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Abstract
Network conditions are dynamic; unfortunately, current
approaches to configuring networks. Network operators
need tools to express how a network’s data-plane behavior
should respond to a wide range of events and changing
conditions, ranging from unexpected failures to shifting
traffic patterns to planned maintenance. Yet, to update the
network configuration today, operators typically rely on a
combination of manual intervention and ad hoc scripts. In
this paper, we present Kinetic, a domain specific language
and network control system that enables operators to con-
trol their networks dynamically in a concise, intuitive way.
Kinetic also automatically verifies the correctness of these
control programs with respect to user-specified temporal
properties. Our user study of Kinetic with several hundred
network operators demonstrates that Kinetic is intuitive
and usable, and our performance evaluation shows that
realistic Kinetic programs scale well with the number of
policies and the size of the network.

1 Introduction
Network conditions are always changing. Traffic patterns
change, hosts arrive and depart, topologies change, in-
trusions occur, and so forth. Despite the fact that many
of these changes are predictable—and, in some cases,
even planned—an operator’s control over the network re-
mains relatively static. In response to changing conditions,
network operators typically manually change low-level
network configurations. Our previous study of network
configuration changes found that a campus network may
experience anywhere from 1,000 to 18,000 changes per
month [20]. Although tools like Puppet [27] and Chef [3]
can automate some network device configuration tasks,
this level of automation is still relatively hands-on and
error-prone.

To underscore the importance of this problem, we ana-
lyzed acceptable use policies from more than 20 campus
networks (many of which are publicly available [22]) and
also surveyed network operators about their experience
with existing tools for implementing these kinds of poli-
cies. These policies are written in English and typically

express how the network’s forwarding behavior should
change in response to changing network conditions. For
example, the University of Illinois’s network use policy
has an unrestricted class, and four restricted classes of
traffic shaping; a user’s traffic is downgraded into dif-
ferent classes based on their past usage over a 24-hour
sliding window. Such policies sound simple enough when
expressed in prose, but in fact they require complex in-
strumentation and “wrappers” that dynamically change
low-level network configuration. Network operators cur-
rently have no concise way to express these functions, nor
do they have any way of checking whether their changes
will result in the intended behavior. In a recent survey
we conducted that included several hundred network op-
erators, 89% of respondents said that they could not be
certain that the changes they made to network configura-
tion would not introduce new bugs.

Software-defined networking (SDN) is a powerful ap-
proach to managing computer networks [11] because it
provides network-wide visibility of and control over a net-
work’s behavior; the Frenetic [13] family of languages pro-
vides higher-level abstractions for expressing network con-
trol. These languages are embedded in general-purpose
programming languages (specifically, OCaml and Python),
which makes it possible to write control programs that
can respond to arbitrary events. Yet these languages do
not provide intuitive abstractions for automating changes
to network policy in response to dynamic conditions, nor
do they make it possible to verify that these changes will
match the operator’s requirements for how network behav-
ior should react to changing network conditions.

To address these problems, we present Kinetic, a do-
main specific language (DSL) and SDN controller that
enables writing network control programs that capture
responses to changing network conditions in a concise,
intuitive, and verifiable language. Kinetic provides a struc-
tured language for expressing a network policy in terms of
finite state machines (FSMs), which both concisely cap-
ture dynamics and are amenable to verification. States
correspond to distinct forwarding behavior, and events
trigger transitions between states. Kinetic’s event handler
listens to events and triggers transitions in policy, which
in turn update the data plane.

1



60  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15)	 USENIX Association

Kinetic makes it possible to verify that changes to net-
work behavior conform to a higher-level specification of
correctness. For example, a network operator might want
to prove that a control program would never allow a host
access to certain parts of the network once an intrusion has
been detected. Ongoing work has devoted much attention
to verification of the network’s data plane; tools such as
VeriFlow [19] and HSA [18] can determine, for exam-
ple, whether the forwarding table entries in a network’s
switches and routers would result in persistent loops or
reachability problems. However, these tools only oper-
ate on a snapshot of the data plane; they do not allow
operators to reason about network control programs, or
how network control would change in response to various
events or changes in network conditions. They do not pro-
vide any way for a network operator to find errors in the
control programs that install erroneous data-plane state in
the first place. Kinetic’s focus on automating and verifying
the control plane is complementary to this previous work.
Kinetic’s use of computation tree logic (CTL) [6]—and its
ability to automatically verify policies with the NuSMV
model checker [4]— can allow network operators to verify
the dynamic behavior of the controller before the control
programs are ever run.

One significant challenge we faced when designing
Kinetic is the potential for state explosion in Kinetic pro-
grams, due to the large number of hosts, flows, network
events, and policies. A naı̈ve encoding of dynamic poli-
cies in an FSM would result in an exponential number of
states, even for simple programs because every flow, with
all possible combination of fields (e.g., src/dst IP, src/dst
MAC, etc), can have its own state. To control this state
explosion, Kinetic introduces an abstraction called a Lo-
cated Packet Equivalence Class (LPEC), through which a
programmer can specify a division of the flow space and
map an independent copy of an FSM (FSM instance) to
each class of flow space. Using LPECs, a programmer can
define groups of flows that should always map to same
FSM instances (e.g., all flows from the same source MAC
address). Thus, each defined group of flows will be in the
same state. Additionally, because Kinetic is itself based
on Pyretic (a Python-based SDN control language in the
Frenetic family) [25], Kinetic inherits Pyretic’s language
and runtime features. Specifically, Kinetic uses Pyretic’s
composition operators to express larger FSMs as multiple
smaller ones that correspond to distinct network tasks (e.g.,
authentication, intrusion detection, rate-limiting). Apply-
ing Pyretic’s composition operators to independent Kinetic
FSMs and classic product construction of automata [10]
(combining multiple FSMs with union or product) greatly
simplifies the construction of Kinetic’s FSM expressions
and allows the FSM-based policies to scale.

