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Abstract—Atomicity is a correctness condition for concurrent systems. Informally, atomicity is the property that every concurrent

execution of a set of transactions is equivalent to some serial execution of the same transactions. In multithreaded programs,

executions of procedures (or methods) can be regarded as transactions. Correctness in the presence of concurrency typically requires

atomicity of these transactions. Tools that automatically detect atomicity violations can uncover subtle errors that are hard to find with

traditional debugging and testing techniques. This paper describes two algorithms for runtime detection of atomicity violations and

compares their cost and effectiveness. The reduction-based algorithm checks atomicity based on commutativity properties of events in

a trace; the block-based algorithm efficiently represents the relevant information about a trace as a set of blocks (i.e., pairs of events

plus associated synchronizations) and checks atomicity by comparing each block with other blocks. To improve the efficiency and

accuracy of both algorithms, we incorporate a multilockset algorithm for checking data races, dynamic escape analysis, and happen-

before analysis. Experiments show that both algorithms are effective in finding atomicity violations. The block-based algorithm is more

accurate but more expensive than the reduction-based algorithm.

Index Terms—Concurrent programming, testing and debugging, Java, data race, atomicity.
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1 INTRODUCTION

MULTITHREADING has become a common programming
technique. Not only operating systems but also many

applications are multithreaded. However, developing mul-
tithreaded programs is difficult. Concurrency introduces
the possibility of errors that do not exist in sequential
programs. Furthermore, multithreaded programs may
behave differently from one run to another because threads
are scheduled indeterminately. For most systems, the
number of possible schedules is enormous and testing the
system’s behavior for each possible schedule is infeasible.
Specialized techniques are needed to ensure that multi-
threaded programs do not have concurrency-related errors.

Threads often communicate by sharing data. Concurrent
accesses to shared data should be properly synchronized.
Two common errors are deadlocks and data races. A
deadlock occurs when all threads are blocked, each waiting
for some action by one of the other threads. Two accesses to
shared variables conflict if they access the same variable and
at least one of them is a write. Following [28], a data race
occurs when two concurrent threads perform conflicting
accesses and the threads use no explicit mechanism to
prevent the accesses from being simultaneous.

Numerous static and runtime (dynamic) analysis tech-
niques are designed to ensure that concurrent programs are
free of deadlocks and data races [9], [5], [4], [28], [6]. But,
this does not ensure the absence of all synchronization
errors. Consider the implementation of Vector in Sun
JDK 1.4.2, part of which appears in Fig. 1. Consider the

following execution of the program at the bottom of Fig. 1:
thread_1 constructs a new vector v2 from another vector
v1 with k elements by calling the constructor for Vector.
But, before the constructor completes, thread_1 yields
execution to thread_2 immediately after statement 1 in
the Vector constructor. thread_2 removes all elements of
v1 and then thread_1 resumes execution at statement 2.
The incorrect outcome is that v2 has k elements, all of
which are null because the elementData array of v2 is
allocated according to the previous size of v1. A more
subtle error occurs if thread_2 executes v1.add(o)

instead of v1.removeAllElements(). Then, if k < 10,
the length of elementData is smaller than the new size of
v1. Although a larger array is allocated in toArray to store
the elements of v1, the array is not returned to the
constructor of v2, thus v2 will incorrectly be full of null
elements. No exception is thrown in these scenarios.
Methods size(), toArray(Object[]), removeAll

Elements(), and add(Object) are synchronized, hence
there is no data race in these examples.

The incorrect behavior reflects a higher-level synchroniza-
tion error, namely, lack of atomicity. Atomicity is well-known
in the context of transaction processing, where it is sometimes
called serializability. The methods of concurrent programs are
often intended to be atomic. A set of methods is atomic if
concurrent invocations of the methods are always equivalent
to performing the invocations serially (i.e., without interleav-
ing) in some order. The first scenario of the example in Fig. 1
contains two invocations, one of Vector(Collection)

and one of removeAllElements(), which obviously do
not have an equivalent serial execution. Therefore, these
methods violate atomicity. Similarly, the second scenario
also shows a violation of atomicity.

Flanagan and Qadeer developed a type system for
atomicity [14]. It can ensure that methods are atomic in all
possible executions. However, type inference for the type
system is NP-complete [11], [12], so the type system may
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require manual annotation of the program. Some aspects of
a program’s behaviors, such as happen-before relations due
to start-join on threads, are harder to analyze statically than
dynamically and are not considered by the type system
because of false alarms (i.e., type errors for methods that are
atomic).

This paper presents two runtime algorithms for detecting
potential violations of atomicity: a reduction-based algo-
rithm and a block-based algorithm. Runtime analysis is less
powerful than static analysis because it cannot ensure
correctness of all unexplored behaviors of the system, but
may be more precise (i.e., give fewer false alarms) for the
explored behaviors. Furthermore, runtime analysis does not
require annotations of the code that are often required by
type systems; this is a significant practical advantage. Our
algorithms do not merely look for violations of atomicity in
the observed execution, but also attempt to determine
whether the nondeterminism of thread scheduling could
allow violations in other executions. We implemented both
algorithms. Experiments show that they can successfully
find subtle errors.

Our algorithms rely on defaults or information from the
user to determine which execution fragments should be
considered as transactions. Such user input would typically
be provided by annotating some code blocks as expected to
be atomic and considering executions of those code blocks
as transactions. In either case, our algorithms can auto-
matically check atomicity of the indicated transactions. In
contrast, atomicity type systems may require additional
help (in the form of type annotations) from the user to
determine whether specified code blocks are atomic. Of
course, the defaults, whatever they are, will sometimes not
capture the user’s intentions accurately, so input from the
user is desirable, but not always available in practice.

The reduction-based algorithm is an extension of our
original reduction-based algorithm [31] and Flanagan and

Freund’s Atomizer algorithm [10]. It first determines
whether there is data race on each variable and then uses
this information to classify events. If the sequence of events
in each transaction matches a given pattern, then the
transactions are atomic.

The block-based algorithm extends our original block-
based algorithm [31]. It first constructs blocks (i.e., pairs of
events plus associated synchronizations) from an observed
trace and then compares each block with all blocks in other
transactions. If two blocks are found that violate some given
conditions, the transactions containing them are not atomic.
The block-based algorithm can infer the atomicity for not
only the observed trace, but also all permutations of the
trace that are consistent with the synchronization events in
the observed trace.

The block-based algorithm is somewhat more expensive
than the reduction-based algorithm, but is more accurate,
i.e., reports fewer false alarms. This is demonstrated by the
experiments in Section 8.

We design a dynamic escape analysis and a happen-
before analysis to support the reduction-based algorithm
and the block-based algorithm. The dynamic escape
analysis dynamically determines when an object escapes
from its creating thread, i.e., when it becomes accessible to
other threads. The happen-before analysis determines
whether two events of different threads are concurrent.

This paper focuses on analyzing Java programs, but the
techniques can be extended to other languages. Our system
instruments the source code by inserting code that sends
events to the monitor during the execution of the
instrumented program. The monitor implements both
detection algorithms. The reduction-based algorithm can
applied online (i.e., the analysis is applied during execution
of the program and warnings are issued based on the
information observed so far) or offline (i.e., the analysis is
applied after the program terminates and warnings are
issued based on the entire execution). The block-based
algorithm is offline.

Generally, runtime analysis is unsound compared to
static analysis because it depends on the input to the
program and may miss errors, especially (but not limited
to) errors in unexecuted code. Still, our algorithms are
sound in a limited sense. Given a particular execution as
input, our dynamic escape analysis and happen-before
analysis are conservative and our offline reduction-based
algorithm and block-based algorithm are conservative
tests for atomicity of execution fragments (called transac-
tions), as defined in Section 2. The online version of the
reduction-based algorithm is unsound, as for reason
discussed in Sections 5.4 and 5.5.

One direction for future work is to decrease the overhead
by using static analysis, as in [6], to show absence of data
races or atomicity violations in parts of the program, and to
apply runtime analysis only to the other parts. Another
direction for future work is to accurately detect atomicity
violations in programs that use synchronization mechan-
isms other than locks.

This paper is organized as follows: Section 2 provides
background. Sections 3 and 4 present dynamic escape
analysis and happen-before analysis, respectively.
Sections 5 and 6 describe the reduction-based algorithm
and block-based algorithm, respectively. Section 7 de-
scribes instrumentation of the source code. Section 8
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Fig. 1. An example showing that the constructor of java.util.Vector

in Sun JDK 1.4.2 violates atomicity.



contains experimental results. Related work is discussed
in Section 9.

2 BACKGROUND

Informally, an event is one step in an execution of a program.
This paper considers events that perform the following kinds
of operations: read and write escaped variables (i.e., variables
that are accessible to multiple threads [7]), acquire and release
locks,1 start and join on threads (corresponding to the
methods start and join of java.lang.Thread, respec-
tively), enter and exit from invocations of methods, and the
barrier synchronization operations discussed in Section 4. For
example, synchronized(l) {body} in Java indicates two
events (in addition to the events performed by the body):
acquiring lock l at the entry point and releasing it at the exit
point. Two distinct accesses (even using the same operation)
to a variable are different events. Let varðeÞ denote the
variable on which eoperates. Here, a variable means a storage
location, e.g., a field of an object. Two read or write operations
conflict if they act on the same variable and at least one
operation is write.

A transaction t is a sequence of events executed by a
single thread, denoted threadðtÞ. For example, the sequence
of events executed during a method invocation is often
considered as a transaction. For nested transactions, our
algorithms check only the outmost transactions for atom-
icity since they subsume the inner transactions.

