In Search of netUnicorn: A Data-Collection Platform to Develop
Generalizable ML Models for Network Security Problems

https://netunicorn.cs.ucsb.edu

Roman Beltiukov
rbeltiukov@ucsb.edu
UC Santa Barbara
California, USA

Arpit Gupta
agupta@ucsb.edu
UC Santa Barbara

California, USA

ABSTRACT

The remarkable success of the use of machine learning-based so-
lutions for network security problems has been impeded by the
developed ML models’ inability to maintain efficacy when used in
different network environments exhibiting different network be-
haviors. This issue is commonly referred to as the generalizability
problem of ML models. The community has recognized the critical
role that training datasets play in this context and has developed
various techniques to improve dataset curation to overcome this
problem. Unfortunately, these methods are generally ill-suited or
even counterproductive in the network security domain, where
they often result in unrealistic or poor-quality datasets.

To address this issue, we propose a new closed-loop ML pipeline
that leverages explainable ML tools to guide the network data col-
lection in an iterative fashion. To ensure the data’s realism and
quality, we require that the new datasets should be endogenously
collected in this iterative process, thus advocating for a gradual
removal of data-related problems to improve model generalizability.
To realize this capability, we develop a data-collection platform, net-
Unicorn, that takes inspiration from the classic “hourglass” model
and is implemented as its “thin waist" to simplify data collection for
different learning problems from diverse network environments.
The proposed system decouples data-collection intents from the
deployment mechanisms and disaggregates these high-level intents
into smaller reusable, self-contained tasks. We demonstrate how
netUnicorn simplifies collecting data for different learning prob-
lems from multiple network environments and how the proposed
iterative data collection improves a model’s generalizability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Wenbo Guo

henrygwb@purdue.edu
Purdue University
Indiana, USA

Walter Willinger
wwillinger@niksun.com
NIKSUN Inc.

New Jersey, USA

ACM Reference Format:

Roman Beltiukov, Wenbo Guo, Arpit Gupta, and Walter Willinger.
2023. In Search of netUnicorn: A Data-Collection Platform to De-
velop Generalizable ML Models for Network Security Problems:
https://netunicorn.cs.ucsb.edu. In Proceedings of . ACM, New York,
NY, USA, 20 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Machine learning-based methods have outperformed existing rule-
based approaches for addressing different network security prob-
lems, such as detecting DDoS attacks [75], malwares [2, 13], net-
work intrusions [39], etc. However, their excellent performance
typically relies on the assumption that the training and testing data
are independent and identically distributed. Unfortunately, due to
the highly diverse and adversarial nature of real-world network
environments, this assumption does not hold for most network se-
curity problems. For instance, an intrusion detection model trained
and tested with data from a specific environment cannot be ex-
pected to be effective when deployed in a different environment,
where attack and even benign behaviors may differ significantly
due to the nature of the environment. This inability of existing ML
models to perform as expected in different deployment settings is
known as generalizability problem [34], poses serious issues with
respect to maintaining the models’ effectiveness after deployment,
and is a major reason why security practitioners are reluctant to
deploy them in their production networks in the first place.

Recent studies (e.g., [8]) have shown that the quality of the train-
ing data plays a crucial role in determining the generalizability of
ML models. In particular, in popular application domains of ML
such as computer vision and natural language processing [110, 119],
researchers have proposed several data augmentation and data col-
lection techniques that are intended to improve the generalizability
of trained models by enhancing the diversity and quality of training
data [55]. For example, in the context of image processing, these
techniques include adding random noise, blurring, and linear in-
terpolation. Other research efforts leverage open-sourced datasets
collected by various third parties to improve the generalizability of
text and image classifiers.

Unfortunately, these and similar existing efforts are not directly
applicable to network security problems. For one, since the seman-
tic constraints inherent in real-world network data are drastically

https://netunicorn.cs.ucsb.edu
https://orcid.org/0000-0001-8270-0219
https://orcid.org/0000-0002-6890-4503
https://orcid.org/0000-0002-6378-7440
https://orcid.org/0000-0002-1384-8188
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://netunicorn.cs.ucsb.edu
https://doi.org/10.1145/nnnnnnn.nnnnnnn

different from those in text or image data, simply applying existing
augmentation techniques that have been designed for text or image
data is likely to result in unrealistic and semantically incoherent
network data. Moreover, utilizing open-sourced data for the net-
work security domain poses significant challenges, including the
encrypted nature of increasing portions of the overall traffic and
the fact that without detailed knowledge of the underlying network
configuration, it is, in general, impossible to label additional data
correctly. Finally, due to the high diversity in network environ-
ments and a myriad of different networking conditions, randomly
using existing data or collecting additional data without under-
standing the inherent limitations of the available training data may
even reduce data quality. As a result, there is an urgent need for
novel data curation techniques that are specifically designed for
the networking domain and aid the development of generalizable
ML models for network security problems.

To address this need, we propose a new closed-loop ML pipeline
(or workflow) that focuses on training generalizable ML models for
networking problems. Our proposed pipeline is a major departure
from the widely-used standard ML pipeline [34] and differs from
it in two major ways. First, instead of obscuring the role that the
training data plays in developing and evaluating ML models, the
new pipeline elucidates the role of the training data. Second, in-
stead of being indifferent to the black-box nature of the trained ML
model, our proposed pipeline deliberately focuses on developing
explainable ML models. To realize our new ML pipeline, we de-
signed it using a closed-loop approach that leverages a novel data
collection platform (called netUnicorn) in conjunction with state-
of-the-art explainable AI (XAI) tools so as to be able to iteratively
collect new training data for the purpose of enhancing the ability
of the trained models to generalize. Here, during each iteration, the
insights obtained from applying the employed explainability tools
to the current version of the trained model are used to synthesize
new policies for exactly what kind of new data to collect in the
next iteration so as to combat generalizability issues affecting the
current model.

In designing and implementing netUnicorn, the novel data collec-
tion platform that our proposed ML pipeline relies on, we leveraged
state-of-the-art programmable data-plane targets, programmable
network infrastructures, and different virtualization tools to en-
able flexible data collection at scale from disparate network en-
vironments and for different learning problems without network
operators having to worry about the details of implementing their
desired data collection efforts. This platform can be envisioned as
representing the “thin waist" of the classic hourglass model [14],
where the different learning problems comprise the top layer and
the different network environments constitute the bottom layer.
To realize this “thin waist" analog, netUnicorn supports a new pro-
gramming abstraction that (i) decouples the data-collection intents
or policies (i.e., answering what data to collect and from where)
from the mechanisms (i.e., answering how to collect the desired data
on a given platform); and (ii) disaggregates the high-level intents
into self-contained and reusable subtasks.

In effect, our newly proposed ML pipeline advances the current
state-of-the-art in ML model development by (1) augmenting the
standard ML pipeline with an explainability step that impacts how
ML models are evaluated before being suggested for deployment,

(2) leveraging existing explainable AI (XAI) tools to identify issues
with the utilized training data that may affect a trained model’s abil-
ity to generalize, and (3) using the insights gained from (2) to inform
the netUnicorn-enabled effort to iteratively collect new datasets
for model training so as to gradually improve the generalizability
of the models that are trained with these new datasets. A main
difference between this novel closed-loop ML workflow and exist-
ing “open-loop" ML pipelines is that the latter are either limited
to using synthetic data for model training in their attempt to im-
prove model generalizability or lack the means to collect data from
network environments or for learning problems that differ from
the ones that were specified for these pipelines in the first place. In
this paper, we show that because of its ability to iteratively collect
the “right" training data from disparate network environments and
for any given learning problem, our newly proposed ML pipeline
paves the way for the development of generalizable ML models for
networking problems.

Contributions. This paper makes the following contributions:

e An alternative ML pipeline. We propose a novel closed-
loop ML pipeline that leverages a new data-collection plat-
form in conjunction with state-of-the-art explainability (XAI)
tools to enable iterative and informed data collection to grad-
ually improve the quality of the data used for model training
and thus boost the trained models’ generalizability (Sec-
tion 2).

¢ A new data-collection platform. We justify (Section 3)
and present the design and implementation (Section 4) of
netUnicorn, the new data-collection platform that is key to
performing iterative and informed data collection for any
given learning problem and from any network environment
as part of our newly proposed closed-loop ML pipeline in
practice. We made several design choices in netUnicorn to
tackle the research challenges of realizing the “thin waist”
abstraction.

e An extensive evaluation. We demonstrate the capabilities
of netUnicorn and the effectiveness of our newly proposed
ML pipeline by (i) considering various learning models for
network security problems that have been studied in the
existing literature and (ii) evaluating them with respect to
their ability to generalize (Section 5 and Section 6).

o Artifacts. We make the full source code of the system as
well as the datasets used in this paper, publicly available
(anonymously). Specifically, we have released three reposito-
ries: full source code of netUnicorn [81], a repository of all
discussed tasks and data-collection pipelines [82], and other
supplemental materials [83] (See Appendix I).

We view the proposed ML pipeline and the new data-collection
platform it relies on to be a promising first step toward developing
ML-based network security solutions that are generalizable and can,
therefore, be expected to have a better chance of getting deployed in
practice. However, much work remains, and careful consideration
has to be given to the network infrastructure used for data collection
and the type of traffic observed in production settings before model
generalizability can be guaranteed.

<
Experimenter QJ@

New endogenous data

. . collection intents
Given learning

Analysis result|

’H Explaining| }—‘

—{[Training} {Evaluationﬂ ‘Deployment

problem Data collection| Data |Preprocessing +
Given network |+ labeling Model selection
environment 1

Figure 1: Overview of the existing (standard) and the newly-proposed (augmented) ML pipelines. The components marked in
blue are our proposed augmentations to the standard ML pipeline.

2 BACKGROUND AND PROBLEM SCOPE

2.1 Existing ML Pipeline for Network Security

Key components. The standard ML pipeline (see Figure 1) de-
fines a workflow for developing ML artifacts and is widely used in
many application domains, including network security. To solve
a learning problem (e.g., detecting DDoS attack traffic), the first
step is to collect (or choose) labeled data, select a model design
or architecture (e.g., random forest classifier), extract related fea-
tures, and then perform model training using the training dataset.
An independent and identically distributed (iid) evaluation pro-
cedure is then used to assess the resulting model by measuring
its expected predictive performance on test data drawn from the
training distribution. The final step involves selecting the highest-
performing model from a group of similarly trained models based
on one or more performance metrics (e.g., F1-score). The selected
model is then considered the ML-based solution for the task at hand
and is recommended for deployment and being used or tested in
production settings.

Data collection mechanisms. Asin other application areas of ML,
the collection of appropriate training data is of paramount impor-
tance for developing effective ML-based network security solutions.
In network security, the standard ML pipeline integrates two basic
data collection mechanisms: real-world network data collection and
emulation-based network data collection.

