


Towards client-side active measurements
without application control

Palak Goenka
Microsoft

Arpit Gupta
UCSB

Kyriakos Zariis
Edgecast

Matt Calder
Microsoft

Columbia University

ABSTRACT

Monitoring performance and availability are critical to operating
successful content distribution networks. Internet measurements
provide the data needed for traic engineering, alerting, and net-
work diagnostics. While there are signiicant beneits to performing
end-user active measurements, these capabilities are limited to a
small number of content providers with application control. In
this work, we present a solution to the long-standing problem of
issuing active measurements from clients without requiring appli-
cation control, e.g., injecting JavaScript to the content served. Our
approach uses server-side programmable features of the Network
Error Logging speciication that allow a CDN to induce a browser
connection to an HTTPS server of the CDN’s choosing without
application control.

CCS CONCEPTS

·Networks→Networkmeasurement;Networkperformance

analysis;

KEYWORDS

Internet Measurement, CDN, Content Delivery Network, Latency,
DNS, NEL, RUM

1 INTRODUCTION

Web applications are ubiquitous on today’s InternetÐofering quick
access to popular services such as email, video conferencing, chat,
streaming media, and cloud storage. Competition is ierce amongst
online cloud services, and operators know that poor performance
negatively impacts revenue [28, 37]. To ensure good user experience,
content providers and content delivery networks (CDN) monitor
the health of their networks and services with measurements that
relect network quality and user experience.

Client-side active measurements are important to CDNs (ğ2),
yet often inaccessible as CDNs lack end-user application control.
For the web, application control is enabled by either controlling
the server generating page content or in-browser executable code
such as JavaScript. The state-of-the-art and long-standing solution
is Real User Monitoring (RUM), where JavaScript is dynamically
injected into webpage HTML by the CDN (with permission) or
embedded by the application owner [31]. With RUM JavaScript, the
CDN gains a bit of application control through a small function
within a larger application. The JavaScript runs in a user’s browser
where it performs measurements and reports the results back to
the CDN.

In principle, web application owners and CDNs can use RUM
for client-side measurement, however, it requires embedding a
JavaScript in an HTML document, i.e., it requires some level of

application control. Given that much of the content served by CDNs
is static content such as video, images, CSS, and JavaScript libraries
(e.g. jQuery), opportunity for such JavaScript injection is limited,
which can afect RUM adoption by CDN operators. Kashaf et al. [26]
showed that dependence on content from third-party CDNs (those
not serving the HTML) is common ś in the Alexa top-100, 76%
of sites depend on third-party CDNs and 89% for the top-1000.
Even for the cases where CDNs do serve the HTML for a site, our
interactions with CDN operators conirms low adoption rates for
their RUM-based measurements platforms.

In this paper, we present the design of a Client-side Active
Measurement platform, CLAM, that leverages features ofered by
Network Error Logging (NEL)[16], a W3C standard implemented in
Chromium-based browsers. NEL provides a standard way for web
servers to receive reports about performance and failures of web
requests from a browser by setting HTTP response headers, one
of which allows the server to specify an HTTPS endpoint where
the browser will upload reports. CLAM piggybacks on NEL report
upload HTTPS connections to enable measurements between an
end-user and target servers. Thanks to the Chrome browser’s dom-
inant market share, as seen in Table 1, this technique works today
on an estimated 60-69% of web users, enabling server-controlled
measurements from previously inaccessible vantage points. Unlike
RUM-based approaches, it requires no custom JavaScript injected
into web applications. With CLAM, any request served by any web
server is an opportunity to perform a client-side active measure-
ment.

The code and testbed coniguration used in this work is available
at https://github.com/inspace/clam.

2 MOTIVATION

A CDN’s main objective is to provide good performance to users.
It achieves this goal by serving content from a server in a point-
of-presence (PoP) nearby a user. The best-performing PoP for a
user may not be geographically closest one, so CDNs prefer to
make decisions based on path quality between users and PoPs
based on measurements. CDNs may use many diferent metrics
to decide the best performing PoP, such as a latency, throughput,
and availability [21], depending on the application. CDNs that use
DNS to select PoPs [23] (e.g., Akamai) also require control-plane
measurements to know how to direct users to PoPs. Most of the time,
these CDNs must make per-LDNS (recursive resolver) decisions,
not per-end-user IP address, so knowing the set of users served by
an LDNS is essential for good performance [32].