We evaluated two aspects of Kinetic: (1) its usability,
in terms of both conciseness and operators’ facility with

Profession Experience (years) # Users in Network
Operator 216 1 32 1–10 156
Developer 251 1–5 310 10–100 137
Student 123 5–10 187 100–1,000 136
Vendor 80 10–15 150 1,000–10,000 118
Manager 69 15–20 122 > 10,000 322
Other 138 > 20 73
Total 877 874 869

Table 1: Demographics of participants in the Kinetic user study.
We asked these participants about their experiences configuring
existing networks, as well as their experiences using Kinetic.
Section 5 discusses the participants’ experience with Kinetic.
Not all participants answered every question.

expressing realistic network policies; and (2) its perfor-
mance, in terms of its ability to efficiently compile network
policies into flow-table entries, particularly as the number
of policies, the size of the network, and the rate of events
grow. We conducted a user study with Kinetic of more
than 650 participants, many of whom were network opera-
tors with no prior programming experience; most found
Kinetic quite accessible: 79% thought that configuring the
network with Kinetic was easier than current approaches,
and 84% thought that Kinetic makes it easier to verify
network configuration than existing alternatives.

Kinetic is open-source and publicly available; the
project webpage provides access to the source code, a
tutorial on Kinetic, and all of the code for the experimen-
tal evaluation [21]. The system has been used by SDN
practitioners [14] and has served as the basis for projects
and assignments in several university courses, as well as in
a Coursera [8] course, where it has been used by thousands
of students over the past two years.

2 Motivation and Background
To motivate the need for Kinetic, we present the results of
a survey of network operators about problems automating
and verifying network configuration. We then present
background on Pyretic, the language on which Kinetic is
based; and on model checking and computation tree logic,
which we use to design Kinetic’s verification engine.

2.1 Motivation: Network Operator Survey
To gain a better understanding of the extent to which
network operators have to change their network config-
urations, as well as their level of confidence in their
changes, we conducted an institutional review board
(IRB)-approved survey of more than 800 participants, con-
cerning their experience with configuring existing net-
works, as part of a Coursera course on software-defined
networking that we offer [8]. Table 1 summarizes the
demographics of the participants: about 870 students com-
pleted the survey, 216 of whom were full-time network
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operators. The majority of the students who completed
the assignment and survey had more than 5 years of expe-
rience in networking, and many had more than 15 years of
experience. More than 200 of the students had experience
with networks of more than 1,000 devices, and more than
300 of the students had experience with networks with
more than 10,000 users. Most of the participants had the
most experience with campus or enterprise networks.

The responses we received demonstrate a clear need for
better tools for automating and verifying network control.
Nearly 20% of participants said that they must change their
network configurations more than once a day. The most
common causes of changes were provisioning, planned
maintenance, and updates to security policies—exactly
the types of configuration changes that we aim to auto-
mate with Kinetic. More strikingly, 89% of respondents
indicated that they were never completely certain that
their changes to the configuration would not introduce a
new problem or bug, and 82% were concerned that the
changes would introduce problems with existing function-
ality that was unrelated to the change. The two most
common aspects of configuration that operators wanted to
see automated were correctness testing (37%) and quality
of service and performance assurances (24%). The two
most common aspects of configuration that participants
wanted to see verified were general correctness problems
(37%) and security properties (26%). We asked these same
participants to write programs in Kinetic and other SDN
controllers; we discuss the results of that part of our user
study in Section 5.1.

2.2 Background: Pyretic and CTL

Pyretic. To develop a language for expressing control
dynamics that is both concise and easy to use, we based
the Kinetic language on Pyretic [25], a Python-embedded
domain-specific programming language for writing SDN
control programs. It encodes network data-plane behavior
in terms of policy functions that map an incoming “located
packet” (i.e., a packet and its location) to an outgoing set
of located packets. Pyretic has a policy variable that de-
termines the actions that the control program applies to in-
coming packets (e.g., filtering, modification, forwarding).
Pyretic ultimately compiles policies to OpenFlow-based
switches. Pyretic’s composition operators provide straight-
forward mechanisms for composing multiple distinct poli-
cies into a single coherent control program. Pyretic’s
parallel composition operator (+) makes a copy of the
original packet and applies the corresponding policies to
each copy in parallel. Sequential composition (>>) ap-
plies policies to a packet in sequence, so that the second
policy is applied to the packet that is the output of the first
policy. Pyretic is extensible, and its support for composing
distinct policies and dynamically recompiling flow-table

Operator Meaning
(Quantifiers over Groups of Paths)

A φ φ holds for all possible paths from the current state.
E φ There exists a paths from the current state where φ holds.

(Quantifiers over a Specific Path)
X φ φ holds for neXt state.
F φ φ eventually holds sometime in the Future.
G φ φ holds for all current and following states, Globally.
φ U ψ φ holds at least Until ψ .

Table 2: Computation tree logic (CTL) operators.

entries whenever the policy variable is updated are use-
ful features for Kinetic. Still, the language itself does not
provide a framework for writing concise, intuitive policies
that respond to changing conditions, which is Kinetic’s
goal.

Model checking. We wanted to design Kinetic so that
policies were not only easy to automate, but also easy to
verify. To do so, we applied a model checking framework
developed by Clarke and Emerson [5, 6] and subsequently
refined by McMillan [24]. Model checking can guarantee
that a finite state machine (FSM) satisfies certain prop-
erties that are expressed in different types of logics; this
feature makes FSMs a logical choice for expressing Ki-
netic policies. One such logic is computation tree logic
(CTL), a branching-time logic that represents time as a tree
structure. The initial state of an FSM is the root, and each
node represents a different future state. A path through
the tree represents an execution path of the FSM. CTL
allows the expression of various types of temporal logic
statements, such as those expressed in Table 2. NuSMV
is a widely used symbolic model checker for FSMs [4].
The Kinetic compiler automatically translates Kinetic pro-
grams into an SMV model, which can be tested against
various CTL-based assertions.

3 Kinetic by Example

We illustrate various features of Kinetic by way of exam-
ple programs. All of the examples that we present in this
section are verifiable; we defer a discussion of verifica-
tion, as well as the details of the Kinetic language and
runtime, to Section 4. We have selected examples that
demonstrate the design features of Kinetic; the Kinetic
Github repository has more examples [21].

Kinetic programs capture control dynamics with a finite
state machine (FSM) abstraction. To illustrate this abstrac-
tion, we start with a simple example involving intrusion
detection. Although FSMs are intuitive, representing all
possible network states in a monolithic FSM would result
in state explosion; the second and third examples illus-
trate two abstractions that address this challenge: Located
Packet Equivalence Classes (LPECs) and FSM composi-
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Figure 1: Intrusion detection FSM.

