BUGNET: RECORDING
APPLICATION-LEVEL EXECUTION
FOR DETERMINISTIC REPLAY

DEBUGGING

WITH SOFTWARE'S INCREASING COMPLEXITY, PROVIDING EFFICIENT

Satish Narayanasamy

Gilles Pokam
Brad Calder

University of California,

San Diego

HARDWARE SUPPORT FOR SOFTWARE DEBUGGING IS CRITICAL. HARDWARE

SUPPORT IS NECESSARY TO OBSERVE AND CAPTURE, WITH LITTLE OR NO

OVERHEAD, THE EXACT EXECUTION OF A PROGRAM. PROVIDING THIS ABILITY

TO DEVELOPERS WILL ALLOW THEM TO DETERMINISTICALLY REPLAY AND

DEBUG AN APPLICATION TO PIN-POINT THE ROOT CAUSE OF A BUG.

e e 0000 Debugging software is challenging
because of the increasing complexity of soft-
ware and hardware, and the diversity of oper-
ating systems in use today. These factors make
it difficult for software companies to reproduce
and fix bugs that occur in released code, espe-
clally nondeterministic bugs that occur at a cus-
tomer site. What makes matters worse is the
increase in bugs because of the commercial
pressure to release software early, aided and
abetted by the ease of delivering software patch-
es over the Internet. Tracking down and fixing
these bugs can be a nightmare, costing a sig-
nificant amount of time and money. These
software bugs account for nearly 40 percent of
computer system failures' and cost the US
economy an estimated $59.5 billion annually.?

A difficult part of debugging is reproduc-
ing the bugs that occur at a customer’s site.
Most current debugging systems rely on core

Published by the IEEE Computer Society

dumps,®* which contain the final state of the
system before the crash. Unfortunately, this
solution is woefully inadequate because it is
difficult to determine the cause of the error
responsible for the core dump, and it pro-
vides little help in reproducing the bug. To
assist developers, we propose the BugNet
architecture to continuously record a pro-
gram’s execution as it runs.’ The information
collected right before a program crash can
help deterministically replay the last second
of execution preceding the crash. Determin-
istic replay debugging (DRD) is the ability
to replay the exact same sequence of instruc-
tions that led up to the crash; it is an effec-
tive technique for isolating the bug’s source.
For the programs we have examined, cap-
turing the last second of execution before the
crash was sufficiently long enough to debug
the root cause of the crash.

0272-1732/06/$20.00 © 2006 IEEE

Using BugNet

BugNet continuously records a program’s
execution. Its overhead is low enough that it
can always be left on without interfering with
the execution of the monitored program.

To use BugNet, we start by attaching it to a
running application and continuously log the
application’s execution. BugNet writes the logs
to a fixed-sized buffer allocated in main mem-
ory. BugNet continuously overwrites this buffer,
capturing the last second of execution. If a crash
occurs, the logs are dumped to disk. Software
developers can then use these logs to determin-
istically replay the last part of execution that led
up to the crash, as many times as required to fix
the bug. This ability is vital to debug hard-to-
reproduce bugs, such as nondeterministic and
multithreaded synchronization bugs.

Focusing only on user code

BugNet focuses on debugging only appli-
cation-level bugs. Therefore, it supports deter-
ministic replay of only user code and shared
libraries, but not the operating system code.
However, our approach provides the ability to
replay an application’s execution across con-
text switches, system calls, interrupts, and
direct-memory-access (DMA) transfers. We
achieve this without having to track exactly
what goes on during these system interactions.
In contrast, tracking all the system interac-
tions would require additional hardware sup-
port, and the resulting solution would depend
heavily on the operating system. Our BugNet
solution avoids both of these problems.

Overview of BugNet

BugNet is based on the observation that the
following information is sufficient to deter-
ministically replay a program’s execution:

e initial architectural state (program
counter and register values),

* register and program counter updates
from system calls and interrupts, and

¢ allload values used during the program’s
execution.

