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ABSTRACT
A growing concern within today’s networking community is
that with the proliferation of Artificial Intelligence/Machine
Learning (AI/ML) techniques, a lack of access to real-world
production networks is putting academic researchers at a
significant disadvantage. Indeed, compared to a select few
research groups in industry that can leverage access to their
global-scale production networks in their data-driven efforts
to develop and evaluate learning models, academic researchers
not only struggle to get their hands on real-world data sets
but find it almost impossible to adequately train and assess
their learning models under realistic conditions.

In this paper, we argue that when appropriately instru-
mented and properly managed, enterprise networks in the
form of university or campus networks can serve as real-world
production networks and can, because of their ubiquity, help
create a more level playing field for academic researchers.
Their various limitations notwithstanding, as real-world pro-
duction networks, such enterprise networks can (i) serve as
unique sources for some of the rich data that will enable
these researchers to influence or advance the current state-
of-the-art in AI/ML for networking and (ii) also function as
much-needed test beds where newly developed AI/ML-based
tools can be evaluated or “road-tested" prior to their actual
deployment in the production network. We discuss new re-
search challenges that arise from this proposed dual role of
campus networks and comment on the opportunities our pro-
posal affords for both academic and industry researchers to
benefit from the advantages and limitations of their respective
production environments in their common quest to advance
the development and evaluation of AI/ML-based tools to the
point where they can be deployed in practice.
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1 INTRODUCTION
The networking area is currently facing a growing “digital di-
vide" between those researchers that have access to plenty of
data and those that suffer from a basic lack of data. On the one
hand, we are experiencing the emergence of a select few re-
search groups in industry that can leverage their global-scale
production networks to (i) obtain the sort of data (typically
proprietary in nature) that is needed for their data-driven ef-
forts to develop their latest AI-/ML-based learning models
(e.g., to perform real-time network automation tasks) and
(ii) evaluate the resulting models under real-world conditions
prior to their full-fledged deployment in a production network.
On the other hand, unless they engage in close collaborations
with their “data-rich" colleagues in industry (and after signing
an NDA), academic networking researchers typically lack
access to any type of real-world production networks and
are thus seriously disadvantaged when it comes to obtain-
ing adequate data for developing their learning models and
evaluating them “in the wild".

At the same time, a closer look at the areas where AI/ML
applications have generated excitement in recent years (e.g.,
computer vision, autonomous vehicles/driving) shows that
their successes depended critically on having access to an
abundance of publicly available (labeled) data. For example,
the field of computer vision has benefited immensely from
IMAGENET, a community-led effort that has resulted in the
creation of a large database of hand-annotated images which
in turn revolutionized the field of visual object recognition
research [17]. By providing researchers with an opportunity
to focus on developing new and better learning algorithms
and spend less or no time on data collection and labeling, IM-
AGENET has fuelled as well as democratized research in the
area of computer vision. Similarly, research on AI/ML appli-
cations for autonomous vehicles took off with the introduction
of the LIDAR (short for light detection and ranging) and the
recent industry-led efforts to open-source entire collections of
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curated, cleaned and labelled datasets (e.g., Argo AI’s ARGO-
VERSE [16] or Adaptiv’s NUSCENES [15]).1 These datasets
contain hundreds of thousands of LIDAR sweeps, millions of
camera images and data from other sensors such as Sonars,
GPS, radar, and accelerometers and are intended “to enable
researchers to study challenging urban driving situations us-
ing the full sensor suit of real self-driving cars" [15]. This
data can be used at once by these researchers in their data-
driven efforts to develop and evaluate novel learning models
for autonomous vehicles/driving; they no longer have to do
the driving themselves to collect the necessary data.

In stark contrast, the field of networking has had no equiv-
alent of IMAGENET and has not had the benefits of the ana-
logue of a LIDAR or of comprehensive collections of datasets
such as ARGOVERSE or NUSCENES. Instead, for many prob-
lems, researchers typically have to start from scratch, first
conjecturing what the critical features for the problem at hand
might be, then developing the tools or systems for collecting
the necessary data, and finally extracting the identified fea-
tures from the obtained data. As a result, these researchers
often spend more time on designing and running experiments
to collect the data needed for extracting the features required
for the development of their learning models, with essentially
no opportunities to evaluate the resulting models in settings
that have any resemblance to a real-world production network
(see also [27] and references therein).