Recent work has shown that there are signiicant beneits for
CDNs in using client-side measurements. Two measurement plat-
forms, NEL [19] from Google and Odin [21] fromMicrosoft, showed

ACM SIGCOMM Computer Communication Review Volume 52 Issue 1, January 2022

21



that client-side measurements are particularly useful for detect-
ing Internet outages in real-time by reporting errors that prevent
users from connecting but are invisible to servers. When collecting
performance data for PoP selection, client-side active measure-
ments allow web applications to measure diferent servers from
the same user quickly. Measurements over HTTP(s) requests have
the beneit of operating in the application layer and rarely sufer
from de-prioritization or irewall drops. For the DNS control plane,
the only known techniques for associating clients with LDNS IP
addresses are through client-side active measurements ś either
through direct resolution [7] or through resolution of unique host-
names [20, 25, 30].

JavaScript is the standard for client-side measurements on the
web and is often referred to as RUM (Real User Monitoring) [31].
JavaScript can passively collect application (e.g., page-load-time,
above-the-fold) and network performance data or initiate and instru-
ment synthetic HTTP requests for non-rendered resources from dif-
ferent servers outside of the critical rendering path. The script then
uploads results to a collection server. CDNs such as Akamai [1, 2]
and Fastly [4] have created RUM platforms where customers opt-in
to embed a script to their application so that the CDN receives
network performance data.

From speaking with several CDN operators, one of the main
challenges with these platforms is adoption. Many customers prefer
to deploy their own RUM code to maintain control of code and data,
rather than rely on third-party JavaScript as it raises performance,
security, and privacy concerns [29, 39].

Measurement platforms [3, 11] with existing vantage points in
end-user networks are inherently biased as they cannot represent
the CDN’s actual population and traic. Previous work has shown
that ICMP probes from servers to users have limited coverage with
only 60% responsiveness [25, 42] and fail to capture application
layer faults such as TLS certiicate errors or web server failures
(e.g., HTTP 5XX response codes).

Next, we describe CLAM, which overcomes the challenges above
by leveraging NEL, a standard implemented in Chromium-based
browsers.

3 USING NEL FOR CLIENT-SIDE ACTIVE
MEASUREMENTS

In this section, we provide an overview of Network Error Logging
(NEL) and then describe how CLAM uses it to perform client-side
active measurements and related challenges.

3.1 What is Network Error Logging (NEL)?

NEL is aW3C speciication [16] for reporting client-side networking
errors and performance in web applications. Chrome, Microsoft
Edge, Opera, and other browsers based on Chromium inherit NEL
functionality. It monitors and reports low-layer networking metrics
that are not exposed to other JavaScript APIs. For example, NEL
reports dns.unreachable when a DNS server cannot be reached,
and tcp.timed_out when the TCP connection to a server times
out [16]. In addition to failed attempts, NEL can be used to report
high level timings of successful downloads. NEL enables a web
server to specify a measurement policy for a domain under its
control by setting the NEL and Report-To headers in the HTTP

Device Share% Metric Source

Desktop 69.5 Page Views NetMarketShare
Mobile 64.5 Page Views NetMarketShare
Desktop 68..3 Uniq Visitors StatCounter
Mobile 63.0 Uniq Visitors StatCounter
All 49.2 Page Views U.S. DAP
All 80.7 Page Views w3schools.com

Table 1: Google Chrome estimated market share in May, 2021

from NetMarketShare[9], StatCounter[12], U.S. DAP[15], and

W3CSchools[17].

NEL:{"report_to":"default","max_age":86400,

"success_fraction":0.25,"failure_fraction":1.0}

Report-To:{"group":"default","max_age":86400,

"endpoints":[{"url":"https://test.com/report"}]}

Listing 1: Example NEL and Report-To response headers to conig-

ure a measurement policy.

response as shown in Listing 1. In this example, the NEL header
speciies a policy to sample 25% of successful requests and 100% of
failed requests for up to 24 hours.

When installed on a browser, a NEL policy applies to all resources
from the same domain, and optionally sub-domain, for the max_age
duration. A CDN can deine a single NEL policy for a given domain.
Updating the NEL policy for a domain overwrites the existing policy
on a browser. All the subsequent reports are uploaded to the custom
endpoints speciied by the most recent NEL policy. These report
endpoints are speciied in the Report-To header, as is a list of URLs
where the browser will upload reports in the background after a
short delay, outside of the browser’s critical rendering path. Chrome
uploads the NEL reports at most every 60 seconds. The content of
the report depends on the number of successful and failed requests
made by the browser during this interval. NEL supports uploads
using multiple redundant failover paths. If the irst report endpoint
is unreachable, the browser retries on subsequent endpoints [19].