In the case of real-world network data collection, data such as
traffic-specific aspects are extracted directly (and usually passively)
from a real-world target network environment. While this method
can provide datasets that reflect pertinent attributes of the target
environment, issues such as encrypted network traffic and user pri-
vacy considerations pose significant challenges to understanding
the context and correctly labeling the data. Despite an increas-
ing tendency towards traffic encryption [25], this approach still
captures real-world networking conditions but often restricts the
quality and diversity of the resulting datasets.

Regarding emulation-based network data collection, the ap-
proach involves using an existing or building one’s own emulated
environment of the target network and generating (usually ac-
tively) various types of attack and benign traffic in this environ-
ment to collect data. Since the data collector has full control over
the environment, it is, in general, easy to obtain ground truth la-
bels for the collected data. While created in an emulated environ-
ment, the resulting traffic is usually produced by existing real-world
tools. Many widely used network datasets, including the still-used

DARPA1998 dataset [35] and the more recent CIC-IDS intrusion
detection datasets [30] have been collected using this mechanism.

2.2 Model Generalizability Issues

Although existing emulation-based mechanisms have the benefit of
providing datasets with correct labels, the training data is often rid-
dled with problems that prevent trained models from generalizing,
thus making them ill-suited for real-world deployment.

There are three main reasons why these problems can arise. First,
network data is inherently complex and heterogeneous, making it
challenging to produce datasets that do not contain inductive biases.
Second, emulated environments typically differ from the target
environment — without full knowledge of the target environment’s
configurations, it is difficult to accurately mimic it. The result is
datasets that do not fully represent all the target environment’s
attributes. Third, shifting attack (or even benign) behavior is the
norm, resulting in training datasets that become less representative
of newly created testing data after the model is deployed.

These observations motivate considering the following concrete
issues concerning the generalizability of ML-based network security
solutions but note that there is no clear delineation between notions
such as credible, trustworthy or robust ML models and that the
existing literature tends to blur the line between these (and other)
notions and what we refer to as model generalizability.

Shortcut learning. As discussed in [8], ML-based security solutions
often suffer from shortcuts. Here, shortcuts refer to encoded/induc-
tive biases in a trained model that stem from false or non-causal
associations in the training dataset [46]. These biases can lead to a
model not performing as desired in deployment scenarios, mainly
because the test datasets from these scenarios are unlikely to con-
tain the same false associations. Shortcuts are often attributable to
data-collection issues, including how the data was collected (intent)
or from where it was collected (environment). Recent studies have
shown that shortcut learning is a common problem for ML models
trained with datasets collected from emulated networking environ-
ments. For example, [62] found that the reported high F1-score for
the VPN vs. non-VPN classification problem in [38] was due to a
specific artifact of how this dataset was curated.

Out-of-distribution issues. Due to unavoidable differences between
a real-world target environment and its emulated counterpart
or subtle changes in attack and/or benign behaviors, out-of-
distribution (ood) data is another critical factor that limits model
generalizability. The standard ML pipeline’s evaluation procedure
results in models that may appear to be well-performing, but their
excellent performance can often be attributed to the models’ innate

ability for “rote learning”, where the models cannot transfer learned
knowledge to new situations. To assess such models’ ability to learn
beyond iid data, purposefully curated ood datasets can be used.

For network security problems, ood datasets of interest can rep-
resent different real-world network conditions (e.g., different user
populations, protocols, applications, network technologies, archi-
tectures, or topologies) or different network situations (also referred
to as distribution shift [93] or concept drift [70]). For determining
whether or not a trained model generalizes to different scenarios,
it is important to select ood datasets that accurately reflect the
different conditions that can prevail in those scenarios.

2.3 Existing Approaches

We can divide the existing approaches to improving a model’s
generalizability into two broad categories: (1) Efforts for improving
model selection, training, and testing algorithms; and (2) Efforts for
improving the training datasets. The first category focuses mainly
on the later steps in the standard ML pipeline (see Figure 1) that
deal with the model’s structure, the algorithm used for training,
and the evaluation process. The second category is concerned with
improving the quality of datasets used during model training and
focuses on the early steps in the standard ML pipeline.
Improving model selection, training, and evaluation. The
focal point of most existing efforts is either the model’s structure
(e.g., domain adaption [44, 102] and multi-task learning [98, 120]),
or the training algorithm (e.g., few-shot learning [50, 97]), or the
evaluation process (e.g., ood detection [64, 118]). However, they
neglect the training dataset, mainly because it is in general assumed
to be fixed and already given. While these efforts provide insights
into improving model generalizability, studying the problem with-
out the ability to actively and flexibly change the training dataset
is difficult, especially when the given training dataset turns out to
exhibit inductive biases, be noisy or of low quality, or simply be
non-informative for the problem at hand [55]. See Section 8 for a
more detailed discussion about existing model-based efforts and
how they differ from our proposed approach described below.
Improving the training dataset. Data augmentation is a pas-
sive method for synthesizing new or modifying existing training
datasets and is widely used in the ML community to improve mod-
els’ generalizability. Technically, data augmentation methods lever-
age different operations (e.g., adding random noise [110], using
linear interpolations [119] or more complex techniques) to syn-
thesize new training samples for different types of data such as
images [105, 110], text [119], or tabular data [26, 42, 43, 65]. How-
ever, using such passive data-generation methods for the network
security domain is in general inappropriate or counterproductive
because they often result in unrealistic or even semantically mean-
ingless datasets [47]. For example, since network protocols usually
adhere to agreed-upon standards, they constrain various network
data in ways that such data-generation methods cannot ensure
without specifically incorporating domain knowledge. Besides that,
various network environments can induce significant differences
in observed communication patterns, even when using the same
tools or considering the same scenarios [40], by influencing data
characteristics (such as packet interarrival times, packet sizes, or

header information) and introducing unique network conditions or
patterns.

2.4 Limitations of Existing Approaches

From a network security domain perspective, these existing ap-
proaches miss out on two aspects that are intimately related to
improving a model’s ability to generalize: (1) Leveraging insights
from model explainability tools, and (2) ensuring the realism of
collected training datasets.

Using explainable ML techniques. To better scrutinize an ML
model’s weaknesses and understand model errors, we argue that
an additional explainability step that relies on recent advances in
explainable ML should be added to the standard ML pipeline to
improve the ML workflow for network security problems [54, 62,
90, 104]. The idea behind adding such a step is that it enables taking
the output of the standard ML pipeline, extracting and examining
a carefully-constructed white-box model in the form of a decision
tree, and then scrutinizing it for signs of blind spots in the output of
the standard ML pipeline. If such blind spots are found, the decision
tree and an associated summary report can be consulted to trace
their root causes to aspects of the training dataset and/or model
specification that led the output to encode inductive biases.
Ensuring realism in collected training datasets. To beneficially
study model generalizability from the training dataset perspective,
we posit that for the network security domain, the collection of
training datasets should be done endogenously or in vivo; that is,
performed or taking place within the network environment of inter-
est. Given that network-related datasets are typically the result of
intricate interactions between different protocols and their various
embedded closed control loops, accurately reflecting these com-
plexities associated with particular deployment settings or traffic
conditions requires collecting the datasets from within the network.

2.5 Our Approach in a Nutshell

We take a first step towards a more systematic treatment of the
model generalizability problem and propose an approach that
(1) uses a new closed-loop ML pipeline and (2) calls for running
this pipeline in its entirety multiple times, each time with a possi-
bly different model specification but always with a different train-
ing dataset compared to the original one. Here, we use a newly-
proposed augmented ML pipeline (Figure 1) that differs from the
standard pipeline by including an explanation step. Also, each new
training dataset used as part of a new run of the closed-loop ML
pipeline is assumed to be endogenously collected and not exoge-
nously manipulated.

The collection of each new training dataset is informed by a
root cause analysis of identified inductive bias(es) in the trained
model. This analysis leverages existing explainability tools that re-
searchers have at their disposal as part of the augmented pipeline’s
explainability step. In effect, such an informed data-collection effort
promises to enhance the quality of the given training datasets by
gradually reducing the presence of inductive biases that are identi-
fied by our approach, thus resulting in trained models that are more
likely to generalize. Note, however, that our proposed approach
does not guarantee model generalizability. Instead, by eliminating
identified inductive biases in the form of shortcuts and ood data,
our approach enhances a model’s generalizability capabilities. Also,

Learning
problems

RO U

Network
environments

Network
infrastructures

Fragmented efforts

Proposed thin waist

Figure 2: netUnicorn vs. existing data collection efforts.

note that our focus in this paper is not on designing novel model
explainability methods but rather on applying available techniques
from the existing literature. In fact, while we are agnostic about
which explainability tools to use for this step, we recommend the
application of global explainability tools such as Trustee [62] over
local explainability techniques (e.g., [54, 72, 95, 111, 114]), mainly
because the former are in general more powerful and informative
with respect to faithfully detecting and identifying root causes of
inductive biases compared to the latter. However, as shown in Sec-
tion 5 below, either of these two types of methods can shed light
on the nature of a trained model’s inductive biases.

Our proposed approach differs from existing approaches in sev-
eral ways. First, it reduces the burden on the user or domain expert
to select the “right” training dataset apriori. Second, it calls for the
collection of training datasets that are endogenously generated and
where explainability tools guide the decision-making about what
“better" data to collect. Third, it proposes using multiple training
datasets, collected iteratively (in a fail-fast manner), to combat the
underspecification of the trained models and thus enhance model
generalizability. In particular, it recognizes that an “ideal” training
dataset may not be readily available in the beginning and argues
strongly against attaining it through exogenous means.

3 ON “IN VIVO” DATA-COLLECTION

In this section, we discuss some of the main issues with existing data-
collection efforts and describe our proposed approach to overcome
their shortcomings.

3.1 Existing Approaches

Data collection operations. We refer to collecting data for a
learning problem from a specific network environment (or domain)
as a data-collection experiment. We divide such a data-collection
experiment into three distinct operations. (1) Specification: express-
ing the intents that specify what data to collect or generate for
the experiment. (2) Deployment: bootstrapping the experiment by
translating the high-level intents into target-specific commands
and configurations across the physical or virtual data-collection
infrastructure and implementing them. (3) Execution: orchestrating
the experiment to collect the specified data while handling different
runtime events (e.g., node failure, connectivity issues, etc.). Here,
the first operation is concerned with “what to collect,” and the latter
operations deal with “how to collect" this data.

The “fragmentation” issue. Existing data-collection efforts are
inherently fragmented, i.e., they only work for a specific learning

problem and network environment, emulated using one or more
network infrastructures (Figure 2). Extending them to collect data
for a new learning problem or from a new network environment is
challenging. For example, consider the data-collection effort for the
video fingerprinting problem [100], where the goal is to fingerprint
different videos for video streaming applications (e.g., YouTube)
using a stream of encrypted network packets as input. Here, the
data-collection intent is to start a video streaming session and col-
lect the related packet traces from multiple end hosts that comprise
a specific target environment. The deployment operation entails
developing scripts that automate setting up the computing environ-
ment (e.g., installing the required selenium package) at the different
end hosts. The execution operation requires developing a runtime
system to start/stop the experiments and handle runtime events
such as node failure, connectivity issues, etc.