A trace tr is a sequence of events from a set of
transactions. The transactions may come from different
threads. Given a set T of transactions, a trace for T is an
interleaving of events from transactions in T that is
consistent with the original order of events from each
thread and with the synchronization events. A trace for T
must contain all events from transactions in T unless the
trace ends in deadlock. A trace is consistent with the
synchronization events if the following conditions hold:
1) No lock is held by multiple threads at the same time and
2) the happen-before relation between events based on
start/join and barrier synchronizations is respected (this
relation is defined in Section 4). In this paper, T is obtained
by monitoring an execution. All traces for T can be
generated from T based on this definition. Let tracesðT Þ
denote all traces for T .

In a trace tr, if a read event e2 reads the value written by
event e1, we call e1 the write-predecessor of e2 in tr.

Two traces tr1 and tr2 are equivalent iff 1) they consist of
the same set of transactions, 2) each read event has the same
write-predecessor in both traces, and 3) each variable has
the same final write event in both traces. This corresponds
to view equivalence in transaction processing of database
systems [3].

A trace is serial if, for each transaction, the events in that
transaction form a contiguous subsequence of the trace.

A trace is serializable if it is equivalent to some serial
trace.

A set T of transactions is atomic if every trace for T is
serializable. In that case, we will informally say that each
transaction is atomic, although, formally, it is atomic with
respect to T .

A trace that ends in deadlock with some thread in the
middle of a transaction is not equivalent to any serial trace.
A set T of transactions has potential for deadlock if some trace
for T ends in deadlock. Our atomicity-checking algorithms
assume that T has no potential for deadlock. We detect
potential for deadlock using an extension of the goodlock
algorithm [17]. Our algorithm reports a warning (of
potential deadlock) if two threads acquire two locks, ‘1

and ‘2, in different orders in concurrent thread periods (as
defined in Section 4) without first acquiring some other lock
that prevents their attempts to acquire ‘1 and ‘2 from being
interleaved. This algorithm is unsound because it can miss
the potential for deadlocks involving three or more threads
and locks and it can miss deadlocks due to synchronization
other than locks (e.g., wait and notify). The algorithm
can be extended to detect potential for deadlock involving
any number of threads [1], but this is more expensive and,
we believe, not worthwhile in practice.

3 DYNAMIC ESCAPE ANALYSIS

This section describes how to determine when an object
escapes from its creating thread. Before an object escapes,
all operations on it can be ignored when checking atomicity.

We say that an object o0 refers to an object o if o0:f ¼¼ o for
some field f of o0 or if o0 is an array and o0½i� ¼¼ o for some
index i. An object omay escape from its creating thread when:

. o is stored in a static field or a field of an escaped
object.

. o is an instance of Thread (including its subclasses)
and o.start is called. Note that, if o was created by
a constructor with a Runnable argument r, then o
refers to r, so (by the next rule) r escapes when o
starts.

. If o0 refers to o and o0 escapes, then o escapes. This
leads to cascading escape.

. o is passed as an argument to a native method that
may cause it to escape.

To indicate whether an object has escaped, a Boolean
instance field escaped is added to every instrumented
class; its initial value is false. To detect when an object
escapes, we instrument all method calls and all stores to
static fields, instance fields, and arrays. When an object
escapes, it is marked as escaped by setting its escaped

field to true and all objects to which it refers are marked as
escaped (and so on, recursively). The reflection mechanism
in Java is used to dynamically find all objects to which a
given object refers. When an array escapes, all of its
elements are marked as escaped. Since fields cannot be
added to Java’s built-in array classes, we use a hash table
that maps from an array reference to a “shadow” object
containing an escaped field for the array.

For methods whose bodies are not instrumented,
specifically, all native methods and methods of uninstru-
mented library classes, escape information is maintained
conservatively by marking all arguments to those methods
as escaped. For some frequently used library classes (in
particular, collections and maps), we instead use hand-
written wrappers that track escape information more
accurately without instrumenting the source code of the
library classes. For example, our wrapper for the native
method Vector.add marks the argument as escaped only
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if the target object (i.e., the vector) is escaped. Instrumenting
library code is sometimes complicated by dependencies
between classes, so we instrument library classes only when
specifically testing their own atomicity in the experiments
of Section 8. More details about instrumentation appear in
Section 7.

Compared with this escape analysis, the technique in [7]
is more expensive and more precise since our escape
analysis does not consider ownership transfer. Our atom-
icity checking algorithms could easily use a static escape
analysis, such as [27], instead of a dynamic one, which is
generally more expensive and more precise [7].

4 HAPPEN-BEFORE ANALYSIS

The execution of a thread is separated into different periods
by occurrences of synchronization events. A thread period
happens before another thread period if it must end before the
other thread period starts.

Our happen-before analysis tracks only happen-before
relationships induced by start and join on threads and
by barrier synchronization. A barrier is a rendezvous point
for a specified number n of threads. Once all n threads
reach the barrier, these threads may continue executing.
This happen-before information is used as described in
Sections 5.4 and 6.1. Happen-before relationships induced
by wait and notify could also be analyzed; we do not do
this because we believe that wait and notify are rarely
used to achieve atomicity.

An identification number (ID) is assigned to each period
of each thread. For an event e, let tpIDðeÞ denote the ID of
the thread period in which e was executed. A directed
acyclic graph, called happen-before graph, with an edge for
each ID is used to store the temporal ordering relations
between thread periods. pid1 happens before pid2 if the
edge labeled with pid2 is reachable from the edge labeled
with pid1. If two thread periods pid1 and pid2 are not related
to each other by happen-before relations, then we say that
they are concurrent, denoted pid1 k pid2. An event in thread
period pid1 can be concurrent with an event from thread
period pid2 only if pid1 is concurrent with pid2. Each node of
the graph is labeled with start, join, barrier, exit

(which denotes the end of a thread or the program), or
enter (which denotes the starting point of the program).

When a thread t1 in period pid1 calls t2.start() to start
another thread t2, we introduce an ID pid01 for the new
period of t1 and an ID pid2 for the first period of t2 and we
add a start node, as shown in Fig. 2. Note that pid1

happens before pid2.
When thread t1 in period pid01 calls t2.join() to wait for

thread t2 in period pid2 to terminate, the ID of t1 is changed
from pid01 to pid001 , as shown in Fig. 2. Note that pid1, pid01, and
pid2 happen before pid001 and pid01 is concurrent with pid2.

When a thread reaches a barrier, the thread changes its
period ID. In the happen-before graph, we add a node for
that barrier. For each participating thread, that node has an
incoming edge labeled with the old period ID of the thread
and an outgoing edge labeled with the new period ID of the
thread. For a barrier node, the thread periods on the
incoming edges happen before the thread periods on the
outgoing edges.

Examining paths in the graph to determine concurrency

can be slow when the graph is large, so we cache the results

of concurrency queries.
A more efficient but more complicated alternative is to

use vector clocks [23], as in [24].
We assume hereafter that start, join, and barrier opera-

tions are treated as transaction boundaries, i.e., they

separate the preceding events and following events into

different transactions and are not contained in any transac-

tion. We adopt this heuristic because execution fragments

containing these operations are typically not atomic and,

hence, are not expected to be transactions.

5 REDUCTION-BASED ALGORITHM

In this section, we present an atomicity checking algorithm

based on Lipton’s reduction theorem [22]. The idea is to

infer atomicity from commutativity properties of events.

5.1 Commutativity Properties

Following [22], [15], events are classified according to their

commutativity properties. An event is a right-mover if,

whenever it appears immediately before an event of a

different thread, the two events can be swapped (i.e., they

can be executed in the opposite order without blocking)

without changing the resulting state. A left-mover is defined

similarly.
For example, if an event e1 of thread t1 is a lock acquire,

its immediate successive event e2 from another thread

cannot be a successful acquire or release of the same lock

because an acquire would block and a release would fail (in

Java, it would throw an exception). Hence, e1 and e2 can be

swapped without affecting the result, so e1 is a right-mover.

Lock release events are left-movers for similar reasons.
An event is a both-mover if it is both a left-mover and a right-

mover. For example, if there are only read events (no write) on

a given variable, the read events commute in both directions

with all events, so these read events are both-movers.
Events not known to be left or right movers are

non-movers.
For Java programs, a classification of events can be

conveniently obtained based on synchronization opera-

tions. Lock acquire events are right-movers. Lock release

events are left-movers. Race-free reads and race-free writes

are both-movers [15]. The thread start and join, method

enter and exit, and barrier synchronization events are used

as transaction boundaries and are not contained in any

transaction.
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5.2 Reduction-Based Algorithm

Given an arbitrary interleaving of all events in T , if all
events of each transaction can be moved together by
repeatedly swapping left-movers with the preceding events,
right-movers with the subsequent events, and if no trace for
T ends in deadlock, then T is atomic because the resulting
trace is serial and equivalent to the original trace. If some
transaction t contains two or more non-movers, the non-
movers could interleave with non-movers in other transac-
tions, preventing the events of transaction t from being
moved together. If each transaction t in T has at most one
non-mover e, each event in t that precedes e can be moved
to the right (toward e) and each event in t that follows e can
be moved to the left (toward e), then all events of each
transaction can be moved together. These observations
motivate the following theorem, where R, L, and N denote
right-mover, left-mover, and non-mover, respectively.

Theorem 1. A set T of transactions is atomic if T has no
potential for deadlock and each transaction in T has the form

R�N?L�.

Proof. This is a simple variant of Lipton’s reduction
theorem [22]. tu

This theorem, together with a technique for runtime
detection of data races (such as the lockset algorithm in
[28]), leads directly to an efficient runtime algorithm for
checking atomicity. But, this algorithm reports false alarms
in several cases. The following sections show how to
improve it.

This algorithm for runtime checking atomicity was first
proposed in [31] and then [10] and is regarded as a
runtime analogue of Flanagan and Qadeer’s atomicity type
system [14].

