring code for the updatesource event.

Comparing Figures 12 and 10, one can see that the ma-
jor difference between the centralized and the decentralized
indexing approaches is that the list of monitors related to v
can be directly retrieved from v when using decentralized
indexing; otherwise, we need to look up the list from a hash
map. Decentralized indexing thus scatters the indexing over
objects in the system and avoids unnecessary lookup opera-
tions, reducing both runtime overhead and memory usage.

On the negative side, decentralized indexing involves
more instrumentation than the centralized approach, some-
times beyond the boundaries of the monitored program,
since it needs to modify the original signature of the master
parameter: for the monitoring code in Figure 12, the library

12 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

Java class Vector has to be instrumented (add a new field).
This is usually acceptable for testing/debugging purposes,
but may not be appropriate if we use MOP as a development
paradigm and thus want to leave monitors as part of the re-
leased program. If that is the case, then one should use cen-
tralized indexing instead, using the attribute centralized.

The choice of the master parameter may significantly af-
fect the runtime overhead. In the specification in Figure 4,
since there is a one-to-many relationship between vectors
and enumerations, it would be more effective to choose the
enumeration as the master parameter of the create event.
Presently, JavaMOP picks the first parameter encountered in
the analysis of the MOP specification as the master param-
eter for each set of event parameters. Hence, the user can
control the choice of the master parameter by putting, for
each set of parameters P , the desired master parameter first
in the list of parameters of the first event parametric over P .

6. Experiments and Evaluation
We have applied JavaMOP on tens of programs, including
several large-scale open source programs, e.g., the DaCapo
benchmark suite [13], the Tracematches benchmark suite
[8], and Eclipse [23]. Our evaluation mainly focuses on two
aspects: the expressivity of the specification language and
the runtime overhead of monitoring. The properties used in
our experiments come from two sources: properties used in
other works (e.g., [26, 37, 8, 15]) and our own formalization
of informal descriptions in software documentation.

With the currently supported logic-plugins and the generic
support for parameters, JavaMOP is able to formally and
concisely express most of the collected properties. One inter-
esting exception is the SQL injection from PQL [37], which
we implemented using the raw MOP specification shown in
Figure 8. A large portion, nearly half, of the properties that
we have tried are recoverable/enforceable. Many violations
of properties were revealed in our experiments, although we
did not focus on error detection; when violations occurred,
we were able to quickly locate their causes using JavaMOP.

The rest of this section focuses on performance evalua-
tion, on discussing some of the detected violations, and on
current limitations of our implementation.

6.1 Performance Evaluation

The monitoring code generated by JavaMOP caused low
runtime overhead, below 10%, in most experiments even
with centralized indexing. By turning on the decentralized
indexing, few experiments showed noticeable runtime over-
head. In what follows, we evaluate JavaMOP’s runtime over-
head using the DaCapo benchmark, and also compare Java-
MOP with other runtime verification techniques, namely,
Tracematches and PQL, using the Tracematches benchmark.

Our experiments were carried out on a machine with 1GB
RAM and P4 2.0Gz processor; the Sun Java HotSpot(TM)
Client VM (1.5.0 10) on Windows XP professional was used

as the running JVM. All the benchmark programs and prop-
erties discussed in this paper can be downloaded from Java-
MOP’s website [18].

We used the DaCapo benchmark version 2006-10; it con-
tains eleven open source programs [13]: antlr, bloat,
chart,eclipse,fop, hsqldb,jython,luindex,lusearch,
pmd, and xalan. The provided default input was used to-
gether with the -converge option to execute the benchmark
multiple times until the execution time falls within a coeffi-
cient of variation of 3%. The average execution time is then
used to compute the runtime overhead.

6.1.1 Properties

The following general properties were checked using Java-
MOP, which we borrowed from [15]:

1. SafeEnum: Do not update a Vector while enumerating
its elements using the Enumeration interface (see Fig-
ure 4);

2. SafeIterator: Do not update a Collection when using
the Iterator interface to iterate its elements;

3. HashMap: The hash code of an object should not be
changed when the object is used as a key in a hash map;

4. HasNext: Always call the hasNext() method of an iter-
ator before calling its next() method;

5. LeakingSync: Only access a Collection via its syn-
chronized wrapper once the wrapper is generated by the
Collections.synchronized*methods;

6. ClosedReader: Do not read from a Reader if it or its
corresponding InputStream has been closed;

More properties have been checked in our experiments;
we choose these six properties to include in this paper be-
cause they generate a comparatively larger runtime over-
head. We excluded those with little overhead. Three of these
properties are recoverable: HashMap (the monitor can main-
tain a shadow map based on IdentityHashMap as backup),
HasNext (make a call to hasNext() before next()), and
LeakingSync (redirect call to the synchronized wrapper).

For every property, we provided three MOP specifica-
tions: an ERE formal specification, the same formal specifi-
cation for centralized indexing, and a (hand-optimized) raw
MOP specification. The last one is supposedly the best mon-
itoring code for that property and was used to evaluate the
effectiveness of our monitor generation algorithm. The As-
pectJ compiler 1.5.3 (AJC) was used in these experiments to
compile the generated monitoring AspectJ code.

