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ABSTRACT

Monitoring performance and availability are critical to operating
successful content distribution networks. Internet measurements
provide the data needed for traffic engineering, alerting, and net-
work diagnostics. While there are significant benefits to performing
end-user active measurements, these capabilities are limited to a
small number of content providers with application control. In
this work, we present a solution to the long-standing problem of
issuing active measurements from clients without requiring appli-
cation control, e.g., injecting JavaScript to the content served. Our
approach uses server-side programmable features of the Network
Error Logging specification that allow a CDN to induce a browser
connection to an HTTPS server of the CDN’s choosing without
application control.
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1 INTRODUCTION

Web applications are ubiquitous on today’s Internet—offering quick
access to popular services such as email, video conferencing, chat,
streaming media, and cloud storage. Competition is fierce amongst
online cloud services, and operators know that poor performance
negatively impacts revenue [28, 37]. To ensure good user experience,
content providers and content delivery networks (CDN) monitor
the health of their networks and services with measurements that
reflect network quality and user experience.

Client-side active measurements are important to CDNs (§2),
yet often inaccessible as CDNs lack end-user application control.
For the web, application control is enabled by either controlling
the server generating page content or in-browser executable code
such as JavaScript. The state-of-the-art and long-standing solution
is Real User Monitoring (RUM), where JavaScript is dynamically
injected into webpage HTML by the CDN (with permission) or
embedded by the application owner [31]. With RUM JavaScript, the
CDN gains a bit of application control through a small function
within a larger application. The JavaScript runs in a user’s browser
where it performs measurements and reports the results back to
the CDN.

In principle, web application owners and CDNs can use RUM
for client-side measurement, however, it requires embedding a
JavaScript in an HTML document, i.e., it requires some level of
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application control. Given that much of the content served by CDNs
is static content such as video, images, CSS, and JavaScript libraries
(e.g. jQuery), opportunity for such JavaScript injection is limited,
which can affect RUM adoption by CDN operators. Kashaf et al. [26]
showed that dependence on content from third-party CDNs (those
not serving the HTML) is common - in the Alexa top-100, 76%
of sites depend on third-party CDNs and 89% for the top-1000.
Even for the cases where CDNs do serve the HTML for a site, our
interactions with CDN operators confirms low adoption rates for
their RUM-based measurements platforms.

In this paper, we present the design of a Client-side Active
Measurement platform, CLAM, that leverages features offered by
Network Error Logging (NEL)[16], a W3C standard implemented in
Chromium-based browsers. NEL provides a standard way for web
servers to receive reports about performance and failures of web
requests from a browser by setting HT TP response headers, one
of which allows the server to specify an HTTPS endpoint where
the browser will upload reports. CLAM piggybacks on NEL report
upload HTTPS connections to enable measurements between an
end-user and target servers. Thanks to the Chrome browser’s dom-
inant market share, as seen in Table 1, this technique works today
on an estimated 60-69% of web users, enabling server-controlled
measurements from previously inaccessible vantage points. Unlike
RUM-based approaches, it requires no custom JavaScript injected
into web applications. With CLAM, any request served by any web
server is an opportunity to perform a client-side active measure-
ment.

The code and testbed configuration used in this work is available
at https://github.com/inspace/clam.

2 MOTIVATION

A CDN’s main objective is to provide good performance to users.
It achieves this goal by serving content from a server in a point-
of-presence (PoP) nearby a user. The best-performing PoP for a
user may not be geographically closest one, so CDNs prefer to
make decisions based on path quality between users and PoPs
based on measurements. CDNs may use many different metrics
to decide the best performing PoP, such as a latency, throughput,
and availability [21], depending on the application. CDNs that use
DNS to select PoPs [23] (e.g., Akamai) also require control-plane
measurements to know how to direct users to PoPs. Most of the time,
these CDNs must make per-LDNS (recursive resolver) decisions,
not per-end-user IP address, so knowing the set of users served by
an LDNS is essential for good performance [32].