NEL-based active measurement platforms will have strong cov-
erage, which is evident from the large footprint for the Google
Chrome browser (one among many Chromium-based browsers)
across diferent device types (see Table 1). However, the success of
such measurement platforms will also depend on content provider
and CDN platform adoption. To answer this question, we analyze
the public data from HTTP Archive [6] for February, June, and
September 2020 to characterize NEL’s adoption trend. This data
contains page load information collected from controlled clients,
which regularly load 5.5 M Alexa websites. The data exposes the
HTTP response headers sent to the controlled clients from the tar-
get web sites, among other information.We look for such headers in
three snapshots of the data to evaluate the increase in NEL adoption
over time.

Over the period of eight months, we witness a growth trend
amongmetrics such as number of unique web pages (120% increase),
unique domains (20.1% increase), and responses with NEL headers
(40.1% increase) (see Table 2). We also see a similar trend for origins
that make use of multiple endpoints. We observe an explosion in the
number of unique endpoint URLs in the NEL header in September.
However, further investigation reveals that 99.8% of those belong to

ACM SIGCOMM Computer Communication Review Volume 52 Issue 1, January 2022

22









Client Client ISP LDNS Description

74.73.110.0/24
(East US)

Spectrum 25.29.108.103 Spectrum LDNS

173.194.168.196 Google PDNS in Wash.
D.C.

172.116.225.0/24
(West US)

Spectrum 66.75.177.68 TWC (Spectrum) LDNS

172.253.0.2 Google PDNS in L.A.
Table 3: Changes in client-LDNS association tracked by CLAM.

5.4 How does CLAM enable updating
measurement policy at runtime?

To answer this question, we conigured the web-server to reload
an image from the same domain (single NEL policy) every 20 sec-
onds and the server-side controller responds with a diferent report
endpoint every minute but with a ixed max_age of 300 seconds.
Figure 5 shows the report endpoint measurement results over an
8-minute window, showing 2 full cycles for each upload region. The
points at 0 along the x-axis show the report endpoint region sent
from the server with each image request. We can see that within
the same minute, all 3 images contain the same report endpoint. At
the end of the browser’s 1 minute report interval, it sends reports
to the region from the latest NEL policy as shown by the bars and
their corresponding RTTs. This demonstrates that when a policy
is updated, the new one overwrites existing policies for the same
domain, even if the previous policy’s max_age has not expired.

5.5 Use Case: Capture Client-LDNS Mapping

In this section, we demonstrate how CLAM can perform client-
LDNS mapping over time, which is needed by CDNs on a continous
basis. We use a test page implementing the technique described in
Figure 2 and two clients, one on each coast of the US. Each client
loads the test page multiple times with their ISP’s default DNS
settings and then another round after coniguring their machine to
use Google’s Public DNS. Table 3 shows the client-LDNS mapping
extracted using CLAM. Here, note that even though both clients’
ISP is Spectrum, we see that their requests came from two diferent
LDNS servers. Since the clients are on opposite ends of the country,
it make sense that they would use 2 diferent Spectrum LDNSes
(even in diferent /8s). When the clients conigured Google Public
DNS, we see that the East US client was directed to the Washington
D.C. instance while the West US client was sent to Los Angeles [5].

6 RELATEDWORK

The system design of NEL was presented at NSDI 2019 [19] by the
authors of the speciication [16]. Their work focuses on evaluating
NEL for what it was explicitly designed for: reporting passively
observed performance and failures in the browser, even in the pres-
ence of network failures. Given the utility of active measurements
in CDN operations [21], our work shows how NEL can be used as
a protocol for active measurements with widespread user support.
The technique and applications we propose are not covered by
previous work.

Passive server-side measurements through web logs or packet
captures are widely used by CDNs to measure performance [23,
27, 35, 36, 44] or availability [34]. Our work also uses server-side

logging to capture end-user performance but instead of organic
traic, we log traic from server programmed NEL report uploads
that are designed to monitor targets in a controlled fashion.

Active layer 3measurements from serving-infrastructure to users
or LDNSes [24, 42] can sufer from low response rates [25] and fail to
test end-to-end functionality that relects user experience, including
errors on other layers, such as invalid HTTPS certiicates.