To correct this situation and also achieve the goal of de-
mocratizing networking research in the era of AI/ML, we
propose in this paper that academic network researchers start
to consider and treat their university or campus networks as
real-world production networks.2 When adequately instru-
mented with state-of-the-art network monitoring and data
collection capabilities and a set of the latest programmable
devices, such production networks could be operated and
managed in ways that go beyond their expected or traditional
role (e.g., delivering IT services and resources to the larger
university community). In particular, they could as well serve
as the source of the data that populates an IMAGENET-like
database or results in a ARGOVERSE- or NUSCENES-type
comprehensive data store and could also function at once as a
testbed where these researchers could evaluate and “road-test"
their learning solutions under real-world conditions.

Figure 1 illustrates our proposed use of properly instru-
mented university or campus networks by academic re-
searchers for developing and evaluating their learning models
and provides an overview of the paper. In particular, the net-
works’ proposed use as unique sources of rich network data

1It is not clear what exactly incentivized these companies to open-source
previously proprietary data, and why now and not earlier.
2Existing research and education networks can also be viewed as real-world
production networks as long as they carry a significant amount of Internet-
facing traffic.
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Figure 1: Paper in a nutshell: Treating a campus network
as both a data source (i.e., Section 3) and a testbed (i.e.,
Section 4) for networking research in the era of AI/ML.

has to be complemented with renewed attention to the topic
of data privacy (Section 3). Moreover, their intended use as
premier testbeds requires novel ideas for breaking down exist-
ing barriers to road-testing learning models (Section 4). We
also address some of the main limitations of the proposed
approach and discuss in Section 5 how they can, in fact, be
leveraged to benefit networking researchers in academia and
industry alike so as to close the mentioned digital divide.

2 KEY IMPEDIMENTS
Constant pressure to operate and manage their networks in
ever-more efficient and cost-effective ways has resulted in
network operators looking towards network automation as
a viable solution to their problems. At the same time, net-
work automation depends critically on the ability to develop
purposefully-designed learning algorithms to perform specific
tasks by themselves, without any assistance from the operator.
Take the case of a typical enterprise where automating a given
network management task generally involves performing a
particular action upon detecting a certain network event. For
example, the network event in question could be a DDoS
attack in the form of a DNS amplification attack on the en-
terprise and the corresponding action could be “drop attack
traffic on ingress if confidence in detection is at least 90%.”

In general, such automation tasks require three basic ac-
tivities: (i) sensing the network to obtain the data required
for the automatic inference of the network event in question,
(ii) using the acquired data as input to a learning model that
alerts on detecting the network event, and (iii) upon detec-
tion, performing the required mitigative actions. Moreover,
the allocation of compute resources that are available in the
network for performing any of these activities for a given task
(e.g., data plane, control plane, cloud) will depend on how
fast and with what accuracy that task has to be performed.
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For example, while modern data plane technologies are crit-
ical for enabling the real-time detection and mitigation of
task-specific network events, they are currently not capable
of supporting this capability at scale; i.e., executing hundreds
or thousands of such tasks concurrently and in real time.

At the same time, the described combination of basic ac-
tivities makes network automation a very promising but chal-
lenging research area for both leveraging recent advances
in AI/ML (for the development of automated inference tech-
niques to accomplish activity (ii)) and experimenting with the
latest programmable data plane technologies (for supporting
flexible network measurements and applying programmatic
controls in support of activity (i) and (iii), resp.). It is also
an area that highlights at once the main obstacles that have
stymied much of academic research on network automation
to date.

The data problem. Without the benefits of analogues of
IMAGENET or ARGOVERSE and NUSCENES, networking
researches have had no choice but obtain their desired data in a
“bottom-up" manner; that is, collecting much of the data in an
ad-hoc fashion, one special-purpose measurement experiment
at a time, often as an after-thought, with hardly any useful
metadata and generally with little (if any) attention given to
data-cleaning issues. As a result, publicly available network
measurements in support of network automation tasks are
rare, not necessarily representative, often a by-product of
some other measurement activities, and typically of only very
limited use for the task at hand. Even worse, labelled data that
is key to applying some of the existing AI/ML techniques to
network-specific problems is largely non-existent.