Recent work has shown that there are significant benefits for
CDNess in using client-side measurements. Two measurement plat-
forms, NEL [19] from Google and Odin [21] from Microsoft, showed
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that client-side measurements are particularly useful for detect-
ing Internet outages in real-time by reporting errors that prevent
users from connecting but are invisible to servers. When collecting
performance data for PoP selection, client-side active measure-
ments allow web applications to measure different servers from
the same user quickly. Measurements over HTTP(s) requests have
the benefit of operating in the application layer and rarely suffer
from de-prioritization or firewall drops. For the DNS control plane,
the only known techniques for associating clients with LDNS IP
addresses are through client-side active measurements — either
through direct resolution [7] or through resolution of unique host-
names [20, 25, 30].

JavaScript is the standard for client-side measurements on the
web and is often referred to as RUM (Real User Monitoring) [31].
JavaScript can passively collect application (e.g., page-load-time,
above-the-fold) and network performance data or initiate and instru-
ment synthetic HT'TP requests for non-rendered resources from dif-
ferent servers outside of the critical rendering path. The script then
uploads results to a collection server. CDNs such as Akamai [1, 2]
and Fastly [4] have created RUM platforms where customers opt-in
to embed a script to their application so that the CDN receives
network performance data.

From speaking with several CDN operators, one of the main
challenges with these platforms is adoption. Many customers prefer
to deploy their own RUM code to maintain control of code and data,
rather than rely on third-party JavaScript as it raises performance,
security, and privacy concerns [29, 39].

Measurement platforms [3, 11] with existing vantage points in
end-user networks are inherently biased as they cannot represent
the CDN’s actual population and traffic. Previous work has shown
that ICMP probes from servers to users have limited coverage with
only 60% responsiveness [25, 42] and fail to capture application
layer faults such as TLS certificate errors or web server failures
(e.g., HTTP 5XX response codes).

Next, we describe CLAM, which overcomes the challenges above
by leveraging NEL, a standard implemented in Chromium-based
browsers.

3 USING NEL FOR CLIENT-SIDE ACTIVE
MEASUREMENTS

In this section, we provide an overview of Network Error Logging
(NEL) and then describe how CLAM uses it to perform client-side
active measurements and related challenges.

3.1 What is Network Error Logging (NEL)?

NEL is a W3C specification [16] for reporting client-side networking
errors and performance in web applications. Chrome, Microsoft
Edge, Opera, and other browsers based on Chromium inherit NEL
functionality. It monitors and reports low-layer networking metrics
that are not exposed to other JavaScript APIs. For example, NEL
reports dns.unreachable when a DNS server cannot be reached,
and tcp.timed_out when the TCP connection to a server times
out [16]. In addition to failed attempts, NEL can be used to report
high level timings of successful downloads. NEL enables a web
server to specify a measurement policy for a domain under its
control by setting the NEL and Report-To headers in the HTTP
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Device | Share% Metric Source
Desktop 69.5 Page Views | NetMarketShare
Mobile 64.5 Page Views | NetMarketShare
Desktop 68..3 Uniq Visitors StatCounter
Mobile 63.0 Uniq Visitors StatCounter
All 49.2 Page Views U.S. DAP
All 80.7 Page Views w3schools.com

Table 1: Google Chrome estimated market share in May, 2021
from NetMarketShare[9], StatCounter[12], U.S. DAP[15], and
‘W3CSchools[17].

{ "report_to":"default", "max_age":86400,
"success_fraction":0.25,"failure_fraction":1.0}

Report-To:[{"group":"default", "max_age":86400,

"endpoints":[{"url":"https://test.com/report"}1}

Listing 1: Example NEL and Report-To response headers to config-
ure a measurement policy.

response as shown in Listing 1. In this example, the NEL header
specifies a policy to sample 25% of successful requests and 100% of
failed requests for up to 24 hours.

When installed on a browser, a NEL policy applies to all resources
from the same domain, and optionally sub-domain, for the max_age
duration. A CDN can define a single NEL policy for a given domain.
Updating the NEL policy for a domain overwrites the existing policy
on a browser. All the subsequent reports are uploaded to the custom
endpoints specified by the most recent NEL policy. These report
endpoints are specified in the Report-To header, as is a list of URLs
where the browser will upload reports in the background after a
short delay, outside of the browser’s critical rendering path. Chrome
uploads the NEL reports at most every 60 seconds. The content of
the report depends on the number of successful and failed requests
made by the browser during this interval. NEL supports uploads
using multiple redundant failover paths. If the first report endpoint
is unreachable, the browser retries on subsequent endpoints [19].