5.3 Improvement 1: Read-Only and Thread-Local
Variables

A variable is thread-local if it is accessed by a single thread.
A variable is read-only if it is never written, except for the
initialization when it is allocated. Accesses to thread-local
and read-only variables are race-free and, hence, are both-
movers [10], [16].2 The following theorem treats an entire
synchronization block that contains only read-only or
thread-local accesses as a both-mover. This is similar but
not identical to ideas in [10] and [16], which treat thread-
local and protected locks specially, as described below in
Section 5.5. The improvement expressed in the following
lemma and theorem makes no assumption about the lock
being acquired and released, except that acquiring lock
does not lead to potential for deadlock.

Let AcqRel denote an acquire of some lock immediately
followed by a release of the same lock. Let AcqA�Rel denote
an acquire of some lock, then followed by accesses to read-
only or thread-local variables, finally followed by release of
the same lock.

Lemma 1. Given a set T of transactions, T is atomic if T has no
potential for deadlock and each transaction in T has the form

ðRþAcqRelÞ�N?ðLþAcqRelÞ�.

Proof. Based on Theorem 1, it suffices to argue that AcqRel
can be ignored when determining atomicity. The only
effect that AcqRel could have is to cause a deadlock. This
is avoided by the requirement that T has no potential for
deadlock. Thus, AcqRel has no effect on the state of the
program and the commutativity properties of other
operations (e.g., it does not affect whether any accesses
to variables are race-free). tu

Theorem 2. A set T of transactions is atomic if T has no
potential for deadlock and each transaction in T has the form
ðRþAcqA�RelÞ�N?ðLþAcqA�RelÞ�.

Proof. This follows from Lemma 1 and the fact that events
in A commute with all events from other threads, so they
have no effect on atomicity. tu

Online (i.e., during execution of the program) classifica-
tion of variables as read-only or thread-local is based on
whether the variable has been read-only or thread-local so
far; thus, the classification of a variable may change
afterward. Offline (i.e., after the program terminates)
classification is based on the entire execution and is
therefore more accurate.

This improvement can be viewed as synchronization
elimination since the idea is to ignore synchronization
operations that do not affect the behavior of the program.
Prior work on synchronization elimination, such as [27], is
generally based on static analysis and intended for
optimization, while we use this idea in a runtime analysis
to reduce false alarms in program checking. Also, the
particular case of synchronization elimination described
here has not been considered in the static context to the best
of our knowledge.

5.4 Improvement 2: Multilockset Algorithm for
Runtime Race Detection

To classify read and write events as both-movers or non-
movers, we need to determine whether there is a data race
involving these events. This section briefly reviews related
work on runtime race detection and then proposes a more
precise (and more expensive) algorithm. Naturally, more
precise race detection allows more precise reduction-based
atomicity checking.

The Eraser algorithm [28], also called the lockset algo-
rithm, is a classic runtime race detection algorithm based on
the policy that each shared variable should be protected by a
lock that is held whenever the variable is accessed. The
algorithm works as follows: For each variable x, a set
locksetðxÞ of locks is maintained. A lock l is in locksetðxÞ if
every thread that has accessed xwas holding l at the moment
of access. locksetðxÞ is initialized to contain all locks. Let
locksHeldðtÞdenote the set of locks currently held by thread t.
When a thread t accessesx, the lockset is refined (updated) by
locksetðxÞ :¼ locksetðxÞ \ locksHeldðtÞ, except during the
initialization period, when x is assumed to be accessible
only by the thread that allocated it and the lockset retains its
initial value. Savage et al. [28] supposes that the initializa-
tion period ends when the variable is accessed by a second
thread; this is a heuristic that may cause the algorithm to
miss some races, but it is easy to implement. When
locksetðxÞ becomes empty, it means that no lock protects
x. At that time, if there have been writes to x after the
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initialization period for x (hence, x is not read-only), a
warning is issued, indicating a potential data race. To see
why this treatment of initialization may miss races, consider
four consecutive events by two concurrent threads, t1 and
t2: x is allocated in t1, then escapes to be accessible to t2
(note that t2 does not actually access x yet), and then is
accessed by t1 and then t2 without holding any locks; a data
race occurs, but this algorithm does not report it.

Von Praun and Gross [29] modify the lockset algorithm
by introducing a more sophisticated condition for deter-
mining when initialization ends. They suppose that, when a
variable is accessed by a second thread, its ownership is
also transferred. Thus, locksetðxÞ is not refined until a
“third” thread (possibly the same as the first thread)
accesses x. This algorithm may miss even more races than
the original lockset algorithm. On the positive side, it may
produce fewer false alarms. For efficiency, [29] treats an
entire object (instead of a field of an object) as a single
variable. This reduces the number of maintained locksets,
but increases the number of false alarms.

Flanagan and Freund [10] improve the lockset algorithm
to avoid false alarms in multiple-reader, single-writer
scenarios. For each variable, a pair of locksets is used
instead of one lockset: The access-protecting lockset contains
locks held on every access (read or write) to the variable,
and the write-protecting lockset contains locks held on every
write to the variable. The two locksets for a variable are
updated based on their definitions at each access to that
variable. A read event on a variable x is race-free if the
current thread holds at least one of the write-protecting
locks for x; otherwise, a potential data race is reported. A
write event on a variable x is race-free if the access-
protecting lockset of x is not empty; otherwise, a potential
data race is reported.

We propose the multilockset algorithm, which is more
accurate than the preceding algorithms, i.e., it misses fewer
races and reports fewer false alarms. It incurs higher
overhead, but is still practical according to the experiments
in Section 8. The three main improvements are: 1) The
algorithm uses a dynamic escape (from thread) analysis,
described in Section 3, to determine when “initialization” of a
variable ends, i.e., when to start refining the variable’s lockset.
This improves accuracy because only the accesses before the
variable escapes are ignored. 2) The happen-before relation
based on start and join operations on threads and barrier
operations is considered. 3) The analysis maintains multiple
read-protecting locksets besides a write-protecting lockset.
The access-protecting lockset used in [10] is equivalent to
maintaining only one read-protecting lockset and this can
cause some false alarms, as illustrated below.

For each variable x, we maintain:

. ReadSetsðxÞ, which contains � -minimal sets of held
locks for read events on x. In other words, for each
read of x, we insert locksHeldðtÞ in ReadSetsðxÞ and,
then, if ReadSetsðxÞ contains S1 and S2 such that
S1 � S2, we remove S2.

. WriteSetðxÞ, which is the set of locks held on all
writes to x, i.e., for the first write, WriteSetðxÞ :¼
locksHeldðtÞ and, for each subsequent write to x,
WriteSetðxÞ :¼WriteSetðxÞ \ locksHeldðtÞ.

. ReadThreadSetðxÞ, which contains the IDs of thread
periods involving read events on x.

. WriteThreadSetðxÞ, which contains the IDs of
thread periods involving write events on x.

ReadSetsðxÞ, WriteSetðxÞ, ReadThreadSetðxÞ, a n d
WriteThreadSetðxÞ are not updated by accesses to x before
x escapes. The happen-before analysis described in Section 4
determines whether two thread periods can happen concur-
rently. If there are no concurrent thread periods inside
WriteThreadSet o r b e t w e e n ReadThreadSet a n d
WriteThreadSet, i.e., there are no concurrent conflicting
accesses according to the happen-before analysis, the variable
must be free of data race. For sets P1 and P2 of thread period
IDs, isConcurrentWithðP1; P2Þ returns true if some thread
period in P1 is concurrent with some thread period in P2.
When P1 or P2 is empty, isConcurrentWithðP1; P2Þ returns
false. isConcurrentðP1Þ returns true if P1 contains concur-
rent thread periods. When P1 is empty, isConcurrentðP1Þ
returns false. The pseudocode for the multilockset algo-
rithm is shown in Fig. 3. The first case (i.e., WriteSetðxÞ is
uninitialized) implies that there is no write to x so far, hence
no data race. The second case (i.e., WriteSetðxÞ is empty)
uses a conservative test: A potential data race is reported if
there is no common lock held on all writes to x and a write
and another access to x occur in concurrent thread periods.
The third case (i.e., WriteSetðxÞ is nonempty) also uses a
conservative test: A potential data race is reported if some
common locks are held at all writes, none of those locks are
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held at some read, and there are at least two concurrent
thread periods such that one performs a write to x and
another performs a read to x.

According to the experiments in Section 8, this algorithm
is practical because its storage requirement is reasonable
compared with that of the Eraser algorithm, and their
runtime overheads are similar.

This algorithm is more accurate than previous lockset-
based algorithms. For example, suppose x has escaped from
its creating thread and the threads in Fig. 4 execute in the
order t3; t2; t1 (ignore t4 for now). According to the definition
of data race, there is no data race on x. The algorithms in [28],
[29], [10], [6] all report a false alarm (potential data race on x).
The multilockset algorithm does not.

Even the multilockset algorithm produces some false
alarms. For example, consider the threads t2, t3, and t4 in
Fig. 4 (ignore t1 now). If the execution order is t3; t2; t4 since

ReadSetsðxÞ ¼ f;g;
WriteSetðxÞ ¼ fo1; o2g;
ReadThreadSet ¼ ft2; t3; t4g;

and WriteThreadSet ¼ ft4g, the third case “nonempty” in
Fig. 3 is matched, a potential data race is reported, but this
is a false alarm, and it causes a false alarm in atomicity
checking. In Section 6, we will see that the block-based
algorithm does not produce such a false alarm for this
example.

5.5 Other Improvements

We refined the classification of all lock acquires and releases
as right-movers and left-movers, respectively, in Section 5.1.
In the following cases, they are classified as both-movers
[10], [16]. 1) Reentrant locks: If the thread already holds the
lock, an acquire and the corresponding release on the same
lock are both-movers because they have no effect on the
execution of the program. 2) Thread-local locks: If a lock is
used by only one thread, acquire and release on it are both-
movers. 3) Protected locks: Lock l2 is protected by lock l1 if,
whenever a thread holds l2, it also holds l1. Acquire and
release by a thread t on a protected lock l2 are both-movers
because adjacent operations of other threads cannot be
operations on l2 (because t holds l1).