6.1.2 Statistics and Results of the Evaluation

Tables 1 and 2 show the instrumentation and monitoring
statistics for monitoring the above properties in DaCapo: Ta-
ble 1 gives the number of points statically instrumented for
monitoring each of the properties; Table 2 gives the num-
ber of events and the number of monitor instances generated

13 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

at runtime using centralized indexing. Both these numbers
are collected from a single execution of the benchmark. The
first row in each table gives the names of the properties, and
the first column in Table 2 gives the programs. We do not
split the static instrumentation points by different programs
because they are merged together in the benchmark suite;
some of them even share common packages. Decentralized
indexing does not change the number of generated events or
monitor instances; it only affects the monitor indexing.

These two tables show that the properties selected in our
experiments imposed heavy runtime monitoring on the pro-
grams: a large number of points, ranging from one thou-
sand to twelve thousand, in the original programs were in-
strumented to insert the monitoring code. The monitoring
code was frequently triggered during the execution, espe-
cially for those properties involving the Java Collection
classes, e.g., SafeIterator,HashMap, and HasNext. Some
properties generated numerous runtime checks but only
a few, even zero, monitor instances were created (e.g.,
SafeEnum and LeakingSync). The reason is that these
properties observe some frequently visited methods, but the
events that we allowed to create monitor instances rarely
or never occurred. For example, LeakingSync checks all
the method calls on the Collection interface, but no calls
to Collections.synchronized* methods happened in
these experiments, so no monitor-initialization events were
created. Such experiments are particularly useful to evaluate
the effectiveness of the generated monitoring code to filter
dynamically irrelevant events, i.e., events that have no effect
on the current monitor states. Also, a big difference between
the number of events and the number of created monitor
instances (e.g., jython-SafeEnum and bloat-Leakingsync)
indicates a real potential for static analysis optimizations.

Table 3 summarizes the runtime overhead measured in
our experiments, represented as a slowdown percentage of
the monitored program over the original program. For ev-
ery property-program combination, three monitoring run-
time overhead numbers are given: with centralized indexing,
with decentralized indexing, and using a hand-optimized raw
MOP specification. Among all 66 experiments (recall that
we already excluded some results with little overhead), only
11 (bold) caused more than 10% slow-down with centralized
indexing; for the decentralized indexing version, this number
reduces to 4. Except for the 4 worst cases, with decentralized
indexing JavaMOP generates monitoring code almost as ef-
ficient as the hand-optimized code.

Analyzing Tables 3 and 2, one can see that decentralized
indexing handles the dynamically irrelevant events much
better than centralized indexing, e.g., when checking the
LeakingSync property. This is caused by the fact that, when
there is no related monitor instance, decentralized index-
ing only checks an object field, while centralized indexing
needs to make an expensive hash map lookup. The run-
time overhead is determined not only by the frequency of

reaching monitoring code, but also by the execution time
of the monitored action. For example, HashMap required
quite heavy monitoring on many programs but did not cause
any noticeable performance impact. This is because the
methods checked for HashMap, including put, remove, and
contains, are relatively slow. On the other hand, checking
bloat and pmd against SafeIterator and HasNext is as
bad as it can be: the monitored actions take very little time to
execute (e.g., the hasNext and next methods of Iterator)
and they are used very intensively during the execution (in-
dicated by the massive numbers in Table 2). Even for such
extreme cases, the monitoring code generated by JavaMOP
with decentralized indexing may be considered acceptable:
slowdown between 2 and 3 times. However, one can always
choose to implement a hand-optimized raw MOP specifica-
tion for the property of interest; in our case, the raw MOP
specification reduced the runtime overhead to only 20-30%.

6.1.3 Comparing JavaMOP, Tracematches, and PQL

Attempts have also been made to compare JavaMOP with
other existing trace monitoring tools. However, some of
them are not publicly available, others have limitations that
prevented us from using them in our experiments. Con-
sequently, we only succeeded to compare JavaMOP thor-
oughly with Tracematches and partially with PQL.

As shown in [6], Tracematches is one of the most efficient
and mature trace monitoring tools to date. A benchmark for
trace monitoring tools and experiments has been proposed
by the Tracematches team in [8], containing eight property-
program combinations. Detailed explanations about these
properties and programs can be found in [8]; one of them
had 0 runtime overhead and apparently was not intended
to measure runtime overhead, and it took longer than 1
hour to compile another one using Tracematches, so we
stopped it. Table 4 shows the results that we obtained for
the other six property-program combinations. These experi-
ments were run on the same machine mentioned above.

In Table 4, the first two columns list the properties and the
programs; the third column gives the sizes of the programs;
the fourth column shows the running time of the original pro-
gram without any monitoring; the remaining columns give
the runtime overhead caused by hand-optimized monitoring
code, (decentralized indexing) JavaMOP monitors, central-
ized indexing JavaMOP monitors, Tracematches monitors,
and PQL monitors. We take no credit for the hand-optimized
code: it was implemented by Tracematches developers us-
ing AspectJ and offered with the benchmark. The Trace-
matches properties were also contained in the benchmark
package. To achieve a direct comparison, all the MOP spec-
ifications used the ERE logic-plugin and were essentially
identical to the Tracematches specifications. Both decentral-
ized indexing and centralized indexing in JavaMOP were
used. The Tracematches specifications and the centralized
indexing monitoring code generated by JavaMOP were com-
piled with the ABC compiler [7] for AspectJ, while AJC was