Webmeasurements from end-users can be runwith JavaScript [18,
21, 22] or by simply embedding a transparent 1x1 pixel image in
HTML. Akamai [1, 2] and Fastly [4] operate JavaScript measure-
ment platforms where customers opt-in to embed a script to their
application. From speaking with several CDN operators, customer
adoption is challenging. Injection of third-party code raises perfor-
mance, security, and privacy concerns [29, 39]. Unlike JavaScript,
CLAM minimizes interference with web application execution be-
cause it runs in a background browser task. CLAM is complemen-
tary to systems like AdTag [22], which uses targeted ads to acquire
end-user vantage points, by replacing JavaScript with less invasive
measurements.

Applications enabling low-layer measurements such as tracer-
oute are used by Akamai [23, 43] and Microsoft [21]. Coverage
is subject to customer willingness to install desktop applications
whereas CLAM works with any CDN customer end-user using a
compatible browser.

7 CONCLUSION

In this work we describe CLAM, the irst approach that enables
CDN, cloud, and content providers to initiate client-side measure-
ments to their serving infrastructure without client-side application
control. We describe how to use CLAM to perform several mea-
surements critical to CDN operations such as alternate PoP mea-
surements, client-LDNS association, and availability monitoring.
Our cloud-based testbed and evaluation demonstrates that CLAM
is an efective measurement approach that accurately captures net-
work latency between end-users and target servers, quickly tracks
changes in network performance, and enables rapid change of client
measurement policy across a large user base.

ACKNOWLEDGMENTS

We would like to thank John Rula, Tobias Bajwa, and Brandon
Schlinker for feedback on early drafts. We thank Kyle Schomp and
the anonymous reviewers for their feedback that improved this
work.

REFERENCES
[1] Akamai mPulse. https://www.akamai.com/us/en/products/performance/

mpulse-real-user-monitoring.jsp.
[2] Boomerang. https://akamai.github.io/boomerang/.
[3] Citrix Intelligent Traic Management (Previously Cedexis. https://www.citrix.

com/products/citrix-intelligent-traic-management/.
[4] Fastly Insights. https://insights.fastlylabs.com/.
[5] Google Public DNS FAQ. https://developers.google.com/speed/public-dns/faq.
[6] HTTP Archive. https://httparchive.org/.
[7] Introducing a New whoami Tool for DNS Resolver In-

formation. https://developer.akamai.com/blog/2018/05/10/
introducing-new-whoami-tool-dns-resolver-information.

[8] Microsoft Azure Regions. https://azure.microsoft.com/en-us/
global-infrastructure/regions/.

[9] NetMarketShare: Browser Market Share. https://netmarketshare.com/
browser-market-share.aspx.

ACM SIGCOMM Computer Communication Review Volume 52 Issue 1, January 2022

26



[10] Private Internet Access. https://www.privateinternetaccess.com/.
[11] RIPE Atlas. https://atlas.ripe.net/.
[12] statscounter: Browser Market Share Worldwide. https://gs.statcounter.com/

browser-market-share.
[13] TCP INFO. https://www.measurementlab.net/tests/tcp-info/.
[14] Thousandeyes. https://www.thousandeyes.com/.
[15] U.S. Federal Goverment Digital Analytics Program. https://analytics.usa.gov/.
[16] W3C Network Error Logging. https://w3c.github.io/network-error-logging/.
[17] W3C Schools Browser Statistics. https://www.w3schools.com/browsers/default.

asp.
[18] A. Ahmed, Z. Shaiq, H. Bedi, and A. Khakpour. Peering vs. transit: Performance

comparison of peering and transit interconnections. In ICNP, 2017.
[19] S. Burnett, L. Chen, D. A. Creager, M. Eimov, I. Grigorik, B. Jones, H. V. Mad-

hyastha, P. Papageorge, B. Rogan, C. Stahl, et al. Network Error Logging: Client-
side measurement of end-to-end web service reliability. In NSDI, 2020.

[20] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye. Analyzing the
Performance of an Anycast CDN. In IMC, 2015.

[21] M. Calder, R. Gao, M. Schröder, R. Stewart, J. Padhye, R. Mahajan, G. Anantha-
narayanan, and E. Katz-Bassett. Odin: Microsoft’s Scalable Fault-Tolerant CDN
Measurement System. In NSDI, 2018.