Offline algorithms can classify thread-local locks and
protected locks more accurately than online algorithms. For
example, if a lock is protected for a while, but is
unprotected later, acquire and release operations on the
lock that precede this change will be wrongly classified as

both-movers by online algorithms. This may cause atom-
icity violations to be missed.

The above improvements can be viewed as synchroniza-
tion elimination and static analyses that recognize these
situations have been used for program optimization [27].
We follow the approach in [10] to recognize them using
runtime analysis.

5.6 Implementation of Reduction-Based Algorithm

In practice, many of the sets of locks manipulated by the
lockset algorithm have size 0 or 1. To save space and time,
each lockset is represented by a structure that contains
null (if the lockset is empty), a direct reference to the
element (if the lockset has size 1), or a collection (if the
lockset has size greater than 1). Intersection operations
could be optimized by maintaining the contents of each set
in sorted order, but we did not implement this because
most locksets are small.

Our online reduction-based algorithm is implemented
following the design in [10] which does not use the
transaction tree structure described below. Our imple-
mentation of the offline reduction-based algorithm is
described next.

We instrument the program by a source-to-source
transformation. The instrumented program constructs a
tree structure for each transaction during execution. The
root corresponds to the entire transaction. Each node other
than the root corresponds to a synchronized block (i.e., an
execution of a synchronized statement or synchronized
method) and is labeled with the acquired lock. The tree
structure reflects the nesting of synchronized blocks. In
other words, if an execution �0 of a synchronized block is
nested inside the execution � of a synchronized block, the
node for �0 is a descendant of the node for � in the tree
structure. Each node is also labeled with the set of variables
accessed only once (denoted varsOne) and with the set of
variables accessed multiple times (denoted varsMul) in the
corresponding synchronized block, ignoring accesses in
subblocks because we need to distinguish the two cases for
non-movers, i.e., at most one non-mover or multiple non-
movers, if some accesses in the current blocks have data
races. Obviously, varsOne and varsMul are disjoint.

For example, Fig. 5 shows the tree structure for the
Vector example in Fig. 1. The four fields of each node
contain the acquired lock (none in the root node), pointers
to child nodes, the set of variables accessed only once (i.e.,
varsOne), and the set of variables accessed multiple times
(i.e., varsMul), respectively. In this example, there is no
access outside the three synchronization blocks, hence, the
last two fields of both root nodes contain empty sets.

The atomicity of a transaction is determined as follows:

1. Determine the commutativity type of accesses to each
variable in varsOne and varsMul at each node of the
tree; the accesses are both-mover if accesses to the
variable are race-free; otherwise, they are non-mover.

2. For each node, construct the pattern (of commu-
tativities of events represented by that node) by
concatenating, in any order, the commutativity types
of the variables in the node’s varsOne and varsMul
sets and, if the node represents a synchronization
operation, adding an R at the beginning of the
pattern and adding a L at the end of the pattern. For
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each variable in varsOne, its commutativity type
appears once in the pattern; for each variable in
varsMul, its commutativity type appears twice.

3. Construct the pattern of commutativities for the
transaction by concatenating the pattern for each
node during a traversal of the tree (e.g., in-order
traversal), except that the R and L representing
acquire and release at a node are positioned before
and after, respectively, the rest of the pattern
constructed from the accesses represented by that
node and its descendants.

4. Check whether the pattern of commutativities for
the transaction matches the regular expression in
Theorem 2. Note that the tree structure does not
indicate the relative order of the accesses repre-
sented by a node and its descendants and the result
of matching against the regular expression in
Theorem 2 is insensitive to that order, so any
traversal order (in-order, preorder, or postorder)
may be used in Step 3.

In Fig. 5, the transaction for new Vector(v1) has the

pattern RBLRBBBL, which does not match the atomicity in

Theorem 2; the transaction for v1.removeAllElements()

has the pattern RBBBL. Note that v1.elementCount is

saved in varsMul, hence, it is represented by two both-

movers in the patterns constructed for each transaction.
Although the reduction-based algorithm is efficient for

checking atomicity, it produces numerous false alarms in

the experiments in Section 8. This motivates us to design the

novel and more accurate approach discussed next.

6 BLOCK-BASED ALGORITHM

The block-based algorithm determines whether a violation

of atomicity is possible in traces obtained from the observed

trace by permuting the order of events consistent with the

synchronization events. Explicitly computing these permu-

tations would be prohibitively expensive. Our approach is

to look for unserializable patterns of operations from these

events. We first present an algorithm that works for the case

of multiple transactions that share exactly one variable (note

that locks and barriers are not counted as shared variables),

then extend the ideas in it to handle the case of two

transactions that share multiple variables. Finally, we

extend that algorithm to handle the case of multiple

transactions that share multiple variables.

6.1 Multiple Transactions that Share Exactly One
Variable

Given a set T of transactions, the algorithm looks for
unserializable patterns of operations of T . An unserializable
pattern is a sequence in which operations from different
transactions are interleaved in an unserializable way. If the
transactions of T share exactly one variable, the following
unserializable patterns are checked:

. A read in one transaction occurs between two writes
in another transaction.

. A write in one transaction occurs between two reads
in another transaction.

. A write in one transaction occurs between a write
and a subsequent read in another transaction.

. The final write in one transaction occurs between a
read and a subsequent write in another transaction.

Note that all of the operations in the patterns are on the
same variable (the single shared variable). These patterns
can be drawn as follows, where each line corresponds to a
transaction and time advances from left to right:

Informally, T is atomic if no trace for T contains a
subsequence that matches any of these patterns; this idea is
formalized in Theorem 3 below.

The block-based algorithm looks for these unserializable
patterns by considering pairs of “blocks” from different
transactions. Intuitively, a block captures the information
about two events of the same transaction that is relevant to
atomicity checking. Many pairs of events in a transaction
may generate the same block. Our algorithm recognizes this
and stores only one copy of it. This can eliminate a
significant amount of redundant storage and processing
during atomicity checking. If the two events operate on the
same variable, the block is called a 1v-block; if the two events
operate on the different variables, the block is called a
2v-block. This section discusses only 1v-blocks; 2v-blocks are
discussed in Section 6.2. An access to a variable that has not
yet escaped is not used to form blocks.

Specifically, for two events e1 and e2 in transaction t with
varðe1Þ ¼ varðe2Þ (call the variable v), a 1v-block is gener-
ated for e1 and e2 if 1) v is escaped when e1 and e2 occur and
2) one of the following conditions holds:

a. If t contains a write to v that precedes e2, then e1 is
the last write to v that precedes e2 in t; otherwise, if t
contains a read of v that precedes e2, then e1 is the
last read of v that precedes e2 in t.

b. If e2 is the final write to v in t, then e1 is an initial
read of v in t.

An initial read of a variable v in a transaction t is a read of
v that is not preceded by a write to v in t. Note that the
concepts of initial read and final write are relative to the
current transaction, not to the entire execution. If there is
only one event in a transaction, a dummy event is added.
This dummy event is used only for constructing blocks, not
for matching part of an unserializable pattern.

If e1 and e2 satisfy one of these conditions, then the
1v-block for e1 and e2 is a tuple
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hv; opðe1Þ; opðe2Þ; isFWðe1Þ; isFWðe2Þ;
pid; heldðe1Þ; heldðe2Þ; heldðe1; e2Þi:

The notations used for each element are explained next. The
first element, v, is the variable on which e1 and e2 operate
(recall that varðe1Þ ¼ varðe2Þ). The second and third
elements, opðeÞ, is the operation type, namely, R (for
“read”), W (for “write”), or dummy. The fourth and fifth
elements, isFW ðeÞ, are a Boolean value indicating whether
e is the final write on v in t. The sixth element, pid, identifies
the thread period in which e1 and e2 were executed, i.e.,
pid ¼ tpIDðe1Þ ¼ tpIDðe2Þ; recall from Section 4 that each
transaction occurs within a single thread period.3 The
seventh and eighth elements, heldðeÞ, are the set of locks
held by the thread when executing event e. The last
element, heldðe1; e2Þ, is the set of locks held continuously
from e1 to e2.

For example, the transaction

t : acqð‘1Þ RðvÞ acqð‘2ÞWðvÞ RðvÞ relð‘2Þ relð‘1Þ ð1Þ

has two 1v-blocks, where pid is the thread period ID of t.

b1 : hv;R;W; false; true; pid; f‘1g; f‘1; ‘2g; f‘1gi
b2 : hv;W;R; true; false; pid; f‘1; ‘2g; f‘1; ‘2g; f‘1; ‘2gi:

ð2Þ

To determine whether the operations in two blocks can
form an unserializable pattern, we need to determine
whether an operation of one block can occur between the
two operations of another block. This is determined by
locking and happen-before analysis. For 1v-blocks

b ¼ hv; op1; op2; fw1; fw2; pid; h1; h2; h12i and

b0 ¼ hv; op01; op02; fw01; fw02; pid0; h01; h02; h012i;

an operation opi (i 2 f1; 2g) of b can occur between
operations op01 and op02 of b0, denoted can-occur-
between ðhopi; hi; pidi; hop01; op02; h012; pid

0iÞ, if the condition
(hi \ h012 ¼ ;Þ ^ ðpid k pid0) is satisfied.