Lack of modularity. In addition to being one-off in nature, ex-
isting approaches to collecting data for a given learning problem
are also monolithic. That is, being highly problem-specific, there is,
in general, no clear separation between experiment specification
and mechanisms. An experimenter must write scripts that realize
the data-collection intents (e.g., start/stop video streaming sessions,
collect pcaps, etc.), deploy these scripts to one or more network
infrastructures, and execute them to collect the required data. Given
this monolithic structure, existing data collection approaches [100]
cannot easily be extended so that they can be used for a differ-
ent learning problem, such as inferring QoE [19, 52, 56] or for a
different network environment, such as congested environments
(e.g., hotspots in a campus network) or high-latency networks (e.g.,
networks that use GEO satellites as access link).

Disparity between virtual and physical infrastructures.
While a number of different network emulators and simulators are
currently available to researchers [68, 79, 85, 117], it is, in general,
difficult or impossible to write experiments that can be seamlessly
transferred from a virtual to a physical infrastructure and back. This
capability is particularly appealing in view of the fact that virtual in-
frastructures provide the ability to quickly iterate on data collection
and test various network conditions, including conditions that are
complex in nature and, in general, difficult to achieve in physical
infrastructures. Due to the lack of this capability, experimenters
often end up writing experiments for only one of these infrastruc-
tures, creating different (typically simplified) experiment versions
for physical test beds, or completely rewriting the experiments to
account for real-world conditions and problems (e.g., node and link
failures, network synchronization)

Missed opportunity. Together, these observations highlight a
missed opportunity for researchers who now have access to dif-
ferent network infrastructures. The list includes NSF-supported
research infrastructures, such as EdgeNet [41], ChiEdge [24], Fab-
ric [10], PAWR [89], etc., as well as on-demand infrastructure offered
by different cloud services providers, such as AWS [20], Azure [21],
Digital Ocean [22], GCP [23], etc. This rich set of network infras-
tructures can aid in emulating diverse and representative network
environments for data collection.

3.2 An “Hourglass” Design to the Rescue

The observed fragmented, one-off, and monolithic nature of how
training datasets for network security-related ML problems are cur-
rently collected motivates a new and more principled approach that
aims at lowering the threshold for researchers wanting to collect
high-quality network data. Here, we say a training dataset is of
high quality if the model trained using this dataset is not obviously
prone to inductive biases and, therefore, likely to generalize.

Our hourglass model. Our proposed approach takes inspiration
from the classic “hourglass” model [14], a layered systems archi-
tecture that, in our case, consists of designing and implementing
a “thin waist" that enables collecting data for different learning
problems (hourglass’ top layer) from a diverse set of possible net-
work environments (hourglass’ bottom layer). In effect, we want to
design the thin waist of our hourglass model in such a way that it
accomplishes three goals: (1) allows us to collect a specified training
dataset for a given learning problem from network environments
emulated using one or more supported network infrastructures,
(2) ensures that we can collect a specified training set for each of
the considered learning problems for a given network environment,
and (3) facilitates experiment reproducibility and shareability.
Requirements for a “thin waist”. Realizing this hourglass
model’s thin waste requires developing a flexible and modular data-
collection platform that supports two main functionalities: (1) de-
coupling data-collection intents (i.e., expressing what to collect and
from where) from mechanisms (i.e., how to realize these intents);
and (2) disaggregating intents into independent and reusable tasks.

The required first functionality allows the experimenter to focus
on the experiment’s intent without worrying about how to imple-
ment it. As a result, expressing a data-collection experiment does
not require re-doing tasks related to deployment and execution in
different network environments. For instance, to ensure that the
learning model for video fingerprinting is not overfitted to a specific
network environment, collecting data from different environments,
such as congested campus networks or cable- and satellite-based
home networks, is important. Not requiring the experimenter to
specify the implementation details simplifies this process.

Providing support for the second functionality allows the exper-
imenter to reuse common data-collection intents and mechanisms
for different learning problems. For instance, while the goal for QoE
inference and video fingerprinting may differ, both require starting
and stopping video streaming sessions on an end host.

Ensuring these two required functionalities makes it easier for
an experimenter to iteratively improve the data collection intent,
addressing apparent or suspected inductive biases that a model may
have encoded and may affect the model’s ability to generalize.

4 REALIZING THE “THIN WAIST” IDEA

To achieve the desired “thin waist” of the proposed hourglass model,
we develop a new data-collection platform, netUnicorn. We iden-
tify two distinct stakeholders for this platform: (1) experimenters
who express data-collection intents, and (2) developers who develop
different modules to realize these intents. In Section 4.1, we de-
scribe the programming abstractions that netUnicorn considers to
satisfy the “thin” waist requirements, and in Section 4.2, we show

how netUnicorn realizes these abstractions while ensuring fidelity,
scalability, and extensibility.

4.1 Programming Abstractions

To satisfy the second requirement (disaggregation), netUnicorn
allows experimenters to disaggregate their intents into distinct
pipelines and tasks. Specifically, netUnicorn offers experimenters
Task and Pipeline abstractions. Experimenters can structure data
collection experiments by utilizing multiple independent pipelines.
Each pipeline can be divided into several processing stages, where
each stage conducts self-contained and reusable tasks. In each stage,
the experimenter can specify one or more tasks that netUnicorn will
execute concurrently. Tasks in the next stage will only be executed
once all tasks in the previous stage have been completed.

To satisfy the first requirement, netUnicorn offers a unified inter-
face for all tasks. To this end, it relies on abstractions that concern
specifics of the computing environment (e.g., containers, shell ac-
cess, etc.) and executing target (e.g., ARM-based Raspberry Pis,
AMD64-based computers, OpenWRT routers, etc.) and allows for
flexible and universal task implementation.

To further decouple intents from mechanisms, netUnicorn’s API
exposes the Nodes object to the experimenters. This object abstracts
the underlying physical or virtual infrastructure as a pool of data-
collection nodes. Here, each node can have different static and
dynamic attributes, such as type (e.g., Linux host, PISA switch),
location (e.g., room, building), resources (e.g., memory, storage,
CPU), etc. An experimenter can use the filter operator to select
a subset of nodes based on their attributes for data collection. Each
node can support one or more compute environments, where each
environment can be a shell (command-line interpreter), a Linux
container (e.g., Docker [36]), a virtual machine, etc. netUnicorn
allows users to map pipelines to these nodes using the Experiment
object and map operator. Then, experimenters can deploy and ex-
ecute their experiments using the Client object. Table 7 in the
appendix summarizes the key components of netUnicorn’s API.
Illustrative example. To illustrate with an example how an ex-
perimenter can use netUnicorn’s API to express the data-collection
experiment for a learning problem, we consider the bruteforce at-
tack detection problem. For this problem, we need to realize three
pipelines, where the different pipelines perform the key tasks of
running an HTTPS server, sending attacks to the server, and send-
ing benign traffic to the server, respectively. The first pipeline also
needs to collect packet traces from the HTTPS server.

Listing 1 shows how we express this experiment using netUni-
corn. Lines 1-6 show how we select a host to represent a target
server, start the HTTPS server, perform PCAP capture, and notify
all other hosts that the server is ready. Lines 8-16 show how we
can take hosts from different environments that will wait for the
target server to be ready and then launch a bruteforce attack on
this node. Lines 18-26 show how we select hosts that represent
benign users of the HTTPS server. Finally, lines 28-32 show how
we combine pipelines and hosts into a single experiment, deploy it
to all participating infrastructure nodes, and start execution.

Note that in Listing 1 we omitted task definitions and instanti-
ation, package imports, client authorization, and other details to
simplify the exposition of the system.

1 # Target server

2 hl = Nodes.filter('location', ‘'azure').take(1)
3 pl = Pipeline()

4 .then(start_http_server)

5 .then(start_pcap)

6 .then(set_readiness_flag)

7
8

Malicious hosts

9 h2 = [

10 Nodes . filter ('location', 'campus').take(40),
11 Nodes . filter ('location', ‘'aws').take(490),

12 Nodes . filter ('location', 'digitalocean').take(40),
13]

14 p2 = Pipeline()

15 .then(wait_for_readiness_flag)

16 .then(patator_attack)

17

18 # Benign hosts

19 h3 = [

20 Nodes . filter ('location', 'campus').take(40),
21 Nodes . filter ('location', ‘'aws').take(490),

22 Nodes . filter ('location', 'digitalocean').take(40),
23]

24 p3 = Pipeline()

25 .then(wait_for_readiness_flag)

26 .then(benign_traffic)

27

28 e = Experiment ()

29 .map(p1, h1)

30 .map(p2, h2)

31 .map(p3, h3)

32 Client().deploy(e).execute(e)

Listing 1: Data collection experiment example for the HTTPS
bruteforce attack detection problem. We have omitted task
instantiations and imports to simplify the exposition.

4.2 System Design

The netUnicorn compiles high-level intents, expressed using the
proposed programming abstraction, into target-specific programs.
It then deploys and executes these programs on different data-
collection nodes to complete an experiment. netUnicorn is designed
to realize the high-level intents with fidelity, minimize the inherent
computing and communication overheads (scalability), and sim-
plify supporting new data-collection tasks and infrastructures for
developers (extensibility).

Ensuring high fidelity. netUnicorn is responsible for compiling a
high-level experiment into a sequence of target-specific programs.
We divide these programs into two broad categories for each task:
deployment and execution. The deployment definitions help config-
ure the computing environment to enable the successful execution
of a task. For example, executing the YouTubeWatcher task requires
installing a Chromium browser and related extensions. Since suc-
cessful execution of each specified task is critical for satisfying the
fidelity requirement, netUnicorn must ensure that the computing
environment at the nodes is set up for a task before execution.
Addressing the scalability issues. To execute a given pipeline, a
system can control deployment and execution either at the task- or
pipeline-level granularity. The first option entails the deployment
and execution of the task and then reporting results back to the
system before executing the next task. It ensures fidelity at the task
granularity and allows the execution of pipelines even with tasks
with contradicting requirements (e.g., different library versions).
However, since such an approach requires communication with core
system services, it slows the completion time and incurs additional
computing and network communication overheads.

Our system implements the second option, running all the setup
programs before marking a pipeline ready for execution and then of-
floading the task flow control to a node-based executor that reports
results only at the end of the pipeline. It allows for optimization of
environment preparation (e.g., configure a single docker image for
distribution) and time overhead between tasks, and also reduces
network communication while offering only “best-effort” fidelity
for pipelines.

Enabling extensibility. Enabling extensibility calls for simplify-
ing how a developer can add a new task, update an existing task for
a new target, or add a new physical or virtual infrastructure. Note
that the netUnicorn’s extensibility requirement targets developers
and not experimenters.