NEL-based active measurement platforms will have strong cov-
erage, which is evident from the large footprint for the Google
Chrome browser (one among many Chromium-based browsers)
across different device types (see Table 1). However, the success of
such measurement platforms will also depend on content provider
and CDN platform adoption. To answer this question, we analyze
the public data from HTTP Archive [6] for February, June, and
September 2020 to characterize NEL’s adoption trend. This data
contains page load information collected from controlled clients,
which regularly load 5.5 M Alexa websites. The data exposes the
HTTP response headers sent to the controlled clients from the tar-
get web sites, among other information. We look for such headers in
three snapshots of the data to evaluate the increase in NEL adoption
over time.

Over the period of eight months, we witness a growth trend
among metrics such as number of unique web pages (120% increase),
unique domains (20.1% increase), and responses with NEL headers
(40.1% increase) (see Table 2). We also see a similar trend for origins
that make use of multiple endpoints. We observe an explosion in the
number of unique endpoint URLs in the NEL header in September.
However, further investigation reveals that 99.8% of those belong to
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With NEL headers | Feb ’20 | Jun’20 Sep ’20
Unique web pages 3.4%of 4.2M | 5.2% of 4.8M | 7.5% of 5.4M
Unique domains 2.84% of | 3.37% of | 3.41% of
3.1M 3.8M 4.4M
Responses 0.17% of | 0.22% of | 0.24% of
357.6M 452M 509M
Unique report URLs 250 340 187.5K
Origins with multiple | 40 44 93
endpoints
Table 2: NEL’s adoption trend over 2020.
[Response Headers i
INEL: {success_fraction:1.0} _
Report-To: {endpoints:[siteb.contoso.com/report]} . S|
= 100.99.98.1
GET corg1.png / 3. Browser
2. Response NEL Report

with corg1.png

) 100.99.98.1
2% rtt: 45 ms

Logging Fabric

{url:sitea.contoso.com/corg1.
png, duration: 90ms}

1°P 100.99.98.1
2 tt: 30 ms
% CDN Network and
Serving Infrastructure
Figure 1: The CDN acquires a measurement from the user to Site B,
even though Site A actively serves the user. Site A sets the Report-To

endpoint to be a Site B URL. In the background, the browser uploads
a NEL report to the Site B URL.

a single CDN that adopted NEL recently, and they correspond to the
same endpoint but contain unique query arguments. Overall, we
witness growth in the adoption of NEL—motivating the design of a
NEL-based network measurement infrastructure. We now present
how we use NEL to enable client-side active measurements.

3.2 How to use NEL for Client-side Active
Measurements?

CLAM relies on the ability to elicit HTTPS connections from the
client to arbitrary servers to perform measurements. It does not
use the actual report data generated by NEL (but which are very
useful in their own right).

3.2.1  Proposed Approach: CLAM. We now highlight the oppor-
tunities offered by NEL that enable client-side active measurements
without requiring application control. More concretely, NEL: (1) cov-
ers the majority of web users due to its large browser market share
(Table 1); (2) allows the server hosting the content to specify arbi-
trary HTTPS URL endpoints for uploading the report; (3) allows
reports for all requests, irrespective of whether they failed or not.

We use NEL’s footprint to actively send reports from clients to
the end points of our choice—enabling active measurements from
clients to the end points. CLAM dynamically updates the measure-
ment targets by changing the resolved IP address for the endpoint
URL or updating the endpoint URL on subsequent responses to the
same client. It also controls the volume of these reports by config-
uring the sampling rates for the successful and failed requests. At
the endpoints, CLAM uses the server-side connection profiling to
capture different performance metrics (e.g., RTT) for the incoming
upload requests.
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3.2.2  [llustrative example. Figure 1 illustrates how CLAM works.
A user with IP address 100.99.98.1 visits a popular website for
hosting images. A CDN serves some of the images. For simplicity,
this CDN only has two PoPs: Site A and Site B. Both sites have
server-side network telemetry enabled that captures information
like client IP address and RTT.