Note that this described bottom-up approach to data collec-
tion in networking is in stark contrast to the “top-down" ap-
proach used by today’s researchers in areas such as computer
vision. With IMAGENET at their disposal, these researchers
can treat feature engineering as a first-class citizen. That is,
they typically start by examining “ground truth" in the form
of full-fledged images and then use all their expertise and
imagination when deciding on the most promising features
for a given task. Importantly, the subsequent steps (e.g., fea-
ture extraction and model training) and possible iterations
of this process can take full advantage of the already avail-
able datasets – no new measurement experiments and/or data
collection efforts are required.

The evaluation problem. As the success stories of AI/ML
mount and AI/ML is increasingly used as an integral part
of more and more real-word systems (e.g., for medical di-
agnosis, decision making in the legal system), the in-depth
evaluation of newly developed learning models has become
a top priority. For example, while in areas such as computer
vision, researchers have began evaluating their learning algo-
rithms with an eye towards bias or fairness [13, 19], in the

area of autonomous vehicles/driving, the learning models are
increasingly being evaluated with respect to their safety and
robustness [14, 25]. In the networking area, the researchers’
efforts to evaluate their learning models are already jeopar-
dized by the amount of time they have to spend on running
experiments and collecting data. More importantly, their vali-
dation efforts are largely meant to convince network operators
who look for tools they can trust. In short, for those operators,
what matters is an ability to explain or interpret learning al-
gorithms and models. However, due to the much-maligned
black-box nature of existing AI/ML techniques, today’s net-
work operators have a general distrust of learning models
and are opposed to deploying untrustworthy tools in their
production network, thus limiting the researchers’ evaluations
of such tools to testbeds that have little (if any) resemblance
with the production network where these tools are suppos-
edly automating tasks that used to be performed by a human
operator.

3 CAMPUS NETWORKS AS DATA
SOURCES

A look at research areas such as computer vision and au-
tonomous vehicles/driving shows that the development of
AI/ML-based learning models has benefited enormously from
access to rich collections of datasets such as IMAGENET or
ARGOVERSE/NUSCENES that effectively showcase the full
power of feature engineering. In fact, the recent successes
in applying AI/ML in these fields are proof of the power
of the feature engineering-centric top-down approach that
lets researchers focus more fully on the actual development
and subsequent evaluation of their new learning models and
largely relieves them from the burden of collecting the neces-
sary data themselves.

However, while the IMAGENET or ARGOV-
ERSE/NUSCENES analogies are helpful for comparing
ongoing AI/ML-related efforts in networking to those in
computer vision and autonomous vehicles, they quickly
break when stretched too far. For example, the type of data
that we propose to collect from a university’s network is
much richer and more diverse than, for example, the images
in IMAGENET. However, the biggest differentiator derives
from the data privacy aspect of most network data. In fact,
an important aspect of our proposal is that the data collected
from a campus network is only meant for “internal" use;
that is, the data is only available to the researchers of that
university and it not intended to be available to or shared with
third parties (e.g., researchers from different universities).

One main goal of this proposal is to ensure that network-
ing researchers, especially in academia, are afforded similar
opportunities as their counterparts in areas such as computer
vision or autonomous vehicle. To this end, we argue that the
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networking research community has to come up with means
for creating and populating new types of data stores that con-
tain the most comprehensive collections of network data and
that leverage the latest network monitoring technologies.

Proposal (Part 1): To address the long-standing data prob-
lem that has plagued academic networking researchers, we
propose that these researchers consider and treat their univer-
sity or campus network as a real-world production network
and view and use it to its fullest extent as a source of realistic
network data of unprecedented quality and quantity.