Simplify adding and updating tasks. An experimenter specifies a

task to be executed in a pipeline. The netUnicorn chooses a spe-
cific implementation of this task. This may require customizing
the computing environment, which can vary depending on the
target (e.g., container vs shell of OpenWRT router). For example,
a Chromium browser and specific software must be installed to
start a video streaming session on a remote host without a display.
The commands to do so may differ for different targets. The system
provides a base class that includes all necessary methods for a task.
Developers can extend this base class by providing their custom
subclasses with the target-specific run method to specify how to
execute the task for different types of targets. This allows for easy
extensibility because creating a new task subclass is all that is
needed to adapt the task to a new computing environment.
Simplify adding new infrastructures. To deploy data-collection

pipelines, send commands, and send/receive different events and
data to/from multiple nodes in the underlying infrastructure, net-
Unicorn requires an underlying deployment system.

One option is to explicitly bind netUnicorn to one of the existing
deployment (orchestration) systems, such as Kubernetes [66], Salt-
Stack [99], Ansible [4], or others for all infrastructures. However,
requiring a physical infrastructure to support a specific deployment
system is disruptive in practice. Network operators managing a
physical infrastructure are often not amenable to changing their
existing deployment system as it would affect other supported
services.

Another option is to support multiple deployment systems. How-
ever, we need to ensure that supporting a new deployment system
does not require a major refactoring of netUnicorn’s existing mod-
ules. To this end, netUnicorn introduces a separate connectivity
module that abstracts away all the connectivity issues from the
netUnicorn’s other modules (e.g., runtime), offering seamless con-
nectivity to infrastructures using multiple deployment systems.
Each time developers want to add a new infrastructure that uses
an unsupported deployment system, they only need to update the
connectivity manager — simplifying extensibility.

4.3 Prototype Implementation

Our implementation of netUnicorn is shown in Figure 3. Our im-
plementation embraces a service-oriented architecture [96] and
has three key components: client(s), core, and executor(s). Experi-
menters use local instances of netUnicorn’s client to express their
data-collection experiments. Then, netUnicorn’s core is responsible

Client(s)
..
Experiment Core ‘S:aus
Mediation Service
Experiment § ¥ Experiment
Deployment Services Execution Services
Compiler G Processor Gateway
Manager

Datastore

nstructions Results & events

Node(s)
Executor

Figure 3: Architecture of the proposed system. Green-shaded
boxes show all the implemented services.

for all the operations related to the compilation, deployment, and
execution of an experiment. For each experiment, netUnicorn’s
core deploys a target-specific executor on all related data-collection
nodes for running and reporting the status of all the programs
provided by netUnicorn’s core.

The netUnicorn’s core offer three main service groups: mediation,
deployment, and execution services. Upon receiving an experiment
specification from the client, the mediation service requests
the compiler to extract the set of setup configurations for each
distinct (pipeline, node-type) pair, which it uploads to the local
PostgreSQL database. After compilation, the mediation service
requests the connectivity manager to ship this configuration to
the appropriate data-collection nodes and verify the computing
environment. In the case of docker-based infrastructures, this step
is performed locally, and the configured docker image is uploaded
to a local docker repository. The connectivity-manager uses an
infrastructure-specific deployment system (e.g., SaltStack [99]) to
communicate with the data-collection nodes.

After deploying all the required instructions, the mediation
service requests the connectivity manager to instantiate a target-
specific executor for all data-collection nodes. The executor uses
the instructions shipped in the previous stage to execute a data-
collection pipeline. It reports the status and results to netUnicorn’s
gateway and then adds them to the related table in the SQL database
via the processor. The mediation service retrieves the status
information from the database to provide status updates to the ex-
perimenter(s). Finally, at the end of an experiment, the mediation
service sends cleanup scripts (via connectivity-manager) to
each node—ensuring the reusability of the data-collection infras-
tructure across different experiments.

5 EVALUATION: AUGMENTED ML PIPELINE

In this section, we demonstrate how our proposed augmented
ML pipeline helps to improve model generalizability. Specifically,
we seek to answer the following questions: @ Does the proposed
pipeline help in identifying and removing shortcuts? & How do
models trained using the proposed pipeline perform compare to
models trained with existing exogenous data augmentation meth-
ods? & Does the proposed pipeline help with combating ood issues?

5.1 Experimental Setup

To illustrate our approach and answer these questions, we consider
the bruteforce example mentioned in Section 4.1 and first describe

the different choices we made with respect to the ML pipeline and
the iterative data-collection methodology.
Network environments. We consider three distinct network envi-
ronments for data collection: a UCSB network, a hybrid UCSB-cloud
setting, and a multi-cloud environment.

The UCSB network environment is emulated using a pro-
grammable data-collection infrastructure PINOT [15]. This infras-
tructure is deployed at a campus network and consists of multiple
(40+) single-board computers (such as Raspberry Pis) connected to
the Internet via wired and/or wireless access links. These comput-
ers are strategically located in different areas across the campus,
including the library, dormitories, and cafeteria. In this setup, all
three types of nodes (i.e., target server, benign hosts, and malicious
hosts) are selected from end hosts on the campus network. The
UCSB-cloud environment is a hybrid network that combines pro-
grammable end hosts at the campus network with one of three
cloud service providers: AWS, Azure, or Digital Ocean.! In this
setup, we deploy the target server in the cloud while running the
benign and malicious hosts on the campus network. Lastly, the
multi-cloud environment is emulated using all three cloud ser-
vice providers with multiple regions. We deploy the target server
on Azure and the benign and malicious hosts on all three cloud
service providers.

Data collection experiment. The data-collection experiment in-
volves three pipelines, namely target, benign, and malicious. Each
of these pipelines is assigned to different sets of nodes depending on
the considered network environment. The target pipeline is respon-
sible for deploying a public HTTPS endpoint with a real-world API
that requires authentication for access. Additionally, this pipeline
utilizes tcpdump to capture all incoming and outgoing network
traffic. The benign pipeline emulates valid usage of the API with
correct credentials, while the malicious pipeline attempts to obtain
the service’s data by brute-forcing the API using the Patator [88]
tool and a predefined list of commonly used credentials [101].
Data pre-processing and feature engineering. We used CI-
CFlowMeter [31] to transform raw packets into a feature vector of
84 dimensions for each unique connection (flow). These features
represent flow-level summary statistics (e.g., average packet length,
inter-arrival time, etc.) and are widely used in the network security
community [32, 38, 103, 121].

Learning models. We train four different learning models. Two
of them are traditional ML models, i.e., Gradient Boosting (GB) [78],
Random Forest (RF) [18]. The other two are deep learning-based
methods: Multi-layer Perceptron (MLP) [50], and attention-based
TabNet model (TN) [7]. These models are commonly used for han-
dling tabular data such as CICFlowMeter features [53, 106].
Explainability tools. To examine a model trained with a given
training dataset for the possible presence of inductive biases such as
shortcuts or ood issues, our newly proposed ML pipeline requires
an explainability step that consists of applying existing model ex-
plainability techniques, be they global or local in nature, but what
technique to use is left to the discretion of the user.

We illustrate this step by first applying a global explainability
method. In particular, our method-of-choice is the recently de-
veloped tool Trustee [62], but other global model explainability

Unless specified otherwise, we host the target server on Azure for this environment.

Table 1: Number of LLoC changes, data points, and F1 scores across different environments and iterations.

Iteration #0 (initial setup) Iteration 1 Iteration 2
LLoCs 80 +10 +20
UCSB-0 (train) | multi-cloud (test) | UCSB-1 (train) | multi-cloud (test) | UCSB-2 (train) | multi-cloud (test)
MLP 1.0 0.56 0.97 (-0.03) 0.62 (+0.06) 0.88 (-0.09) 0.94 (+0.38)
GB 1.0 0.61 1.0 (+0.00) 0.61 (+0.00) 0.92 (-0.08) 0.92 (+0.31)
RF 1.0 0.58 1.0 (+0.00) 0.69 (+0.11) 0.97 (-0.03) 0.93 (+0.35)
TN 1.0 0.66 0.97 (-0.03) 0.78 (+0.12) 0.92 (-0.05) 0.95 (+0.29)
(TTL<63 ‘ (Bwd Win Init Bytes < 504 Fwd Segment Size Avg < 89
classes = [0.84, 0.16] classes = [0.88, 0.12] classes = [0.60, 0.40]

N e

~ N

classes = [0.01, 0.12]]

classes =“[‘0.83, 0.0] ‘ classes = ‘[.6.01, 0.16]

Pkt Len Variance < ...
classes = [0.60, 0.21] classes = [0.00, 0.19]

classes = [0.87, 0.00]

« N N « N

(a) Iteration #0: top branch is a shortcut.

«

(b) Iteration #1: top branch is a shortcut.

N « N N

(c) Iteration #2: no obvious shortcut.

Figure 4: Decision trees generated using Trustee [62] across the three iterations. We highlight the nodes that are indicators for

shortcuts in the trained model.

techniques could be used as well, including PDP plots [45], ALE
plots [6], and others [77, 84]. Our reasoning for using the Trustee
tool is that for any trained black-box model, it extracts a high-
fidelity and low-complexity decision tree that provides a detailed
explanation of the trained model’s decision-making process. To-
gether with a summary report that the tool provides, this decision
tree is an ideal means for scrutinizing the given trained model for
possible problems such as shortcuts or ood issues.

To compare, we also apply local explainability tools to perform
the explainability step. More specifically, we consider the two well-
known techniques, LIME [95] and SHAP [72]. These methods are
designed to explain a model’s decision for individual input samples
and thus require analyzing the explanations of multiple inputs to
make conclusions about the presence or absence of model blind
spots such as shortcuts or ood issues. While users are free to re-
place LIME or SHAP with more recently developed tools such as
xNIDS [114] or their own preferred methods, they have to be mind-
ful of the efforts each method requires to draw sound conclusions
about certain non-local properties of a given trained model (e.g.,
shortcut learning).

5.2 Identifying and Removing Shortcuts

To answer @, we consider a setup where a researcher curates train-
ing datasets from the UCSB environment and aims at developing
a model that generalizes to the multi-cloud environment (i.e.,
unseen domain).

Initial setup (iteration #0). We refer to the training data gen-
erated from this experiment as UCSB-@. Table 1 shows that while
all three models have a perfect training performance, they all have
low testing performance (errors are mainly false positives). We first
used our global explanation method-of-choice, Trustee, to extract
the decision tree of the trained models. As shown in Figure 4, the
top node is labeled with the separation rule (i.e., TTL < 63) and
the balance between the benign and malicious samples in the data

(named “classes”). Subsequent nodes only show the class balance
after the split.

From Figure 4a, we conclude that all four models use almost
exclusively the TTL (time-to-live) feature to discriminate between
benign and malicious flows, which is an obvious shortcut. Note that
the top parts of Trustee-extracted decision trees were identical for
all four models. When applying the local explanation tools LIME
and SHAP to explain 100 randomly selected input samples, we found
that these explanations identified TTL as the most important fea-
ture in all 100 samples. While consistent with our Trustee-derived
conclusion, these LIME- or SHAP-based observations are necessary
but not sufficient to conclusively decide whether or not the trained
models learned a TTL-based shortcut strategy and further efforts
would be required to make that decision.