This simple test is accurate provided there is no potential
for deadlock in the set of transactions. So, we check
potential for deadlock, as described in Section 5.6, as part
of the block-based algorithm. To see that this test may be
inaccurate if there is potential for deadlock, note that opðeÞ
cannot occur between opðe1Þ and opðe2Þ in the following
example, even though the can-occur-between condition
defined above is satisfied. This indicates that ignoring
deadlock would lead to more false alarms.

t : acqðl1Þ acqðl2Þ relðl2Þ e relðl1Þ
t0 : acqðl2Þ acqðl1Þ relðl1Þ e1 e2 relðl2Þ:

ð3Þ

As mentioned above, many pairs of events may produce
the same 1v-block. For example, only one 1v-block is
generated for the following transaction:

WðvÞ RðvÞ RðvÞ RðvÞ: ð4Þ

Two 1v-blocks, b and b0, are atomic with respect to each
other, denoted isAtomic1vBlkðb; b0Þ, if the synchronization
prevents the unserializable patterns described above, i.e.,

the two operations from one block together with an
operation from the other block cannot form one of those
unserializable patterns. Formally, isAtomic1vBlkðb; b0Þ
holds iff, for all combinations of three operations op1, op2,
and op3, where op1 and op2 are from one block, op3 is from
the other block, either op3 cannot occur between op1 and op2

or the sequence op1 op3 op2 does not match any of the
unserializable patterns. Obviously, isAtomic1vBlkðb; b0Þ is
symmetric. For example, consider a 1v-block,

b0 ¼ hv;W; dummy; true; false; pid0; ;; ;; ;i

in a different transaction t0 than transaction t in (1); if
pid k pid0, then

isAtomic1vBlkðb1; b
0Þ

and

isAtomic1vBlkðb2; b
0Þ

do not hold because the unserializable patterns can be
formed. For another example, consider a 1v-block

b00 ¼ hv;R; dummy; false; false; pid00; ;; ;; ;i;

if pid00 k pid, then

isAtomic1vBlkðb1; b
00Þ

and

isAtomic1vBlkðb2; b
00Þ

hold.
Let 1v-blocksðtÞ denote the set of 1v-blocks for a

transaction t. To check the atomicity of multiple transac-
tions that share exactly one variable, we have the following
lemma.

Lemma 2. Let t and t0 be transactions that share exactly one
variable with threadðtÞ 6¼ threadðt0Þ and suppose they do not
have potential for deadlock. ft; t0g is atomic iff 8b 2
1v-blocksðtÞ: 8b0 2 1v-blocksðt0Þ: isAtomic1vBlkðb; b0Þ.

Proof. For the forward implication () ), we prove the
contrapositive, i.e., if isAtomic1vBlkðb; b0Þ is false for
some pair of 1v-blocks b and b0, then t and t0 are not
atomic. This follows easily from the definition of
isAtomic1vBlk.

For the reverse implication (( ), suppose
isAtomic1vBlkðb; b0Þ holds for all pairs of 1v-blocks b
and b0. Let S be a nonserial trace for ft; t0g. If neither
transaction performs a write, then S is obviously
equivalent to a serial trace. Suppose, without loss of
generality, that t performs the final write etFW in S. There
are two cases:

Case 1. If t0 does not read the value written by etFW ,
then all reads and writes in t0 precede etFW in S and we
can show that S is equivalent to the serial trace S0 in
which t0 precedes t. The main point is that there is no
read event et

0
R that reads the value written by any write

etW in S because, if there were, then etW and etFW would
form a block b that can be interleaved in an unserializable
way with et

0
R, so isAtomic1vBlkðb; b0Þ would be false for

some block b0 containing et
0
R, a contradiction. Similarly,

we can show that each read event of t reads the value
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written by the same write event in S0 and S. According to
the definition for equivalence of traces in Section 2, S is
equivalent to S0.

Case 2. If t0 reads the value written by etFW , then we
can show that all reads and writes in t0 appear after etFW
in S (because, if one of those events precedes etFW , an
unserializable pattern and, hence, a nonatomic pair of
1v-blocks would exist) and that S is equivalent to the
serial trace in which t precedes t0. tu

Theorem 3. Let T be a set of transactions that share exactly one
variable. Suppose T does not have potential for deadlock. T is
atomic iff for all t, t0 in T with threadðtÞ 6¼ threadðt0Þ,

8 b 2 1v-blocksðtÞ:8 b0 2 1v-blocksðt0Þ:isAtomic1vBlkðb; b0Þ:

Proof. For the forward implication () ), the proof is
straightforward, except for details related to final writes.

We prove the reverse implication (( ) by induction
on the number of transactions in T . Let S be a nonserial
trace for T . For T 0 � T , let SjT 0 denote the subsequence
of S containing only events from transactions in T 0. Let t
be the transaction that performs the final write etFW in S.
Let T2 be the set of transactions in T other than t that read
the value written by etFW . No read or write from T2 can
precede etFW in S (otherwise an unserializable pattern
would be formed). This implies that T2 contains no
writes (otherwise etFW would not be the final write).
Thus, SjT2 is equivalent to some serial trace S2. Let T1 be
T � T2 � ftg. For all t1 2 T1 with threadðtÞ 6¼ threadðt1Þ,
the hypothesis of the contrapositive case and Lemma 1
imply that ft; t1g is atomic; since t1 does not read t’s
write and t performs the final write in S, t1 must precede
t in every serial trace equivalent to Sjft; t1g. Since t can
be serialized after every transactions in T1, S is
equivalent to ðSjT1Þ � t � S2, where the dot denotes
concatenation. By the induction hypothesis, SjT1 is
equivalent to some serial trace S1. Thus, S is equivalent
to the serial trace S1 � t � S2. tu

LetE be the total number of events in all transactions of T .
Let P denote the number of thread periods; P is generally
very small except when there are many calls to barrier
operations. Rule A for constructing 1v-blocks generates at
most OðEÞ 1v-blocks because it combines each event with at
most one preceding event. Rule B constructs at mostOðEÞ 1v-
blocks because there is only one final write for each variable in
each transaction. Hence, the number of 1v-blocks isOðEÞ. The
cost of checking can-occur-between for a pair of 1v-blocks is
OðP Þ. Assuming jlocksHeldðtÞj is always bounded by a
constant for all threads t, the worst-case running time of the
algorithm, based on Theorem 3, is OðPE2Þ.

6.2 Two Transactions that Share Multiple Variables

To check the atomicity of two transactions that share
multiple variables, the test embodied in Theorem 3 needs to
be strengthened.

Consider two events from transaction t and two events
from transaction t0. If they operate on four or three different
variables, they cannot cause a violation of atomicity. If they
all operate on the same variable, the analysis in Section 6.1
applies. Suppose they operate on two variables. If they

contain no conflicting operations, or exactly one pair of

conflicting operations, they do not cause a violation of

atomicity. Suppose they contain two pairs of conflicting

operations. We can check based on the definition of

atomicity in Section 2 whether every feasible interleaving

of the operations from the four events is serializable; if so,

the two blocks are atomic. A few illustrative cases of

unserializable interleavings are listed in the following table:

Let IRðtÞ and FW ðtÞ be the sets of initial reads and final

writes, respectively, on shared variables in t. For events e1

and e2 of the same thread, let heldmidðe1; e2Þ be the set of

locks acquired by that thread after e1 and released by it

before e2 and not contained in heldðe1Þ [ heldðe2Þ; further-

more, reacquires of held locks are ignored when computing

heldmid.
A 2v-block for a transaction t is a tuple,

hvarðe1Þ; varðe2Þ; opðe1Þ; opðe2Þ; pid; heldðe1Þ; heldðe2Þ;
heldðe1; e2Þ; heldmidðe1; e2Þi;

formed from two (read or write) events e1 and e2 of t such

that e1 precedes e2 in t, varðe1Þ 6¼ varðe2Þ, and e1 and e2 are

in IRðtÞ [ FWðtÞ, where pid ¼ tpIDðe1Þ ¼ tpIDðe2Þ. Let

2v-blocks(t) denote the set of 2v-blocks for transaction t. For

example, for the following transaction t,

R1ðxÞW2ðyÞW3ðxÞW4ðyÞ R5ðxÞ; ð5Þ

IRðtÞ ¼ fR1ðxÞg, FWðtÞ ¼ fW3ðxÞ;W4ðyÞg, a n d 2 v -

blocks(t) contains hx; y; R;W; pid; ;; ;; ;; ;i and

hx; y;W;W; pid; ;; ;; ;; ;i;

assuming pid is the thread period ID of t. W2ðyÞ and R5ðxÞ
do not participate in generating 2v-blocks because W2ðyÞ 62
FWðtÞ and R5ðxÞ 62 IRðtÞ.

For 2v-blocks b ¼ hv1; v2; op1; op2; pid; h1; h2; h12; hmid12i
and b0 ¼ hv01; v02; op01; op02; pid0; h01; h02; h012; hmid

0
12i, where

ðv1 ¼ v01 ^ v2 ¼ v02Þ _ ðv1 ¼ v02 ^ v2 ¼ v01Þ, the operations op01
and op02 of b0 can occur between the operations op1 and op2 of

b if

ðh12 \ hmid012 ¼ ;Þ
^ can-occur-betweenðhop01; h01; pid0i; hop1; op2; h12; pidiÞ
^ can-occur-betweenðhop02; h02; pid0i; hop1; op2; h12; pidiÞ:

Two 2v-blocks b and b0 are atomic with respect to each

other, denoted isAtomic2vBlkðb; b0Þ, iff the four operations

cannot be interleaved to any of the unserializable patterns

described above, according to the can-occur-between con-

ditions described in the previous paragraph and Section 6.1.
To check atomicity of two transactions that share

multiple variables, we have the following theorem, which

extends Theorem 3:
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Theorem 4. Let t and t0 be transactions with

threadðtÞ 6¼ threadðt0Þ. Suppose T does not have potential

for deadlock. ft; t0g is atomic iff

1.

8 b 2 1v-blocksðtÞ:8 b0 2 1v-blocksðt0Þ:
isAtomic1vBlkðb; b0Þ

and
2.

8 b 2 2v-blocksðtÞ:8 b0 2 2v-blocksðt0Þ:
isAtomic2vBlkðb; b0Þ:

Proof. For the forward implication () ), we prove the
contrapositive, which follows easily from the definitions
of isAtomic1vBlk and isAtomic2vBlk.