Why campus networks? As far as real-world enterprise
networks are concerned, university or campus networks are
unique in the sense that they often strike a balance between
scale, complexity, and diversity. Typically small to moderate
in size, they carry traffic for a sizable university population,
and the traffic is real in that it is generated by a range of
actual applications and services from a variety of different
real-world users. These networks are operated and managed
by a professional IT organization that includes network op-
erators, engineers and security analysts. Among many other
responsibilities, these IT professionals support a variety of
research, academic and administrative systems, services, and
resources; are in charge of operating the university’s voice,
(wired and WiFi) network, and computing infrastructures;
deal with identity and access management and security; and
are responsible for protecting the university’s information and
the privacy of its users.

As sources of potentially valuable intellectual property, as
locations of various national laboratories, or as administrators
of student applications and records, universities experience
their fair share of cyber attacks. However, many of them are
usually unaware of most of these attacks and only find out af-
ter a breach occurred [23]. University networks are also prone
to network faults and outages and experience performance
issues in their infrastructures or with their offered services
(e.g., see [2]). In particular, there is a need to be able to pin-
point performance problems and notify the service or cloud
provider(s) in case the root cause is not internal to the campus
network.

Limitations. Without even attempting to put together a com-
prehensive list of limitations that the use of campus networks
as data sources imposes, the following are some of the most
obvious ones. For one, with respect to aspects such as scale
(e.g., size, traffic volume, end user population), workload
(e.g., type of applications or services) and economics (e.g.,
business model, peering relationships), university networks
are clearly not comparable to the real-world production net-
works of large enterprises, large ISPs such as AT&T and
Verizon, or global-scale content or cloud providers such as

Google, Microsoft, Facebook, Amazon, Alibaba, etc. In par-
ticular, campus networks are not meant to help with problems
in the data center space or with different aspects of wireless
networks (e.g., spectrum allocation).

As a result, the data collected from a typical university
network will not be representative for any of these compa-
nies’ production networks, the complexity of most network
management tasks for university networks pales in compari-
son to what is needed for operating the domestic- or global-
scale network infrastructures of these companies, and when it
comes to the degree of heterogeneity of deployed hardware,
installed software, available tools and manpower, most cam-
pus networks have to be rightly viewed as little more than
toy examples when compared to the real-world production
networks of the large Internet companies.

4 CAMPUS NETWORKS AS TESTBEDS
Given that making mistakes or wrong decisions in a produc-
tion network has real-world consequences (e.g., disruption of
critical services, dis-satisfied users, poorly performing appli-
cations, loss of revenues), network operators are extremely
averse to deploying untested tools or experimental hardware.3

At the same time, academic network researchers have in gen-
eral only very limited options (e.g., simulations, emulations)
when it comes to evaluating their newly developed AI/ML-
based network automation tools. Importantly, they typically
lack access to any real-world production network, and as a
result, they have made little to no progress in the past with
respect to convincing network operators of their tools’ correct-
ness, robustness, and safety or explaining to them how their
tools’ learning models work and why they output a certain
result and not something else. A second goal of our proposal
is to suggest a viable option for networking researchers to
gain access to actual production networks.

Proposal (Part 2): To address the ever-present evaluation
problem that has vexed academic networking researcher in
the past, we propose that these researchers should consider
and treat their university or campus network as a real-world
production network and view and use it to its fullest extent
as a testbed for extensively evaluating their newly developed
learning models and road-testing their newly designed AI/ML-
based network automation tools.

Why campus networks? In view of our stated objective of
democratizing networking research in the era of AI/ML, the
proposed use of university networks as real-world testbeds is
especially fitting because these proposed production networks
are ubiquitous (i.e., every university has one); they can be
instrumented with the necessary networking technologies (i.e.,
3Interestingly, the companies behind ARGOVERSE and NUSCENES do not
discuss any road-map for integrating new tools developed by third-party
researchers into their solutions.
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these technologies are already available today); transforming
them into testbeds can be achieved incrementally (e.g., use
of configuration management tools such as Puppet [7]); and
realizing them is well within the budgetary constraints of
a typical university’s networking research group and/or IT
organization. In short, every academic networking researcher
can in theory gain access to a real-world production network
and start using it as data source and testbed.