To understand the root cause of this shortcut, we checked the
UCSB infrastructure and noticed that almost all nodes used for be-
nign traffic generation have the exact same TTL value due to a
flat structure of the UCSB network. This observation also explains
why most errors are false positives, i.e., the model treats a flow
as malicious if it has a different TTL from the benign flows in the
training set. Existing domain knowledge suggests that this behav-
ior is unlikely to materialize in more realistic settings such as the
multi-cloud environment. Consequently, we observe that models
trained using the UCSB-0 dataset perform poorly on the unseen
domain; i.e., they generalize poorly.

Removing shortcuts (iteration #1). To fix this issue, we modified
the data-collection experiment to use a more diverse mix of nodes
for generating benign and malicious traffic and collected a new
dataset, UCSB-1. However, this change only marginally improved
the testing performance for all three models (Table 1). Inspection of
the corresponding decision trees shows that all the models use the
“Bwd Init Win Bytes” feature for discrimination, which appears to be
yet another shortcut. Again, we observed that all trees generated by
Trustee from different black-box models have identical top nodes.
Similar, our local explanation results obtained by LIME and SHAP

Table 2: F1 score of models trained using our approach (i.e.,
leveraging netUnicorn) vs. models trained with datasets col-
lected from the UCSB network by exogenous methods (i.e.,
without using netUnicorn).

Iteration #2
MLP GB RF TN

Iteration #1
MLP GB RF TN
0.82

Iteration #0
MLP GB RF TN
Naive Aug. 051 0.57 056 053 | 073 0.67 0.71

Noise Aug. 0.66 0.68 0.67 0.66 | 0.72 0.83 0.76 0.82
Feature Drop 0.74 0.55 072 0.87 | 0.91 058 0.63 0.89 - - - -
SYMPROD 0.66 0.71 067 041 | 069 0.66 0.75 0.67 | 0.94 093 0.95 0.96
Our approach 094 0.92 0.95 0.95

also point to this feature as being the most important one across
the analyzed samples.

More precisely, this feature quantifies the TCP window size for

the first packet in the backward direction, i.e., from the attacked
server to the client. It acts as a flow control and reacts to whether
the receiver (i.e., HTTP endpoint) is overloaded with incoming
data. Although it could be one indicator of whether the endpoint
is being brute-force attacked, it should only be weakly correlated
with whether a flow is malicious or benign. Given this reasoning
and the poor generalizability of the models, we consider the use of
this feature to be a shortcut.
Removing shortcuts (iteration #2). To remove this newly iden-
tified shortcut, we refined the data-collection experiment. First, we
created a new task that changes the workflow for the Patator tool.
This new version uses a separate TCP connection for each brute-
force attempt and has the effect of slowing down the bruteforce
process. Second, we increased the number of flows for benign traffic
and the diversity of benign tasks. Using these changes, we collected
a new dataset, UCSB-2.

Table 1 shows that the change in data-collection policy signif-
icantly improved the testing performance for all models. We no
longer observe any obvious shortcuts in the corresponding decision
tree. Moreover, domain knowledge suggests that the top three fea-
tures (i.e., “Fwd Segment Size Average”, “Packet Length Variance”,
and “Fwd Packet Length Std”) are meaningful and their use can
be expected to accurately differentiate benign traffic from repeti-
tive brute force requests. Applying the local explanation methods
LIME and SHAP also did not provide any indications of obvious
additional shortcuts. Note that although the models appear to be
shortcut-free, we cannot guarantee that the models trained with
these diligently curated datasets do not suffer from other possible
encoded inductive biases. Further improvements of these curated
datasets might be possible but will require more careful scrutiny of
the obtained decision trees and possibly more iterations.

5.3 Comparison with Exogeneous Methods

To answer @, we compare the performance of the model trained
using UCSB-2 (i.e., the dataset curated after two rounds of iterations)
with that of models trained with datasets modified by means of
existing exogenous methods. Specifically, we consider the following
methods:

(1) Naive augmentation. We use a naive data collection strat-
egy that does not apply the extra explanation step that our
newly proposed ML pipeline includes to identify training
data-related issues. The strategy simply collects more data

Table 3: The testing F1 score of the models before and after
retraining with malicious traffic generated by Hydra.

‘ MLP GB RF TN | Avg
Before retraining | 0.87 0.81 0.86 0.83 | 0.84
After retraining | 0.93 0.96 0.91 0.91 | 0.93

using the initial data-collection policy. It is an ablation study
demonstrating the benefits of including the explanation step
in our new pipeline. Here, for each successive iteration, we
double the size of the training dataset.

Noise augmentation. This popular data augmentation tech-
nique consists of adding suitable chosen random uniform
noise [73] to the identified skewed features in each itera-
tion. Here, for iteration #0, we use integer-valued uniformly-
distributed random samples from the interval [—1;+1] for
TTL noise augmentation, and for iteration #1, we similarly
use integer-valued uniformly-distributed samples from the
interval [—5; +5] for noise augmentation of the feature “Bwd
Init Win Bytes".

Feature drop. This method simply drops a specified skewed
feature from the dataset in each iteration. In our case, we
drop the identified skewed feature for all training samples
in each training dataset.

SYMPROD. SMOTE [26] is a popular augmentation method
for tabular data that applies interpolation techniques to syn-
thesize data points to balance the data across different classes.
Here we utilize a recently considered version of this method
called SYMPROD [67] and augment each training set by
adding the number of rows necessary for restoring class
balance (proportion = 1).

—
SY)
=

We apply these methods to the three training datasets curated
from the campus network in the previous experiment. For UCSB-0
and UCSB-1, we use the two identified skewed features for adding
noise or dropping features altogether.

Note that since we did not identify any skewed features in the
last iteration, we did not apply any noise augmentation and feature
drop techniques in this iteration and did not collect more data for
the naive data augmentation method.

As shown in Table 2, the models trained using these exogenous
methods perform poorly in all iterations when compared to our
approach. This highlights the main benefit we gain from applying
our proposed closed-loop ML pipeline for iterative data collection
and model training. In particular, it demonstrates that the explana-
tion step in our proposed pipeline adds value. While doing nothing
(i.e., naive data augmentation) is clearly not a worthwhile strategy,
applying either noise augmentation or SYMPROD can potentially
compromise the semantic integrity of the training data, making
them ill-suited for addressing model generalizability issues for net-
work security problems.

5.4 Combating ood-specific Issues

To answer @, we consider two different scenarios: attack adaptation
and environment adaptation.

Table 4: The F1 score of models trained using only UCSB data
or data from UCSB and UCSB-cloud infrastructures.

ucsB UCSB-cloud
Training Test Training Test
MLP 0.88 0.94 | 0.95(+0.07) 0.95 (+0.01)
GB 0.92 092 | 0.96 (+0.04) 0.95 (+0.03)
RF 0.97 0.93 | 0.96 (-0.01) 0.97 (+0.04)
TN 0.83 0.95 | 0.84 (+0.01) 0.96 (+0.01)

Attack adaptation. We consider a setup where an attacker
changes the tool used for the bruteforce attack, i.e., uses Hydra [61]
instead of Patator. To this end, we use netUnicorn to generate a
new testing dataset from the UCSB infrastructure with Hydra as
the bruteforce attack. Table 3 shows that the model’s testing per-
formance drops significantly (to 0.85 on average). We observe that
this drop is attributable to the model’s reduced ability to identify
malicious flows, which indicates that changing the attack genera-
tion tool introduces ood samples, although they belong to the same
attack type.

To address this problem, we modified the data generation exper-
iment to collect attack traffic from both Hydra and Patator in equal
proportions. This change in the data-collection experiment only
required 6 LLoC. We retrain the models on this dataset and observe
significant improvements in the model’s performance on the same
test dataset after retraining (see Table 3).

Note that we only test one type of ood data where the evolved

attack still has the same goal and functionality. However, an attack
can also evolve into another type of attack with a different goal,
resulting in ood samples with new labels. Here, we leverage en-
semble models and human analysis to identify the ood case. While
it may be possible to identify ood issues using more automated
methods that are motivated by findings obtained from applying
global explainability tools, we plan to revisit this problem in our
future work.
Environment adaptation. We consider testing the model we
developed in the UCSB environment in the unseen multi-cloud
environment as a different instance of an ood issue that is due to
possible feature distribution differences. To address this issue, we
use the UCSB-cloud environment for data collection. As expected,
we observe differences in the distributions for some of the features
across the two environments (see Figure 5). Table 4 shows the
performance of the models trained using only the data from the
UCSB environment compared to the ones that use data from both
the UCSB and UCSB-cloud environments. Notably, as UCSB-cloud
is more similar to the multi-cloud environment than the UCSB
environment, the models trained with the UCSB-cloud data show
improvements in their performance under the test settings.

6 EVALUATION: NETUNICORN

We now answer if netUnicorn lowers the threshold for researchers
to collect data for: @ different learning problems for a given network
environment? @ a given learning problem from different environ-
ments, emulated using one or more network infrastructures? and
@ iteratively calibrating the data collection intents for a given learn-
ing problem and environment? We also demonstrate @ how well
does netUnicorn scale for larger data-collection infrastructures,

1000 600
Environment
800 == campus
I campus-cloud 400
600

Environment
= campus
B campus-cloud

Count
Count

400 200

200

50 100 150 200 200 400 600 800
Fwd Packet Length Mean Average Packet Size

1000

Figure 5: Distributions of several features across two different
environments: UCSB and UCSB-cloud

especially the ones equipped with relatively low-end devices, such
as RPis?

6.1 Experimental Setup

Learning problems. Besides the HTTP bruteforce attack detection
problem, we explore two more learning problems for this experi-
ment, namely video fingerprinting and advanced persistent threats
detection (APTs). In the case of the first additional example, the
learning problem is to fingerprint videos for web-based stream-
ing services, such as YouTube, that adopt variable bitrates [100].
Previous work [100] did not evaluate the proposed learning model
under realistic network conditions. Thus, to collect meaningful
data for this problem, we use a network of end hosts in the UCSB
infrastructure to collect a training dataset for five different YouTube
videos.? Specifically, our data-collection intent is specified by the
following sequence of tasks: start packet capture, watch a YouTube
video in headless mode for 30 seconds, and stop packet capture. We
repeat this sequence ten times for each video in a shuffled order
and combine it into a single pipeline, where at the end, we upload
the collected data to our server.

Regarding the second additional example, the learning problem,
in this case, is to identify the hosts that some APTs have com-
promised. To generate data for this learning problem, we write
an experiment that mimics the behavior of a compromised host.
Specifically, our data-collection intent is as follows: find active hosts
using Ping, check if port 443 is opened for active hosts (identified
in the previous stage) with PortScan, and then for each host with
open 443 port launch four different attacks in parallel: CVE20140160
(Heartbleed), CVE202141773 (Apache 2.4.49 Path), CVE202144228
(Log4]), and Patator (HTTP admin endpoint bruteforce using the
Patator tool). The ML pipeline creates a “semi-realistic” training
dataset by combining actively generated attack traffic with pas-
sively collected packet traces from a border router of a production
network, such as the UCSB network.3 We then use this dataset for
model training. Note, here we assume that we know the attacker’s
playbook; that is, the goal, in this case, is not to demonstrate a real-
istic attack playbook but to demonstrate that netUnicorn simplifies
generating attack traffic for a given APT attack playbook.
Network environments. netUnicorn enables emulating network
environments for data collection using one or more physical/virtual
infrastructures. Previously, we used a SaltStack-based infrastructure

2Each video is identified with a unique URL.