When the webpage loads, the browser resolves the hostname
of the corg1.png image, which the CDN directs to Site A and the
browser makes a HTTP GET request(1). In Site A’s HTTP response
(2), it includes the NEL header specifying that successful requests
should be sampled at 100% and that reports should be uploaded to
https://siteb.neltest.com/report. Shortly after the image is received!,
the browser makes a HTTP POST with the NEL report data to
https://siteb.neltest.com/report. Note here that the browser controls
the NEL report upload timing and at the time of this writing there
is no server or user settings to modify the upload interval or start
time.

3.3 How does CLAM configure NEL Headers?

CLAM can configure different NEL headers to meet the measure-
ment goals of a CDN while managing load. For each request, it
decides whether to set the NEL header or not, and then set the
endpoint URL, success and failure sampling rates; and the max_-
age field for the NEL header. By doing so, CLAM strike a balance
between the quality of measurements and the workload at target
Sservers.

Selective NEL header insertion allows to select which clients
should be included in measurement campaigns. This can be used
to control load or exclude all measurements from particular clients
such as those participating in a DDoS attack, in sensitive geo-
political regions, or in networks with very expensive mobile data
plans.

Endpoint selection defines the target of the active measurement
campaign. Despite that CDNs often operate hundreds of PoPs, only
a small subset can serve content with low latency for a specific
user. So a CDN can choose a smaller set of PoPs nearby the client
to measure in order to decide the lowest-latency PoP. The sampling
rates for success and failure may also control load, but conditionally,
based on the request status observed from the client. For example,
one might decide to monitor only failed requests (as opposed to
all requests) for a domain. These can also control the size of NEL
reports, affecting the quality of measurements, especially those
requiring multiple RTTs. The max_age allows CLAM to control
how often to re-evaluate a client’s measurement policy to respond
to changes in load, performance, or outages.

3.4 Limitations

While CLAM enables client-side active measurements at scale with-
out requiring application control, it has some limitations, which
we describe below:

Delay. There can be a delay of up to 60 second between client
fetching the content from the web server and uploading the report
at the end point. Such a delay is not acceptable for use-cases that
require capturing the network performance dynamics at shorter
time scales.

IWithin 60 seconds in Chrome version 81.0.4044.129
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(1) GET corg.png

) 2| HTTP
(2) Image with headers: Server
NEL: { success_fraction: 1.0 }
ReportTo: {1-1-1-1.neltest.com}
CDN (5) DNS Log:
Network | 1-1.1-1 neftest.com
1-1-1-1.neltest.com LDNS:2.2.2.2

— —x ¥ neltest.com
il (4) Authoritative resolution Auth DNS

of 1-1-1-1.neltest.com
Figure 2: A CDN can associate client and LDNS IP addresses by gen-

erating custom domains server-side, and forcing the client browser
to resolve it for the NEL report upload.
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Targets. As CLAM extracts the active measurement performance
metrics at the report endpoints, it can only probe targets under the
experimenter’s (CDN’s) control.

Metrics. Currently CLAM is well suited for capturing latency and
availability which is critical for a large number of web applications.
We leave evaluation of other metrics such as jitter, packet loss, and
throughput to future work. Unlike RUM, CLAM cannot capture
user QoE metrics such as page load time (PLT).

Web-Only. CLAM is currently limited to browsers implementing
the NEL specification. However, in principle, any desktop or mobile
application using web requests or HT TP library could support NEL.

3.5 Ethical considerations.

Just as with NEL [19], CLAM complies with the following princi-
ples to preserve the end-user privacy: (1) a server cannot collect
information about end-users it does not already have access to;
(2) no measurements are performed outside of regular user activity;
(3) end users can opt-out of NEL; and (4) only the site operators can
configure collection for their site and where reports are uploaded.

4 CLAM USE CASES

In this section we describe how CDNs can use the client-side mea-
surements enabled by CLAM.