Moreover, in theory, there is no reason why every univer-
sity’s IT organization could not operate its university’s net-
work so as to perform the proposed dual role; that is, function
as traditional service provider (e.g., delivering IT services and
resources to the larger university community) and, at the same
time, operate the network for the benefits of the university’s
networking researchers in particular and its larger research
community in general (e.g., as data source and real-world test
bed). However, ensuring that the task of running the campus
network “as a lab” to advance research and support innovation
becomes part of any university’s IT organization’s mission
statement will require university-wide efforts and novel in-
centives for the involved parties (e.g., students, faculty, IT
organization, administration). We argue that with the prolifer-
ation of AI/ML, it is high time for universities to engage their
various constituents in such efforts.

Limitations. In addition to the already mentioned limitations
(see Section 3), the unavailability of modern programmable
devices in production settings in existing campus networks is
another limiting factor. A few research groups are currently
experimenting with programmable devices, but we are not
aware of any university IT organizations that are actively us-
ing or experimenting with them in their production networks.

Deploying a researcher’s AI/ML-based tools in an univer-
sity’s production network requires production-quality soft-
ware and clearly-defined guidelines that spell out the respon-
sibilities for both the researcher and the IT organization. How-
ever, not only is the current academic environment ill-suited
for researchers to write production-quality code, but a gen-
eral lack of interactions and synergies between a university’s
networking research groups on the one hand and its IT or-
ganization on the other hand makes it difficult to even start
entertaining the idea of some sort of support contract between
the “vendor" (i.e. the researcher who wrote the tool’s code)
and the “customer" (i.e. the IT organization that uses the tool).

Just as our proposed use of campus networks as real-world
testbeds (and as sources for data from actual production net-
works) has its limitations, so do alternative approaches. For
example, attempts to incentivize the large commercial service
providers to allow academic researchers limited and carefully-
controlled use of their production networks as data sources or
testbeds have been largely futile in the past. Other efforts that
start more testbed-oriented and have a more production-like

setting as their goal (e.g., Massachusetts Open Cloud (MOC)
project [3] run the risk of failing to attract sufficient commer-
cial traffic onto their platform. In view of such alternatives,
we argue that the common goal of advancing and broadening
networking research in the era of AI/ML is best served by
also exploring the use of the ubiquitous real-world production
networks owned and run by universities.

5 NEW OPPORTUNITIES
The listed limitations in Sections 3 and 4 may be viewed as
strong ammunition against using campus networks as data
sources and/or real-world testbeds for advancing a viable
research agenda in the area of AI/ML-based networking.
However, we argue that precisely because of these limita-
tions, leveraging these real-world toy production networks
creates unique opportunities for both academic and industry
researchers and lets them both benefit from the advantages as
well as limitations of their respective production settings.

From network monitoring to data stores. Because the
overall traffic that a campus network exchanges with its up-
stream provider(s) is typically in the 10-20 Gbps range, these
networks are ideal for experimenting with the latest network
monitoring technologies in ways that would be impractical
for the large commercial service provider networks that have
to handle way larger traffic volumes on a daily basis. In partic-
ular, we propose to instrument campus networks with moni-
toring solutions that can perform enterprise-wide, continuous,
lossless, full packet capture at scale; i.e., every packet that
enters or leaves the enterprise is collected (packets that stay
inside the enterprise can also be part of this solution), with
full payload, with no sampling, and at link speeds of up to
100 Gbps or higher. This technology already exists [4], a
number of enterprises in the private and public sectors have
already adopted such commercial solutions, and a typical
campus network (e.g., a 10 Gbps upstream connection, data
storage requirements of the order of a week) can deploy this
technology today for a few $100K.4

A critical feature of these latest network monitoring solu-
tions is that they also create and populate a data store that
contains not only all the raw packet-level data but also com-
plementary data from other available sensors or sources (e.g.,
server logs, firewall rules, configuration files, events) as well
as an extensive set of “on-the-fly" generated metadata. More-
over, all the stored data is not only cleaned, curated, time-
synchronized and (where possible) labelled, but also linked
and indexed to provide fast and flexible search capabilities.
Comprising a single platform for collecting, storing, indexing,
mining, and visualizing network data, a university network’s
data store that results from this proposal becomes the single

4This cost increases proportionally with the size and number of the upstream
links and the duration of data retention.
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source of all campus network-related data. That is, everything
seen “on the wire" is collected and stored and augmented
with all different types of complementary network-related
information and metadata.

