
MemTracker: Efficient and Programmable Support for
Memory Access Monitoring and Debugging ∗

Guru Venkataramani
Georgia Tech

guru@cc.gatech.edu

Brandyn Roemer
Georgia Tech

gtg538y@mail.gatech.edu

Yan Solihin
North Carolina State University

solihin@ece.ncsu.edu

Milos Prvulovic
Georgia Tech

milos@cc.gatech.edu

Abstract

Memory bugs are a broad class of bugs that is becoming
increasingly common with increasing software complexity,
and many of these bugs are also security vulnerabilities. Un-
fortunately, existing software and even hardware approaches
for finding and identifying memory bugs have considerable
performance overheads, target only a narrow class of bugs,
are costly to implement, or use computational resources in-
efficiently.

This paper describes MemTracker, a new hardware sup-
port mechanism that can be configured to perform different
kinds of memory access monitoring tasks. MemTracker as-
sociates each word of data in memory with a few bits of
state, and uses a programmable state transition table to react
to different events that can affect this state. The number of
state bits per word, the events to which MemTracker reacts,
and the transition table are all fully programmable. Mem-
Tracker’s rich set of states, events, and transitions can be used
to implement different monitoring and debugging checkers
with minimal performance overheads, even when frequent
state updates are needed. To evaluate MemTracker, we map
three different checkers onto it, as well as a checker that com-
bines all three. For the most demanding (combined) checker,
we observe performance overheads of only 2.7% on average
and 4.8% worst-case on SPEC 2000 applications. Such low
overheads allow continuous (always-on) use of MemTracker-
enabled checkers even in production runs.

1. Introduction
Technological advancement has resulted in a decades-

long exponential growth in computing speeds, which are be-
ing utilized by increasingly complex software. As a result,
software is increasingly prone to programming errors (bugs)
and many of these bugs also create security vulnerabilities.
Unfortunately, architectural support for software monitoring
and debugging has not kept pace with software complex-
ity, and programmers and users still rely on software-only
tools for many critical monitoring and debugging tasks. For

∗This work was supported, in part, by the National Science Foundation
under grants CCF-0429802, CCF-0447783, CCF-0541080, CCF-034725,
CCF-0541108. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation.

many of these tasks, performance overheads of such tools are
prohibitive, especially in post-deployment monitoring of live
(production) runs where end users are directly affected by the
overheads of the monitoring scheme.

One particularly important and broad class of program-
ming errors is erroneous use or management of memory
(memory bugs). This class of errors includes pointer arith-
metic errors, use of dangling pointers, reads from unini-
tialized locations, out-of-bounds accesses (e.g. buffer over-
flows), memory leaks, etc. Many software tools have been
developed to detect some of these errors. For example, Pu-
rify [8] and Valgrind [13] detect memory leaks, accesses to
unallocated memory, reads from uninitialized memory, and
some dangling pointer and out-of-bounds accesses. Some
memory-related errors, such as buffer overflows, can also be
security vulnerabilities. As a result, security tools often fo-
cus on detection of such errors or specific error manifestation
scenarios. For example, StackGuard [3] detects buffer over-
flows that attempt to modify a return address on the stack.

Unfortunately, software-only detection of memory errors
typically incurs a very high performance overhead, because
the detection tool has to intercept memory accesses (loads
and/or stores). For each access, the checker must find the
status of accessed memory location (state lookup), e.g. to
find whether the location is allocated, initialized, stores a re-
turn address, etc. The checker then verifies if the access is
allowed by the location’s status (state check), and possibly
changes the status of the memory location for future accesses
(state update), for example to mark an uninitialized location
as initialized if the access is a write. Since memory read
and write instructions are executed frequently, the overhead
of intercepting and checking them is very high. For exam-
ple, slowdowns of 2X to 30X (i.e., up to 30 times) have been
reported for Valgrind [10, 19].

Architectural support has been proposed to reduce perfor-
mance overheads for detecting some memory-related prob-
lems [4, 11, 14, 21, 22, 23, 24]. In general, these schemes
allow loads and stores to be intercepted directly without
inserting instrumentation instructions around them. After
an access is intercepted, a checker still needs to perform a
state check and possibly a state update caused by the ac-
cess. While load/store interception can easily be done by
hardware, there is less agreement on whether state checks
and updates should be performed in hardware. The main dif-



ficulty is how to perform checks and updates in hardware
while not binding the hardware design to a specific mean-
ing (semantics) of each state. One existing approach to state
checks and updates is to hardwire the meaning of each state
for a specific checker [4, 22]. Another approach is to per-
form only interception in hardware, and make software han-
dle the state checks and updates [2]. Finally, a number of
existing approaches express state as access permissions or
monitored regions. Such state can be quickly checked in
hardware to determine whether the access can be allowed to
proceed without any additional checker activity. If a state
update (or additional checking) is needed, a software han-
dler is invoked [14, 21, 23, 24]. Overall, existing architecture
support is either 1) hardwired for a particular checker, or 2)
requires software intervention for every state update. This
can lead to significant performance degradation when state
updates are frequent in some checkers.

As a consequence, there is a dilemma in designing ar-
chitecture support for tracking memory access behavior: to
sacrifice performance by designing hardware support that is
not checker specific, or to sacrifice generality by hard-wiring
specific checks for performance. Unfortunately, both alter-
natives are unappealing: users are reluctant to enable mem-
ory access tracking mechanisms that have significant perfor-
mance overheads, while architecture designers are unwilling
to implement hardware that is checker-specific. To overcome
this, this paper proposes a new hardware mechanism that can
perform interception, state checks, and state updates in hard-
ware, but still remains generic and is not hard-wired for any
particular checker. We show that some very useful checkers
require frequent and fine-grain state updates, which benefit
greatly from hardware state checks and updates. For exam-
ple, the checkers we use in our experiments need frequent
fine-grain state updates to keep track of which locations are
initialized and which locations contain return addresses. For
such checkers, a scheme is needed that can 1) avoid software
intervention for most state updates, 2) support efficient state
checks and updates even when neighboring locations have
different states, and 3) be programmable enough to support
different kinds of checks.

Our hardware mechanism, which we call MemTracker, is
essentially a programmable state machine. It associates each
memory word with a state and treats each memory action as
an event. States of data memory locations in the application’s
virtual address space are stored as an array in a separate and
protected region of the application’s virtual address space.
Each event results in looking up the state of the target mem-
ory location, checking if the event is allowed given the cur-
rent state of the location, and possibly raising an exception or
changing the state of the location. To control state checking
and updates, MemTracker uses a programmable state transi-
tion table (PSTT).