For the reverse implication (( ), suppose all pairs of
1v-blocks and 2v-blocks are atomic. Let S be a nonserial
trace for ft; t0g. We show that S is equivalent to some
serial trace by the following three cases:

Case 1. Suppose there exists a variable x written by t

and t0. Without loss of generality, we assume that t0

performs the final write et
0

FWðxÞ to x in S. Let etWðxÞ denote a

write tox in t. We can show thatS is equivalent to the serial
trace S0 in which t precedes t0, based on the following

intermediate results, which can be proven based on the

definitions of isAtomic1vBlk and isAtomic2vBlk: 1) t

cannot read any write of t0 to any variable, 2) if t0 reads

some write of t in S, t0 reads the same write in S0, and 3) for

each variable y accessed in both t and t0, if there are writes

to y in both t and t0, et
0

FW ðyÞ must occur after etFW ðyÞ in S.
Case 2. Suppose no variable is written by both

transactions and at least one transaction contains a write.
Without loss of generality, suppose t contains a write etW .
If some read in t0 reads the value written by etW , then we
can show that S is equivalent to the serial schedule in
which t precedes t0; otherwise, we can show that S is
equivalent to the serial schedule in which t0 precedes t.

Case 3. If neither transaction contains a write, then S
is trivially serializable. tu

Let E and P be defined as in Section 6.1. The total
number of 2v-blocks is OðE2Þ. The algorithm based on
Theorem 4 considers all pairs of 2v-blocks, so, assuming
jlocksHeldðtÞj is always bounded by a constant for all
threads t, its worst-case running time is OðPE4Þ.

6.3 Multiple Transactions that Share Multiple
Variables

In the presence of multiple shared variables, a set T of
transactions is not necessarily atomic even if all subsets of T
with cardinality two are atomic. This is due to cyclic
dependencies. For example, consider the following trace
containing three transactions (time increases from left to
right):

t1 : WðxÞ WðyÞ
t2 : RðxÞ WðzÞ
t3 : RðzÞ RðyÞ:

ð6Þ

In any potential serial trace equivalent to this one, t1
must precede t2, t2 must precede t3, and t3 must precede t1.
Due to the cyclic dependency, no equivalent serial trace
exists. Therefore, ft1; t2; t3g is not atomic, even though all
three subsets of T with cardinality two are atomic.

Cyclic dependencies between transactions that are
pairwise atomic arise from dependencies involving initial
reads and final writes. This observation motivates the
following extension of Theorem 4: Let IR-FWðT Þ denote
the set of transactions obtained from T by discarding all
events other than synchronization events and initial reads
and final writes on shared variables.

Theorem 5. Let T be a set of transactions. Suppose T does not
have potential for deadlock. T is atomic iff for all t and t0 2 T
with threadðtÞ 6¼ threadðt0Þ,

1.

8 b 2 1v-blocksðtÞ:8 b0 2 1v-blocksðt0Þ:
isAtomic1vBlkðb; b0Þ

and
2. 8 tr 2 tracesðIR-FW ðT ÞÞ: tr is serializable.

Proof. For the forward implication () ), the proof is
straightforward. For the reverse implication (( ), we
need to prove that there is an equivalent serial trace S0

for each trace S of all events in T . Condition 2 of this
theorem implies Condition 2 of Theorem 4. Hence, for all t,
t0 2 T , ft; t0g is atomic according to Theorem 4. Thus, only
the sequence of initial reads and final writes of t and t0 in S
affects their possible order in S0. Condition 2 implies there
is a serial trace S00 equivalent to IR-FWðSÞ. Therefore, S0

can be obtained by concatenating the transactions in T in
the same order that they appear in S00. tu

This algorithm is relatively expensive because the
number of possible traces may be large. On the positive
side, this algorithm considers only traces for IR-FWðT Þ
and, hence, may be significantly faster than the naive
algorithm that considers all traces for T .

The worst-case time complexity of the algorithm based
on Theorem 5 is exponential in the number of events. This is
not surprising because similar problems, such as determin-
ing serializability of a given trace, are NP-complete [25].

6.4 Usage and Comparison of the Three Block-
Based Algorithms

The algorithms based on Theorems 3 and 4 can be applied to
arbitrary executions. For Theorem 3, this simply means
considering one shared variable at a time, i.e., applying the
algorithm independently to each shared variable. For
Theorem 4, this means considering the transactions pairwise
and not checking atomicity of larger sets of transactions.
Taking this perspective, we have three block-based algo-
rithms that range from a relatively cheap one that detects
limited but common kinds of atomicity violations to a
relatively expensive one that also detects complex but rare
kinds of atomicity violations. Based on the experiments in
Section 8, we believe that, in practice, the algorithms based on
Theorems 3 and 4 reflect better trade-offs between cost and
defect-finding effectiveness. Indeed, in those experiments,
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there is no atomicity violation that would be reported based
on Theorem 5 and not reported based on Theorem 4
because the cyclic dependencies between three or more
transactions that could cause such warnings never appear
in those experiments.

6.5 Comparison of Reduction-Based Algorithm and
Block-Based Algorithm

The block-based algorithm is more expensive than the
reduction-based algorithm, but more accurate, according to
the experimental results in Section 8. For a small example of
this, consider the threads t2, t3, and t4 in Fig. 4. Only x is
shared, so the algorithm in Section 6.1 suffices. The
1v-blocks are hx;R; dummy; false; false; pid2; fo2g; fg; fgi,
hx;R; dummy; false; false; pid3; fo1g; fg; fgi, and

hx;R;W; false; true; pid4; fg; fo1; o2g; fgi;

where pidi is the ID of the thread period containing the
events of transaction ti. The block-based algorithm shows
that ft2; t3; t4g is atomic. Recall from Section 5.4 that the
reduction-based algorithm reports a false alarm for this
example.

6.6 Dynamic Construction of Blocks

We construct 1v-blocks incrementally during execution of a
transaction; this avoids storing all events in the transaction
until its end.

2v-blocks are constructed when the transaction finishes;
this requires storing only initial reads and final writes until
the end of the transaction. As an optimization, if two initial
reads e1 and e2 in a transaction operate on the same
variable, heldðe1Þ ¼ heldðe2Þ, and heldmidðe1; e2Þ ¼ ;, then
one of them can be discarded without affecting the result.

To avoid constructing redundant blocks, the most recent
several event patterns are cached. When an event pattern in
the cache appears again, we do not construct a block for it
again. This optimization saves times because constructing
blocks is more expensive than a cache lookup.

The same block could appear in many transactions. We
save space by sharing blocks among multiple transactions.

7 INSTRUMENTATION

This section describes the instrumentation of the source
code.

We modify the pretty-printer in the Kopi [21] compiler to
insert instrumentation as it pretty-prints the source code.
The instrumentation intercepts the following events:

. reads and writes to all monitored fields (see below),

. entering and exiting synchronized blocks, including
synchronized methods,

. entering and exiting methods that are considered as
transactions (see below),

. calls to thread start and join,

. barrier synchronization.

The user specifies the classes to instrument as a list of
expressions like java.*(denoting all classes in subpackages
of java), java.util.*, or java.util.Vector.

By default, executions of the following code fragments in
the instrumented classes are considered to be transactions:

nonprivate methods, synchronized private methods, and
synchronized blocks inside nonsynchronized private meth-
ods; as exceptions, the executions of the main() method in
which the program starts and the executions of run()

methods of classes that implement Runnable are not
considered as transactions because these executions repre-
sent the entire executings of threads which are often not
atomic. These defaults are taken from [10]. We include
synchronized blocks here because locks are often used to
achieve atomicity. We include nonprivate methods here
because they are abstractions often expected by clients of
the class to behave as atomic operations. The defaults can be
overridden using a configuration file, e.g., the run()

method of thread can be defined for atomicity checking.
We did not override these defaults in any of the experi-
ments in Section 8. In addition, start, join, and barrier
operations are treated as transaction boundaries, as dis-
cussed in Section 4.

All nonfinal fields (with primitive type or reference type)
of the specified classes are monitored. Accesses to these
fields in all methods of all classes are instrumented because
even methods not considered as transactions by themselves
might be invoked during a transaction. Local variables are
not monitored because they are necessarily thread-local.
The defaults for monitoring nonfinal fields can also be
overridden by a configuration file, e.g., some fields can be
defined for nonmonitoring because they never escape.

In the reduction-based algorithm, for each monitored
field, one or more locksets are maintained. In the block-
based algorithm, for each monitored field, a previous event
is cached to construct a block with the current event. We
originally implemented these maps between monitored
fields and their associated information as hash tables, with
an object identifier combined with a field name as the key.
This is relatively easy to implement but inefficient since
each access requires a look up in the hash table. Our current
implementation inserts in each monitored class a new field
(call it shadow_f) corresponding to each monitored field f

of the class. shadow_f points directly to the information
associated with f.

There is no way to insert fields into array classes in Java,
so we use the less efficient approach described above to
associate shadow information with arrays, i.e., we maintain
a hash table that maps each array reference a to shadow
information as. Each array element has its own the shadow
information. So, as is an array with the same dimension and
size as a. When an array is created, its associated shadow
array is created. As an optimization, parts of the array can
be allocated dynamically when needed.

Monitoring every array element causes a large slow-
down in some programs, so our system allows the user to
specify a cutoff; for example, if the array is ½0::99� � ½0::99�
and the cutoff is 3, then only the subarray ½0::2� � ½0::2� is
monitored. Dynamic escape analysis is still carried out on
the array and every element, regardless of the cutoff.

8 EXPERIMENTS

We apply three algorithms to 12 programs. The three
algorithms are: online reduction-based, offline reduction-
based, and block-based.
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To facilitate comparison with [10], we use the same
online reduction-based algorithm as in [10]; specifically, it
uses the lockset algorithm from [29], ignores arrays, uses
Theorem 1 instead of Theorem 2, and uses the improve-
ments of Section 5.5. It does not use dynamic escape
analysis or happen-before analysis.