We can easily record the first two items by
recording the values in all the registers and the
program counter after servicing system calls
and interrupts. But recording every load value
is too expensive and impractical.

We observe that if we ignore system and
multithreading interactions, we need to log
the value for a load only if it is the first access
to a memory location. Values for subsequent
loads to the logged memory location can be
determined during deterministic replay. To
accomplish this, we effectively mark each
logged memory address (described in the next
section), so that we do not have to log the val-
ues loaded from those addresses again. This
optimization significantly reduces the amount
of information in the log.

The main issue with this optimization is
that logging only the first access to a memo-
ry location for a user thread will not capture
future external updates to that location
through operating system or shared-memory
interactions. Therefore, we must detect the
external updates to an already logged memo-
ry location. If the value has changed, we need
to log it again. System calls, interrupts, DMA
transfers, and shared-memory interactions are
the only possible external memory updates.
When any of these external effects update a
memory location, we unmark that location’s
address, so that when the user thread access-
es that address again, BugNet will log the
updated value.

Although this optimization reduces the
number of load values that need to be logged,
we can further reduce the log size by com-
pressing the load values. We can do so by
exploiting value locality across the different
load values.

The final component in our architecture
relates to logging multithreaded shared-mem-
ory dependencies to debug shared-memory
interactions and data races. This requires log-
ging the order of memory operations execut-
ed across all of the threads in a program’s
execution. To create this log, we use the tech-
nique proposed by Xu et al., which monitors
the coherence traffic to capture the shared
memory dependencies.®

BugNet architecture
We next describe the BugNet logging
approach and architecture in more detail.

BugNet checkpoint intervals

BugNet breaks a thread’s execution into
checkpoint intervals. For the monitored
process, BugNet records checkpoint logs sep-

JANUARY—FEBRUARY 2006

1}

MICRO TOP PICKS

A
Cache Me?ofrfy
> race buffer
| PC | | Registers | e o -
/
@ ‘
—
@OE L1 | L2
° Main
* + memory
\
Checkpoint
L »| Control buffer (CB)

Figure 1. BugNet architecture.

[EEE MICRO

arately for each thread. A checkpoint interval
represents a window of execution that BugNet
captures during logging for each thread. These
checkpoints are the instructions a developer
can replay during debugging. For a check-
point interval, BugNet records enough infor-
mation to start replaying program’s execution
from the interval’s first instruction. This
allows us to replay each checkpoint interval
independent of the other intervals. The max-
imum size (in terms of number of committed
instructions) for a checkpoint interval is pre-
determined by the operating system based on
the main memory buffer space allocated to
record the logs. When a checkpoint interval
reaches this limit, BugNet initiates a new
checkpoint interval. However, BugNet might
prematurely terminate a checkpoint interval
on encountering an interrupt, system call, or
a context switch (a process that will be
described in more detail later). The check-
point logs are stored in a memory buffer
whose size is small enough to avoid degrad-
ing the performance of the program being
monitored. Our fixed-size memory buffer can
maintain only a finite number of checkpoints
for each thread.

BugNet components

We built BugNet based on the observation
that the load values read by a program drive
the program’s execution. Therefore, to replay
a checkpoint interval, we only need to record
the initial register state and then record the

values of load instructions executed in that
interval.

Figure 1 represents the major components
in the BugNet architecture. Components shad-
ed in gray are the new additions to a conven-
tional processor. BugNet creates a checkpoint
at the beginning of each checkpoint interval.
For every checkpoint, we record a log header
that contains the current Thread ID and
Process ID, and a Checkpoint ID that BugNet
uses to order the checkpoints collected for a
thread. The header also contains the initial
architectural state, which includes the program
counter and the register values. At the start of
a checkpoint interval, this header is recorded
into the checkpoint buffer. After initialization,
whenever the processor executes a load instruc-
tion, BugNet creates a new log entry to record
the load value, which also goes into the check-
point buffer. The log entry created for a load
contains the number of load instructions exe-
cuted since the last logged load, and a com-
pressed version of the load’s value. Since we do
not log every load instruction, we must log the
number of load instructions to be skipped, dur-
ing deterministic replay, before consuming the
next load log entry. BugNet does not log the
addresses for loads because they can be deter-
ministically regenerated during replay.