3Note, in theory, we could use netUnicorn to actively collect the benign traffic for this
learning problem in addition to the attack traffic. However, generating representative
benign traffic for a large and complex enterprise network will require a more complex
data-collection infrastructure than the one we use for evaluation. Section 7 discusses
this issue in greater detail.

Table 5: LLoCs to implement different problems using netUni-
corn and other deployment systems. Here, the three learning
problems are (1) Bruteforce detection, (2) video fingerprint-
ing, and (3) APT detection.

Learning netUnicorn Other Deployment Systems
Problems Experiment (Tasks) | Kubernetes SaltStack ACI

1 21 (18) 74 113 61

2 35 (115) 161 237 179

3 17 (120) 151 232 176
LLoC Ratio for Experiments + Tasks 1-2x 2 -3% 1-2x
LLoC Ratio for Experiments 3 - 9% 5-13x 3 -10X%

at UCSB and multiple clouds to emulate various network environ-
ments: UCSB, UCSB-cloud, and multi-cloud. In this experiment,
we implement a connector to another infrastructure, Azure Con-
tainer Instances (ACI) to expand cloud-based environments with
serverless Docker containers. During the experiments, containers
were dynamically created in multiple regions and used for pipeline
execution. Overall, netUnicorn currently supports six different de-
ployment system connectors (see Table 8 in Appendix D).
Baseline. To the best of our knowledge, none of the existing plat-
forms/systems offer the desired extensibility, scalability, and fidelity
for data collection (see Section 8 for more details). To illustrate how
netUnicorn simplifies data collection efforts, we consider baselines
that directly configure three different deployment/orchestration
systems. Specifically, we consider the following deployment sys-
tems as baselines: Kubernetes, SaltStack, and Azure Container
Instances (ACI). For each data-collection experiment, we explicitly
compose different tasks to realize different data-collection pipelines,
create pipeline-specific docker images, and use existing tools (e.g.,
kubectl) to map and deploy these pipelines to different nodes.

6.2 Simplifying Data Collection Effort

We now demonstrate how netUnicorn simplifies data collection for:
Different learning problems for a given network environ-
ment (@). Table 5 reports the effort in expressing the data-
collection experiments for the three learning problems for the UCSB
network. We observe that netUnicorn only requires 17-35 LLoCs to
express the data-collection intent. The UCSB network infrastructure
uses SaltStack as the deployment system, and we observe that it
takes 113-237 LLoC (around 5-13 X more effort) to express and
realize the same data-collection intents without netUnicorn.

The key enabler here is the set of self-contained tasks that real-
ize different data-collection activities. For each learning problem,
Table 5 quantifies the overhead of specifying new tasks unique
to the problem at hand. Even taking the overheads of expressing
these tasks into consideration, collecting the same data from UCSB
network without netUnicorn requires around 2-3 X more effort.

Overall, we implemented around twenty different tasks to boot-
strap netUnicorn (see Table 9 (in Appendix E) for more details).
The total development effort for the bootstrapping was around
900 LLoCs . Though this bootstrapping effort is not insignificant,
we posit that this effort amortizes over time as this repository of
reusable and self-contained tasks will facilitate expressing increas-
ingly disparate data-collection experiments.

Given learning problem from multiple network environ-
ments (0). As we discussed before, netUnicorn is inherently ex-
tensible, i.e., it can use different sets of network infrastructures to
emulate disparate network environments for data collection. With
netUnicorn, changing an existing data-collection experiment to
collect data from a new set of network infrastructure(s) requires
changing only a few LLoCs (2-3 for the examples in Table 5). In con-
trast, collecting the data for the HTTP Bruteforce detection problem
from a cloud infrastructure (ACI) and a Kubernetes cluster requires
writing additional 61 and 74 LLoCs, respectively. This effort is even
more intense for video fingerprinting and APT detection problems.

The key enabler for simplifying data collection across one
or more network infrastructures is netUnicorn’s extensible
connectivity-manager that can interface with multiple deploy-
ment systems via a system of connectors. In Table 8, we enumerated
all the implemented connectors and corresponding logical lines of
code (LLoC) for each implementation. Note that this bootstrapping
is a one-time effort, and these connectors can be reused across mul-
tiple physical infrastructures that are managed using either of the
supported deployment systems (e.g., SaltStack, Kubernetes, etc.).
Iterative data collection (®). To iteratively modify data collec-
tion intents, the system should allow flexibility in both pipeline
modifications and environment changes. We implemented the ex-
periment, described in Section 5, using netUnicorn, for all three
environments (UCSB, UCSB-cloud, and multicloud). We report the
combined LLoCs for experiment definitions and tasks implementa-
tions in Table 1. As we reused previously implemented connectors,
we do not report their LLoC in the table.

The table shows that the overhead for iterative updates is min-
imal. While this overhead may also be minimal for more conven-
tional (platform- and problem-specific) solutions, netUnicorn’s ab-
stractions allow for seamless integration of many other platforms,
thus providing a means to increase the diversity of the collected
datasets further and, in turn, a model’s generalizability capabilities.

6.3 Scaling Data Collection

To quantify the computing and memory overheads of netUnicorn’s
core and executors (@), we measure the wall time or elapsed time
as a proxy for CPU cycles and use a Python-based memory pro-
filer [74], respectively. Our results show that the executor running
on a low-end node such as a Raspberry Pi incurs a computing over-
head of approximately 1 second per stage and 0.13 seconds per
task while consuming less than 21 MB of memory. Meanwhile,
netUnicorn’s core incurs a computing overhead of around five sec-
onds for deployment and 20 seconds for execution in a 20-node
infrastructure while consuming less than 417 MB of memory. The
details of these experiments can be found in Appendix F.

7 DISCUSSION

More learning problems. While not implemented in this pa-
per, we envision that the netUnicorn platform can be used for a
wide range of different network security problems, such as network
censorship [3, 16, 57], website fingerprinting [29, 108], Tor traffic
analysis [37], and others. Many of these problems involve an active
measurement component for data collection, labeling, or commu-
nication and would benefit from netUnicorn-provided capabilities

such as (i) running experiments that require the simultaneous use
of different infrastructures and (ii) facilitating the reproducibility
and shareability of experiments. To demonstrate this benefit, we
used netUnicorn to implement a multi-vantage point validation
of the Let’s Encrypt ACME challenge [17] and refer the reader to
Appendix A for further details. We provide additional evidence for
the practicability and versatility of netUnicorn and its use as part of
our newly-proposed ML pipeline by describing in Appendix B the
application of our approach to two additional real-world security
problems, namely Heartbleed detection and OS fingerprinting.
Usability and Realism. First, a critical step in our proposed
method is that we require domain experts to articulate data col-
lection intents. As demonstrated in Section 5, it is often possible
to generate appropriate intents with the help of explainable ML
models. Our platform design further simplifies the process of trans-
lating intents into action, ensuring the usability of our proposed
method. Second, our data collection follows an emulation-based
mechanism that enables accurate labeling. With our proposed it-
erative approach, we can eliminate biases from the collected data.
Additionally, our platform significantly lowers the threshold for
gathering data from multiple environments, enhancing the diver-
sity of the data collected. As demonstrated in Section 5, the data
we collected is realistic and representative and can improve the
generalizability of trained models in various environments.
Limitations of the proposed approach.

Active data collection. Our approach uses endogenously generated
(labeled) network data from actual network environments. We note
that it may also be possible to improve a model’s generalizability
by means of carefully selected and exogenously generated (passive)
data from a production network, but such an approach is beyond
the scope of this paper.

Feature pre-processing. Curating training datasets entails both data
collection and pre-processing. Since data pre-processing remains
the same for different versions of the collected data that result
from our iterative approach, it poses no problems for the desired
“thin waist” of netUnicorn’s design. In this paper, we utilized the
CICFlowmeter for pre-processing, which worked well for all consid-
ered learning problems. While we readily acknowledge that there
is more to data pre-processing than CICFlowmeter, we leave the
exploration of alternative pre-processing (as well as model selection
and optimization) techniques for future work.

Decomposing pipelines. We assume that it is possible to decompose
a data-collection pipeline into self-contained tasks. However, such a
decomposition may be cumbersome for complex learning problems
like Puffer [116] that require closer service integration.
Decoupling pipelines from infrastructures. We assume that it is

possible to decouple the data-collection intents from actual
infrastructure-specific mechanisms. However, realizing this may
be difficult, especially for experiments where the data-collection
tasks are heavily intertwined with a specific attribute of the data-
collection node. For example, some IoT security experiments [109]
require running the data-collection pipeline on specific devices with
integrated firmware and pre-defined implementations of closed-
source services, which cannot be easily supported by netUnicorn.
Programming overheads. Our approach requires experimenters to

express new data-collection tasks that are not yet presented in

netUnicorn’s library. Though this effort will amortize over time, it
will only materialize if we succeed in building and incentivizing a
broad user community for the proposed platform. Here, we take a
first step and make a case for a holistic communal effort to address
the data quality and model generalizability issues that have impeded
the use of ML-based network security solutions in practice to date.
Limitations of the prototype implementation.
Data-collection nodes. Our current prototype only supports Linux-
or Windows-based nodes, optionally with Docker support to enable
full platform capabilities (such as Docker container environments).
This restriction is reasonable because of the widespread support
for Docker-based containers in current data-collection infrastruc-
tures [24, 41] and a growing trend to manage Docker-based in-
frastructures [11, 66]. In future work, we plan to extend support to
other computing environments, such as OpenWRT routers and PISA
switches, which do not natively support Python or Docker. Cur-
rently, such extensions are possible using the sidecar model [107],
which allows the configuration of nodes without Python support
through Python-based APIs, such as P4-runtime [87].
Potential subjectivity and biases. Applying our proposed closed-
loop ML pipeline involves the use of domain experts who them-
selves can be a source of possible biases or can make subjective
decisions. One immediate solution to address this problem is to
rely on multiple experts for cross-validation of explanations and
decisions regarding data collection. For a more long-term solution,
we envision the development of quantitative methods (e.g., met-
rics for evaluating explanation fidelity [54]) that will facilitate the
detection of possible shortcuts or other types of inductive biases.
As far as other bias-related issues are concerned, we are already
using a validation set for parameter selection to reduce parameter
bias, and our method naturally helps avoid data snooping because
it supports collecting data for different tasks and from different
network environments at different times and allows for periodically
examining and (if necessary) updating trained models.
Manual effort. A concerning side effect of using domain experts as
part of our closed-loop ML pipeline is the manual effort it entails.
While this makes the current version of our new pipeline inher-
ently semi-automatic, future development of quantitative methods
for detecting and possibly eliminating different types of inductive
biases promises to reduce the manual effort required and make the
pipeline more automatic. The development of such methods could
potentially also benefit from advances in how Al can be utilized
for examining model explanations and making model modification
suggestions, but such issues are beyond the scope of this paper.