14 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

SafeEnum SafeIterator HashMap HasNext LeakingSync ClosedReader
DaCapo 1147 5663 1729 2639 12855 2966

Table 1. Instrumentation statistics: instrumentation points in the DaCapo benchmark

SafeEnum SafeIterator HashMap HasNext LeakingSync ClosedReader
antlr 10K 0 1K 0 0 0 0 0 233K 0 3M 1K
bloat 0 0 90M 1M 391K 46K 155M 1M 6M 0 11K 0
chart 57 0 569K 815 8K 3K 6K 815 653K 0 208 2

eclipse 16K 0 38K 31 31K 19K 1K 31 230K 0 29K 165
fop 7 1 49K 79 17K 6K 277 79 3M 0 1K 3

hsqldb 174 0 0 0 0 0 0 0 686 0 0 0
jython 50K 0 174K 50 443 439 106 50 16M 0 1M 114
luindex 457K 14K 82K 8K 9K 9K 28K 8K 3M 0 19K 0
lusearch 335K 0 405K 0 416 416 0 0 1M 0 2M 0

pmd 717 0 25M 1M 11K 105 46M 8M 26M 0 28K 4
xalan 5K 0 119K 0 124K 78K 0 0 682K 0 98K 1K

Table 2. Monitoring statistics: generated events(left column) and monitor instances(right column). K = ×10 3, M = ×106

SafeEnum SafeIterator HashMap HasNext LeakingSync ClosedReader
antlr 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.4 0.0 2.7 0.0 0.0 22.1 5.8 0.0
bloat 2.4 0.0 0.0 385 176 24.2 2.4 1.8 1.4 323 154 36.3 13.5 3.2 2.2 0.1 0.0 2.3
chart 0.0 0.0 0.0 0.3 0.0 0.0 4.8 3.6 4.8 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.0

eclipse 2.4 4.1 0.8 0.0 0.0 1.4 3.6 3.7 0.5 0.0 3.8 1.5 0.8 3.0 3.1 0.6 2.2 2.4
fop 0.4 1.2 0.6 1.7 1.5 0.0 0.0 0.0 0.0 1.7 0.8 1.5 14.7 0.5 1.0 1.9 0.0 0.0

hsqldb 0.0 3.3 0.0 0.0 0.9 1.2 0.0 0.0 2.1 0.0 0.8 0.0 1.1 1.4 1.4 1.6 0.0 0.0
jython 0.5 0.6 0.0 1.6 0.8 0.5 0.7 0.2 0.3 1.3 0.0 0.6 30.2 0.0 2.3 0.7 0.4 0.2
luindex 2.6 1.6 0.2 3.2 1.9 0.5 0.6 1.2 1.8 0.9 0.3 0.0 4.3 3.2 2.2 1.1 1.7 1.1
lusearch 6.6 0.5 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 32.4 1.1 0.6 75.7 0.0 0.1

pmd 0.0 0.0 0.0 272 44.8 11.3 0.5 0.0 0.0 353 25.4 13.7 34.3 5.4 8.0 0.0 0.0 0.0
xalan 0.0 3.5 4.4 4.8 6.7 5.4 7.2 4.7 6.5 4.6 0.0 2.8 3.0 1.5 1.7 8.5 2.2 4.5

Table 3. Runtime overhead (in percentage; e.g., 14.7 means 14.7% slower) of JavaMOP: centralized | indexing | raw

Property Program LOC Original Hand MOP MOP-CI TM PQL
(seconds) Optimized (AJC) (ABC)

Listener ajHotDraw 21.1K 1.5 0.0 6.6 7.0 1026.6 2193.3
SafeIterator jHotDraw 9.5K 67.9 0.1 38.5 45.6 72.6 292.7
NullTrack CertRevSim 1.4K 0.1 265.9 266.0* 425.5 1229.7 n/a
Hashtable Weka 9.9K 2.8 3.3 3.3 6.7 10.3 n/a
HashSet Aprove 438.7K 560.0 21.2 23.9 45.8 296.5 n/a
Reweave ABC 51.2K 7.0 11.1 17.6* 20.2 63.5 n/a

Table 4. Runtime overhead (in %) for JavaMOP, Tracematches, and PQL on the Tracematches Benchmark. (* : Centralized
indexing monitors were used, because decentralized indexing monitors for these properties require instrumentation on non-
modifiable classes in Java, e.g., Object and String.)

15 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

used to weave the AspectJ code generated by JavaMOP us-
ing decentralized indexing. We were not able to use ABC in
all experiments because apparently ABC cannot instrument
Java library classes, which is required by some of our opti-
mized (decentralized indexing) monitoring code. Due to im-
plementation limitations of PQL, only two properties could
be specified using PQL; we could not apply the static ana-
lyzer in the PQL distribution due to lack of documentation.
From personal communication with a PQL developer, we
learned that PQL admittedly causes more runtime overhead
than Tracematches (it was not dynamically optimized) and
also that its static analyzer is not easy to use.

Table 4 shows that JavaMOP generates more efficient
monitoring code than Tracematches and PQL, often close to
the hand-optimized code when using decentralized indexing.
Aprove monitored by Tracematches produces much more
overhead in our evaluation than reported in [8]; this might be
caused by the different execution environments. Since Java-
MOP generates standard AspectJ code, it gives us the free-
dom to choose off-the-shelf compilers. In our experiments,
ABC tended to take more time to compile the code than AJC.