[22] P. Callejo, C. Kelton, N. Vallina-Rodriguez, R. Cuevas, O. Gasser, C. Kreibich,
F. Wohlfart, and Á. Cuevas. Opportunities and Challenges of Ad-based Measure-
ments from the Edge of the Network. In HotNets, 2017.

[23] F. Chen, R. K. Sitaraman, and M. Torres. End-user mapping: Next generation
request routing for content delivery. SIGCOMM, 2015.

[24] W. B. de Vries, R. d. O. Schmidt, W. Hardaker, J. Heidemann, P.-T. de Boer, and
A. Pras. Verfploeter: Broad and load-aware anycast mapping. In IMC, 2017.

[25] C. Huang, D. A. Maltz, J. Li, and A. Greenberg. Public dns system and global
traic management. In INFOCOM, 2011.

[26] A. Kashaf, V. Sekar, and Y. Agarwal. Analyzing third party service dependencies
in modern web services: Have we learned from the mirai-dyn incident? In
Proceedings of the ACM Internet Measurement Conference, pages 634ś647, 2020.

[27] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T. An-
derson, and J. Gao. Moving Beyond End-to-End Path Information to Optimize
CDN Performance. In IMC, 2009.

[28] G. Linden. Make Data Useful. http://sites.google.com/site/glinden/Home/
StanfordDataMining.2006-11-28.ppt, 2006.

[29] S. Ludin. Measuring what is not ours: A tale of 3rd party performance. In PAM,
2017.

[30] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and J. Wang.
A Precise and Eicient Evaluation of the Proximity Between Web Clients and
Their Local DNS Servers. In USENIX ATC, 2002.

[31] P. Mastin. Real user measurements. O’Reilly Media, Incorporated, 2016.
[32] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform for

high-performance internet applications. ACM SIGOPS Operating Systems Review,
44, 2010.

[33] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush. From paris to tokyo: On the
suitability of ping to measure latency. In Proceedings of the 2013 conference on
Internet measurement conference, pages 427ś432, 2013.

[34] P. Richter, R. Padmanabhan, N. Spring, A. Berger, and D. Clark. Advancing the
Art of Internet Edge Outage Detection. In IMC, 2018.

[35] B. Schlinker, I. Cunha, Y.-C. Chiu, S. Sundaresan, and E. Katz-Bassett. Internet
performance from facebook’s edge. In IMC, 2019.

[36] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha, J. Quinn,
S. Hasan, P. Lapukhov, and H. Zeng. Engineering egress with edge fabric: Steering
oceans of content to the world. In SIGCOMM, 2017.

[37] S. Stefanov. Yslow 2.0. In CSDN SD2C, 2008.
[38] S. D. Strowes. Passively measuring tcp round-trip times. Communications of the

ACM, 56(10):57ś64, 2013.
[39] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. Demysti-

fying page load performance with WProf. In NSDI, 2013.
[40] Z. Wang. Navigation Timing. https://www.w3.org/TR/navigation-timing/.
[41] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,

T. Kim, A. Narayanan, A. Jain, et al. Taking the edge of with espresso: Scale,
reliability and programmability for global internet peering. In SIGCOMM, 2017.

[42] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian.
Optimizing cost and performance in online service provider networks. In NSDI,
2010.

[43] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, B. Wis-
hon, and M. Ponec. Peer-assisted content distribution in akamai netsession. In
IMC, 2013.

[44] Y. Zhu, B. Helsley, J. Rexford, A. Siganporia, and S. Srinivasan. LatLong: Diag-
nosing Wide-area Latency Changes for CDNs. In Transactions on Network and
Service Management, 2012.

ACM SIGCOMM Computer Communication Review Volume 52 Issue 1, January 2022

27


	Abstract
	1 Introduction
	2 Motivation
	3 Using NEL for Client-side Active Measurements
	3.1 What is Network Error Logging (NEL)?
	3.2 How to use NEL for Client-side Active Measurements?
	3.3 How does CLAM configure NEL Headers?
	3.4 Limitations
	3.5 Ethical considerations.

	4 CLAM Use Cases
	5 Evaluation
	5.1 Testbed Setup
	5.2 How effectively does CLAM capture Network Latency?
	5.3 How effectively does CLAM track user-performance changes?
	5.4 How does CLAM enable updating measurement policy at runtime?
	5.5 Use Case: Capture Client-LDNS Mapping

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