Recording the resultant value of every load
instruction would be too expensive, as
described earlier. Instead, we record a load
value only if

¢ the load is the first access to a memory
location in the checkpoint interval, or

¢ the memory value accessed by a load has
changed because of an external system
effect or a shared-memory thread—since it
was last logged in the checkpoint interval.

To approximate the logging of only the first
access to each memory location, we associate
a bit with every word in the cache. These bits
track already logged memory addresses. When
a load is executed, if the bit is not set in the
cache, BugNet logs the load’s value and sets
the bit. Instead, if the bit was set, it means that
we have already logged this memory location,
so BugNet will not log the load’s value again.
All of these bits are cleared at the start of every
checkpoint interval.

To further optimize the log size, we employ

a hardware dictionary compressor, as Figure
1 indicates; it exploits frequently occurring
load values. The dictionary keeps track of the
most frequent values seen in the checkpoint
interval. If a load value appears in the dictio-
nary, we log the index (instead of the full
value) into the dictionary.’”

The first-load log (FLL) contains the initial
architectural-state information for a checkpoint
interval along with all of the load log entries for
that interval. Each FLL contains sufficient
information to deterministically replay the
checkpoint interval. Enough FLLs are kept
track of in the memory for the threads being
traced so that we can replay millions of instruc-
tions executed by each thread. This allows us
to reexecute the instructions with exactly the
same memory values, and input and output
registers as in the original execution. This is
true even in the case of multithreaded programs
because the FLL for a thread contains all the
information necessary to replay each thread
independent of the other threads.

Figure 1 shows two first-in first-out queues:
the checkpoint buffer and memory race
buffer. Both are memory-backed, and are lazi-
ly written to memory when the bus is free, but
these writes do not go through the cache hier-
archy. The checkpoint buffer holds the first
load log, and the memory race buffer is used
to record the shared-memory dependencies.

The operating system provides support for
managing the memory space allocated for
BugNet’s use. Program execution is continu-
ously logged, overwriting older logs in mem-
ory, and logs are dumped to disk only when
the execution terminates. Therefore, memo-
ry can contain logs corresponding to multi-
ple consecutive checkpoints and logs from
many different threads. When the allocated
memory space fills up, BugNet discards the
log corresponding to the oldest checkpoint
for a thread to make space for the newer logs.

System calls, interrupts, and context switches

Our goal is to replay and debug only the
application code, so we do not record what goes
on during system events. We do not record the
value of load instructions executed as part of
system calls or interrupts. Nevertheless, we
must track how these system interactions affect
the application’s execution so that we can replay
the application across the system events. Inter-

rupts can modify the memory state, and they
can even change the architectural state of the
program’s execution by modifying the program
counter or registers.

BugNet solves this problem by premature-
ly terminating the current checkpoint inter-
val on encountering an interrupt, system call,
or context switch.” When control returns to
the user-level thread, it creates a new check-
point. By creating a new checkpoint interval,
we are guaranteed to have the right program
counter value and register values after the
interrupt, since they will be logged in the
header of the new FLL. Also, the cache bits
used to track the already-logged first loads are
reset when BugNet creates the new check-
point. This ensures that BugNet logs the load
values necessary to replay the instructions exe-
cuted after the system call.

Support for multithreaded applications and DMA

We assume a shared-memory multiproces-
sor system to execute multithreaded programs.
In shared-memory multithreaded applica-
tions, remote threads executing on other
processors can modify shared data during a
checkpoint interval. DMA transfers have the
same problem. When a remote thread modi-
fies a shared-memory location, it invalidates
the corresponding cache block before the
update. This resets the bits used to track first
loads to that cache block. As a result, future
load references to that cache block will result
in the FLL recording the remote thread’s
value. Since DMA uses the same coherency
mechanism, DMA transfers will also invali-
date the block, resetting the first load bits, so
we would correctly see any changes due to
DMA transfers.