An important advantage of building a runtime verification
tool on top of an instrumentation package, like Tracematches
and PQL do, is that one can have more control over instru-
mentation and thus facilitate the use of static analysis. A
static analyzer has been recently proposed for Tracematches
in [15] and it was also evaluated on the property-program
combinations using the DaCapo benchmark discussed in the
above section. This allows us to make another comparison,
this time between JavaMOP and Tracematches with static
analysis. The results are summarized in Figure 13.

Figure 13 compares those examples with more than 10%
overhead in Table 3 or more then 20% for Tracematches
without static analysis according to [15]. We did not re-
peat the 16 experiments for Tracematches in our environ-
ment, and all the numbers for Tracematches are taken from
[15]. Without using static analysis, Tracematches caused
less overhead than centralized JavaMOP monitors in four
cases (Jython-LeakingSync, lusearch-ClosedReader, pmd-
SafeIterator, and pmd-HasNext), and it was always less
efficient than decentralized JavaMOP monitors. After us-
ing static analysis to eliminate unnecessary instrumentation
points, there are still three cases (bloat-SafeIterator, bloat-
HasNext, and pmd-HasNext) in which JavaMOP outper-
formed Tracematches, while for the others both tools were
pretty close in performance.

It should be noted that we are not arguing against static
analysis; on the contrary, we believe that static analysis can
and should be combined with MOP to further reduce the
runtime overhead, but that is out of the scope of this paper.

6.2 Violation Detection

As mentioned, error detection was not the main focus in our
experiments; we consider that, for error detection, runtime
verification needs to be combined with test case generation.

0 1 2 3 4 5 6 7 8 9 10

antlr,ClosedReader

antlr,LeakingSync

bloat,SafeIterator

bloat,ChangedHashCode

bloat,HasNext

bloat,LeakingSync

chart,SafeIterator

chart,LeakingSync

fop,LeakingSync

jython,LeakingSync

lusearch,SafeEnum

lusearch,LeakingSync

lusearch,ClosedReader

pmd,SafeIterator

pmd,HasNext

pmd,LeakingSync

MOP

MOP-CI

TM

TM-static

Figure 13. Runtime overhead of JavaMOP and Trace-
matches on DaCapo (CI: centralized indexing; TM: Trace-
matches; TM-static: TM with static analysis). The runtime
overhead is represented as the ratio of monitored execution
over non-monitored execution; e.g., 1 means no overhead
and 10 means ten times slower.

However, we still encountered unexpectedly many violations
during the evaluation of JavaMOP. One reason is that many
safety properties in our experiments were devised for check-
ing performance, and are therefore not strictly required to
hold in all programs. Consequently, many violations do not
lead to actual errors in the program. For example, violations
of the hasNext property were found in some Java library
classes, e.g., AbstractCollection and TreeMap. It turned
out that these implementations use the size of the collection
instead of the hasNext method to guard the iteration of ele-
ments. We also found violations indicating possible semantic
problems of programs, which are subtle and thus difficult to
find by ordinary testing. We next discuss some of these.

6.2.1 Potential Errors

There is a known problem in jHotDraw about using objects
of Enumeration: one can edit a drawing, which may update
a vector in the program, while making the animation for
the drawing, which uses an enumerator of the vector. As
expected, JavaMOP was able to find this problem.

16 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

We also found violations of some interface contracts,
i.e., rules to use interfaces, in Eclipse. These can lead to
resource leaks as pointed out in [26] and [37]. Three kinds
of properties were checked in our Eclipse experiments:

1. The dispose method needs to be called to release ac-
quired resources before a GUI widget is finalized.

2. The remove*Listener should be called by a host object
to notify its listeners (registered by calling add*Listener)
to release resources before it is finalized. * represents the
name of the listener.

3. Eclipse uses Lucene [36] as its search engine; in Lucene,
it is required that, before a Dir object is closed (by calling
its close method), all the file readers created by the Dir
object should be closed.

We instrumented the GUI package of Eclipse with these
three properties and also the JDT package with the second
property (note that there are many different add*Listener-
remove*Listener pairs in these two packages). Then we
used the instrumented Eclipse in our development work (no
noticeable slow-down was experienced during the evalua-
tion). More than 30 violations were detected in the GUI
package, while none was found in the JDT package – this
may indicate the importance of the second property. In sum-
mary, the GUI package, which is more complex and harder
to test, seems less reliable w.r.t. to memory leaks.

6.2.2 Inappropriate Programming Practice

Several unexpected violations were encountered during our
experiments. For example, we ran into some violations in
Xalan [42] when checking a simple property about the
Writer class in Java: no writes can occur after the writer
is closed (by calling the close method). This is, according
to the Java documentation which states that an exception
should be raised, a must-have property. Despite these vio-
lations, no errors occurred in Xalan. Using JavaMOP, we
located the places causing the violations without much in-
sight of the program and a quick review showed that a pool
of writer instances is used in Xalan to avoid unnecessary re-
creations, but the writer can be closed before it is returned to
the pool. However, the program uses StringWriter, whose
close method happens to have no effect. Although it is not
an error in this implementation, we believe that it is inappro-
priate programming practice: the writer should be cleared
instead of closed when returned to the pool.