Figure 2: Stateful firewall FSM.

tion. Finally, to show Kinetic’s generality, we present a
MAC learning switch implementation.

3.1 Capturing Dynamics
We begin with a simple dynamic policy involving intru-
sion detection. Suppose that a network operator wants
the network to drop all packets to and from a host once
it receives an event indicating that the host is infected
(e.g., from an intrusion detection system). Kinetic allows
operators to concisely express these dynamics with finite
state machines that determine how a policy should evolve
in response to events such as intrusions. We chose FSMs
as the basic abstraction for expressing Kinetic programs
because (1) they intuitively and concisely capture control
dynamics in response to network events; and (2) their
structure makes them amenable to verification.

In this example, each host would have a single state
variable, infected. When infected is false, the
controller applies Pyretic’s identity (allow) policy for
traffic from that host; when it is true, the controller ap-
plies Pyretic’s drop policy for the host’s traffic. Figure 1
shows this logical FSM. To support verification, the actual
specification of the FSM for this policy is slightly more
complicated; we expand on this example in Section 4.2.

3.2 Capturing State for Groups of Packets
Defining FSMs in Kinetic has the potential to create state
explosion, since dynamic policies must be defined over
a state space that is exponential in the number of hosts
and flows (and possibly other aspects of the network). For
example, consider the previous example, a two-state FSM
indicating whether a host is infected. If the network has N
hosts, then representing the state of the network requires
an FSM with 2N states, which is intractable, particularly
as the size of the network and the complexity of policies
grow. Instead of directly encoding an FSM that explic-
itly encodes all variable values, Kinetic encodes a single
generic FSM that can be applied to any given group of

Figure 3: Data usage-based rate limiter FSM.

packets (e.g., all packets from the same host, in the case of
the previous example). Each group of packets has a sepa-
rate FSM instance; packets in the same group will always
be in the same state. We call such a group of packets a
located packet equivalence class (LPEC).

To illustrate the use of LPECs, we describe the imple-
mentation of a stateful firewall that implements a common
security policy. Figure 2 shows the Kinetic representa-
tion of the policy. This program always allows outbound
traffic, but blocks inbound traffic unless the traffic flow
is in response to corresponding outbound traffic for that
flow. For example, if internal host ih1 pings external host
eh2 then packets sent from eh2 should be allowed back
through the firewall until a certain timeout occurs, but only
if ih1 is the destination.

The firewall’s initial state, in the left of the figure, shows
the policy, ihs, which is a filter policy matching all traffic
whose source address in the set of internal hosts. A Pyretic-
encoded query collects outbound packets from hosts in
ihs and produces (outgoing,True) event. This trig-
gers the update of the policy variable to identity
(indicating that traffic is now allowed), and outgoing is
reset. The timeout event is provided by Kinetic event
driver. After certain amount of time (e.g., five seconds), a
(timeout,True) event is invoked unless another outgo-
ing packet is seen within the timeout. The program should
regard inbound and outbound flows between the same
pairs of endpoints with the same state, and the program-
mer should not have to explicitly encode state for every
pair of endpoints. To implement such a policy, the pro-
grammer can define an LPEC to correspond to a distinct
source-destination IP address pair:

def l p e c ( p k t ) :
h1 = p k t [’srcip’ ]
h2 = p k t [’dstip’ ]
r e t u r n ( match ( s r c i p =h1 , d s t i p =h2 ) |

match ( s r c i p =h2 , d s t i p =h1 ) )

3.3 Composing Independent Policies
Many aspects of network state are logically independent.
For example, whether a host has authenticated is indepen-
dent of whether it is infected or whether it has exceeded
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Figure 4: MAC learner FSM.

a usage cap. This independence allows a programmer to
represent the overall network state as a product automaton
that can be decomposed in terms of simpler tasks, where
each task has simpler (and smaller) FSMs. This example
shows the composition of four independent network tasks.

In our survey of campus network policies, we found
nearly 20 university campuses [22] that implemented some
form of usage-based rate-limiting (e.g., [7]). Network op-
erators currently implement these policies using low-level
scripts that interact with monitoring devices. Kinetic pro-
vides intuitive mechanisms for implementing such a policy.
Figure 3 illustrates the FSM for a usage-based rate limiter,
which forward traffic with different delays depending on
the user’s historical data usage patterns. By default, traffic
is forwarded with no delay; depending on the events that
the controller receives concerning usage, the controller
may institute a policy that introduces additional delay on
user traffic. (OpenFlow 1.0 does not support traffic shap-
ing, so we use variable delay as an illustrative example;
Kinetic could be coupled with controllers that support later
versions of OpenFlow that can do traffic shaping.)

Naturally, a real network would not only have policies
involving quality-of-service, but also other policies, such
as those relating to authentication and security. For exam-
ple, a control program might first check whether a host is
authenticated, either through a Web login or via 802.1X
mechanism. Subsequently, the host’s traffic might be sub-
ject to an intrusion detection policy that allows traffic by
default but blocks the traffic if an infection event occurs.
Finally, it might be sequentially composed with the rate-
limiting policy above, yielding the resulting policy:

( web au th + 802 .1 X auth ) >> i d s >>
r a t e l i m i t e r

To verify this program, Kinetic generates a single FSM
model for input to a model checker. Thus, programmers
can write CTL specifications for the resulting composed
policy, not only for individual policies. For example, a
logic statement involving the combination of policies such
as “If a host is authenticated either by the web authen-
tication system or with 802.1X and is not infected, the
resulting policy should never drop packets” can be ver-
ified with a single CTL assertion, as shown in Table 3.
(Section 4.4 discusses verification in more detail.)

Pyretic Runtime 

Event Handler External Event Drivers 

Kinetic 
Runtime 

Kinetic 
Program 

FSM 
Event Hookup 

port_events 
switch_events 

packet_outs 
stat_requests flow_mods 

external 
events 

packet_ins 
stat_replies 

Pyretic Runtime 

Event Handler External Event Drivers

FSM S
Event Hookup 

Eers Et D i

LPEC projection map 

Figure 5: Kinetic architecture.