The offline reduction-based algorithm is based on
Theorem 2 and incorporates the multilockset algorithm
(which uses dynamic escape analysis and happen-before
analysis) for checking data races and the improvements of
Section 5.5. Note that all these improvements could also be
applied to the online reduction-based algorithm, but we did
not do that in order to compare our algorithms with [10].

The block-based algorithm in these experiments is based
on Theorem 4. Theorem 5 is more precise but more
expensive than Theorem 4. In addition, we implemented a
check for the presence of cyclic dependencies between three
or more transactions and cyclic dependencies do not appear
in these experiments. This implies that we did not miss any
atomicity violations by using Theorem 4 instead of
Theorem 5. We believe that Theorem 4 is sufficient for
most programs.

The 12 programs are elevator, tsp, sor, and hedc

from [29]; moldyn, montecarlo, and raytracer from
[19]; StringBuffer, Vector, Hashtable, and Stack

from Sun JDK 1.4.2; and jigsaw [20]. elevator simulates
the actions of two elevators. tsp solves the traveling
salesman problem; we run it on the accompanying data files
map4 and map14. sor is a scientific computing program
which uses barriers rather than locks for synchronization.
hedc is a Web crawler that searches astrophysics data on
the Web. moldyn, montecarlo, and raytracer are
computation-intensive parallel programs that compute
molecular dynamics, Monte Carlo simulation, and ray
tracing, respectively. jigsaw is a Web server implemented
in Java. We instrument only its packages that are related
with HTTP service. Table 1 shows the number of lines of
code that are instrumented, i.e., it excludes code in
uninstrumented libraries. For all programs that accept the
number of threads as an argument, we use three threads.
All experiments are done on a Sun Blade 1500 with a 1GHz
UltraSPARC III CPU, 2GB RAM, SunOS 5.8, and JDK 1.4.2.

We modified tsp and moldyn slightly. Specifically, for
tsp, we set Tsp.MAX_NUM_TOURS to 100 instead of 5,000
and used instances of Object() as lock objects instead of
instances of Integer(0) since our system identifies locks

by their identity hash code. For moldyn, we set md.ITERS
to 1, moved some fields of mdRunner into its run()

method so they became local variables, and marked
instances of particle as unshared (i.e., accessed by only
one thread) and, hence, did not record accesses to them; this
annotation makes the analysis faster and does not affect the
result.

We designed test drivers for the classes StringBuffer,
Vector, Hashtable, and Stack. The pseudocode is
shown in Fig. 6, where C denotes one of these classes.
The driver creates two instances, o1 and o2, of C. For a pair
hm1;m2i of methods of C, the driver creates two threads, t1
and t2, where t1 executes o1:m1 and t2 executes o2:m2. Each
execution of TestTwoMethods is analyzed separately for
the atomicity checking. When a method requires an instance
of C as argument, the other instance is used. For example, if
C is Vector, and m1 is addAll, then thread t1 executes
o1.addAll(o2). The driver tests all pairs of methods such
that m1 and m2 do not both take an argument of type C;
these excluded pairs would lead to potential for deadlock.
For example, executing ho1:addAllðo2Þ; o2:removeAllðo1Þi
may lead to deadlock because o1:addAllðo2Þ locks o1 then
o2, and o2:removeAllðo1Þ locks o2 then o1. The driver does
not test scenarios in which t1 executes o1:m1 and t2 executes
o1:m2 because they would not produce any additional
information since these methods are synchronized.

In these experiments, we check atomicity of transactions
defined by the defaults in Section 7. For arrays, every
element is monitored, except that we use a cutoff of 3 at the
beginning of arrays for moldyn, montecarlo, and ray-

tracer and we use a cutoff of 10 in the middle of arrays for
sor to catch more violations.

8.1 Usability

The block-based algorithm provides more detailed diag-
nostic information than the reduction-based algorithms
(online and offline). For example, Fig. 7 shows part of the
output of these algorithms for the Vector example in Fig. 1.
The reduction-based algorithms report an atomicity viola-
tion because of two consecutive synchronized blocks (e.g.,
R:::L:::R:::L, which does not match the patterns in
Theorems 1 and 2, see Fig. 5). The block-based algorithm
reports an atomicity violation because it finds the second
unserializable pattern described in Section 6.1, i.e., for the
field elementCount of some instance of Vector, a write
to that field by some thread (denoted Thread_2) executing
line 631 of Vector.java can occur between two reads of
the same field by another thread (denoted Thread_1)
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executing lines 267 and 690 of Vector.java. The reduc-
tion-based algorithms have an inherent limitation in
reporting diagnostic information because they cannot
indicate which variables are involved in the atomicity
violation (variables involved in data races can be identified,
but there is no data race in this example), while the block-
based algorithm indicates the specific fields and accesses
that violate atomicity.

8.2 Accuracy and Performance

Table 1 shows the running times and results of the three
algorithms. “Base time” is the running time of the
uninstrumented program. For each algorithm, “time”
includes the running time of the instrumented program
and the analysis. We classify warnings issued by each
algorithm into three categories:

. Bug: The warning reflects a violation of atomicity
that might cause a violation of an application-
specific correctness requirement.

. Benign: The warning reflects a violation of atomicity
that does not affect the correctness of the application.

. False alarm: The warning does not reflect a violation
of atomicity.

Table 1 shows, for each category, the number of methods
issued such that a warning in that category for a transaction
that is an execution of that method or part code of that
method. If a transaction is correctly reported as not atomic,
the corresponding method is counted only under bug or
benign, even if other warnings (which we do not need to
classify) are also reported for that method. For a warning
issued by the block-based algorithm, only the methods
whose executions contribute two events in the unserializ-
able patterns are counted. We aggregate the warnings in
this way (instead of simply counting the number of
warnings) to facilitate a fair comparison between the
reduction-based and block-based algorithms. Note that the
reduction-based algorithms always produce at most one
warning per transaction (indicating that the patterns in
Theorems 1 and 2 are not matched), while the block-based
algorithm may produce multiple warnings per transaction
since multiple parts of the transaction may match the
unserializable patterns in Sections 6.1 and 6.2.

Table 1 also shows the number of missed errors for the

online reduction algorithm, i.e., the number of atomicity

violations that are reported by the offline reduction-based

algorithm, but missed by the online reduction-based

algorithm.
We conclude from Table 1 that:

1. The online reduction-based algorithm actually misses
some atomicity violations in practice, for the reasons
mentioned in Sections 5.4 and 5.5 and because it does
not analyze arrays; this occurs for tsp(map14),
moldyn, raytracer, jigsaw, Vector, and Stack.
For example, in raytracer, the online reduction-
based algorithm misses an atomicity violation
because it misclassifies some accesses to field
JGFRayTracerBench.checksum1 as race-free
based on the information observed so far, whereas
the offline algorithm classifies them as races based
on the entire execution. Another example is in
moldyn, the algorithms that analyze arrays (offline
reduction-based and block-based) report atomicity
violations involving arrays (these violations can be
seen in Table 1), although these warnings are
removed because of happen-before analysis (and,
hence, are not evident in Table 3).

2. The block-based algorithm is more accurate than the
online and offline reduction-based algorithms in the
sense that it reports fewer false alarms.

3. For most programs, the offline reduction-based
algorithm is slower than the online reduction-based
algorithm because the latter is online (this avoids
storage overhead), uses less accurate and faster data
race analysis, and ignores array accesses. The
median slowdown of the offline reduction-based
algorithm compared to the online reduction-based
algorithm is 46 percent. In raytracer, the offline
reduction-based algorithm is faster because it uses
escape analysis (this point is explained Section 8.3).

4. The block-based algorithm is slower than the offline
reduction-based algorithm; the median slowdown is
20 percent. The block-based algorithm is relatively
much slower for tsp(map14) and jigsaw because
they execute a lot of code once (or a few times),
producing many distinct blocks (see Table 4), while
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the other programs iterate more, producing more
duplicate blocks.

5. Different input data affects the runtime analysis
result for some programs, such as tsp(map4) and
tsp(map14), where tsp(map14) exercises more
code than tsp(map4).

The bugs in raytracer come from atomicity violations
involving the field JGFRayTracerBench.checksum1,
which could get an incorrect value, causing the program
to report failure. The bug in jigsaw is due to atomicity
violations involving the field w3c. tools. resources.

store. ResourceStoreManager. loadedStore due to
statements loadedStore++ and loadedStore- - with-
out synchronization; as a result, loadedStore may
contain an incorrect value. The error in jigsaw described
in [30] does not appear in our experiments because the
relevant code was modified in the newer version of jigsaw
that we tested. The above atomicity violations involve data
races. The errors in Vector and Stack are from atomicity
violations on the field elementCount (as discussed in
Section 1).

The offline reduction-based algorithm produces
more false alarms than the block-based algorithm.
For example, some Collection classes use mod

Count to count modifications. Thus, when an update
method m1 executes modCount++ (which is a read
followed by a write) and another method m2 checks
for recent modifications by reading modCount, there
is a serializable sequence of events m1 :readðmodCountÞ
m2 :readðmodCountÞm1 :writeðmodCountÞ. The block-based
algorithm does not produce a warning. But, the benign data
race on modCount may cause the reduction-based algo-
rithms (online and offline) to produce an atomicity warning
(a false alarm). Similar scenarios exist in jigsaw (e.g., on
the field alive in the method w3c.util.Cached

Thread.waitForRunner()) and other programs.
For Vector and Stack, the online reduction-based

algorithm produces fewer false alarms than the offline
reduction-based algorithm because it misses some data
races. By luck, the data races are benign and do not cause
atomicity violations, but produce false alarms in the offline
algorithm. The online algorithm uses [29]’s race detection
algorithm, which assumes that the ownership of a variable
is transferred when a second thread accesses the variable,
but the ownership of a Collection class in our driver is
not really transferred at that time. On the other hand,
missed data races may cause the online reduction-based
algorithm to miss some atomicity violations, as in ray

tracer, discussed above.