6.3 Limitations of MOP and JavaMOP

The current MOP logic-plugins encapsulate monitor synthe-
sis algorithms only for non-parametric trace logics. Even
though the new MOP specification language allows univer-
sal parameters to be added to any of these logics, there is no
way to add nested parameters, or existential ones. We intend
to soon add a logic-plugin for Eagle [11], a “super-logic”
generalizing both ERE and LTL, and also allowing arbitrary

quantification and negation, but do not expect it to have a
stimulating runtime overhead.

Our current JavaMOP implementation assumes that, in
a parametric specification, the events marked by the logic-
plugin to create monitor instances contain all the parameters
of the specification. This limitation can be avoided by imple-
menting a more complicated monitor creation strategy; how-
ever, we were not motivated to it because all the properties
that we have checked so far fall under this restriction.

The gap between dynamic events for monitoring and
static monitor integration based on AOP can lead to some
limitations of MOP tools. Ideally, for variable update events,
the MOP tool should instrument all the updates of involved
variables. But, statically locating all such updates requires
precise alias analysis. Therefore, JavaMOP only allows up-
date events for variables of primitive types. In addition,
static instrumentation may cause extra performance penalty
of monitoring. For the specification in Figure 4, one can
see that the monitor is not “interested” in next events af-
ter create until an updatesource event is encountered.
But since we instrument the program statically, the monitor
keeps receiving next events even when they are not needed.
These limitations may be relaxed by utilizing dynamic AOP
tools, but more discussion on this direction is out of the
scope of this paper. However, since MOP can also be used
to add new functionality to a program, one may not want to
miss any related event: some action may be executed even
when the event does not affect the monitor state.

7. MOP at Work
Based on automatic code generation and program instru-
mentation, MOP provides powerful support for effectively
applying runtime monitoring and recovery in software de-
velopment to improve reliability. We next show a series of
examples to illustrate the strengths of MOP in building reli-
able systems from different perspectives. All these examples
use JavaMOP.

7.1 Improving Software Reliability via Recovery

Monitoring has been widely accepted in many engineering
disciplines as an effective mechanism to improve the de-
pendability and safety of systems, e.g., fuses in electricity
and watchdogs in hardware. We argue that monitoring can
also play a key role in software development to obtain highly
dependable systems, where MOP provides a fundamental
support. In what follows, we demonstrate some applications
of MOP that employ runtime monitoring and recovery to
build reliable software.

Let us start with a simple example about survivability of
control systems. For many control systems, it is more im-
portant to keep the system alive than always getting opti-
mal results. For instance, when a system receives bad sensor
signals, it usually ignores the signals and continues with a
safe input value in order to avoid potential crashes caused by

17 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

class Controller {
float input;
/*@
scope = class
logic = JML
{
invariant input >= LOWERBOUND && input <= UPPERBOUND;
}
violation handler {

if (input < LOWERBOUND) input = LOWERBOUND;
else input = UPPERBOUND;

}
@*/
...
}

Figure 14. Specification to ignore bad sensors

defective signals. Suppose that the control system is imple-
mented in the Controller class, which uses the field input
to receive the sensor signal. Figure 14 shows an MOP spec-
ification to automatically detect and filter out bad signals in
the control system. This specification is defined as a class in-
variant for the Controller class, so it will be checked upon
every update of input. JML is used to specify the expected
range of the signal. When the property is violated, i.e., the
signal is out of range, the violation handler is triggered to
adjust the signal into the normal range, ensuring liveness of
the control system.

This example may appear to be too simple since the de-
veloper has no difficulties in placing the checking and re-
covery code manually. However, there are still some advan-
tages of using MOP here. First, the updates of input can
be scattered into several components in the system, mak-
ing manual insertion of checking code inefficient and error-
prone. On the other hand, MOP provides a fully automated
way to monitor the property throughout the system, reduc-
ing the programming efforts and improving the modularity
of the program. Second, the formal specification of the prop-
erty supported by MOP is more rigorous and clear than a
concrete implementation, and is closer to requirements, fa-
cilitating program understanding and software maintenance.
This advantage is fortified in the following examples, where
more complicated properties are needed.

Runtime monitoring is particularly effective for detecting
violations of safety properties, e.g., security policies. Viola-
tions of such properties usually do not lead to visible errors
of the system immediately, making them hard to catch by
traditional testing and debugging. Besides, runtime recov-
ery is highly desirable for such violations because they of-
ten cause serious damage to the system, such as malicious
access to resources. MOP provides an effective means to en-
force safety properties in software. A simple security exam-
ple was shown in Figure 1. We next show another example.

Correct usage of a class interface sometimes requires to
follow certain temporal constraints on the order of method
invocations. For example, in Eclipse, when a GUI widget is
released, one should use dispose() to release all the allo-

cated resources. However, such constraints are not always
forced by the system, although their violation may lead to
unexpected problems eventually. For the widget example,
many violations have been found in the Eclipse GUI package
during our evaluation, implying possible resource leaks. Us-
ing MOP, one can enforce such constraints without changing
the original program. Figure 15 gives the MOP specification
that prevents resource leaks caused by undisposed widgets.