4.0.1 Alternate PoP measurements. Directing users to a nearby
PoP for good performance is fundamental for CDNs (§2). Because
network conditions on the Internet change frequently, CDNs use
network performance data to decide which PoP or path will provide
a user with the best performance [20, 23, 36, 41]. Figure 1 illustrates
a simple example using two distinct CDN PoPs, but can easily ex-
tended to more complex scenarios. Since CDNs can have 100s or
1000s of PoPs, a control system is needed to program response
headers for useful, coordinated measurements based on client net-
work and geographic characteristics. CLAM removes the need to
do network experiments to alternate PoPs with production traffic,
reducing harm to end-user performance and enabling measurement
for cloud and enterprise traffic populations.

User to PoP measurements provide fine-grain per-client IP ad-
dress performance data but the unit of redirection control for many
CDNs is the user’s LDNS. So, we next look at how CLAM can
measure client-LDNS association.
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4.0.2 Client-LDNS association. Understanding the relationship
between clients and their LDNSes is also critical for good CDN per-
formance. Figure 2 shows how CLAM captures this by adapting an
existing technique [30], but without modifying the HTML?. A user
with IP address 1.1.1.1 is viewing an image sharing website. The
browser fetches one of the images (1) from a CDN server. The server
responds with the image data, along with (2) a NEL policy and the
Report-To endpoint set to https://1-1-1-1.neltest. com, with
the user’s IP address encoded in the CDN’s hostname, which the
server knows from the request’s remote socket IP address. When
the browser starts the NEL report upload process (3), it will resolve
https://1-1-1-1.neltest.com, which will first be forwarded to
the client’s LDNS (2.2.2.2), and assuming no cached record exists,
will forward the request to the CDN’s authoritative resolver (4).
The authoritative DNS logs capture the association through the
client’s IP address in the hostname to resolve, and the LDNS’s IP
address from which it received the request (5).

4.0.3  Availability monitoring. A CDN must monitor PoP avail-
ability to know if client traffic is unable to reach it. Monitoring can
be detected by drops in traffic volume [34], client-side active mea-
surement [21], or commercial monitoring platforms [3, 14]. When
an availability issue is detected, CDNs can mitigate the issue by
moving traffic to an alternate PoP. But without additional probes to
verify a fix, users cannot be safely switched back without the risk
of blackholing traffic. By continuing to measure the degraded PoP
with actual user web requests, the CDN can verify that end-to-end
connectivity works before shifting traffic back. If continuous mea-
surement was already in place, one could verify that the number of
successful uploads to the degraded PoP is returning to historically
“normal” values.
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(a) Comcast Home Broadband (b) Spectrum Home Broadband
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(c) Cox Home Broadband
Figure 3: A comparison of Server-Side RTT captured using CLAM as
compared to RUM estimated RTT and ICMP ping from 4 different
end-user networks.

(d) University Wireless

5 EVALUATION

In this section, we showcase CLAM addressing the following ques-
tions: (1) how effectively does CLAM capture network latency, com-
pared to existing approaches?; (2) how effectively does CLAM track
changes in user performance?; and (3) how does CLAM dynami-
cally reconfigure network measurement policy at runtime? Finally,

2We use Mao’s technique for illustrative simplicity, not for user tracking. In practice,
randomized ids achieve the same result and offer greater privacy [21].
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we demonstrate how CDNs can use CLAM to capture client-LDNS
mappings.

5.1 Testbed Setup

We configured a virtual machine (VM) to run an NGINX webserver
with TCP_INFO [13] to gather per-flow metrics. Then we created a
mini testbed by deploying four such VMs in four different Microsoft
Azure regions [8]: West US2 (Seattle), North Central US (Chicago),
France Central (Paris), and Southeast Asia (Singapore). Two VMs
(West US2 and France Central) were also configured to serve author-
itative DNS for our test domain. On receiving (non-NEL) requests
from the clients, the web servers use a pre-specified configuration
to set the NEL response headers. On receiving the NEL reports,
the web server uses TCP_INFO to extract the RTT value for the
connection. The DNS servers log the source IP address (of LDNS)
and request to a Redis database. Unless specified otherwise, we
used the Private Internet Access (PIA) VPN service [10] to generate
client requests from diverse geographical areas.