The PSTT acts as an interface that allows a checker,
or even multiple checkers combined, to specify how states
should be managed by the hardware. When an event tar-

gets a memory word, the word’s current state and the type
of event (read, write, etc.) are used to look up a PSTT entry.
Each entry in the PSTT specifies the next state for the word
and indicates whether or not an exception should be raised.
MemTracker events are load/store instructions and and spe-
cial user event instructions that applications and runtime li-
braries can use to inform MemTracker of high-level actions
such as allocations, deallocations, or other changes in how
a location will or should be used. By changing the contents
of the PSTT, the meaning of each user event and state can
be customized for a specific checker. As a result, the same
MemTracker hardware can efficiently support different de-
tection, monitoring, and debugging tasks.

Any highly programmable mechanism, such as Mem-
Tracker, has a wide spectrum of potential uses that can not be
evaluated or tested exhaustively. Instead, such mechanisms
are typically evaluated using a small set of familiar and popu-
lar uses that are thought to be representative examples of the
broader universe of potential uses.

We follow the same evaluation approach with Mem-
Tracker, and use a set of familiar and well-known detec-
tion, monitoring, and debugging tasks to represent poten-
tial uses of our mechanism. These tasks include 1) heap
memory access checking similar to that used in Purify [8],
Valgrind [13] and HeapMon [14], 2) detection of malicious
or accidental overwrites of return addresses on the stack,
and 3) detection of heap-based sequential buffer overflow at-
tacks [1, 16, 17, 18] and errors, and 4) a checker that com-
bines the functionality of all three checkers listed above.

We find that, even for the combined checker, Mem-
Tracker’s performance overhead is only 2.7% on average and
4.8% worst-case across SPEC CPU 2000 [15] applications,
relative to a system that runs the same applications without
any checking and without MemTracker support.

The rest of this paper is organized as follows: Section 2
discusses related work, Section 3 presents an overview of our
MemTracker mechanism, Section 4 presents some hardware
implementation details, Section 5 presents the setup for our
experimental evaluation, Section 6 presents our experimental
results, and Section 7 summarizes our findings.

2 Related Work
The most general of previously proposed hardware mech-

anisms is DISE [2] (Dynamic Instruction Stream Editing),
which pattern-matches decoded instructions against tem-
plates and can replace these instructions with parameterized
code. For memory access checking, DISE provides effi-
cient interception that allows instrumentation to be injected
into the processor’s instruction stream. In contrast to DISE,
MemTracker does not modify the performance-critical front-
end of the pipeline, and it performs load/store checks without
adding dynamic instructions to execution.

Horizon [9] widens each memory location by six bits, two
with hard-wired functionality and four trap bits that can inter-
cept different flavors of memory accesses. Mondrian Mem-



ory Protection [21] has per-word permissions that can inter-
cept read, write, or all accesses. iWatcher [23] provides en-
hanced watchpoint support for multiple regions of memory
and can intercept read, write, or all accesses to such a region.
HeapMon [14] intercepts accesses to a region of memory and
uses word-granularity filter bits to specify locations whose
accesses should be ignored, with the checker implemented
as a helper thread. In all these schemes, state updates (and
many state checks) require software intervention. As shown
in Section 6.4, in some useful checkers such state changes
are numerous enough to to cause significant overheads.

To avoid hard-wiring of the states but still provide effi-
cient checks and updates, MemTracker uses a flat (array)
state structure in memory. In contrast, Mondrian [21] uses
a sophisticated trie structure to minimize state storage over-
heads for coarse-grain state, at the cost of more complex fine-
grain state updates. iWatcher [23] keeps track of ranges of
data locations with the same state, which also complicates
fine-grain updates. Horizon [9] simplifies state lookups by
keeping state in six extra bits added to each memory loca-
tion, which requires non-standard memory modules and adds
a state storage cost even when no checks are actually needed.
In contrast, MemTracker keeps state information separately
in ordinary memory, and uses only as much state as needed.
In particular, when checking is not used, there is no memory
allocated for MemTracker state.

Other related work includes AccMon [22], Dynamic in-
formation flow tracking [6], Minos [4], Memory centric se-
curity [20], LIFT [5], and SafeMem [11]. AccMon uses
“golden” (correct) runs to learn which instructions should
access which locations, then checks this at runtime using
Bloom filters to avoid unnecessary invocations of checker
code; Dynamic information flow tracking and Minos add one
integrity bit to each location to track whether the location’s
value is from an untrusted source; SafeMem scrambles exist-
ing ECC bits to trigger exceptions when un-allocated loca-
tions are accessed and to help garbage-collection. LIFT does
dynamic software instrumentation and relies heavily on opti-
mized code to be inserted for checks. Memory Centric archi-
tecture associates security attributes to memory instead of in-
dividual user process. Most of the above mechanisms are de-
signed with specific checks in mind: in AccMon, much of the
hardware is specific to its heuristic-based checking scheme;
in Dynamic information flow tracking and Minos, the extra
bit tracks only the integrity status of the location; SafeMem
cannot track per-word state and can only intercept accesses
to blocks with no useful values – a block with useful values
needs a valid ECC to protect its values from errors.

Overall, unlike prior mechanisms MemTracker is unique
in that it can efficiently support different checkers, even those
that require simple but frequent state updates automatically
without software intervention. It should be noted, however,
that MemTracker cannot automatically handle state checks
and updates that cannot be expressed in its programmable
state transition table. Such checks still require software in-

tervention even in MemTracker. However, MemTracker may
still provide a performance advantage because its state ma-
chine can act as a more sophisticated filter for triggering soft-
ware interventions only when needed.

3. MemTracker Overview
To provide context and a motivating example for our

discussion of MemTracker, we first describe an example
checker. We then describe our MemTracker mechanism and
how it can be used to implement the example checker.

3.1. HeapData: an Example Memory Access Checker

Many typical programming mistakes, such as use of dan-
gling pointers or neglecting to initialize a variable, are man-
ifested through accesses to unallocated memory locations or
to loads from uninitialized locations. Detection of such ac-
cesses is one of the key benefits of tools such as Purify [8]
and Valgrind [13], and has also been used to evaluate hard-
ware support for runtime checking of memory accesses in
HeapMon [14]. To help explain our new MemTracker sup-
port, we will use HeapData, an example checker that is
functionally similar to the checker used in HeapMon. This
checker tracks the allocation and initialization status of each
word in the heap region using three states: Unallocated,
Uninitialized, and Initialized. The state transitions for this
checker is shown in Figure 1. All words in the heap area start
in the Unallocated state. When a block of Unallocated mem-
ory words is allocated (e.g. through malloc()), the state of
each word changes to Uninitialized. The first write (e.g. us-
ing a store instruction) to an Uninitialized word changes its
state to Initialized. The word then remains in the Initialized
state until it is deallocated (e.g. through free()), at which
time it changes back to the Unallocated state.

Alloc

Unallocated Uninitialized

InitializedNonHeap

Free

Free
Store

Load or StoreLoad or Store

Load or Store

Access to 
Unallocated Memory

Load

Read from 
Uninitialized Memory

Free

Double
Free

Heap 
Structure 

Corruption

Alloc

Allo
c

Alloc orFree

Alloc/Free of 
Non-Heap Data

Figure 1. Transition diagram for the HeapData checker.