/*@
scope = global
logic = ERE
ToDispose (Widget w) {
event create<w> : end(call(* w.new(..)));
event dispose<w> : end(call(* w.dispose()));
event finalize<w>: begin(call(* w.finalize()));
formula : create finalize
}
validation handler {@this.dispose();}
@*/

Figure 15. MOP specification for enforcing disposal of
Eclipse widgets

Three events are defined: create for the end of the cre-
ation of a widget, dispose for the end of the invocation of
the widget’s dispose() method, and finalize for the be-
ginning of releasing the widget, to capture the violation be-
fore the code in finalize starts executing and thus to al-
low recovery. We describe the defective behavior instead of
the desired property because it is simpler in this example,
stating that we see create and then finalize without a
dispose in between. By definition, create and finalze
of a specific widget can occur at most once during the ex-
ecution. A validation of the specified pattern indicates a vi-
olation of the desired property. A validation handler is used
to correct the execution of the system, which simply invokes
the dispose() method. This way, the constraint is enforced
at runtime, avoiding the resource leak. This specification can
also be writen as a class invariant, since only one parameter
is involved; the translation is trivial and ignored here.

class CarController {
int currentSpeed;
...
int targetSpeed = 0;
void setCruiseControl() {

... targetSpeed = currentSpeed;...
}
void releaseCruiseControl() {

... targetSpeed = 0; ...
}
void doBrake();

}

Figure 16. Car controller class

Let us consider a more complex example. Cruise control
is a common feature of most cars. It allows the driver to set a
cruise speed during driving, and then the car control system
will automatically maintain the speed by regulating the gas

18 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

/*@
scope = class
logic = FTLTL
{
event setCC : end(exec(* setCruiseControl()));
event releaseCC : end(exec(* releaseCruiseControl()));
event outOfBound : end(update(int currentSpeed)) &&
(currentSpeed > (targetSpeed + 5) ||
currentSpeed < (targetSpeed - 5));

formula : [](setCC-> (!outOfBound U releaseCC));
}
violation Handler {
@this.releaseCruiseControl();
@RESET;

}
@*/

Figure 17. Specification for cruise control

flow until the driver cancels the cruise mode. However, it is
not always safe to use the cruise control mode. For example,
if the car is running on a steep downhill or on wet ground, it
may go faster than it should. In such case, the driver needs
to retain the control of the car for safety reasons. This repre-
sents a rather common safety policy in many automation sys-
tems, e.g., automated flight systems: when unexpected situ-
ations are detected, the system should return the control to
the operator.

There can be many variations of the cruise control func-
tion. We here focus on a simplified behavior; a more ad-
vanced version will be discussed in Section 7.2. The sim-
plified cruise control behavior only concerns the action of
setting and canceling the cruise mode and can be informally
described as follows: “once the cruise control has been set,
the car speed should not be 5 miles more than or less than
the cruise speed until the cruise control is released.”

Suppose that the car control system is implemented
in the CarController class in Figure 16, which con-
tains the operations for starting/stopping the cruise control
(setCruiseControl() and releaseCuriseControl), as
well as the fields for recording speeds. Figure 17 gives an
MOP future time linear-temporal logic (using the logic-
plugin FTLTL) specification to formally specify the desired
behavior of the system. In this class-scoped specification,
in addition to the two events that represent the actions of
starting and stopping the cruise mode, another event is also
defined to check the expected range of the car speed. There-
fore, the monitoring code will be inserted after the two
cruise mode related methods, as well as after every update of
currentSpeed to check if its value falls out of the range. In
future time linear temporal logic (FTLTL), [] is interpreted
as “always”, -> and ! are the normal boolean operators for
“implies” and “not”, and U is the “until” operator, stating
that the left operand should hold until the right operand
holds. The MOP framework automatically synthesizes the
monitoring code for this formula, which can be depicted as
the state machine in Figure 18.

1

2

False

setCC && outOfBound

outOfBound

! setCC

releaseCC

setCC &&
!outOfBound

! releaseCC&& ! outOfBound

Figure 18. The state machine for safe cruise control system

When a violation is detected, the control system will
interrupt the cruise mode and return the control to the driver.
The @RESET keyword in the validation handler resets the
state of the monitor, so the monitoring process continues.

Summary. The examples above illustrate that runtime moni-
toring and recovery can play a key role in developing reliable
software, and that MOP can provide fundamental support for
applying monitoring in software development. Its extensible
formal framework allows the developer to choose appropri-
ate formalisms to specify desired properties in an abstract
and modular way, while the violation/validation handlers fa-
cilitate the implementation of desired runtime recovery.

7.2 Programming using Logical Aspects

MOP not only supports runtime monitoring and recovery,
but also provides the developer with a means to program us-
ing logical aspects, triggered by sophisticate conditions ex-
pressed using logic formalisms. We next show some exam-
ples, illustrating the advantages of employing logical aspects
in programming.

Let us start with a typical example of AOP, namely updat-
ing the display in a graphic application [25], and consider
only a simple scenario here, that is, changing positions of
points. In order to display the correct content, the display
has to be updated whenever a point moves. Suppose that the
point is implemented in a class Point, which uses fields x
and y to represent its position. With AspectJ, one can imple-
ment an aspect that invokes the display update method after
every method of Point that may change the position. How-
ever, when updating the display is costly, e.g., re-drawing a
TV wall, it is desirable to make the update only when neces-
sary, that is, when the point’s position really changes.