5.2 How effectively does CLAM capture
Network Latency?

To answer this question, we compare CLAM’s server-side latency
measurements with that of RUM and ICMP ping. For this experi-
ment, we send requests from four different client networks along
the West Coast of the United States to a single Central US re-
gion VM. To quantify network latency for RUM, we use Akamai’s
Boomerang [2] tool and report the difference between responseS-
tart and requestStart as captured from the Navigation API [40].
Page refreshes (providing RUM and CLAM) and pings were set to
run every minute since CLAM has a 1 minute measurement limit
with Chrome.

Figure 3 shows the distribution of latencies collected over a 2
hour period from each vantage point. The results show that while
the 3 distributions show distinct shapes, the Server-Side RTT cap-
tured by CLAM tracks closely with either RUM or ICMP. The home
broadband networks in Figure 3-a and -b show that for most per-
centiles the distributions are within 5 ms of each other, with Server-
Side and RUM most similar. Interestingly, ICMP provides the lower
bound in these two cases. In Figure 3-c, the distributions show more
dramatic differences, with over 10ms between RUM and ICMP. For
lower percentiles, Server-Side RTT aligns closely with RUM and
then shifts abruptly to align with ICMP, hinting that RUM and ICMP
use two different paths to the VM, while new connections from
NEL uploads get balanced between them. The University Wireless
network also shows that Server-Side and RUM distributions to be
quite similar, with differences of a few milliseconds, while ICMP is
consistently higher.

These differences are in line with previous work that exam-
ined the discrepancies in estimating RTT. Strowes showed how
application-layer, TCP, and ICMP estimates for RTT can vary dra-
matically depending on which side of the connection is measur-
ing [38]. With tokyo-ping, Pelsser et al. demonstrated how RTT
can vary dramatically depending on flow identifiers used by ECMP
and link aggregation groups [33]. For this reason, the tokyo-ping
authors recommend that no multi-connection application make
latency assumptions based on a single connection.
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Figure 5: NEL response to policy changes over time. Report uploads

are sent to the region from the most recent policy.

5.3 How effectively does CLAM track
user-performance changes?

To answer this question, we designed an experiment where we
change the user latency over time and show CLAM’s ability to
track these latency changes. We use a simple webpage with four im-
ages, all served from West US2, but each configured with a distinct
NEL report endpoint in each of our four cloud regions—enabling us
to collect client-side active measurements for each of these four re-
gions every minute. We use a VPN to vary the client-server latency
over time. Specifically, we switch VPN gateways for the client from
Chicago, Paris, and Singapore, in order, every fifteen minutes.
Figure 4 shows the performance observed from the Pacific North-
west (PNW) home broadband network to the four cloud regions
in our testbed over 70 minutes with four different VPN configu-
rations. We extract regional RTT data directly from each region’s
NGINX access logs. In the first 10 minutes, we see that the lowest
latency region is Seattle, followed by Chicago, Paris, and then Sin-
gapore, which is expected given our PNW vantage point. At 22:30,
we enabled the VPN for the Chicago gateway and see Seattle and
Singapore RTTs spike, and Chicago becomes the lowest latency
region. Chicago and Paris latency remains similar since the VPN
tunnel travels in the same direction as the non-VPN path. In con-
trast, the path to the Seattle and Singapore regions have greatly
inflated RTTs since they take a circuitous route to Chicago in the
East before traveling back West. We observe similar patterns with
the Paris and Singapore VPN gateways. When the VPN is turned
off at the end of the experiment, per-region RTTs return to simi-
lar range as the experiment start. This experiment demonstrates
CLAM’s ability to track changes in user performance over time.
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Client | Client ISP | LDNS | Description
74.73.110.0/24 Spectrum  |25.29.108.103 Spectrum LDNS
(East US)

173.194.168.196 |Google PDNS in Wash.

D.C.

172.116.225.0/24 |Spectrum | 66.75.177.68 TWC (Spectrum) LDNS
(West US)

172.253.0.2 Google PDNSin L.A.

Table 3: Changes in client-LDNS association tracked by CLAM.