8 RELATED WORK

Alternative approaches for our designs. In principle, it is possi-
ble to use existing tools and frameworks to realize the “thin waist"
we implemented for data collection, but doing so while achieving
netUnicorn’s level of abstraction, extensibility, fidelity, and scala-
bility poses significant challenges (See Appendix H for details). For
example, one possibility is to disaggregate pipelines into tasks with
existing workflow-management platforms, such as Airflow [1] or
others [33, 71, 76]. However, there is often no explicit support to
map these pipelines to specific data-collection nodes and instantiate

multiple copies of tasks — limiting data-collection experiments’ flex-
ibility. Existing CI/CD systems (e.g., Jenkins [63] and others [48, 49]
allow explicit mapping of pipelines to nodes but typically require
specific infrastructure access and configuration, limiting the desired
extensibility and fidelity. Besides, they do not optimize inter-task
execution time, limiting their ability to scale the data collection
scenarios. Finally, one can also use different configuration (e.g., Salt-
Stack [99]) or orchestration platforms (e.g., Kubernetes [66]), and
others [4, 27, 91, 112]. However, these systems lack the desired
extensibility and flexibility because, being tailor-made for orches-
tration, they only work for specific types of infrastructures and do
not provide explicit support for the proposed pipelines and stages
abstraction, limiting tasks and experiments’ reusability.

Passive data augmentation. In computer vision, researchers
synthesize novel training data by adding random Gaussian noise
to training images [105, 110] or blurring, rotating, and flipping
them. However, these methods are specific to images and can only
rarely be applied beyond vision data. Recent studies propose more
application-domain independent methods, such as mixup [119] and
SMOTE [26, 65], which can be applied to networking data. However,
as demonstrated in Section 5, these methods have limited efficacy
in networking applications due to the correctness of the augmented
data. They also generate samples that are typically very similar
to the given training data, thus limiting the examination of model
generalizability. Another line of data augmentation methods gener-
ates adversarial samples by adding carefully crafted perturbations
to training samples (e.g., [28, 51, 94]). Since these perturbations
are just noises with a Non-Gaussian distribution, they suffer from
similar limitations as adding Gaussian noise.

Model-side efforts. Various model-side efforts have also been con-
sidered to improve model generalizability. In particular, (reinforce-
ment learning-based) domain adaptation methods (e.g.,[44, 102])
maintain an ML model’s efficacy across multiple domains. To gen-
eralize across different learning problems, existing research pro-
posed multi-task learning [98, 120]) and few-shot learning meth-
ods [50, 97]. Researchers have also developed advanced models
to combat shortcuts [46] or out-of-distribution (ood) issues [59],
such as detecting oods with contrastive learning [118]. All the
model-side efforts assume that the training data is fixed and already
given. These techniques are orthogonal and complementary to our
method, which focuses on improving datasets.

9 CONCLUSION

In this paper, we present a novel closed-loop ML pipeline to curate
high-quality datasets for developing generalizable ML-based solu-
tions for network security problems. Our approach is based on a
new data-collection method that leverages advances in explainable
ML and emphasizes the need for a flexible “in vivo" collection of
training datasets. It takes inspiration from the classic “hourglass”
abstraction, where the different learning problems make up the
hourglass’ top layer, and the different network environments con-
stitute its bottom layer. We realize the “thin waist" of this hourglass
abstraction with a new data-collection platform, netUnicorn. In ef-
fect, for each learning problem, netUnicorn enables data collection
in multiple network environments, and for each network environ-
ment, it facilitates data collection for multiple learning problems.

Through extensive experiments that involve different network se-
curity problems and consider multiple network infrastructures, we
demonstrate how netUnicorn, in conjunction with the use of ex-
plainable ML tools, simplifies data collection for different learning
problems from diverse network environments, enables iterative
data collection for advancing the development of generalizable ML
models, and improves the reproducibility, reusability, and share-
ability of network security experiments.

ACKNOWLEDGEMENTS

We thank the ACM CCS reviewers for their constructive feedback.
NSF Awards CNS-2003257, OAC-2126327, and OAC-2126281 sup-
ported this work.

REFERENCES

[1] Apache airflow. https://airflow.apache.org.

[2] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang, and D. Xu.
Atlas: A sequence-based learning approach for attack investigation. In Proc. of
USENIX Security, 2021.

[3] Anonymous, A. A. Niaki, N. P. Hoang, P. Gill, and A. Houmansadr. Triplet
censors: Demystifying great Firewall’s DNS censorship behavior. In Proc. of
FOCI, 2020.

[4] Ansible automation platform. https://www.ansible.com/.

[5] Apache2 2.4.49 - Ifi & rce exploit. https://github.com/thehackersbrain/CVE-
2021-41773.

[6] D.W. Apley and J. Zhu. Visualizing the effects of predictor variables in black
box supervised learning models, 2019.

[7] S.O. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learning, 2020.

[8] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressnegger,
L. Cavallaro, and K. Rieck. Dos and don’ts of machine learning in computer
security. In Proc. of USENIX Security, 2022.

[9] Ripe atlas. https://atlas.ripe.net/.

1. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang, T. Lehman, and

P. Ruth. Fabric: A national-scale programmable experimental network infras-

tructure. IEEE Internet Computing, 2019.

balena - the complete iot management platform. https://www.balena.io/.

B. Ballmann. Understanding Network Hacks. Springer Berlin Heidelberg, 2021.

K. Bartos, M. Sofka, and V. Franc. Optimized invariant representation of network

traffic for detecting unseen malware variants. In Proc. of USENIX Security, 2016.

M. Beck. On the hourglass model. Commun. ACM, 62(7):48-57, jun 2019.

R. Beltiukov, S. Chandrasekaran, A. Gupta, and W. Willinger. Pinot: Pro-

grammable infrastructure for networking. In Proceedings of the Applied Net-

working Research Workshop, ANRW 23, page 51-53, New York, NY, USA, 2023.

Association for Computing Machinery.

A. Bhaskar and P. Pearce. Many roads lead to rome: How packet headers

influence DNS censorship measurement. In Proc. of USENIX Security, 2022.

H. Birge-Lee, L. Wang, D. McCarney, R. Shoemaker, J. Rexford, and P. Mittal.

Experiences deploying Multi-Vantage-Point domain validation at let’s encrypt.

In Proc. of USENIX Security, 2021.

L. Breiman. Random forests. Machine learning, 45:5-32, 2001.

F. Bronzino, P. Schmitt, S. Ayoubi, G. Martins, R. Teixeira, and N. Feamster.

Inferring streaming video quality from encrypted traffic: Practical models and

deployment experience. Proc. of POMACS, 2019.

Cloud computing services - amazon web services. https://aws.amazon.com/.

Cloud computing services - microsoft azure. https://azure.microsoft.com/.

Cloud computing services - digitalocean. https://www.digitalocean.com/.

Cloud computing services - google cloud. https://cloud.google.com/.

Chi@edge. https://chameleoncloud.org/experiment/chiedge/.

E. Chatzoglou, V. Kouliaridis, G. Karopoulos, and G. Kambourakis. Revisiting

quic attacks: A comprehensive review on quic security and a hands-on study.

International Journal of Information Security, 2022.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic

minority over-sampling technique. Journal of Artificial Intelligence Research,

16:321-357, jun 2002.

Chef infra. http://www.chef.io/chef/.

Z. Chen, Q. Li, and Z. Zhang. Towards robust neural networks via close-loop

control. arXiv preprint arXiv:2102.01862, 2021.

G. Cherubin, R. Jansen, and C. Troncoso. Online website fingerprinting: Evalu-

ating website fingerprinting attacks on tor in the real world. In Proc. of USENIX

Security, 2022.

Canadian institute for cybersecurity datasets. https://www.unb.ca/cic/datasets/

index.html.

Cicflowmeter-v4.0. https://github.com/ahlashkari/CICFlowMeter.

pury
&

[14]
[15

[16]

[27
[28

[29

[30

[31

https://airflow.apache.org
https://www.ansible.com/
https://github.com/thehackersbrain/CVE-2021-41773
https://github.com/thehackersbrain/CVE-2021-41773
https://atlas.ripe.net/
https://www.balena.io/
https://aws.amazon.com/
https://azure.microsoft.com/
https://www.digitalocean.com/
https://cloud.google.com/
https://chameleoncloud.org/experiment/chiedge/
http://www.chef.io/chef/
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://github.com/ahlashkari/CICFlowMeter

(32]

@
&

[34

N
[

~
&

o
2

A. Cuzzocrea, F. Martinelli, F. Mercaldo, and G. Vercelli. Tor traffic analysis and
detection via machine learning techniques. In Proc. of Big Data, 2017.

Dagster. https://dagster.io/.

A.D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen,
J. Deaton,]. Eisenstein, M. D. Hoffman, F. Hormozdiari, N. Houlsby, S. Hou,
G. Jerfel, A. Karthikesalingam, M. Lucic, Y. Ma, C. McLean, D. Mincu, A. Mi-
tani, A. Montanari, Z. Nado, V. Natarajan, C. Nielson, T. F. Osborne, R. Raman,
K. Ramasamy, R. Sayres, J. Schrouff, M. Seneviratne, S. Sequeira, H. Suresh,
V. Veitch, M. Vladymyrov, X. Wang, K. Webster, S. Yadlowsky, T. Yun, X. Zhai,
and D. Sculley. Underspecification presents challenges for credibility in modern
machine learning. Journal of Machine Learning Research, 23(226):1-61, 2022.
1998 darpa intrusion detection evaluation dataset. https://www.ll.mit.edu/r-
d/datasets/1998-darpa-intrusion-detection-evaluation-dataset.

Docker. https://www.docker.com/.

P. Dodia, M. AlSabah, O. Alrawi, and T. Wang. Exposing the rat in the tunnel:
Using traffic analysis for tor-based malware detection. In Proc. of CCS, 2022.
G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani. Charac-
terization of encrypted and vpn traffic using time-related features. In Proc. of
ICISSP, 2016.

M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and
diagnosis from system logs through deep learning. In Proc. of CCS, 2017.

L. D’hooge, T. Wauters, B. Volckaert, and F. De Turck. Inter-dataset generaliza-
tion strength of supervised machine learning methods for intrusion detection.
Journal of Information Security and Applications, 54:102564, 2020.

Edgenet. https://www.edge-net.org/.

R. Fakoor, J. Mueller, N. Erickson, P. Chaudhari, and A. Smola. Fast, accurate,
and simple models for tabular data via augmented distillation. In NeurIPS 2020,
2020.

J. Fang, C. Tang, Q. Cui, F. Zhu, L. Li, J. Zhou, and W. Zhu. Semi-supervised
learning with data augmentation for tabular data. In Proc. of CIKM, 2022.