This requirement can also be implemented manually us-
ing aspects, though slightly more tediously, adding appro-
priate new variables to record the original position and state-
ments to record and compare original and updated positions.
However, MOP provides a trivial and compact solution to
implement this more efficient strategy of updating the dis-
play, as shown in Figure 19. This specification is interface-
scoped, stating that it will be executed on the boundaries of
every public method of the class. This scope is chosen for

19 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

class Point{
int x, y;
/*@
scope = interface
logic = JML
{
ensures \old.x == x && \old.y == y;
}
violation handler {
Display.update();

}
@*/
...
}

Figure 19. Efficient display updates

simplicity; one can always associate this specification only
to those methods that may change the position of the point.
JML is used to specify the condition that may trigger the
update of the display. \old is a JML keyword referring to
the original state of the object before the execution of the
method. So the specified formula essentially checks the orig-
inal position and the updated position. If they are not equiva-
lent, the display will be updated. Here the MOP specification
acts like a complicated branch statement, whose condition
refers to the history state of the object.

In MOP, specification and implementation are tightly
coupled together: the implementation is constantly “super-
vised” and “corrected” by the specification, while the spec-
ification is “activated” by events generated by the imple-
mentation at various points that can be scattered all over the
program. In other words, the specification can be regarded
as a logical aspect of the implementation, that “becomes
alive” wherever certain logical properties of interest hold.
The display example above considered quite a trivial prop-
erty, one that only needs to look one step back in order to
check its validity. However, MOP can support through its
logic-plugins much more complex properties, that refer to
both past and future behaviors of programs. If used prop-
erly, we believe that this capability of MOP can be used as a
powerful programming technique.

In other words, with the support of proper formalisms,
MOP allows the developer to define trace related behaviors
in the system, as discussed, e.g., in the profiling example in
Figure 3. One advantage of using logical aspects in MOP
is simplicity, both in understanding and in maintaining pro-
grams. Let us re-consider the cruise control example. The
simplified cruise control system previously discussed only
takes operations on the cruise mode into account, but many
other actions may happen under the cruise mode in practice.
An important situation is when the driver brakes; in this case,
the cruise control should also be stopped. This improved
function can be implemented easily by MOP, as a slightly
changed variant of the specification in Figure 17, shown in
Figure 20.

A new event, brake, is added to catch the braking ac-
tion. The formula is changed to incorporate the brake event.

scope = class
logic = FTLTL
{
event setCC : end(exec(* setCruiseControl()));
event releaseCC : end(exec(* releaseCruiseControl()));
event brake : end(exec(doBrake()));
event outOfBound : end(set(* currentSpeed)) &&

(currentSpeed > (targetSpeed + 5) ||
currentSpeed < (targetSpeed - 5));

formula : setCC -> (!outOfBound U (releaseCC ++ brake));
}
violation handler{

@this.releaseCruiseControl();
@RESET;

}
validation handler {

if (brake) @this.releaseCruiseControl();
@RESET;

}

Figure 20. Specification for cruise control with brake

More importantly, the “always” operator, [], is removed to
allow the validation of the formula to happen; in finite trace
LTL, an “always” property will not be validated until the
system stops. Hence the validation handler not only needs to
cancel the cruise mode for the braking action, but also uses
a @RESET action to restart the monitor. It also shows that the
defined events and predicates can be used in the handlers
to indicate the last event causing the violation/validation. In
this specification, the formula plays the role of a complex
trace-based condition that triggers either the violation han-
dler or the validation handler in order to implement the de-
sired behavior.

Summary. MOP combines specification and implementation
by regarding the specification as an logical aspect of the
implementation and triggering “recovery” code when vali-
dated or violated. The user is freed to focus on correctly and
formally describing the actual requirements of the system
rather than decomposing them into hard to check and error-
prone implementation details. This way, MOP promotes an
abstract “separation of concerns” for the software develop-
ment and also facilitates program understanding and soft-
ware maintenance.

8. Conclusion
We presented a generic, logic-independent approach to sup-
port parametric specifications in Monitoring-Oriented Pro-
gramming (MOP). A novel optimization technique, called
decentralized indexing, was proposed to reduce the runtime
overhead of monitoring parametric properties. A new, en-
riched MOP specification language was also proposed, that
supports parameters and raw specifications; one can use raw
MOP specifications to fully implement and control the de-
sired monitoring process using the target programming lan-
guage. An extensive evaluation of JavaMOP and compar-
isons with other runtime verification tools have been car-
ried out; results are encouraging: less than 8% experiments
showed more than 10% runtime overhead, and JavaMOP

20 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

generated overall more efficient monitoring code than other
runtime verification tools.

The techniques presented in this paper are purely dy-
namic. Although we showed that runtime verification is fea-
sible, we also believe that static analysis can and should
be used to further reduce the runtime overhead of moni-
toring: by statically analyzing the program against the de-
sired property, one can eliminate irrelevant instrumentation
points. Since static analysis is closely related to the particu-
lar logic-plugin, to add static analysis to MOP we will proba-
bly need static-analysis-plugins associated to logic-plugins.
Also, MOP can be combined with test generation techniques
to provide a more effective testing framework for safety
properties.