3.4 Handling General Event Types
Figure 4 shows a Kinetic FSM for a MAC learner that
responds to both packets from hosts and topology changes.
Although the implementation of a MAC learning switch is
just as simple in other languages (indeed, it is the “canoni-
cal” reference program for SDN controllers), we present
this example to illustrate that Kinetic programs can handle
a variety of event types, including packet arrivals.

This program responds to two different types of events:
TC (topo change) and port events. The TC event is a
built-in event that is invoked automatically whenever a
topology change occurs. In Kinetic, programs can register
and react to this built-in event. The port events are
generated by a Pyretic query that collects the first packet
for each (switch,srcmac) pair. The values of policy
are defined by that of port: the value is flood when
port is 0, and fwd(n) when port=n. Initially port
is 0 (indicating the port has not yet been learned), and TC
is False. When a (port,n) event arrives, which is
invoked by the Pyretic runtime when it sees a packet from
an unseen host, a transition occurs, setting the port to the
value learned and the policy to unicast out that port. The
MAC learner then unicasts packets to the appropriate hosts
until a topology change occurs, triggering the transition
to the right-most state in which TC is True, resulting
in flooding for packets corresponding to that LPEC (i.e.,
switch-source MAC address pair).

4 Kinetic Design & Implementation
We describe the details of Kinetic’s architecture, language,
runtime, and verification engine.

4.1 Architecture
We now describe the Kinetic system architecture, includ-
ing the design of the Kinetic programming language. Fig-
ure 5 shows the Kinetic architecture, which is built on the
Pyretic runtime. At the highest level, a Kinetic program
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Figure 6: The Kinetic language grammar.

has three parts: (1) a finite state machine (FSM) specifi-
cation; (2) a specification of portions of flow space that
are always in the same state in any given FSM (an LPEC);
and (3) mechanisms for incorporating external events that
could change the state of any given LPEC’s FSM.

Kinetic instantiates copies of programmer-specified
FSMs (one per LPEC); the Kinetic event handler sends
incoming events, which can arrive either from external
event hookups or from the Pyretic runtime (e.g., in the
case of certain types of events such as incoming packets),
to the appropriate FSMs. Kinetic FSMs register with one
or more event drivers and update their states when new
events arrive, responding to incoming events that may be
processed by those drivers. Kinetic supports both native
events and generic JSON events. Because Kinetic is em-
bedded in Pyretic, these functions can be executed using
Pyretic’s runtime. We use the Pyretic runtime to exchange
OpenFlow messages with the network switches; we also
use the Pyretic runtime to handle certain types of events,
such as those related to either network topology or traffic.

4.2 Language and Abstractions

We offer a complete description of the language and then
discuss LPECs and FSM composition in more detail.

4.2.1 Language Overview

Figure 6 defines the Kinetic language, which extends
Pyretic (P). Pyretic has bucket policies (notated by B)
which collect packets and count packet statistics, respec-
tively; primitive filters (A) and derived filters (F) that
allow only matching packets through; and static policies
(N). Static policies include buckets, filters, the modify
policy, and the combination of these via parallel and se-
quential composition. Dynamic generates a stream of
static policies and can be combined with other policies in
parallel or sequence.

Total # of states: 2N Total # of transitions: 22N 

  (omitted for cleaner look) 
# of hosts: N 

(a) Explicit encoding is exponential in N.

H_1 FSM H_2 FSM H_3 FSM 

allow 

drop 

allow 

drop 

allow 

drop 

  + + 

H_N FSM 

allow 

drop 

+ 

Total # of states: 2N Total # of transitions: 2N # of hosts: N 

Default state 

(b) Decomposing to N LPEC FSMs.

Figure 7: Reducing state explosion using an LPEC FSM.

Kinetic extends the Pyretic DSL with a subclass of
Dynamic—FSMPolicy—which takes two arguments:
an LPEC projection map (L) and an FSM description (M).
The LPEC projection map takes a packet and returns a
filter policy. The FSM description is set of assignments
from a variable name to a variable definition (W). Each
variable is defined by its type, initial value, and associated
transition function (T). Each transition function is a list of
cases, each of which contains a test (S) and an associated
basic value (D) to which this corresponding state variable
will be set, should this case be the first one in which the
test is true. Tests are the logical combination of other tests
(using and, or, not) or equality comparison between basic
values. Finally, basic values are constants (C(value)),
state variables (V(variable name)), and events (event).

4.2.2 Located Packet Equivalence Classes

Recall from Section 3 that an LPEC allows an operator
to encode a generic FSM for groups of packets (e.g., all
packets with the same source MAC address). Each distinct
LPEC will have its own FSM instance, and the group of
packets in each LPEC will be in the same state. Because
each LPEC refers disjoint sets of packets, their FSMs (and
corresponding policies) can be maintained independently,
thus allowing their policies to be encoded in parallel. This
mechanism allows the programmer to avoid explicit en-
coding of all combinations of network states (as shown
in Figure 7a) and instead express each LPEC’s FSM in-
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(a) Actual implementation of the Kinetic FSM.

1 @ t r a n s i t i o n
2 def i n f e c t e d ( s e l f ) :
3 s e l f . c a s e ( o c c u r r e d ( s e l f . e v e n t ) , s e l f . e v e n t )
4
5 @ t r a n s i t i o n
6 def p o l i c y ( s e l f ) :
7 s e l f . c a s e ( i s t r u e (V(’infected’ ) ) ,C( drop ) )
8 s e l f . d e f a u l t (C( i d e n t i t y ) )
9

10 s e l f . f s m d e f = FSMDef (
11 i n f e c t e d =FSMVar ( t y p e =BoolType ( ) ,
12 i n i t = F a l s e ,
13 t r a n s = i n f e c t e d ) ,
14 p o l i c y =FSMVar ( t y p e =Type ( P o l i c y ,{ drop , i d e n t i t y }) ,
15 i n i t = i d e n t i t y ,
16 t r a n s = p o l i c y ) )
17
18 def l p e c ( p k t ) :
19 r e t u r n match ( s r c i p = p k t [’srcip’ ] )
20
21 f s m p o l = FSMPolicy ( lpec , s e l f . f s m d e f )

(b) Kinetic code that implements the Kinetic FSM.

Figure 8: Logical FSM for an IDS in Kinetic, and the Kinetic
code that implements the policy.

dependently and compose them in parallel, as shown in
Figure 7b.