8.3 The Benefits of Different Improvements

Table 2 shows the benefits of different improvements to the
offline reduction-based algorithm. For each program, three
groups of experimental data are shown: atomicity viola-
tions, data races, and execution time. The results for
atomicity violations are aggregated as in Table 1, i.e., based
on the method executed by the transaction. The results for
data races are the numbers of fields for which warnings are
issued. A field of a class is counted only once, even if
warnings are issued for multiple instances of the class. The
columns show cumulative improvements. For example, the
column labeled with “happen-before” also uses escape
analysis and the last column uses all four improvements.

In Table 2, “none” means that the lockset algorithm of
[29] is used to detect data races. When “escape” or “happen-
before” is used as an option, a revised Eraser lockset
algorithm is used: When an object escapes, all its fields are
regarded as in “exclusive” state; this corresponds to the
state “exclusive2” in the lockset algorithm of [29]. With the
option “happen-before,” thread period IDs are used to track
happen-before relations based on start-join and barriers.
With the option “multilockset,” the multilockset algorithm
of Section 5.4 is used to detect data races. With the option
“AcqA�Rel,” Theorem 2 is used instead of Theorem 1.

Table 3 compares the benefits of different improvements
to the block-based algorithm. The columns show cumula-
tive improvements. The “none” column means that only
locks, not escape and happen-before information, are
considered when determining whether an event can occur
between two other events. For each improvement, the
column “methods” reports the number of methods such
that an atomicity warning is issued for a transaction which
is an execution of that method or part code of that method
and the column “fields” reports the number of fields such
that an atomicity warning is issued involving accesses to
that field. The three categories for “methods” are bug—
benign—false alarm. The first category of “fields” is the
numbers of fields such that an atomicity warning is issued
for a 1v-block involving an access to that field; the second
category of “fields” is the number of pairs of fields such that
an atomicity warning is issued for a 2v-block involving
accesses to these two fields.

We can see from Table 3 that dynamic escape analysis
speeds up the block-based algorithm on several programs
because it eliminates processing of accesses to unescaped
variables (just checking whether they are escaped is fast). It
also speeds up the offline reduction-based algorithms in
several cases; this can be seen by comparing the first two
columns in Table 2. Table 4 shows the ratio of unescaped
events to total events on all variables. Besides improving
efficiency, dynamic escape analysis can also eliminate some
false alarms. For example, Table 2 shows that dynamic
escape analysis removes many false alarms for data race
and atomicity on jigsaw; Table 3 shows that several false
alarms for atomicity are eliminated by dynamic escape
analysis on elevator, hedc, and Hashtable.

Happen-before analysis can also eliminate some false
alarms. For example, the happen-before analysis based on
start and join removes false alarms on tsp(map14) in
Table 2 and on tsp(map4,map14) and hedc in Table 3.
The happen-before analysis based on barrier removes false
alarms on moldyn in Table 2 and Table 3.

The multilockset algorithm eliminates some false alarms
on sor; these false alarms remained even after escape and
happen-before analysis were applied. The multilockset
algorithm reveals data races missed by the revised Eraser
lockset algorithm in tsp(map14) and hedc. This can be
seen in Table 2.

Special treatment of AcqA�Rel (i.e., using Theorem 2
instead of Theorem 1) reduces the number of false alarms
for some programs. For example, we can see in Table 2 that
it eliminates some false alarms for atomicity in hedc,
jigsaw, and Hashtable.
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The results for “fields” in the column “happen-before” of
Table 3 shows that, for most programs, all of warnings are
for 1v-blocks. This suggests that the algorithm in Section 6.1
is sufficient to find most atomicity violations. The algorithm
in Section 6.2 is slower and the additional warnings it
produces are typically more difficult to diagnose as bug or
benign because they involve two variables and diagnosis
requires understanding how updates to the two variables
should be related.

8.4 Storage

Table 4 characterizes the storage used. Results for Collec-
tion classes are omitted because the storage used is small
and depends mainly on the driver. “offline rdct storage”
shows the storage of the offline reduction algorithm by the
total size of all (varsOne and varsMul) sets of variables in
all transaction tree nodes discussed in Section 5.6. “# of
blocks” shows the number of blocks (including 1v-blocks
and 2v-blocks) stored by the block-based algorithm. “total
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The Benefits of Different Improvements to the Block-Based Algorithm

A dash for “time” means that the running time is negligible. A blank for “methods” or “fields” means that the datum is unavailable.

TABLE 2
The Benefits of Different Improvements to the Offline Reduction-Based Algorithm

The three categories for atomicity violations are bug—benign—false alarm. The four categories for data races are bug—benign—false
alarm—missed warning.



events” is the total number of monitored events, including
accesses to unescaped variables. “frac unesc events” is the
ratio between the number of accesses to unescaped
variables and the total number of events. “multilkst size”
shows the sum of the maximum sizes of all sets (including
ReadSets, WriteSet, ReadThreadSet, and WriteThreadSet
for each monitored variable) maintained by the multiple-
lockset algorithm. “Ersr lkst size” shows the sum of the
maximal sizes of all locksets maintained by Eraser [28]
algorithms. The multilockset algorithm provides more
accurate data race analysis with moderately increased
storage. The relatively large difference on moldyn between
“multilkst size” and “Ersr lkst size” is due to the use of
barriers, which increase the number of thread period IDs.
The Eraser lockset sizes are zero for sor, moldyn, and
montecarlo because they use barrier synchronization,
which is not monitored by the Eraser lockset algorithm.

8.5 Conclusions

In conclusion, the block-based algorithm is more accurate
and produces more specific diagnostic information than the
reduction-based algorithms. Their running times are often
similar, although the block-based algorithm is much slower
for some programs.

The experiments do not reveal any simple relationship
between the running time and the number of events. This
reflects the fact that the running time depends strongly on
many other factors, e.g., how many events produce the
same blocks, when variables escape, the number of thread
periods, lockset sizes, etc.

Escape analysis improves both efficiency and precision
(i.e., fewer false alarms). Happen-before analysis, the
multilockset algorithm, and special treatment of AcqA�Rel
also increase precision, but incur some overhead.

9 RELATED WORK

In [31], we proposed the reduction-based and block-based
algorithms for runtime atomicity checking. This paper
describes several improvements to the algorithms and
provides experimental results.

Flanagan and Freund [10] proposed a reduction-based
algorithm with the improvements in Section 5.5. Their tool,
called Atomizer, implements the online reduction-based
algorithm described in Section 8.

Compared with Atomizer and our initial work [31], this
paper contributes the following improvements to the
reduction-based algorithms:

1. offline checking, which avoids missing atomicity
violations due to miss-classification of events;

2. more accurate treatment of accesses to thread-local
and read-only variables, as described in Theorem 2;

3. a new multilockset algorithm that produces fewer
false alarms than previous lockset algorithms;

4. use of dynamic escape analysis, which reduces false
alarms and often reduces running time;

5. use of happen-before analysis in data race detection
to reduce false alarms;

6. on the implementation side, our system analyzes
arrays; Atomizer does not.

Model checking can also be used to check atomicity [16],
[8]. Model checking provides stronger guarantees than
runtime monitoring because it explores all possible behaviors
of a program. Also, many of the supporting analyses, such as
dynamic escape analysis, analysis of array, deadlock detec-
tion, and special treatment of thread-local and read-only
variables, etc., can be performed more easily and precisely in
model checking than by program instrumentation [16].
However, model checking is more expensive and feasible
only for programs with relatively small state spaces.

Flanagan et al. extended their atomicity type system to
verify abstract atomicity of programs by analyzing purity
[13]. We extended their work to verify atomicity of
programs which use nonblocking synchronization [32].

Related work on runtime (also called dynamic) data race
detection is discussed in Section 5.4. Choi et al. [6] combine
static analysis and dynamic analysis and consider happen-
before relations based on start and join. O’Callahan and
Choi [24] extend the happen-before relation to consider
wait and notify as well. Compared to the multilockset
algorithm, [24] is more accurate but maintains more
locksets. Our happen-before analysis ignores wait and
notify, but considers barriers which [24] does not.
Furthermore, we use dynamic escape analysis, whereas
[6] uses static escape analysis. The reduction-based algo-
rithm could be improved by using the race-detection
techniques in [6], but it would still produce more false
alarms than the block-based algorithm because imprecise
race detection is only one of the causes of the additional
false alarms.

Artho et al. developed a runtime analysis algorithm to
detect high-level data races [2]. Absence of high-level data
races is similar to atomicity. They introduce a concept of
view consistency and utilize it to detect high-level data races.
A view is the entire set of shared variables accessed in a
synchronized block. Thread t1 and thread t2 are view
consistent if the intersections of all views of t1 with the
maximal view of t2 form a chain (with respect to the subset
ordering � ) and vice versa. View consistency and atomicity
are incomparable (i.e., neither implies the other) [31].

Von Praun and Gross [30] present a static analysis to
detect violations of method consistency, which is an extension
of view consistency [2]. Method consistency and atomicity
are also incomparable. Although their static analysis is
unsound (in order to reduce the cost and the number of
false alarms), it considers the entire program and therefore
may be more thorough than runtime analysis in some cases.
On the other hand, it produces more false alarms than our
block-based algorithm, based on a comparison of the false
alarms in our Table 1 with the false and spurious reports in
Table 1 of [30].

Linearizability [18] is a correctness condition for objects
which are shared by concurrent processes. Linearizability
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Events and Escaped Events



can be viewed as a special case of strict serializability where

transactions are restricted to consist of a single method

applied to a single object [18]. Linearizability is defined

semantically, i.e., in terms of the specification (correctness

requirements) of the object. In contrast, we define atomicity

in terms of operations performed by the implementation.

Our definition is more restrictive, but has the practical

benefit of being directly applicable to programs for which

formal correctness requirements are unavailable.
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