Also note that because of the small-moderate size of typical
campus networks, the data volume in the resulting data stores
is manageable and storage costs are in general within the
budgetary constraints of an university’s IT organization. Be-
cause they invite exploring problems “in the small" that may
be difficult or impossible to study “in the large", these data
stores could become promising venues for possible industry-
university collaborations. For example, a campus network-
based study may identify precisely-defined problem-specific
small subsets of data that are amenable for continuous col-
lection even in a large production network where a more
full-fledged data collection would be infeasible.

Revisiting data privacy. To start, our proposal creates new
responsibilities for the university’s IT organization. As sole
owner of all the university’s information, it is responsible for
safeguarding the resulting data store, protecting user privacy,
deciding on what data can/should not be collected and/or
stored (and in what form), and arbitrating what data can or
cannot be made available to which of the university’s many
different constituents.

Mainly because of data privacy, the data stores that result
from our proposed use of campus networks as data sources
are not likely to ever become publicly available. Each data
store is only assumed to be available for ‘internal" use (see
Section 3). In fact, our proposal neither assumes nor relies
on these data stores ever being open-sourced and instead ad-
vances the notion of open-sourcing the learning algorithms
that university researchers will develop using their own cam-
pus network’s data store. In fact, using such open-sourced
learning algorithms and training them with data from some
other campus networks (each with its own data store) suggests
a viable path for tackling the much-debated reproducibility
problem in science in the era of AI/ML [20]. Being able to
evaluate the resulting learning models (one per considered
campus network) and comparing their performance across
these various production networks may increase the overall
confidence in newly designed learning algorithms. It may
even peek the interest of industry researchers to experiment
with them in their own production networks (assuming they
practial value in the algorithms) and also may tempt opera-
tors to consider such reproducibility as an item on a possible
future road-map for “road-testing" AI/ML-based tools.

More generally, it is our hope that this proposal will mo-
tivate a renewed engagement between academic researchers,
IT organizations, the administration (e.g., Office of General
Counsel, Office of Audit and Compliance), and the user com-
munity at various universities. In particular, if a university
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Figure 2: Road to deployment: A (slow, offline) develop-
ment loop leverages the campus network (both as a data
source and a testbed) to obtain a deployable learning
model that performs the (fast, online) control loop capa-
ble of sensing, inferring, and reacting in real time to a
specific network event.

can convince the users of its network that even though traf-
fic is monitored, user data is guaranteed to be only used for
improving the network’s security and performance and not
for any kind of monetization by third-parties, there may be
an opportunity to finally get data privacy “right", and what
better places to accomplish this than in university networks!

A roadmap for “road-testing" AI/ML-based tools.
For learning models developed for certain network automa-

tion tasks, a possible road to deployment entails four distinct
steps and is illustrated in Figure 2: (i) Develop a learning
model in an offline fashion, fully utilizing the available data
store information, unconstrained by time and compute re-
sources needed, and leveraging traditional and typically com-
plex and heavyweight black-box learning models; (ii) lever-
age recent developments on the topic of Explainable Artificial
Intelligence (XAI) [8–10, 21] and replace the learning model
in (i) with a deployable learning model (i.e., a learning model
that is explainable or interpretable, lightweight and closely
approximates the original model); (iii) compile the deploy-
able learning model from (ii) into a target-specific program
(e.g., P4 [11]) and configure the programmable switches (e.g.,
Barefoot Tofino [1]); (iv) explain to the network operator how
a given deployable learning model works and accomplishes
the task it was designed to perform.