Only an Initialized word can be read, and writes are al-
lowed only to Uninitialized or Initialized words. Memory
allocation is valid only if all allocated words are in the Unal-
located state, and deallocation is valid only if all deallocated
words are either Uninitialized or Initialized. All other reads,
writes, allocations, and deallocations are treated as errors and
should result in invoking a software error handler.

In addition to these three states from HeapMon [14], our
HeapData checker has a NonHeap state which is used for



all data outside the heap region. This new state allows us to
treat all memory accesses in the same way, without using an
address-range filter [14] to identify only heap accesses. The
NonHeap state permits loads and stores, but prohibits heap
allocations and deallocations.

Overall, our example HeapData checker reacts to four dif-
ferent kinds of events (loads, stores, allocations, and deallo-
cations), and keeps each word in the application’s data mem-
ory in one of four different states.

We note that HeapData and other checkers in this paper
are used only to illustrate how MemTracker can be used and
to evaluate MemTracker’s performance. We do not consider
the checkers themselves as our contribution, but rather as fa-
miliar and useful examples that help us demonstrate and eval-
uate our real contribution – the MemTracker mechanism.

3.2. MemTracker Functionality

For each word of data, MemTracker keeps an entry that
consists of a few bits of state. These state entries are kept
as a simple packed array in main memory, where consec-
utive state entries correspond to consecutive words of data.
This packed array of state entries is stored in the applica-
tion’s virtual address space, but in a separately mapped (e.g.
via mmap) region. This approach avoids custom storage for
state and benefits from existing address translation and vir-
tual memory mechanisms. Keeping state separate from other
regions allows us to change its access permissions (e.g. via
mprotect) so that only MemTracker mechanisms can ac-
cess (e.g. update) state entries. Regular (data) load/store in-
structions can not access this area, which prevents accidental
(or malicious) modifications of the state array using ordinary
store instructions.

When an event (e.g. a load) targets a memory location,
the state entry for that location can be found using simple
logic (see Section 4.2). Our MemTracker mechanism reads
the current state of the memory location and uses it, together
with the type of the event, to find the corresponding transi-
tion entry in the programmable state transition table (PSTT).
Each entry in PSTT specifies the new state for the memory
location, and also indicates whether to trigger an exception.
Transition entries in the PSTT can be modified by software,
allowing MemTracker to implement different checkers.

3.3. MemTracker Events

MemTracker treats existing load and store instructions as
events that trigger state lookups, checks, and updates. Other
events, such as memory allocation and deallocation in Heap-
Data, should also be able to affect MemTracker state. How-
ever, these high-level events are difficult to identify at the
level of the hardware and differ from checker to checker. To
support these events effectively, we extend the ISA with a
small number of user event instructions. User event instruc-
tions can be used in the code to “annotate” high-level activ-
ity in the application and library code. The sole purpose of
these instructions is to be MemTracker events. These instruc-

tions only result in MemTracker state lookups, checks, and
updates, and do not actually access the data associated with
that state. The number of different user level instructions
supported in the ISA is a tradeoff between PSTT size (which
grows in proportion to the number of events) and sophistica-
tion of checkers that can be implemented (more user event
instructions allow more sophisticated checkers). In this pa-
per, we model MemTracker with 32 user event instructions,
which is considerably more than what is actually needed for
the checkers used in our experimental evaluation.

In terms of the number of affected memory locations,
MemTracker must deal with two kinds of events: constant-
footprint and variable-footprint events. An example of a
constant-footprint event is a load from memory, where the
number of accessed bytes is determined by the instruction’s
opcode. The handling of these events is straightforward: the
state for the affected word or set of words (e.g. for a double-
word load) is looked up, the transition table is accessed, and
the state is updated if there is a change. An example of
a variable-footprint event is memory allocation, in which a
variable and potentially large number of locations can be af-
fected. We note that variable-footprint events can be dynam-
ically replaced by loops of constant-footprint events, either
through binary rewriting or in the processor itself in a way
similar to converting x86 string instructions into µops [7].

In this paper we use a RISC processor without variable-
footprint (e.g. string) load and store instructions, but we pro-
vide support for variable-footprint user events to simplify im-
plementation of checkers. Instructions for variable-footprint
user events have two source register operands, one for the
base address and the other for the size of the target memory
address range. This implementation allows simpler checker
implementations, and avoids code size increase and software
overheads of looping. However, in our simulation, a variable-
footprint event is treated as a series of constant-footprint
events with each accessing one word at a time. Hence,
the overheads due to variable-footprint events are fully ac-
counted. In our MemTracker implementation for this paper,
16 of our 32 user event instructions are variable-footprint,
and the rest are word-sized constant-footprint events (sub-
word events are discussed in Section 3.5). Note that we only
need two variable-footprint and five constant-footprint user
events to simultaneously support all checkers used in our
evaluation. The remaining user events are there to provide
support for more sophisticated checkers in the future.

3.4. MemTracker Setup for the HeapData Checker

To implement the HeapData checker from Section 3.1, we
use two variable-footprint user event instructions, UEVT0
for allocations and UEVT1 for deallocations. We instrument
the user-level memory allocation library to execute UEVT0
at the end of the allocation function, and UEVT1 at the start
of the deallocation function. Figure 2 shows the PSTT con-
figuration for this checker, which is a tabular equivalent of



states and transitions described in Section 3.1, except for the
sub-word LD/ST events, which we discuss in Section 3.5.

1

1

1 E

0 E

UEVT1
(Free)

3 E

2 E

2

0 E

UEVT0
(Alloc)

3 (Init)

2 (Uninit)

1 (Unalloc)

0 (NonHeap)

Event

State

0000

3333

2 or 32 E32 E

1 E1 E1 E1 E

Sub-word
ST

Sub-word
LD

STLD

Figure 2. State transition table for our example HeapData
checker. Entries with “E” trigger exceptions.

It should be noted that the need to modify the allocation
library is not specific to MemTracker – all tools or mecha-
nisms that track allocation status of memory locations require
some instrumentation of the memory management library to
capture allocation and deallocation activity. Compared to
software-only tools that perform such checks, MemTracker-
based implementation has the advantage of eliminating the
instrumentation of load/store memory accesses and the asso-
ciated performance overhead. Even for applications that fre-
quently perform memory allocations and deallocations, the
number of loads/stores still easily exceeds the number of al-
locations and deallocations1, and hence even such applica-
tions benefit considerably from MemTracker.

3.5. Dealing with Sub-Word Accesses

MemTracker keeps state only for entire words, so sub-
word memory accesses represent a problem. For example,
consider the shaded transition entry in Figure 2, which cor-
responds to a sub-word store to an Uninitialized word. Since
the access actually initializes only part (e.g. the first byte) of
the word, we could leave the word in state 2 (Uninitialized).
However, a read from the same part of the word (first byte)
is then falsely detected as a read from uninitialized memory.
Conversely, if we change the state of the word to 3 (Initial-
ized), a read from another part of the word (e.g. the last byte)
is not detected as a problem, although it is in fact reading an
uninitialized memory location.