The FLL corresponding to a checkpoint
interval is sufficient to replay the instructions
executed in that interval. This is true even in
the case of multithreaded applications. We
can replay any thread independently of the
other threads because the FLL records all the
input values required for executing each
thread. However, to debug data races, we need
the ability to infer the ordering of instructions
executed across all the threads. To record
shared-memory dependencies across threads,
we adapt the Flight Data Recorder (FDR)
mechanism,® and use a separate memory race
log for this information. FDR determines the

JANUARY—FEBRUARY 2006

[l

MICRO TOP PICKS

[EEE MICRO

shared-memory dependencies for a thread by
monitoring its coherence messages and logs
those dependencies in the memory race log
for each thread. To optimize the memory race
log sizes, FDR implemented the Netzer opti-
mization in hardware.® We use this method
for recording shared-memory dependencies
in our memory race logs.’

Logging code locations

In addition to data, we must make sure to
record information about the code executed
during logging. This will allow us to initial-
ize the code space with exactly the same
libraries and binaries for deterministic replay
debugging.

In BugNet, we assume the support of an
operating-system device driver that records
information about the loading of all code (sta-
tic binaries and dynamic libraries) for a mon-
itored program. This information goes into a
code log. Each entry in the code log contains

* the name and path of the binary or
library loaded,

* a checksum to represent the version of
the binary or library, and

* the starting address where it was loaded.

When BugNet is enabled for a program’s
execution, the device driver logs this infor-
mation for the binary and currently loaded
shared libraries. In addition, as the system
loads new shared libraries, BugNet will log
them. BugNet keeps this code log as long as it

is monitoring the program’s execution.

Detecting a fault

The operating system terminates threads
that perform illegal operations. For example,
division by zero or accessing an invalid address
can trigger a program crash. Also, the devel-
oper can potentially use assertions to termi-
nate the program’s execution. Once the
operating system detects that the program’s
execution has terminated abnormally, it
records the current instruction count in the
checkpoint interval and the address of the
faulty instruction in the FLL. We use this
information to determine when to stop
replaying and to correctly identify the faulty
instruction during debugging. After record-
ing the faulty instruction, the operating sys-

tem collects the first-load logs, and the mem-
ory race and code logs for the application from
the main memory and hardware buffers. We
store the collected logs to disk, and this infor-
mation is sent to the developer for debugging.

Deterministic replayer

In this section, we describe how to use the
BugNet logs to deterministically replay a pro-
gram’s execution. We have implemented a
deterministic replayer in Pin’ that consumes
BugNet logs.>'

To replay a checkpoint interval, we start by
reading the code log. This restores the code
space to its state at the point when the bug
occurred. The code log, as described earlier,
contains all of the binary and shared-library
names, their checksums (versions), and where
in the memory they were loaded before the
crash occurred. This approach does not sup-
port self-modifying code, which we have
addressed in our recent work.!!

After the code space is initialized, the devel-
oper chooses the checkpoint interval to start
replaying from. We initialize the program
counter and the registers with the values
found in the header of the checkpoint inter-
val’s FLL. Execution starts at the program
counter, stepping one instruction at a time.
For every load instruction, if the load’s value
was logged, we obtain the load value from the
FLL log and update the simulated memory
with this new value. Otherwise, we just use
the load value from the simulated memory.

Developers can then step through the pro-
gram’s execution, examining the source lines
touched and the variables used. In single step-
ping through the program’s execution, when
developers come to the end of a checkpoint,
they can just start replaying the next check-
point. Remember that a checkpoint interval
ends after a fixed number of instructions or pre-
maturely terminates because of a system call or
an interrupt. From a developer’s perspective,
the replayer just steps (skips) over the execu-
tion of the system call or interrupt. The single
stepping can continue until the developer
reaches the instruction that caused the crash.