Each LPEC has an FSM, which has a set of states,
where each state has a Pyretic policy; and a set of tran-
sitions between those states, where transitions occur in
response to events that the operators defines. When
events arrive, the respective LPEC FSMs may transi-
tion between states, ultimately inducing the Pyretic run-
time to recompile the policy and push updated rules to
the switches. In Kinetic, a programmer can specify an
LPEC in terms of a Pyretic filter policy. For example,
match(srcip=pkt[’srcip’]) defines an LPEC
FSM for each unique source IP address.

Returning to our IDS example from Section 3 (Figure 1),
Figure 8b shows the code for the Kinetic program that
implements the simple intrusion detection example from
Section 3. Each host (i.e., source IP address) can have
a distinct state, so we need an LPEC FSM per source IP
address; lines 18–19 define the LPEC. To define an FSM
that is amenable to model checking, we must separate the
infected variable and the corresponding policy vari-
able into two separate states, as shown in Figure 8a. Exoge-
nous events trigger transitions between the infected
variable states; a change in this variable’s value in turn
triggers an endogenous transition of the policy variable,
which ultimately causes the Pyretic runtime to recompile

A0:Authenticated
A1:Unauthenticated

I0:Infected
I1:Clean

C0:Capped
C1:Uncapped

>> >> 

(a) Without composition (b) With composition

Figure 9: Composing independent tasks in sequence.

W0:Web-Authenticated     X0: 802.1X-Authenticated
W1:Web-Unauthenticated X1: 802.1X-Unauthenticated

+

(a) Without composition (b) With composition

Figure 10: Composing multiple authentication tasks in parallel.
Any successful authentication would result in allowing the host’s
traffic.

flow-table entries for the network switches. Lines 1–3 in
Figure 8b define the exogenous transition for infected;
lines 5–8 defined the endogenous transition for policy
(note that the value of policy is defined in terms of the
value of infected). Finally, lines 10–16 define the FSM
itself, in terms of the two variables; the FSM definition is
simply a set of FSM variables, each of which has a type,
an initial value, and a transition function.

4.2.3 FSM Composition

In Section 3, we showed an example of a campus network
policy that composed FSMs for independent network tasks
to control state explosion. Without FSM composition, a
programmer would need to define FSMs for ΠN

i=1ai pos-
sible states, where ai is the number of possible states for
task i and N is the total number of tasks. Decomposing the
product automaton reduces state complexity from expo-
nential to linear in the number of independent tasks. For
example, given ten tasks, each with two states, a mono-
lithic program would require 1,024 states, as opposed to
just 20.

Pyretic allows policies to be composed either in parallel
(i.e., on independent copies of the same packet) or in
sequence (i.e., where the second policy is applied to the
output from the first). It turns out that these operators
are also useful for reducing state explosion. Figure 9
illustrates how sequential composition can reduce state
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complexity by decomposing a larger product automaton.
Consider a simple control program that puts the host into
a walled-garden until it has authenticated, quarantines the
host if an infection has been detected, and rate limits a
host if it has exceeded a usage cap. Each of these tasks
has two possible states: authenticated or not, quarantined
or not, capped or not, resulting in 23 possible states. By
applying auth >> IDS >> cap, the same network
control program requires only 2 ·3 states.

Figure 10 shows how parallel composition reduces state
complexity. A Kinetic program might specify that either a
network flow should be authenticated by a Web authentica-
tion mechanism or 802.1X. If either of these tasks places
the host in an authenticated state, the host should be al-
lowed to send traffic. Without composition, the network
state machine would need a second set of states, requiring
2N states, where N is the number of authentication tasks
(in this case, N = 2). (Clearly, even more states would
be needed if any independent task could assume more
than two states.) As before, decomposition reduces this to
ΣN

i=1ai states, where ai is the number of possible states for
task i, and N is the number of tasks.

4.3 Runtime

We now explain optimizations to the Kinetic runtime to
support the efficient compilation of the large finite state
machines that might result from networks with many hosts
and policies and high event rates. The Kinetic runtime’s
main challenge is storing and processing the joint state of
all LPEC FSMs to produce a single set of forwarding table
entries in the network switch. To accomplish this goal, the
runtime first decomposes the FSMs with combinators to
achieve a representation of the network state that is linear
in the number of hosts and policies. Second, Kinetic opti-
mizes the compilation process itself by recognizing that
the LPEC FSMs typically operate on disjoint flow space,
which allows for optimizations that dramatically speed up
parallel composition. Finally, Kinetic only expands the
LPEC FSMs for which a transition has actually occurred.
We describe each of these optimizations below.

Decomposing the product automata. A Kinetic
FSMPolicy encodes the complete FSM as the product
automaton [10] of the individual LPEC FSMs. We can
represent the Pyretic policy for the entire network, given a
global network state s as the following product automata:

policy =
N

∑
i=1

(lpeci >> lfsmi(s))

where the summation operator represents parallel com-
position of the corresponding policies, and each LPEC

H_1 FSM H_M FSM 

allow 

drop 

allow 

drop 

+ + 

Total # of states: 2M Total # of transitions: 2M # of hosts: N 
# of infected hosts: M 

  

Default state 

aa

Current state 

d

Figure 11: Expanding only M LPEC FSMs that have changed.

generator produces the appropriate packets that are pro-
cessed by the corresponding LPEC FSM in state s.

Fast compilation of disjoint LPECs. Compilation of
policies that are composed in parallel is computationally
expensive, as it requires producing the cross-product of
all match and action rules: it involves computing the inter-
section of match statements and the union of actions, for
every pair of match and action pairs between the two poli-
cies. If LPECs are disjoint, however, the resulting policies
can simply be combined without explicitly computing the
intersection of the match statements: the rules from each
LPEC FSM can simply be inserted into the flow tables.

Default policies and on-demand LPEC FSM expan-
sion. Even a linear-sized representation may not scale.
For example, the LPEC generator shown in Section 4.2.2
would generate 232 LPECs if it were fully expanded, while
a generator for each pair of hosts (based on hardware ad-
dress) would produce 296 LPECs. Fortunately, because all
LPEC FSMs are generated from the same FSM specifica-
tion, they start with the same initial state and, hence, the
same default policy. Thus, Kinetic does not need to ex-
pand the FSM for an LPEC unless and until it experiences
a state transition; until that point, the Kinetic runtime can
simply apply whatever default policy is defined for that
FSM. Figure 11 highlights this on-demand expansion.