In this tradeoff between detecting problems and avoid-
ing false problems, the right choice depends on the circum-
stances and the checker. To allow flexibility in implementing
checkers, sub-word load/stores are treated as separate event
types in the PSTT. This allows us to achieve the desired be-
havior for sub-word accesses. For example, during debug-
ging we can program the PSTT of the HeapData checker
(Figure 2) such that sub-word stores to uninitialized data
leave the state of the word as uninitialized to detect all reads
from uninitialized locations. In live runs, we can avoid false
positives by programming the PSTT to treat a sub-word write
as an initialization of the entire word.

1In fact, several load/store instructions are executed during each heap
allocation and deallocation

3.6. MemTracker Event Masking

It may be difficult to anticipate at compile time which
checkers will be needed when the application is used. There-
fore, it would be very useful to be able to switch different
checkers on and off, depending on the situation in which the
application runs. To achieve that, we can generate code with
user events for several different checkers, and then provide
a way to efficiently ignore events used for disabled check-
ers. This would also eliminate nearly all overheads when all
checking is disabled.

To ignore load and store MemTracker events when check-
ing is not used, we can set up the PSTT to generate no ex-
ceptions and no state changes. User events can be similarly
neutralized, e.g. to turn the checker off without removing in-
strumentation for it. However, state and PSTT lookups would
still affect performance and consume energy. To minimize
this effect, we add an event mask register that has one bit for
each type of event. If load and/or store events are masked
out, loads and stores are performed without state and PSTT
lookups. A masked-out user event instruction becomes a no-
op, consuming only fetch and decode bandwidth.

4. MemTracker Implementation
4.1. Programmable State Transition Table (PSTT)

The size of the entire PSTT depends on the maximum
number of states and events that are supported. The maxi-
mum number of states and events supported reflect a trade-
off between hardware complexity and checker sophistica-
tion. In this paper we describe a simple implementation of
MemTracker, which supports up to 16 states and up to 36
events (load, store, sub-word load, sub-word store, and 32
user events). The resulting PSTT has 576 entries with 5 bits
in each entry (4 next-state bits and one exception bit), for a
total PSTT size of 360 bytes. This small PSTT easily fits on-
chip, allows one-cycle lookups, and consumes little energy.

The combination of all checkers in our experiments only
needs seven states, so providing 16 states is more than
enough. However, if more states and/or event types are
needed in the future, the PSTT may become too large to be
kept on-chip, or too slow to be accessed with direct lookups.
To accommodate such a large PSTT, we can accommodate
frequently used entries in a small on-chip PSTT cache, while
keeping other entries in memory. However, such a design is
beyond the scope of this paper.

4.2. Finding State Information

Different checkers that use MemTracker support need dif-
ferent numbers of state bits per word, so we provide support
to select the number of state bits at runtime. In particular,
we add a MemTracker Control Register (MTCR), which al-
lows selection of the number of state bits per word. MTCR
specifies the number of bits of state corresponding to each
word of data, and only power-of-two state sizes (1, 2, or 4)
are supported so that the state-lookup logic is simple.



State is stored in memory starting at the virtual address
specified in the State Base Address Register (SBAR), and ad-
dress of the state of a given data address can be found quickly
by adding the SBAR with selected bits of the data address us-
ing simple indexing functions. An example lookup of 2-bit
state for data address 0xABCD is shown in Figure 3.

1010101111001101
SBAR

0xF0000000
Data address (0xABCD)

+

State address
(0xF0000ABC)

Cache

11
00

10
10

M
U

X
State (11)

2
MTCR

Figure 3. Lookup of 2-bit state for data location 0xABCD.

4.3. Caching State Information
There are three basic ways to cache state information:

split caching (state blocks in a separate cache, Figure 4(a)),
shared caching (state blocks share the same cache with data,
Figure 4(b)), and interleaved caching (state bits stored with
the cache line that has the corresponding data, Figure 4(c)).
Shared caching has the advantage of using existing on-chip
caches. However, in shared caching state competes with data
for cache space, and lookups and updates compete with data
accesses for cache bandwidth. Split caching has the advan-
tage that it leaves the data cache unmodified, but adds extra
cost for the separate state cache. Finally, interleaved caching
allows one cache access to service both a data load and the
lookup of the corresponding state; similarly, a data store and
a state update can be performed in the same cache access.
However, unlike the other two caching approaches, inter-
leaved caching makes each cache block larger (to hold the
maximum-size state for the block’s data) and may slow down
the cache even when state is not used.

DL1

MEM

L2

SL1

CPU

Data State

(a) Split

CPU

MEM

L2

L1

Data State

(b) Shared

CPU

L1

MEM

L2

Data & State

(c) Interleaved

Figure 4. Caching approaches for MemTracker state in
the L1 cache. For L2 and below we always use Shared.

We find that the simple and inexpensive shared caching
approach works well for non-primary caches. State is con-
siderably smaller than the corresponding data, so the rela-
tively few state blocks cause insignificant interference with
data caching in large caches (L2 and beyond). Additionally,
L1 caches act as excellent “filters” for the L2 cache, so state
accesses add little contention to data block accesses. As a
result, the choice of caching approach mainly applies to pri-
mary (L1) caches, and all three L1 caching approaches are

examined in our experimental evaluation (Section 6). We find
that shared L1 caching performs poorly without expensive
additional cache ports. Interleaved L1 caching also performs
poorly without additional cache ports, but it simplifies some
memory consistency issues (Section 4.5) and may still be
good choice in chip-multiprocessors. Finally, split caching
has excellent performance even with a very small and simple
state cache (2KBytes in our experiments), and performance-
wise is the best choice.

4.4. Processor Modifications for MemTracker
MemTracker integration into the processor pipeline is

simpler for Split and Shared L1 state caching approaches,
where state lookups can be delayed until the end of the
pipeline. This allows MemTracker to be added as an in-order
extension to the commit stage of the pipeline, avoiding any
significant changes to the complex out-of-order engine of the
processor (Figure 5(a)).

IF ID REN IW EXE MEM CMT

Out of order

PCMT CHK

State L1Data L1

Prefetch

State 
Forwarding

WBREG

(a) Shared and Split

IF ID REN IW EXE MEM CMT
CHK

L1

State and Data 
Forwarding

WB
REG

Out of order

(b) Interleaved

Figure 5. Processor pipeline with MemTracker support
(shaded) for different L1 state caching approaches.

In a regular processor (no MemTracker support), the com-
mit logic of the processor checks the oldest instructions in the
ROB and commits the completed ones in order (from oldest
to youngest). If an instruction is a store, its commit initi-
ates the cache write access. These writes are delayed until
commit because cached data reflects the architectural state of
memory and should not be polluted with speculative values.