References
[1] P. Abercrombie and M. Karaorman. jContractor: Bytecode

instrumentation techniques for implementing DBC in Java.
In RV’02, volume 70 of ENTCS, 2002.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. Adding trace matching with free variables to
AspectJ. In OOPSLA’05, 2005.

[3] C. Anley. Advanced SQL injection in SQL server applica-
tions. NGSSoftware, 2002.

[4] AspectC++. http://www.aspectc.org/.

[5] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund,
M. Lowry, C. Pasareanu, G. Rosu, and W. Visser. Exper-
iments with test case generation and runtime analysis. In
ASM’03, volume 2589 of LNCS, pages 87–107, 2003.

[6] P. Avgustinov, E. Bodden, E. Hajiyev, L. Hendren, O. Lhotak,
O. de Moor, N. Ongkingco, D. Sereni, G. Sittampalam,
J. Tibble, and M. Verbaere. Aspects for trace monitoring.
In FATES/RV’06, volume 4262 of LNCS, pages 20–39, 2006.

[7] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhotak, O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. ABC: an extensible AspectJ compiler. In
AOSD’05, 2005.

[8] P. Avgustinov, J. Tibble, E. Bodden, O. Lhotak, L. Hendren,
O. de Moor, N. Ongkingco, and G. Sittampalam. Efficient
Trace Monitoring. Technical Report abc-2006-1, Oxford
University, 2006.

[9] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#
programming system: An overview. In CASSIS’04, volume
3362 of LNCS, pages 49–69, 2004.

[10] H. Barringer, B. Finkbeiner, Y. Gurevich, and H. Sipma.
Runtime Verification (RV’05). 2005. ENTCS 144.

[11] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
Based Runtime Verification. In VMCAI’04, volume 2937 of
LNCS, pages 44–57, 2004.

[12] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass -
Java with Assertions. In RV’01, volume 55 of ENTCS, 2001.

[13] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis.
In OOPSLA’06, 2006.

[14] E. Bodden. J-lo, a tool for runtime-checking temporal
assertions. Master’s thesis, RWTH Aachen University, 2005.

[15] E. Bodden, L. Hendren, and O. Lhotak. A staged static
program analysis to improve the performance of runtime
monitoring. Technical Report abc-2006-4, Oxford University,
2006.

[16] F. Chen, M. D’Amorim, and G. Roşu. A formal monitoring-
based framework for software development and analysis. In
ICFEM’04, volume 3308 of LNCS, pages 357 – 373, 2004.

[17] F. Chen, M. D’Amorim, and G. Roşu. Checking and
correcting behaviors of Java programs at runtime with
JavaMOP. In RV’05, volume 144(4) of ENTCS, 2005.

[18] F. Chen and G. Roşu. JavaMOP. http://fsl.cs.uiuc.edu/javamop.

[19] F. Chen and G. Roşu. Towards monitoring-oriented program-
ming: A paradigm combining specification and implementa-
tion. In RV’03, volume 89(2) of ENTCS, 2003.

[20] F. Chen and G. Roşu. Java-MOP: A monitoring oriented
programming environment for Java. In TACAS’05, volume
3440 of LNCS, pages 546–550, 2005.

[21] M. d’Amorim and K. Havelund. Event-based runtime
verification of Java programs. In International Workshop
on Dynamic analysis (WODA’05), 2005.

[22] D. Drusinsky. Temporal Rover. http://www.time-rover.com.

[23] Eclipse. http://eclipse.org.

[24] Eiffel Language. http://www.eiffel.com/.

[25] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented
programming: Introduction. CACM, 44(10):29–32, 2001.

[26] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In OOPSLA’05, 2005.

[27] K. Havelund and G. Roşu. Monitoring Java Programs with
Java PathExplorer. In RV’01, volume 55 of ENTCS, 2001.

[28] K. Havelund and G. Roşu. Runtime Verification (RV’01,
RV’02, RV’04). 2001, 2002, 2004. ENTCS 55, 70, 113.

[29] C. Hoare. Communicating Sequential Processes. Prentice-
Hall Intl., New York, 1985.

[30] JBoss. http://www.jboss.org.

[31] jHotdraw. http://www.jhotdraw.org.

[32] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97, volume 1241 of LNCS, pages
220–242, 1997.

[33] G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[34] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a
Runtime Assurance Tool for Java. In RV’01, volume 55 of
ENTCS, 2001.

21 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

[35] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and
B. Jacobs. JML: notations and tools supporting detailed
design in Java. In OOPSLA’00, 2000.

[36] Lucene. http://lucene.apache.org.

[37] M. Martin, V. B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query
language. In OOPSLA’05, 2005.

[38] B. Meyer. Object-Oriented Software Construction, 2nd
edition. Prentice Hall, New Jersey, 2000.

[39] M. Rinard. Acceptability-oriented computing. In Onward!
Track, OOPSLA’03, 2003.

[40] F. B. Schneider. Enforceable security policies. ACM Trans.
on Information System Security, 3(1):30–50, 2000.

[41] O. Sokolsky and M. Viswanathan. Runtime Verification
(RV’03). 2003. ENTCS 89.

[42] Xalan. http://xml.apache.org/xalan-j/.

22 2007/4/3

Technical report UIUCDCS-R-2007-2836, March 2007