5.4 How does CLAM enable updating
measurement policy at runtime?

To answer this question, we configured the web-server to reload
an image from the same domain (single NEL policy) every 20 sec-
onds and the server-side controller responds with a different report
endpoint every minute but with a fixed max_age of 300 seconds.
Figure 5 shows the report endpoint measurement results over an
8-minute window, showing 2 full cycles for each upload region. The
points at 0 along the x-axis show the report endpoint region sent
from the server with each image request. We can see that within
the same minute, all 3 images contain the same report endpoint. At
the end of the browser’s 1 minute report interval, it sends reports
to the region from the latest NEL policy as shown by the bars and
their corresponding RTTs. This demonstrates that when a policy
is updated, the new one overwrites existing policies for the same
domain, even if the previous policy’s max_age has not expired.

5.5 Use Case: Capture Client-LDNS Mapping

In this section, we demonstrate how CLAM can perform client-
LDNS mapping over time, which is needed by CDNs on a continous
basis. We use a test page implementing the technique described in
Figure 2 and two clients, one on each coast of the US. Each client
loads the test page multiple times with their ISP’s default DNS
settings and then another round after configuring their machine to
use Google’s Public DNS. Table 3 shows the client-LDNS mapping
extracted using CLAM. Here, note that even though both clients’
ISP is Spectrum, we see that their requests came from two different
LDNS servers. Since the clients are on opposite ends of the country,
it make sense that they would use 2 different Spectrum LDNSes
(even in different /8s). When the clients configured Google Public
DNS, we see that the East US client was directed to the Washington
D.C. instance while the West US client was sent to Los Angeles [5].

6 RELATED WORK

The system design of NEL was presented at NSDI 2019 [19] by the
authors of the specification [16]. Their work focuses on evaluating
NEL for what it was explicitly designed for: reporting passively
observed performance and failures in the browser, even in the pres-
ence of network failures. Given the utility of active measurements
in CDN operations [21], our work shows how NEL can be used as
a protocol for active measurements with widespread user support.
The technique and applications we propose are not covered by
previous work.

Passive server-side measurements through web logs or packet
captures are widely used by CDNs to measure performance [23,
27, 35, 36, 44] or availability [34]. Our work also uses server-side
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logging to capture end-user performance but instead of organic
traffic, we log traffic from server programmed NEL report uploads
that are designed to monitor targets in a controlled fashion.

Active layer 3 measurements from serving-infrastructure to users
or LDNSes [24, 42] can suffer from low response rates [25] and fail to
test end-to-end functionality that reflects user experience, including
errors on other layers, such as invalid HTTPS certificates.

Web measurements from end-users can be run with JavaScript [18,
21, 22] or by simply embedding a transparent 1x1 pixel image in
HTML. Akamai [1, 2] and Fastly [4] operate JavaScript measure-
ment platforms where customers opt-in to embed a script to their
application. From speaking with several CDN operators, customer
adoption is challenging. Injection of third-party code raises perfor-
mance, security, and privacy concerns [29, 39]. Unlike JavaScript,
CLAM minimizes interference with web application execution be-
cause it runs in a background browser task. CLAM is complemen-
tary to systems like AdTag [22], which uses targeted ads to acquire
end-user vantage points, by replacing JavaScript with less invasive
measurements.

Applications enabling low-layer measurements such as tracer-
oute are used by Akamai [23, 43] and Microsoft [21]. Coverage
is subject to customer willingness to install desktop applications
whereas CLAM works with any CDN customer end-user using a
compatible browser.

7 CONCLUSION

In this work we describe CLAM, the first approach that enables
CDN, cloud, and content providers to initiate client-side measure-
ments to their serving infrastructure without client-side application
control. We describe how to use CLAM to perform several mea-
surements critical to CDN operations such as alternate PoP mea-
surements, client-LDNS association, and availability monitoring.
Our cloud-based testbed and evaluation demonstrates that CLAM
is an effective measurement approach that accurately captures net-
work latency between end-users and target servers, quickly tracks
changes in network performance, and enables rapid change of client
measurement policy across a large user base.
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