Our logs also support the ability to debug
backwards, since we can deterministically
recreate the program’s execution at any arbi-
trary point within the collected checkpoint
intervals.

Data available during debugging

: 900
BugNet logs do not contain

a core dump representing the

(]
(]
=)
g
final state of the entire system o 700
or main memory. As a result, £ 600
you cannot examine arbitrary £ 500l
. (O]
memory locations or data S 400
structures during debugging. 5
. © 300
Instead, developers will only =
be able to examine the mem- w5 200
ory values that the program S 100|-
execution touched in the 0

800~

Point of deviatiqn

recorded checkpoint intervals.
This is what we call the
touched memory image. If pro-

120,000 100,000 80,000 40,000 20,000 O

No. of instructions away from crash (Program execution—)

gram execution did not access Figure 2. Replay window length. The point of deviation is the point during the buggy program’s

amemory location during the execution where the store values start deviating from the correct program'’s execution.

replayed checkpoint intervals,

we cannot examine that mem-

ory location during replay. This is acceptable,
since the memory addresses untouched by the
program’s execution prior to the crash should
not be responsible for the incorrect execution
of the program. In fact, having access only to
the touched memory image during debugging
should help the developers focus only on the
variables and data structure fields that caused

the bug.

Replay window and log sizes

BugNet is based on the fundamental
assumption that the last few moments of a
program’s execution before a crash are the
most critical to fixing a bug. To determine the
usefulness of BugNet, we must determine how
much to record to fix the majority of bugs.

The replay window length is the number of
dynamically executed instructions from where
the bug manifested itself to where the pro-
gram crashed. This is the number of instruc-
tions that we might need to replay to fix a bug.
We originally provided a rough estimate of
the lower bound on the replay window
length.> More recently, we provided an
approximation of an upper bound for the
replay window length, which we use here. '

To analyze the replay window length, we
take two binaries corresponding to two ver-
sions of the same program. One binary cor-
responds to the source code that contains the
bug, and another corresponds to the same
source code but with the bug fixed. We exe-
cute the two versions with the same input that

exposes the bug. We expect that the two exe-
cutions will follow similar execution paths up
to a point. After that point, the buggy pro-
gram’s execution will start to significantly devi-
ate from the execution of the correct program.
We measure how much the buggy program’s
execution deviates from that of the correct
program’s execution by comparing the
sequences of store values produced by the two
executions.'”

Figure 2 shows an example for a bug in gzip.
The x-axis represents the buggy program’s exe-
cution, going from left to right. The x-axis
indicates the number of dynamic instructions
between a point in the program’s execution
and the crash. The y-axis represents the num-
ber of differences in the store values between
the buggy program’s execution and the cor-
rect execution. The graph shows the number
of mismatches that accumulate over time.
Note that the buggy program’s output values
match those of the correct program’s execu-
tion for a long time, but it starts to deviate sig-
nificantly 40,000 instructions before the
crash. This is the point of deviation. To fix a
bug, a developer should examine the sequence
of events right before this point and poten-
tially for some time after this point in the pro-
gram’s execution. Thus, we define the replay
window length to be the number of dynamic
instructions executed in the buggy program
between the point of deviation and the crash
or the end of execution.

In Figure 3, we show the replay window

JANUARY—FEBRUARY 2006

[EEE MICRO

MICRO TOP PICKS

100,000,000 |-
10,000,000 |-
1,000,000 |-
100,000 |-
10,000 |-
1,000 |-
100 |-

1

Replay window length

Figure 3. Replay window in dynamic instructions.

10,000 |
[Log size |

€m

=

o N

gm

s 10/

1

Y 5 S
& K QQ\O ;&\b* W £

Figure 4. Total size of the FLL checkpoint intervals to capture the full replay window.

lengths required to capture real bugs found in
a set of open source programs.’ All the pro-
grams except ghostscript require a replay win-
dow of less than 20 million instructions. In
contrast, ghostscript (the worst case) requires
a replay window of about 230 million instruc-
tions. This replay window is an upper bound
on the amount of execution a developer would
need to fix a bug, and some bugs might be
repairable without requiring access to the full
replay window.