MemTracker adds two additional pipeline stages just be-
fore the commit (Figure 5(a)). The first of these stages is
the pre-commit stage (PCMT), which checks the oldest few
instructions in the ROB and lets the completed instructions
to proceed in-order into the next pipeline stage. For Mem-
Tracker events (loads, stores, and user events) pre-commit
also fetches MemTracker state from the state cache. In the
second MemTracker pipeline stage (check stage or CHK), the
state and the event type are used to look up the correspond-
ing PSTT entry. If the state is not available (state cache miss),



the instruction stalls in the check stage until the state arrives.
Because the pipeline from pre-commit to actual commit is
in-order, such a stall prevents all other instructions from pro-
ceeding to the commit stage.

If the PSTT indicates that an exception should be raised,
the processor behaves in the same way as for any other excep-
tion: the instruction and all younger ones are flushed from the
pipeline and the processor begins to fetch instructions from
the exception handler. If there is no exception, the instruc-
tion proceeds to the commit stage. If the new state from the
PSTT is different from the current state, the state is written to
the state L1 cache at commit, at the same point when stores
normally deposit their data values to the data cache.

State checks in the check stage can have dependences on
still-uncommitted state modifications, so a small state for-
warding queue is used to correctly handle such dependence.
This is similar to the “regular” store queue which forward
store values to dependent loads, but our state forwarding
queue is much simpler because 1) it only tracks state updates
in the two stages between pre-commit and commit, so in a 4-
wide processor we need at most 8 entries, and 2) all addresses
are already resolved when instructions enter this queue, so
dependences can always be precisely identified.

Because a state cache miss in the pre-commit stage al-
most directly delays the instruction commit, we initiate a
state prefetch when the data address is resolved. Contention
for state cache ports with state lookups in the pre-commit
stage is avoided by dropping prefetches that cannot be ser-
viced immediately. Our experiments indicate that this state
prefetching is highly effective, it eliminates nearly all state
misses in the pre-commit stage without the need to add any
additional state cache ports.

In the interleaved state caching approach, the main ad-
vantage of interleaving is to have a single cache access read
or write both data and state. As a result, state lookups are
performed as soon as the data (and state) address is resolved
(MEM stage in Figure 5(b)). To achieve this, MemTracker
functionality is weaved into the “regular” processor pipeline
and there are no additional pipeline stages. State lookups
and updates are performed in much the same way as regu-
lar loads and stores: lookups when the address is resolved
and updates when the instruction commits. Consequently,
state must be forwarded just like data, and speculative out-
of-order lookups must be squashed and replayed if they read
state that is later found to be obsolete. As a result, the state
lookup/update queues in this approach are nearly identical
to load/store queues in functionality and implementation, but
are less complex and power-hungry because state is much
(by a factor of 8 or more) smaller than the corresponding
data. Finally, it should be noted that, if load/store queues are
replaced in the future by some other forwarding and conflict
resolution mechanism(s), our state lookup/update queues can
be replaced by the same forwarding and conflict resolution
mechanism(s).

4.5. Multiprocessor Consistency Issues
MemTracker states are treated just like any other data out-

side the processor and its L1 cache, so state is automatically
kept coherent in a multiprocessor system. Hence, we focus
our attention on memory consistency issues. We use the
strictest consistency model (sequential consistency) in our
implementation of MemTracker. We also briefly explain how
to support processor consistency, on which many current ma-
chines are based. We note that other consistency models can
also be supported, but they are too numerous to address in
this paper.

Because MemTracker stores state separately from data in
memory and L2 caches, the ordering of data accesses them-
selves is not affected. The ordering of state accesses can
be kept consistent using the same mechanisms that enforce
data consistency. However, MemTracker introduces a new
problem of ensuring that the ordering between data and state
accesses is consistent. In particular, even in a RISC proces-
sor, a single load instruction could result in a data read, a
state lookup, and a state update; similarly, a store instruction
could result in a state lookup, a data write, and a state up-
date. In a sequentially consistent implementation, data and
state accesses from a single instruction must appear atomic.
This creates three separate issues: atomicity of state and data
writes in store instructions, atomicity of state and data reads
in load instructions, and atomicity of state reads and writes
in all event instructions.

Atomicity of state and data writes in a store instruction
is easily maintained in interleaved caching because the same
cache access writes both data and state, hence the two writes
are actually simultaneous. In split and shared caching, we
force both writes to be performed in the same cycle. If one
suffers a cache miss, the other is delayed until both are cache
hits and can be performed in the same cycle.

Atomicity of the state lookup and the data read in a load
instruction is also easily maintained in interleaved caching,
because they are again part of the same cache access. In split
and shared caching, the instruction must be replayed if the
data value has (or may have) changed before the state is read
by the same instruction. Depending on how load-load order-
ing is kept consistent by the processor, this involves replaying
the instruction when an invalidation for the data is received
before it commits, or when the data value at commit is not
the same as the data value originally loaded from the cache.

Finally, atomicity of the state lookup and update can be
maintained by replaying the instruction if the state it has read
has changed before it writes the new state. We achieve this
by detecting state invalidations that affect uncommitted event
instructions, but it can also be done by checking if the state
value to be overwritten is the same as the state value origi-
nally read by the instruction.

In consistency models that allow write buffers (e.g. pro-
cessor consistency), the simplest way to ensure correct be-
havior is to flush the write buffer when there is a state update
and do the write directly to the cache. This approach should



work well when state updates are much less frequent than
data writes, as we show in Section 6. Additional optimiza-
tions are possible, but are beyond the scope of this paper.

Overall, MemTracker support can be correctly imple-
mented in sequentially and processor-consistent multiproces-
sors in a relatively straightforward way, by extending existing
approaches that maintain data consistency. We note that any
mechanism that maintains state (e.g. fine-grain protection)
separately from data would have similar issues and demand
similar solutions.

4.6. Setup and Context-Switching

We consider MemTracker-related processor state (PSTT,
MTCR, event mask register) to be a part of process state,
which is saved and restored on context switches. In our cur-
rent implementation, the total amount of MemTracker state
to be saved/restored in this manner is less than 400 bytes,
which is comparable to the rest of process state (general pur-
pose, floating point, control, and status registers) and would
cause negligible overheads. We note that per-word states
need not be saved/restored on context switches. Instead, they
are only cached on-chip and move on- and off-chip as a result
of cache fetch and replacement policy.

5. Evaluation Setup
5.1. Memory Problem Detectors

To demonstrate the generality of our MemTracker support
and evaluate its performance more thoroughly, we use four
checkers designed to detect different memory-related prob-
lems. One of these checkers is the HeapData checker used
as an example in Section 3.1.

0

0

UEVT31
(ClrDelimit)

1 E

1

UEVT30
(SetDelimit)

1 (Delimit)

0 (Normal)

Event

State

0000

1 E1 E1 E1 E

Sub-word
ST

Sub-word
LD

STLD

Figure 6. PSTT setup for the HeapChunks checker.