Kinetic’s runtime optimizations reduce the computa-
tional complexity of compilation from exponential in the
number of LPECs (Figure 7a), to linear in the number
of LPECs (Figure 7b), and finally to linear in the (much
smaller) number of LPECs that have actually experienced
a transition (Figure 11). Kinetic additionally employs
additional optimizations, such as memoizing previously
compiled policies, as other applications have used [15].

4.4 Verification

When the programmer executes a Kinetic program, Ki-
netic automatically creates an FSM model for the NuSMV
model checker. Kinetic obtains information about each
state variable (e.g., type, initial value, and transition rela-
tionship) by parsing the fsm def data structure; Kinetic

8
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1 MODULE main
2 VAR
3 p o l i c y : { i d e n t i t y , d rop } ;
4 i n f e c t e d : b o o l e a n ;
5 ASSIGN
6 i n i t ( p o l i c y ) := i d e n t i t y ;
7 i n i t ( i n f e c t e d ) := FALSE ;
8 n e x t ( i n f e c t e d ) :=
9 c a s e

10 TRUE : {FALSE , TRUE} ;
11 e s a c ;
12 n e x t ( p o l i c y ) :=
13 c a s e
14 i n f e c t e d : drop ;
15 TRUE : i d e n t i t y ;
16 e s a c ;

Figure 12: NuSMV FSM model for IDS policy from Figure 8b.

parses the transition function for additional information
about transitions, which often depend on other variables.

Kinetic then uses NuSMV to test CTL specifications
that the programmer writes against the FSM model. Ki-
netic outputs the CTL specifications that passed; for any
failed specifications, Kinetic produces a counterexample,
showing the sequence of events and variable changes
that violated the specification. In addition to single
FSMPolicy objects, Kinetic can convert composed poli-
cies into a single model that can be verified. For example,
although the programmer specifies a composed policy as
in Figure 9b and Figure 10b, verification will execute on a
combined FSM model as in Figure 9a and Figure 10a.

Figure 12 shows the NuSMV FSM model correspond-
ing to the IDS policy from Figure 8b. The model definition
has two parts. The first is VAR, which declares the names
and types of each variable (lines 2–4). The second is
ASSIGN, where current and future variable values are as-
signed, using two functions for each variable: an init
function that determines the variable’s initial value (line
5–7), and a next function that specifies what value or
values the variable may take, as a function of the current
values of other variables in the model (line 8–16).

Within the case clause of each next function, the
left-hand side shows the condition, while the right-hand
side shows the variable’s next value if the condition holds.
TRUE on the left-hand side refers to a default transition.
Lines 8–11 indicate that the infected variable can
change between FALSE and TRUE, independent of any
other state variable (in reality, the value changes based on
external event of the same name). The policy variable
in lines 12–16 shows that the value transitions to drop
if infected is True, while the default is identity.
Thus, it shows that policy’s next value depends on the
infected variable. Table 3 shows examples of the types
of temporal properties that Kinetic can verify.

5 Evaluation

In this section, we evaluate two aspects of Kinetic:
(1) Does Kinetic make it easier for network operators
to configure realistic network policies? (Section 5.1); and
(2) How does Kinetic’s performance scale with the number
of flows, users, and policies? (Section 5.2).

5.1 Programming in Kinetic: User Study

Evaluating whether a new network configuration paradigm
such as Kinetic makes it easier for network operators to
write network policies is challenging. Network operators
already know how to use existing tools and infrastructure,
and deploying a new control framework requires over-
coming both the inertia of network infrastructure that is
already deployed and the knowledge base of network op-
erators, many of whom are not programmers by training.
We needed to find a way to ask many network operators
to evaluate Kinetic in light of these obstacles. Fortunately,
the Coursera course on software-defined networking that
we teach [8] offers precisely this captive audience, as the
course’s demographic includes many network operators
who are both educated about SDN and willing to exper-
iment with cutting-edge tools. (Section 2 and Table 1
explained the initial survey and described the demograph-
ics of the participants.) We obtained approval from our
institutional review board (IRB) to ask students to use
Kinetic and other SDN controllers to complete a simple
network management task and subsequently survey them.

We asked the students in the course to write a “walled
garden” controller program that is inspired from real en-
terprise network management task that we have learned
about in our discussions with network operators [9]. In
summary, the students were asked to write a program that
permitted all traffic to and from the Internet unless a host
was deemed to be infected (e.g., as determined from an
intrusion detection system alert) and not a host that was
exempt from the policy (one might imagine that certain
classes of users, such as high-ranking administrators or
executives would get different treatment than strict in-
terruption of service). In the assignment, we asked the
students to: (1) Write a Kinetic program that implements
the policy; (2) Choose either Pyretic or POX to implement
the same policy; (3) Optionally implement the policy in
the remaining controller; (4) Answer survey questions
about their experiences with each controller.

The course devoted one week each to each of the three
controller platforms, and students had already completed
assignments in both POX and Pyretic, so if anything, stu-
dents should have found those platforms at least as familiar
as Kinetic. In fact, there were three programming assign-
ments in Pyretic while there was only one for Kinetic.
Kinetic was discussed in only one lecture out of eight

9
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Program CTL Description

Mac learner

AG (topo change → AX policy=flood) Always resets to flooding when topology changes.
AG (policy=flood → AG EF (port>0)) Can always go from flooding to unicasting a learned port.
! AG (port=1 → EX port=2) It is impossible to update the learned port without first flooding.
AG (port>0 → A [port>0 U topo change]) Port will stay learned until there is a topology change.

Stateful firewall
AG (outgoing & !timeout → AX policy=identity)

If first packet originated from internal host and timeout did not
occur, the system should allow traffic.

AG (outgoing & timeout → AX pol-
icy=matchFilter)

If first packet originated from internal host, but timeout occurred,
the system should shut down traffic (apply match filter).

AG (!outgoing → AX policy=matchFilter) If first packet is not from internal host, the system should not allow
traffic (apply match filter).

Composed policy
AG (infected → AX policy=drop) If host is infected, drop packets.
AG ( (authenticated web | authenticated 1x) & !in-
fected → AX policy!=drop )

If host is authenticated either by Web or 802.1X, and is not infected,
packets should never be dropped.