In Figure 4, we show the FLL size required
to capture the replay window in Figure 3. For
these results, we used a maximum checkpoint
interval size of 10 million instructions. For
our worst case, ghostscript, we needed a total
of 7.2 Mbytes for the FLL checkpoint inter-
vals to capture the 230 million instruction
replay window.

We also examined the logging efficiency for
a handful of SPEC programs using BugNet.’
We found that 0.15 bits per instruction is
logged if we use a checkpoint interval of 100
million instructions.

Related work

Several prior techniques look at checkpoint-
ing a system’s state to replay it later.*”'*"> These
systems use a copy-on-write checkpoint
scheme similar to SafetyNet.'® For example,
FDR® uses the SafetyNet checkpointing
scheme to log the values overwritten by the
first store to each memory address. With this
log and the final system state (core dump),
FDR can retrieve a consistent and full mem-
ory image prior to the checkpoint’s start. In
addition, FDR explicitly records external
inputs from interrupts, program 1/O, and
DMA transfers. This allows FDR to support
deterministic replay debugging of the entire
system, which includes the operating system.

In contrast, BugNet only provides deter-
ministic replay debugging for user code. This
provides an easy-to-implement solution for
logging the data space that is operating-system
independent. Given our model, BugNet can-
not replay what goes on in the operating sys-
tem, but it supports deterministic replay of
application code across all forms of system and

shared-memory interactions. Replaying only
the application code was sufficient to fix the
bugs in all the open source programs that we
examined.

Efficient logging of shared-memory
dependencies, interrupts, and self-
modifying code

We have recently implemented improve-
ments to the BugNet architecture to efficiently
log shared-memory dependencies, to provide
efficient logging across system calls and inter-
rupts, and to provide support for self-modi-
fying code."!

With our BugNet logging approach, we can
replay each thread independently. In our
recent work,'! we show how to use the mem-
ory traces from replaying each thread inde-
pendently to come up with a valid ordering
of memory operations across a set of shared-
memory threads. This allows us to determine
cross-thread shared-memory dependencies,
without having to record all of the memory
dependencies, as in prior work.>®

Our approach of starting a new checkpoint
interval for interrupts and system calls is easy
to implement, but it could be inefficient if
interrupts occur frequently. Each interrupt
will restart a checkpoint interval, making it
hard to benefit from the first-load optimiza-
tion. To address this problem, we examined a
solution that tracks when we are executing
user code as opposed to the system code."!
When executing system code, every store
clears the first load bits in the cache. This
guarantees the logging of any memory loca-
tion updated by system code when it is later
loaded by the user code.

A limitation of the BugNets logging
approach’ is that it does not support self-mod-
ifying code. To address this, we support log-
ging the code space'! in the same way that we
log the data space. We treat each instruction
fetch just like a load and apply the same first-
load logging optimization.

BugNet as a software programmer
productivity tool

We have also implemented the BugNet
solution completely in software using Pin’ to
provide a deterministic replay debugging tool
for software developers.'® The performance
overhead with hardware support for BugNet

resulted in only a small slowdown, because the
logs are recorded automatically with hardware
support and then lazily written back to mem-
ory.” In comparison, implementing BugNet
entirely in software results in an order of mag-
nitude performance slowdown. However, a
software-only approach provides program-
mers and quality assurance teams the means to
record a program’s execution and then deter-
ministically replay it for debugging. In addi-
tion, our software solution provides an
additional opportunity to reduce the log sizes
and hence has the ability to capture longer
replay windows. !

We have also examined using BugNet logs
to implement operating system independent
application-level architecture simulators."”
One benefit of using the BugNet logging
approach is that the simulator does not have
to support any infrastructure for emulating
the operating system effects. Hence, the
BugNet logs provide the ability to simulate
real interactive applications across interrupts
and DMA transfers.