To illustrate the need for opening up the black box [18]
(step (ii)) and turning it into a “white box" (step (iv)), envi-
sion, for example, a learning model developed for a specific
network automation task that could be routinely queried for
the list of pieces of evidence that the model used to arrive at
its decisions. If after going through such a list, the operators
would conclude that based on the presented evidence, they
would have made the same decision, their level of trust in
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the learning model would increase. That trust level would in-
crease even more if the provided evidence describes scenarios
that the operators only add to their knowledge base de-facto;
i.e., after recognizing the correctness of the model’s decisions
for scenarios they were unaware of—a learning model that
teaches operators things they know they didn’t know!

Innovation in education. With the enormous interest in
AI/ML across the sciences and the recent flurry of data science
initiatives and associated openings of data science institutes
at the different universities, we argue in this proposal that
the time may have come for academic institutions in general
and the universities’ CS or EE departments in particular to
change their time-tested approach to teaching and research.
For example, using campus networks as real-world production
networks and leveraging them for populating data stores with
network data of unprecedented quality and quantity provides
unique opportunities for education (e.g., new and innovative
data science curricula for CS students) and research (e.g., easy
and much-needed access to real-world data in support of the
CS researchers’ interest AI/ML-based methods).

Our proposal also highlights the importance for modern
academic institutions to radically change the ways a univer-
sity’s IT organization, its research and teaching faculty, and
its student body interact and can benefit from one another.
For example, for a university’s IT organization and its CS or
EE departments, it may make sense to join forces and con-
template hiring a small staff of professional developers and
engineers to oversee and coordinate all activities related to op-
erating the campus network “as a lab." Such an arrangement
has the potential of facilitating internal tech transfer (e.g.,
the IT organization testing and deploying tools developed
by the researchers), completely revamping entire programs
of studies (e.g., programming, networking, cyber security),
and revolutionizing the training of the next generation of re-
searchers and engineers (e.g., “hands-on" and data-driven
teaching and learning network management-related problems
in an actual production network). The workforce produced by
such radically-overhauled academic institutions promises to
have the skill set needed to advance AI/ML-based networking
for the benfits of both academia and industry.

6 RELATED WORK
Two recent survey papers [12, 27] provide an excellent ac-
count of the past use of and recent advances in AI/ML for
networking and also allude to some of the challenges for
networking research in the era of AI/ML discussed in this
paper.

There have been numerous efforts in the past that have
advocated for a democratization of the field of networking.
An early such effort that predates the age of AI/ML and also
today’s growing digital divide between academic and industry

researchers was the “Network Oracle” proposal [22]. Our pro-
posal has much in common with this early effort, but is both
less ambitious and more practical. Instead of a system for the
Internet’s core, we propose to focus squarely on the Internet’s
edge by leveraging to the fullest possible extent university or
campus networks. At the same time, with the necessary tech-
nologies already available (e.g., scalable network monitoring
and data collection solutions, programmable data planes, scal-
able platforms for processing distributed streaming data), our
proposal can be implemented today and at a reasonable cost.

Similarly, our two-part proposal has much overlap with and
builds on the ideas of past work such as [26] (i.e., use of cam-
pus networks for deploying OpenFlow), ongoing efforts such
as the “learning-and-deployment” platform Puffer [6, 28], and
the recent P4 Campus initiative for developing production-
level P4 programs to run in real campus networks [5]. Our
proposal generalizes these learning and/or deployment envi-
ronments by leveraging a university or campus network in
its entirety and to its fullest extent; that is, as source for an
abundance of rich network data (in support of “learning”) and
as real-world testbed for experimenting with and evaluating
new AI/ML-based tools (in support of “deployment”).

7 CONCLUSION
Concerned about a growing chasm between the “haves" and
“have-nots" [24], we outline a vision for democratizing net-
working research in the era of AI/ML. In particular, we pro-
pose that academic networking researchers should start lever-
aging campus networks for their research efforts. As real-
world production networks, these settings become invaluable
sources for network data of unprecedented quality and quan-
tity that promises to transform how AI/ML will be viewed
and used in networking. At the same time, these settings can
also be used as unique testbeds where AI/ML-based solutions
can be road-tested under realistic conditions. We posit that
the proposed re-purposing of university networks has enor-
mous potential, and the best way to realize this potential is for
networking researchers at universities to go and start talking
to their IT colleagues.
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