AG (authenticated web & !infected & rate=2 →
AX policy=delay200)

If host is authenticated by Web, not infected, and the rate is 2,
delay packets by 200ms.

Table 3: NuSMV CTL rules for different Kinetic programs.

Figure 13: The lines of code required to implement the walled-
garden program in different controller languages.

Programs FL Pox Pyretic Kinetic
ids/firewall 416 22 46 17
mac learner 314 73 17 33
server load balancer 951 145 34 37
stateful firewall – – 25 41
usage-based rate limiter – – – 30

Table 4: Lines of code to implement programs in each controller.

lectures in the course, and was not treated specially. To
further minimize the bias in favor of Kinetic, students were
instructed to complete the assignment in Kinetic first, as
the first attempt is usually the hardest. With better under-
standing of the assignment, it is likely that programming
in Pyretic or POX would have been easier.

Of the students who completed the survey from Sec-
tion 2, 667 attempted the assignment, and 631 successfully
completed it (a 95% completion rate), and 70% of those
students completed the programming assignment in less
than three hours. We asked students who did not complete
the assignment why they did not complete it; most refer-
enced external factors such as time constraints, as opposed
to anything pertinent to Kinetic.

To compare the complexity of the different control pro-
grams, we compare the lines of code in programs im-

plemented with different controllers; we then conduct
qualitative measurements by surveying the students of the
course. Although the lines of code for a program depends
on the language, programmer, and implementation style, a
high-level comparison can nevertheless yield a rough but
meaningful sense for the relative simplicity of a Kinetic
program. Figure 13 shows the distribution of the lines of
code that students needed to implement the walled-garden
program in different controller languages. About 80%
of the implementations using Kinetic required about 22
lines of code; in contrast, more than half of the Pyretic
implementations required more than 50 lines, and half of
the assignments written in POX required more than 75
lines of code. The fact that Kinetic requires fewer lines
of code to implement this program highlights the utility
of the abstractions that Pyretic provides. In addition to
the experiment from the Coursera course, where we could
find publicly available implementations on the Web, we
compared the number of lines of code for several different
programs to our own implementations of the same pro-
grams in Kinetic. (Blank entries in the table indicate that
no implementation was available.) Table 4 shows these
results, for four different controllers: Floodlight, POX,
Pyretic, and Kinetic. The public Pyretic programs are oc-
casionally slightly shorter than the corresponding Kinetic
programs because they only handle built-in events such as
packet arrivals and topology changes. Programs that need
to handle arbitrary events would likely always be shorter
in Kinetic.

In addition to analyzing quantitative measures such as
lines of code, we asked students more qualitative questions
about their experiences using Kinetic to implement the
walled-garden assignment, relative to their experiences
with Pyretic and POX. We asked students to rank the con-
trollers based on ease of use, as well as which platform
they preferred. Figure 14 shows some highlights from this
part of the survey. Of the three controllers, more than half
of the students preferred writing the assignment in Kinetic
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Figure 14: Number of students who preferred each controller.

versus either Pyretic or POX. We asked students whether
Kinetic could make it easier to configure and verify poli-
cies in their networks. About 79% of students thought that
configuring the network with Kinetic would be easier than
current approaches, and about 84% agreed that Kinetic
would make it easier to verify network policies.

Students who chose Kinetic as the language that they
preferred best cited its abstractions, FSM-based structure,
and support for intuition (e.g., “Kinetic is more intuitive:
the only thing I need to do is to define the FSM variable.”,
“intuitive and easy to understand”, “reduces the number of
lines of code”, “programming state transitions in FSMs
makes much more sense”, “the logic is more concise”).
Some students still preferred Kinetic, despite the fact that
the syntax had a steeper learning curve: “Kinetic took
less time and was actually more understandable using
the templates even though the structure was very ’cryp-
tic’... I thought the Pyretic would be the easiest...[but]
I spent a lot more time chasing down weird bugs I had
because of things I left out or perhaps didn’t understand.”
Interestingly, many of the students actually preferred the
lower-level trappings of POX to Pyretic (e.g., “Pyretic was
friendly, but the logic more intricate”). The results of this
experiment and survey highlight both the advantages and
disadvantages of Kinetic’s design, as well as the difficulty
of designing “northbound” languages for SDN controllers:
without intuitive abstractions, operators may even prefer
the lower-level APIs to higher-level abstractions.

5.2 Performance and Scalability

We evaluate Kinetic’s performance and scalability when
handling incoming events, as well as the performance and
scalability of verification, as those are the two main contri-
butions of our work. We evaluated the Kinetic controller
on a machine with an Intel Xeon CPU E5-1620 3.60 GHz
processor and 32 GB of memory. We measured raw packet
forwarding performance but do not focus those numbers,
as the forwarding performance is not the focus of our work
and is equivalent to what can be achieved with POX and
Pyretic, in any case. Similarly, the rate at which updated

Statistic # per day
Total Unique Authenticated Users 22,586
Total Unique Devices Authenticated 41,937
Number of WPA authentication Events 1,330,220
Number of WEB authentication Events 1,850

Table 5: The frequency of network events on a primary campus
network, which we use for a trace-driven evaluation of Kinetic.

Figure 15: Time to handle a batch of incoming events and re-
compile policies in Kinetic, for different event arrival rates and
policies.

rules can be installed depends on lower layers (e.g., POX).
Optimizing the number of rule updates [32] and applying
them consistently [28] have been studied in previous work,
so we do not focus on those aspects here.

Event handling and policy recompilation. Because Ki-
netic recompiles the policy whenever an event causes a
state transition, we must evaluate how fast Kinetic can
react to events and recompile the policy for realistic net-
work scenarios. We used the wireless network from a large
university campus with more than 4,300 access points de-
ployed across 200 buildings; the network authenticates
nearly 42,000 unique devices for more than 22,000 users
every day. Table 5 summarizes these statistics. On such a
network, Kinetic would have to keep track of an equivalent
number of devices, and each authentication event (about
1.3 million per day) would require Kinetic to recompile
policy, resulting in an average of 15 events per second
(though certainly higher during peak periods). We evalu-
ate Kinetic for event arrival rates for up to 1,000 events
per second, for both a single-FSM policy and a policy
involving the composition of multiple FSMs, based on the
example in Section 3.3. We create a Kinetic program that
results in 42,000 LPEC FSMs and randomly distribute
authentication events across these FSMs (i.e., devices).