Support for debugging incorrect output

Thus far, we have only discussed how to
deal with bugs that cause a program to crash.
But some bugs might lead to erroneous out-
put instead of crashing the program’s execu-
tion. Both the hardware and software
solutions for BugNet are useful for tracking
down bugs that lead to incorrect output, but
it requires additional support to tell BugNet
when to dump the logs. BugNet continuous-
ly records recent execution, overwriting logs
corresponding to older checkpoint intervals.
Therefore, we require system support or a user
interface to tell BugNet to dump its recent
checkpoint intervals immediately after detect-
ing incorrect program output. We can pro-
vide this support by having the user set a break
in the program’s execution, or by having a
developer add software checks or assertions
that will be triggered when the program starts
producing incorrect results.

Privacy issues

Most customers will not be willing to share
their core dumps with developers, since these
dumps can contain sensitive information.
BugNet does not require core dumps and
thereby reduces the amount of information

JANUARY—FEBRUARY 2006

MICRO TOP PICKS

[EEE MICRO

that customers must pass to a developer. But
it still lets the developer see the values of the
variables touched in the replay window.
Hence, it could be beneficial to obfuscate
some of the information in the BugNet logs to
protect the privacy of the customer, but still
ensure that the developer can replay the pro-
gram’s execution through a path that would
expose the bug.

‘ X J e are entering an era in computer archi-

tecture where architects are shifting
their focus from pure performance improve-
ments to providing more functionality. Pro-
viding hardware support for improved
software quality and reliability is becoming a
necessity. BugNet is a step in this direction
and there are a lot of exciting problems left to
be solved. MCRD

Acknowledgments

We thank Jeremy Lau, Mike Stepp, and
Cristiano Pereira for providing valuable feed-
back on this article. This work was funded in
part by NSF CCF-0342522, and grants from
ST Microelectronics, Intel, and Microsoft.

References
1. E. Marcus and H. Stern, Blueprints for High

Availability, John Willey & Sons, 2000.

2. G.Tassey, The Economic Impacts of Inade-
quate Infrastructure for Software Testing,
Nat'l Institute for Standards Technology,
2002.

3. “Online
microsoft.com/en/dcp20.asp.

Crash Analysis,” http://oca.

4. Netscape Communications Corp., “Net-
scape Quality Feedback System,” http://
help.netscape.com/netscape7/gfs3.html.

5. S. Narayanasamy, G. Pokam, and B. Calder,
“BugNet: Continuously Recording Program
Execution for Deterministic Replay Debug-
ging,” Proc. 32nd Ann. Int’l Symp. Comput-
er Architecture (ISCA 05), IEEE CS Press,
2005, pp. 284-295.

6. M. Xu, R. Bodik, and M. Hill, “A Flight Data
Recorder for Enabling Full System Multi-
processor Deterministic Replay,” Proc. 30th
Ann. Int’'l Symp. Computer Architecture
(ISCA 03), ACM Press, 2003, pp. 122-135.

7. G.W. Dunlap et al., “Revirt: Enabling Intru-
sion Analysis Through Virtual Machine Log-
ging and Replay,” Proc. 5th Symp. Operating

System Design and Implementation (OSDI
02), ACM Press, 2002, pp. 211-224.

R.H.B. Netzer, “Optimal Tracing and Replay
for Debugging Shared Memory Parallel Pro-
grams,” Proc. ACM/ONR Workshop on Par-
allel and Distributed Debugging, ACM Press,
1993, pp. 1-11.

C.K Luk et al., “Pin: Building Customized
Program Analysis Tools with Dynamic Instru-
mentation,” Proc. ACM/SIGPLAN Conf. on
Programming Language Design and Imple-
mentation (SIGPLAN 05), ACM Press, 2005,
pp. 190-200.