The second checker is HeapChunks, which detects heap
buffer overflows from sequential accesses. For this checker,
the memory allocation library is modified to surround each
allocated data block with delimiter words, whose state is
changed (using event UEVT30) to Delimit, while all other
words remain in the Normal state. Any access to a Delimit
word is an error. When the block is freed, the state of its de-
limiter words is changed back to Normal (using UEVT31).
Note that the standard GNU heap library implementation
keeps meta-data for each block (block length, allocation sta-
tus, etc.) right before the data area of the block. As a result,
we do not need to allocate additional delimiter words, but
rather simply use these meta-data words as delimiters.

This HeapChunks checker uses one-bit state per word, and
the PSTT for it is shown in Figure 6. Note that HeapChunks
is intended as an example of a very simple checker with one-
bit state, and that it does not provide full protection from

heap block overflows. For example, it would not detect out-
of bounds accesses due to integer overflow or strided access
patterns. However, it does detect the most prevalent kind of
heap-based attacks (sequential buffer overrun).

0

0

0 E

UEVT26
(RAfree)

2 E

1

0 E

UEVT25
(RArd)

1

1 E

1

UEVT24
(RAwr)

2 (BadRA)

1 (GoodRA)

0 (NotRA)

Event

State

0000

2222

2121

Sub-word
ST

Sub-word
LD

STLD

Figure 7. PSTT setup for the RetAddr checker.

The third checker is RetAddr (Figure 7), which detects
when a return address on the stack is modified. This checker
detects stack smashing attacks that attempt to redirect pro-
gram control flow by overwriting a return address on the
stack. This checker keeps each word in the stack region in
one of three states: NotRA, GoodRA, and BadRA. All stack
words start in the NotRA state, which indicates that no re-
turn address is stored there. When a return address is stored
in a stack location, its state changes to GoodRA. An ordi-
nary store changes this state to BadRA. When a return ad-
dress is loaded, we check the state of the location and trig-
ger an exception if the location is not in the GoodRA state.
Our simulations use the MIPS ISA, which uses ordinary load
and store instructions to save/restore the return address of a
function, which is otherwise kept in a general-purpose reg-
ister. To expose return address activity to our checker, we
insert UEVT24 (RAwr) after each valid return address store,
UEVT25 (RArd) before each valid return address load, and
UEVT26 (RAfree) before the return address stack location
goes out of scope (when the activation record for the function
is deallocated). All these user events target the intended lo-
cation for the return address. For our experiments, this event
insertion is done by a modified GCC code generator, but it
would be relatively simple to achieve the same goal through
binary rewriting. For CISC processors (e.g. x86), return ad-
dress pushes and pops are done as part of function call/return
instructions, so it is trivial to identify them. The RetAddr
checker is another example of a useful checker that can ben-
efit from MemTracker due to frequent state updates: each
function call/return will result in at least three state updates
to the return address’ state.

The fourth checker combines all three checkers described
above. This Combined checker uses seven different states,
and configures MemTracker to use four-bit states. This is the
most demanding of the four checkers in terms of the num-
ber of user events that must be executed and in terms of state
memory and on-chip storage requirements, so we use it as the
“default” checker in our evaluation and use the three com-
ponent checkers to evaluate the sensitivity of MemTracker’s
performance to different checkers and state sizes.

5.2. Benchmark Applications
We use all applications from the SPEC CPU 2000 [15]

benchmark suite, and omit only Fortran 90 applications be-



0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
ve

ra
ge

Split Shared Interleaved Interleaved (+1 Port)

Figure 8. Effect of shared, split, and interleaved caching of state and data in L1 caches.

cause this language is not yet supported by the compiler in-
frastructure for our simulator (GCC 3.4.0 toolchain). For
each application, we use the reference input set in which
we fast-forward through the first five billion instructions to
skip initialization phases and simulate the next two billion
instructions in detail. We note that our fast-forward must still
model all MemTracker state updates to keep the checker’s
state correct. If we ignore allocations, initializations, and re-
turn address save/restore while fast-forwarding, when we en-
ter detailed simulation, our checkers would trigger numerous
exceptions due to falsely detected problems (e.g. reads from
locations whose allocation we skipped).

5.3. Simulation Environment and Configuration

We use SESC [12], an open-source execution-driven sim-
ulator, to simulate a near-future out-of-order superscalar pro-
cessor running at 5GHz. The L1 data cache we model is
16KBytes in size, two-way set associative, dual-ported, with
32-byte blocks. The L2 cache is 2MB in size, four-way
set associative, single-ported, and also with 32-byte blocks.
The processor-memory bus is 128 bits wide and operates at
500MHz, and the round-trip main memory latency is 320 cy-
cles when there is no contention.

Our default MemTracker configuration (shown in black
in all charts) uses split state caching in the L1 cache (Fig-
ure 4(a)), with 2KBytes of state cache, which is two-way set-
associative, dual-ported, and with 32-byte blocks.

6. Evaluation

6.1. Effect of L1 Caching Approaches

As described in Section 4.3, we examine three differ-
ent approaches to caching state in primary caches: Split,
Shared, and Interleaved. Figure 8 shows execution time over-
heads for these approaches on the most demanding Com-
bined checker, relative to a system without any checking and
without MemTracker support. We observe that the Split con-
figuration has the lowest overhead, both on average (2.7%)
and worst-case (4.8%), with a small 2KByte L1 state cache.
The lower-cost Shared approach has more overhead on aver-

age (6.4%), and its overhead also varies considerably across
benchmarks, with the worst case of 23.3% (in art). This
higher overhead is caused by contention between state and
data for both L1 cache space and bandwidth. Since the only
advantage of the Shared approach is reduced cost due to us-
ing the existing L1 cache, it makes little sense to add L1 ports
or capacity to reduce this overhead - an additional port in a
16KByte L1 data costs more than the entire 2KByte L1 state
cache in our Split configuration.

Finally, the Interleaved approach also has higher overhead
on average (8.9%), and worst-case (20.6%, in apsi). This
configuration has dedicated space for state in each L1 line,
so the additional overhead comes mainly from contention for
bandwidth. With an additional L1 port, the overhead is re-
duced to an average of 3.6% and worst-case of 7.4%.

Overall, the Split configuration has the best average per-
formance and the best worst-case performance. It is also
relatively easy to integrate into the processor pipeline using
the in-order pre-commit implementation described in Sec-
tion 4.4. The additional 2KByte L1 state cache in this con-
figuration is eight times smaller than the L1 data cache, and
adds little to the overall real-estate of a modern processor.
Hence, we use this Split configuration as the default Mem-
Tracker setup in the rest of our experiments. However, we
note that the Interleaved approach has some advantages in
terms of multiprocessor implementation (Section 4.5) and,
with additional L1 bandwidth, has similar (but a bit worse)
performance to the Split configuration. Consequently, the In-
terleaved approach with added L1 cache bandwidth may also
be a good choice if the goal is to simplify support for multi-
processor consistency.