Figure 15 presents the results of this experiment. Re-
compilation time is longer for the program with multiple
FSMs composed together as it embeds a more complex
policy than the program with a single FSM. For both pro-
grams, event handling time increases as event arrival rate
increases. Even for event arrival rates that are several or-
ders of magnitude more frequent than an actual campus
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Figure 16: Verification time as a function of the number of CTL
properties that Kinetic checks, for a policy with a single FSM
and a policy with a composition of multiple FSMs.

network, Kinetic’s event handling and recompilation times
are around (or less than) a few hundred milliseconds.
Verification. The speed of verification depends on the
performance of NuSMV, which in turn depends on three
factors: (1) the size of the given FSM (i.e., number of
states and transitions), (2) the number of properties to
verify, and (3) the kinds of properties to verify. To ob-
serve whether Kinetic’s verification time is reasonable,
we evaluate Kinetic’s verification performance with the
same programs that we used to evaluate Kinetic’s event
handling and recompilation performance. The single-FSM
authentication program produces an FSM with four states,
and the program with multiple FSMs produces a combined
FSM with 384 states. To test Kinetic with more than the
handful of CTL specifications we manually created, we
generate over one hundred specifications using random
combinations of CTL operators. They are all syntactically
correct (i.e., NuSMV will not complain about the syntax),
but are generated regardless of whether they will be true
or false when each goes through the model checker, as our
goal is merely to measure verification time.

Figure 16 shows the time to complete verification for
different Kinetic programs with different numbers of prop-
erties. Each experiment had 1,000 independent trials; the
variance across experiments was small, so we do not show
the error bars. As expected, a Kinetic program with a
larger FSM model takes longer to finish. The figure also
shows that the number of properties affects verification
time, but all verification finishes within 35 milliseconds.
Kinetic performs verification before the Kinetic program
ever runs, so this process has no effect on performance.

6 Related Work
We discuss SDN controllers with verifiable properties,
approaches for formally verifying data-plane behavior,
and other high-level SDN control languages.
Formal verification of SDN control programs.
FlowLog [26] provides a database-like programming

model that unifies the control-plane logic with data-plane
state and controller state. Aspects of FlowLog programs
can be verified, but because the language does not natu-
rally capture state transitions and temporal relationships,
it cannot verify arbitrary temporal relationships, such as
those that can be verified with CTL in Kinetic. FlowLog
uses Alloy to perform bounded verification, so its analysis
is not complete, and certain aspects of verification are
manual. FlowLog has not been evaluated for realistic
network policies or for large networks. It requires storing
multiple database entries for each network state variable
and handles certain aspects of control logic by sending
data packets to the controller, so it is unlikely to scale.
VeriCon [1] verifies that a program written in its language
(CSDN) is correct for all topology and packet events
(e.g., packet arrivals, switch joins). It does not handle
arbitrary network events, and there is no OpenFlow-based
implementation, so its practicality is unclear.

Formal verification of data-plane behavior. Recent
work in network verification has focused on verify-
ing static properties of the data-plane state [19, 28, 29].
Anteater [23] and HSA [17, 18] can verify properties of
a static snapshot of a network’s data-plane state. These
systems can determine whether a static snapshot of data-
plane state violates some invariant, but they do not verify
the logic of the control program that generated the state in
the first place, making it difficult to identify which aspect
of the network’s control-plane logic caused the incorrect
data-plane state. In contrast, Kinetic helps operators ver-
ify control logic, such as “if an intrusion detection system
determines that a host is infected, the host’s traffic should
be dropped”. This capability helps operators both reason
about future data-plane states that a control program could
install and troubleshoot incorrect behavior when it does
arise. Because Kinetic’s verifies the static programs them-
selves, it can detect logic errors before the control program
is ever run on a live network. NICE [2] can test control-
plane properties that might result from arbitrary sequences
of standard OpenFlow events; it is not a controller, but
rather a test harness for control programs written in exist-
ing low-level controllers (e.g., NOX) and hence does not
permit reasoning about arbitrary events.

Other SDN control languages. Many languages raise the
level of abstraction for writing network control programs,
yet these languages do not offer constructs for concisely
encoding policies that capture network dynamics, nor do
they incorporate formal verification of control-plane be-
havior. FML [16] allows network operators to write and
maintain policies in a declarative style. Nettle [30] is a
domain specific language in Haskell. Procera [31] applies
functional reactive programming to help operators express
policies. Frenetic [12] is a family of languages that share
fundamental constructs and techniques for efficient com-
pilation to OpenFlow switches.
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7 Conclusion

One of the reasons that network configuration is so chal-
lenging is that network conditions are continually chang-
ing, and network operators must adapt the network con-
figuration whenever these conditions change. Network
operators need means not only to automate these configu-
ration changes but also to verify that the changes will be
correct. Existing general-purpose SDN controllers lack in-
tuitive constructs for expressing dynamic policy and ways
to efficiently verify that the control programs conform to
expected behavior.

To address these problems, we designed and developed
Kinetic, a domain specific language and SDN controller
for implementing dynamic network policies in a concise,
verifiable language. Kinetic exposes a language that al-
lows operators to express network policy in an intuitive
language that maps directly to a CTL-based model checker.
We evaluated Kinetic’s usability and performance through
both a large-scale user study and trace-driven performance
evaluation on realistic policies and found that network
operators find Kinetic easy to use for expressing dynamic
policies and that Kinetic can scale to a large number of
policies, hosts, and network events.

Kinetic sits squarely in the realm of ongoing work on
network verification and complements the growing body
of work on data-plane verification, such as Veriflow [19]
and NetPlumber [17]. As these tools can help network op-
erators ask questions about snapshots of data-plane state,
and Kinetic can help network operators reason about the
dynamics of network policies (which ultimately compile
to the corresponding data-plane state), the approaches are
complementary. Similarly, Kinetic needs the path guar-
antees that consistent updates [28] provide to guarantee
that the properties it verifies are preserved during state
transitions; conversely, consistent updates could be ex-
tended to reason about temporal properties such as those
that Kinetic can express. One natural next step would be
to combine these approaches.
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