S. Narayanasamy and B. Calder, Software
Profiling for Deterministic Replay Debugging
of User Code, tech. report UCSD-CS2005-
0839, Univ. of California, San Diego, 2005.
S. Narayanasamy, C. Pereira, and B. Calder,
Efficient Hardware Support for Determinis-
tic Replay Debugging of Shared Memory
Dependencies, Interrupts, and Self Modify-
ing Code, tech. report UCSD-CS2005-0843,
Univ. of California, San Diego, 2005.

S.M. Srinivasan et al., “Flashback: A Light-
weight Extension for Rollback and Deter-
ministic Replay for Software Debugging,”
Proc. Usenix 2004 Ann. Technical Conf.,
Usenix Assoc., 2004, pp. 29-44.

S. Chen, W.K. Fuchs, and J. Chung,
“Reversible Debugging Using Program
Instrumentation,” [EEE Trans. Software
Eng., vol. 27, no. 8, Aug. 2001, pp. 715-727.
B. Boothe, “Efficient Algorithms for Bidirec-
tional Debugging, Proc. ACM/SIGPLAN Conf.
on Programming Language Design and Imple-
mentation (SIGPLAN 00), ACM Press, 2000,
pp. 299-310.

S.T. King, G.W. Dunlap, and P.M. Chen,
“Debugging Operating Systems with Time-
Traveling Virtual Machines,"” Proc. Usenix
2005 Ann. Technical Conf., Usenix Assoc.,
2005, pp. 1-15.

D. J. Sorin et al., "SafetyNet: Improving the
Availability of Shared-Memory Multi-
Global Checkpoint/
Recovery,” Proc. 29th Ann. Int’l Symp. Com-
puter Architecture (ISCA 02), IEEE CS Press,
2002, pp. 123-134.

S. Narayanasamy et al., Automatic Logging

processors with

of Operating System and Multithreading
Effects to Guide Application-Level Architec-
ture Simulation, tech. report CS2005-0840,
Univ. of California, San Diego, 2005.

Satish Narayanasamy is a PhD candidate in
the computer science department at the Uni-
versity of California, San Diego. His research
interests include computer architecture, hard-
ware and software support to improve pro-
grammer productivity, and system security.
Narayanasamy has an MS from the Universi-
ty of California, San Diego, and a BE from
Anna University, the College of Engineering,
Guindy, Chennai, India, both in computer
science. He is a member of ACM and IEEE.

Gilles Pokam is a postdoctoral researcher in
the Department of Computer Science and
Engineering at the University of California,
San Diego. His research interests include com-
puter architecture and parallel programming
models. Pokam has an MS in computer engi-
neering from the Technical University of
Berlin, Germany, and a PhD in computer sci-
ence from the University of Rennes I, France.
He is a member of IEEE and ACM.

Brad Calder is a professor of computer sci-
ence and engineering at the University of Cal-
ifornia, San Diego. His research interests
include computer architecture, compilers, and
systems. Calder has a PhD in computer sci-
ence from the University of Colorado, Boul-
der, and a BS in computer science and a BS
in mathematics from the University of Wash-
ington. He is a recipient of an NSF Career
Award and is a senior member of IEEE and
member of ACM.

Direct questions and comments about this
article to Brad Calder, University of Califor-
nia, San Diego, Department of Computer
Science and Engineering, 9500 Gilman Dr.,
La Jolla, CA 92093-0404; calder@cs.

ucsd.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

THE IEEE’S 1ST ONLINE-ONLY MAGAZINE

distributed syste msl‘.E

Expert-authored articles and resources O N I N

IEEE Distributed Systems Online brings you
peer-reviewed articles, detailed tutorials, expert-managed topic

areas, and diverse departments covering the latest news and developments in this fast-growing field.

Log on for free access to such topic areas as

Grid Computing * Middleware Cluster

Computing ¢ Security ¢ Peer-to-Peer and More!

To receive monthly updates,email

dsonline@computer.org

http://dsonline.computer.org

JANUARY—FEBRUARY 2006] ”g