6.2. Performance with Different Checkers

Figure 9 shows that the overhead mostly depends on the
number of state bits per word used by a checker. The one-
bit HeapChunks checker has the lowest overhead – 1.4% on
average and 2.4% worst-case. Both two-bit checkers have
overheads of 1.9% on average and 4.3% worst-case. We note
that these checkers have different user events – the Heap-
Data checker uses variable-footprint user event instructions



0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
ve

ra
ge

Combined HeapData RetAddr HeapChunks

Figure 9. Overhead of different checkers in MemTracker, with Split L1 state caching using a 2KByte L1 state cache.

to identify heap memory allocation and deallocation, while
the RetAddr checker uses word-sized user events to identify
when the return address is saved and restored. However, after
application’s initialization phase, HeapData’s user events are
rare, while each of RetAddr’s more frequent events requires
little processing. As a result, in both checkers user events
contribute little to the overall execution time.

The four-bit Combined checker has an overhead of 2.7%
on average and about 4.8% worst-case (in swim). This over-
head is larger than in less-demanding checkers, mainly due to
larger state competing with data for L2 cache space and bus
bandwidth. Still, even the “high” 4.8% worst-case overhead
is low enough to allow checking even for “live” performance-
critical runs. Also, note that the overhead of the combined
checker is significantly lower than the sum of overheads for
its component checkers. This is mainly because the com-
bined checker does not simply do three different checks –
they are combined into a single check.

6.3. Sensitivity Analysis

We performed additional experiments with 1KByte, with
4KByte, and with 16KByte L1 state caches in the Split con-
figuration. We find that state caches larger than our de-
fault of 2KBytes bring negligible performance improvements
(<0.5%) in all applications and on average, which indicates
that the 2KByte cache is large enough to capture most of the
first working set for MemTracker state. The smaller 1KByte
cache still shows an overhead of only 3.2% on average rel-
ative to the no-checking baseline. However, the worst-case
overhead is higher in some applications: in mcf the over-
head jumps from 4.1% with the 2KByte state cache to 9.2%
with a 1KByte state cache. The reason for this is that the
smaller state cache “covers” less memory than the L1 data
cache for the 4-bit Combined checker used in these experi-
ments, which puts a larger number of state L1 cache misses
on the critical path. Additionally, line size in the state cache
is the same as in the data cache (32 bytes in our experiments)
although state is smaller than the corresponding data. This
puts smaller state caches at a disadvantage in applications
with less spatial locality.

We also conducted experiments in which we disable state
prefetches (see Figure 5(a)) in the Split configuration. We
find that the average overhead increases from 2.7% with
state prefetching to 5.4% without it, and the worst-case over-
head jumps from 4.8% in gap with state prefetching to 14%
in equake without state prefetching. Our state prefetching
mechanism is very simple to implement, and we believe its
implementation is justified by the reduction in both average
overhead and variation of overheads across applications.

Overall, we find that the small 2KByte state cache results
in a good cost-performance tradeoff, and even a 1KByte state
cache can be used to reduce cost if a wider variation in per-
formance overhead and slightly higher average overheads are
acceptable. We also find that state prefetching brings signifi-
cant benefits at very little cost.

6.4. Comparison with Prior Mechanisms

To estimate the advantages of our MemTracker support,
we compare its performance with checking based on an ap-
proximation of Mondrian Memory Protection [21] and with
an approximation of checking based on software-only instru-
mentation. We do not actually implement these schemes, but
rather make optimistic estimates of the cost for key check-
ing activities. As a result, these estimates are likely to un-
derestimate the actual advantages of MemTracker over prior
schemes, but even so they serve to highlight the key benefits
of our mechanism.

In a Mondrian-based implementation of the Combined
checker, Mondrian’s fine-grain permissions must be set to
only allow accesses that are known to be free of exceptions
and state changes. Examples of such accesses are load/store
to already initialized data, load/store to non-return-address
stack locations, and loads from unmodified return address lo-
cations. We assume zero overhead for these accesses, which
makes Mondrian permission fetches and checks “free”. For
permissions changes on allocation, deallocation, or return ad-
dress load/stores, we model only a penalty of 30 cycles for
raising an exception. We note that this penalty is optimistic,
because it subsumes a pipeline flush for the exception, the
jump to the exception handler, the actual execution of the ex-



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
ve

ra
ge

MemTracker Mondrian 30/Exc SW 5/Chk

Figure 10. Effect of state changes in software handlers.

ception handler (which must update Mondrian’s permissions
trie structure), and the return to the exception site.

For software-only checking, we only model a five-
cycle penalty for each check that must be performed for a
load/store. This check must read the state for the target mem-
ory location, determine if a state change is needed or if an
error is indicated, and finally update the state. The 5-cycle
penalty is added to the execution time of the unmodified ap-
plication, so the penalty includes all effects of instrumenta-
tion, including any misses in the instruction cache, misses in
the data cache when looking up state, conditional branches
when checking the state, and actual execution of instrumen-
tation instructions. We note that this 5-cycle penalty is very
optimistic; for example, in HeapMon [14] the actual reported
average duration of a (highly optimized) load or store check
is 18 to 480 cycles, depending on the application.

The results of these experiments are shown in Figure 10.
For MemTracker, we use a Split L1 caching configuration
with a 2KBytes L1 state cache. We find that our Mem-
Tracker mechanism (with all overheads accounted for) out-
performs both Mondrian-based checking and software-only
checking. The average overhead for software-only check-
ing is 18.5%, with a worst-case of 44.4%. Due to our opti-
mistic assumptions for software-only checking, this overhead
is much lower than previously reported numbers [10, 19]
for such checkers, but it is still too high to allow always-on
checking in production runs.

The average overhead for Mondrian-based checking is
5.1%, compared to 2.7% for MemTracker. The worst case for
Mondrian is 21.1% in gcc, compared to MemTracker’s 4.8%
in swim. We note that Mondrian requires complex hardware
to look up and manage its trie permissions structures and uses
several kinds of on-chip caching to speed up its permissions
checks. As a result, Mondrian implementation is unlikely to
be less complex than MemTracker, so MemTracker’s higher
performance and lower performance variation across appli-
cations is a definite advantage. It should also be noted that
we fully model all overheads for MemTracker-based check-
ing, whereas the real overheads of Mondrian-based checking
could be considerably higher than our optimistic estimate.

6.5. Validation of Access Checking Functionality

We tested our checking functionality by injecting bugs
and attacks into several applications as they are running
with our Combined checker. All instructions of the appli-
cations are simulated from the start of execution until either
a bug/attack is detected, or until they complete execution, in
which case we check the program’s results for correctness.

To test the return address protection, we choose 15 dif-
ferent function calls in each of the following applications:
crafty, parser, and twolf. After the return address is saved
to the stack, we inject a single dynamic instance of a store
instruction that overwrites it. Our checker detects all such at-
tacks, raising an exception before the modified return address
is actually used to re-direct control flow of the application.

To test the heap chunk protection, we randomly choose
an allocated heap block and sequentially overwrite the block
past its end. We performed a total of 60 such attacks in craft,
gzip, mcf, and mesa, and our checker always detects the write
that exceeds the allocated space.

To test our detection of reads from uninitialized heap loca-
tions, we randomly choose a dynamic instance of a calloc
call and omit the initialization of the first or the last word of
the block. We injected a total of 122 such errors in crafty,
gzip, mcf, and mesa, and in all but one injection, reads from
the uninitialized location were detected. The remaining one
injection (in gzip) was not detected because the application
never read the word whose initialization we omitted.

Finally, to test our detection of accesses to unallocated
heap data, we intercept a randomly-chosen dynamic instance
of a malloc call and reduce the size of the request by 4 bytes
(one word). We performed a total of 183 such injections in
crafty, gzip, mcf, and mesa. In 149 of these injections our
checker finds a read or a write to the unallocated location.
In the remaining 34 injections the last word of the allocated
block is never actually accessed, so the injected error is not
manifested (the application completes correctly).

Although our checkers are very effective in finding the er-
rors and attacks they target, we note that the checkers them-
selves are not the focus of the paper. They are only used to



demonstrate and test our MemTracker mechanism, and prob-
lem detection abilities of these checkers are similar to other
implementations of similar checkers.

7 Conclusions
This paper describes MemTracker, a new hardware sup-

port mechanism that can be set up to perform different kinds
of memory access monitoring tasks. MemTracker associates
each word of data in memory with a few bits of state, and
uses a programmable state transition table to react to differ-
ent events that can affect this state. The number of state bits
per word, the events to react to, and the transition table are all
fully programmable by software. The MemTracker state is
kept in main memory and cached on the processor chip, and
is looked up and updated by MemTracker hardware. Any
state-event pair can be programmed to trigger execution of
a software handler, which is used to report a problem or
to handle sophisticated checks or recovery. The rich set of
states, events, and transitions supported by MemTracker al-
lows bug checks to proceed with minimal performance over-
heads. To evaluate our MemTracker support, we map three
different checkers onto it, as well as a checker that combines
all three. Even for the combined checker, we observe perfor-
mance overheads of 2.7% on average and 4.8% worst-case
on SPEC 2000 applications.

We examine several approaches to caching MemTracker
state on-chip, and find that it is possible to implement Mem-
Tracker without significant changes to most of the proces-
sor pipeline and L1 caches, by adding two in-order stages
to the back-end of the processor pipeline and by using a
small (2KByte) dedicated L1 state cache. In the L2 cache
and memory, MemTracker state is stored just like any other
data, without any extra support. With its low performance
overhead and simple implementation, we believe that Mem-
Tracker is one right step towards hardware support mech-
anisms that will be needed by developers to continuously
monitor the highly complex applications of the future.

References
[1] J. Boletta. SecurityFocus Newsletter #172.

http://citadelle.intrinsec.com/mailing/current/HTML/
ml securityfocus news/0067.html, 2002.

[2] M. L. Corliss, E. C. Lewis, and A. Roth. Dise: A pro-
grammable macro engine for customizing applications. In
ISCA ’03: 30th Intl. Symp. on Computer Architecture, pages
362–373, New York, NY, USA, 2003. ACM Press.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In Proc. of the 7th USENIX Se-
curity Conf., 1998.

[4] J. R. Crandall and F. T. Chong. Minos: Control Data Attack
Prevention Orthogonal to Memory Model. In 37th Intl. Symp.
on Microarchitecture (MICRO), pages 221–232, 2004.

[5] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, Y. Wu. LIFT: A Low
Overerhead Practical Information FLow Tracking System for

Detecting Security Attacks. In Proc. of the Intl. Symp. on
Microarchitecture, 2006.

[6] G. Suh, J. Lee, and S. Devadas. Secure program execution via
dynamic information flow tracking. In Proc. of the 11th Intl.
Conf. on Arch. Support for Prog. Lang. and Operating Sys..
Boston, MA, 2004.

[7] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the
Pentium R© 4 Processor. Intel Technology Journal, 5(1), 2001.

[8] IBM Corporation. IBM Rational Purify.
http://www.ibm.com/software/awdtools/purify/, 2005.

[9] J. T. Kuehn and B. J. Smith. The Horizon supercomputing
system: architecture and software. In Proc. of Supercomuting
’88, pages 28–34, 1988.

[10] J. Newsome and D. Song. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits
on commodity software. In 12th Network and Distributed
System Security Symp. (NDSS), 2005.

[11] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-
Memory for Detecting Memory Leaks and Memory Corrup-
tion During Production Runs. In Proc. of the Intl. Symp. on
High Performance Computer Architecture, 2005.

[12] J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.
[13] J. Seward. Valgrind, An Open-Source Memory Debugger for

x86-GNU/Linux. http://valgrind.kde.org/, 2004.
[14] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heap-

mon: A helper-thread approach to programmable, automatic,
and low-overhead memory bug detection. IBM Journal of Re-
search and Development, 50(2/3):261–275, 2006.

[15] Standard Performance Evaluation Corporation. SPEC Bench-
marks. http://www.spec.org, 2000.

[16] Symantec. Microsoft IIS HTR Chunked En-
coding Heap Overflow Allows Arbitrary Code.
http://securityresponse.symantec.com/ avcen-
ter/security/Content/2033.html, 2002.

[17] US-CERT. FedCIRC Advisory FA-2001-19 ”Code Red”
Worm Exploiting Buffer Overflow In IIS Indexing Service
DLL. http://www.us-cert.gov/federal/archive/advisories/FA-
2001-19.html, 2001.

[18] US-CERT. Buffer Overflow in Microsoft Internet Explorer.
http://www.us-cert.gov/cas/techalerts/TA04-315A.html, 2004.

[19] Valgrind Developers. The Valgrind Quick Start Guide.
http://valgrind.org/docs/manual/quick-start.html, 2005.

[20] Weidong Shi, Chenghuai Lu, Hsien-Hsin S. Lee. Memory
Centric Security Architecture. In Proc. of Intl. Conf. on High
Performance Embedded Architectures and Compilers, 2005.

[21] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory
protection. In ASPLOS-X: 10th international conference on
Arch. Support for Prog. Lang. and Operating Sys., pages 304–
316, New York, NY, USA, 2002. ACM Press.

[22] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torellas. AccMon: Automatically Detecting Memory-
related Bugs via Program Counter-Based Invariants. In Proc.
of the 37th Intl. Symp. on MicroArchitecture, 2004.

[23] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torellas. iWatcher:
Efficient Architectural Support for Software Debugging. In
Proc. of the 31st Intl. Symp. on Computer Architecture, 2004.

[24] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas. Effi-
cient and flexible architectural support for dynamic monitor-
ing. ACM Trans. Archit. Code Optim., 2(1):3–33, 2005.