A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia. A brief review of domain
adaptation. In Proc. of Advances in Data Science and Information Engineering,
2021.

J. H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 2001.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and
F. A. Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2020.

A. Gepperth and S. Rieger. A survey of machine learning applied to computer
networks. In Proc. of ESANN, 2020.

Github actions. https://docs.github.com/en/actions.

Gitlab ci/cd. https://docs.gitlab.com/ee/ci/.

1. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

L. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

M. Gouel, K. Vermeulen, M. Mouchet, J. P. Rohrer, O. Fourmaux, and T. Friedman.
Zeph iris map the internet: A resilient reinforcement learning approach to
distributed ip route tracing. ACM SIGCOMM Computer Communication Review,
2022.

L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still
outperform deep learning on tabular data?, 2022.

W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna: Explaining deep
learning based security applications. In Proc. of CCS, 2018.

S. Gupta and A. Gupta. Dealing with noise problem in machine learning data-
sets: A systematic review. Procedia Computer Science, 2019.

C. Gutterman, K. Guo, S. Arora, T. Gilliland, X. Wang, L. Wu, E. Katz-Bassett,
and G. Zussman. Requet: Real-time qoe metric detection for encrypted youtube
traffic. ACM Transactions on Multimedia Computing, Communications, and
Applications, 2020.

M. Harrity, K. Bock, F. Sell, and D. Levin. GET /out: Automated discovery of
Application-Layer censorship evasion strategies. In Proc. of USENIX Security,
2022.

Heartbleed. https://gist.github.com/eelsivart/10174134.

D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-
of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136,
2016.

J. Holland, P. Schmitt, N. Feamster, and P. Mittal. New directions in automated
traffic analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. ACM, nov 2021.

Hydra. https://github.com/vanhauser-thc/thc-hydra.

A. S. Jacobs, R. Beltiukov, W. Willinger, R. A. Ferreira, A. Gupta, and L. Z.
Granville. Ai/ml for network security: The emperor has no clothes. In Proc. of
CCS, 2022.

Jenkins. https://www.jenkins.io/.

R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, . Nouretdinov, and
L. Cavallaro. Transcend: Detecting concept drift in malware classification
models. In Proc. of USENIX Security, 2017.

[65]

[66
[67

[68

[69
[70]

71
[72

[73]

[74
[75

[76

[77
[78

[79

[80
[81
[82

[83

[84

[85]

[86
[87

(88
[89
[90

[o1
[92

[93

[94]

[95]

[96

[97]
[98]

[99
[100

[101
[1

)
Lt

G. Kovacs. An empirical comparison and evaluation of minority oversampling
techniques on a large number of imbalanced datasets. Applied Soft Computing,
07 2019.

Kubernetes - production-grade container orchestraction. https://kubernetes.io/.
I. Kunakorntum, W. Hinthong, and P. Phunchongharn. A synthetic minority
based on probabilistic distribution (symprod) oversampling for imbalanced
datasets. IEEE Access, 2020.

B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid prototyp-
ing for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, New York, NY, USA, 2010.
Association for Computing Machinery.

log4j-scan. https://github.com/fullhunt/log4j-scan.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering, 2018.
Luigi. https://github.com/spotify/luigi.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model pre-
dictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 4765-4774. Curran Associates, Inc., 2017.

K. Maharana, S. Mondal, and B. Nemade. A review: Data pre-processing and
data augmentation techniques. Global Transitions Proceedings, 2022.
memory-profiler. https://pypi.org/project/memory-profiler/.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An ensemble of
autoencoders for online network intrusion detection. In Proc. of NDSS, 2018.
F. Molder, K. Jablonski, B. Letcher, M. Hall, C. Tomkins-Tinch, V. Sochat, J. Forster,
S. Lee, S. Twardziok, A. Kanitz, A. Wilm, M. Holtgrewe, S. Rahmann, S. Nahnsen,
and J. Koster. Sustainable data analysis with snakemake. F1000Research, 10(33),
2021.

C. Molnar. Interpretable machine learning. Lulu. com, 2020.

A. Natekin and A. Knoll. Gradient boosting machines, a tutorial. Frontiers in
neurorobotics, 7:21, 2013.

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and
H. Balakrishnan. Mahimahi: Accurate Record-and-Replay for HTTP. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 417429, Santa
Clara, CA, July 2015. USENIX Association.

Netrics. https://github.com/chicago-cdac/nm-exp-active-netrics.

System code of netunicorn. https://github.com/netunicorn/netunicorn.
Library of tasks for netunicorn. https://github.com/netunicorn/netunicorn-
library.

Supplementary materials for netunicorn paper. https://github.com/netunicorn/
netunicorn-search.

H. Nori, S. Jenkins, P. Koch, and R. Caruana. Interpretml: A unified framework
for machine learning interpretability. arXiv preprint arXiv:1909.09223, 2019.
ns-3 | a discrete-event network simulator for internet systems. https://www.
nsnam.org/.

pOf v3 (version 3.09b). https://lcamtuf.coredump.cx/p0f3/.

P4runtime specification. https://p4.org/p4-spec/p4runtime/main/P4Runtime-
Spec.html.

Patator. https://github.com/lanjelot/patator.

Platforms for advanced wireless research. https://advancedwireless.org/.

J. Petch, S. Di, and W. Nelson. Opening the black box: The promise and lim-
itations of explainable machine learning in cardiology. Canadian Journal of
Cardiology, 2022.

Puppet. https://puppet.com/.

Python network attacks. https://github.com/PacktPublishing/Basic-and-low-
level-Python-Network- Attacks.

J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence.
Dataset shift in machine learning. Mit Press, 2008.

S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. A. Mann. Data
augmentation can improve robustness. In Proc. of NeurlIPS, 2021.

M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?": Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, page
1135-1144, New York, NY, USA, 2016. Association for Computing Machinery.
M. Richards. Software Architecture Patterns: Understanding Common Architecture
Patterns and when to Use Them. O’Reilly Media, 2015.

J. Rivero, B. Ribeiro, N. Chen, and F. S. Leite. A grassmannian approach to
zero-shot learning for network intrusion detection. In Proc. of ICONIP, 2017.
S. Ruder. An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098, 2017.

Salt project. https://saltproject.io/.

R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the burst: Remote identi-
fication of encrypted video streams. In Proc. of USENIX Security, 2017.

Seclists. https://github.com/danielmiessler/SecLists.

S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, and S. Sarawagi.
Generalizing across domains via cross-gradient training. arXiv preprint
arXiv:1804.10745, 2018.

https://dagster.io/
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.docker.com/
https://www.edge-net.org/
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://gist.github.com/eelsivart/10174134
https://github.com/vanhauser-thc/thc-hydra
https://www.jenkins.io/
https://kubernetes.io/
https://github.com/fullhunt/log4j-scan
https://github.com/spotify/luigi
https://pypi.org/project/memory-profiler/
https://github.com/chicago-cdac/nm-exp-active-netrics
https://github.com/netunicorn/netunicorn
https://github.com/netunicorn/netunicorn-library
https://github.com/netunicorn/netunicorn-library
https://github.com/netunicorn/netunicorn-search
https://github.com/netunicorn/netunicorn-search
https://www.nsnam.org/
https://www.nsnam.org/
https://lcamtuf.coredump.cx/p0f3/
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://github.com/lanjelot/patator
https://advancedwireless.org/
https://puppet.com/
https://github.com/PacktPublishing/Basic-and-low-level-Python-Network-Attacks
https://github.com/PacktPublishing/Basic-and-low-level-Python-Network-Attacks
https://saltproject.io/
https://github.com/danielmiessler/SecLists

[103] I Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a new
intrusion detection dataset and intrusion traffic characterization. In International
Conference on Information Systems Security and Privacy, 2018.

S. Shi, X. Zhang, and W. Fan. Explaining the predictions of any image classifier
via decision trees, 2019.

C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for
deep learning. Journal of big data, 2019.

R. Shwartz-Ziv and A. Armon. Tabular data: Deep learning is not all you need.
Information Fusion, 2022.

Sidecar pattern. https://docs.microsoft.com/en-us/azure/architecture/patterns/
sidecar.

[108] J.-P. Smith, L. Dolfi, P. Mittal, and A. Perrig. QCSD: A QUIC Client-Side Website-
Fingerprinting defence framework. In 31st USENIX Security Symposium (USENIX
Security 22), pages 771-789, Boston, MA, Aug. 2022. USENIX Association.
Unsw datasets. https://iotanalytics.unsw.edu.au/.

D. A. Van Dyk and X.-L. Meng. The art of data augmentation. Journal of
Computational and Graphical Statistics, 2001.

M. Vasi¢, A. Petrovi¢, K. Wang, M. Nikoli¢, R. Singh, and S. Khurshid. MoET:
Mixture of expert trees and its application to verifiable reinforcement learning.
Neural Networks, 151:34-47, jul 2022.

Vmware vsphere. https://www.vmware.com/products/vsphere. html.

Web distributed authoring and versioning (webdav) ordered collections protocol.
https://www.rfc-editor.org/rfc/rfc3648.html.

F. Wei, H. Li, Z. Zhao, and H. Hu. Xnids: Explaining deep learning-based network
intrusion detection systems for active intrusion responses. In 32nd USENIX
Security Symposium (USENIX Security 23), 2023.

Overview of competitive standards. https://xked.com/927/.

F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and K. Winstein.
Learning in situ: a randomized experiment in video streaming. In Proc. of USENIX
NSDI, 2020.

F.Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K. Winstein.
Pantheon: the training ground for internet congestion-control research. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 731-743, Boston,
MA, July 2018. USENIX Association.

L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and G. Wang.
{CADE}: Detecting and explaining concept drift samples for security applica-
tions. In Proc. of USENIX Security, 2021.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Y. Zhang and Q. Yang. An overview of multi-task learning. National Science
Review, 2018.

Q. Zhou and D. Pezaros. Evaluation of machine learning classifiers for zero-
day intrusion detection—an analysis on cic-aws-2018 dataset. arXiv preprint
arXiv:1905.03685, 2019.

[104

[105]

[106

[107

[109]
[110]

[111

jargyen
L

[114]

[115
[116

[117

[118

[119

[120

[121

A VALIDATING LET’S ENCRYPT CHALLENGES
FROM MULTIPLE VANTAGE POINTS.

In this scenario, we consider the task of domain name validation via
the ACME challenge by Let’s Encrypt. Recent papers [17] argue for
the importance of using multiple vantage points for performing this
task, where the vantage point should be both geographically and
logically dispersed across different networks to avoid BGP attacks
and prevent the validation of malicious requests.

We used netUnicorn to implemented the DNS-01 and HTTP-
01 validation protocols for the ACME challenge and to create an
experiment with nodes in two different infrastructures (UCSB and
multi-region Azure), effectively mimicking the multi-vantage point
scenario from the original paper [17]. We enhanced the experiment
by supporting dynamic node selection, thus making possible BGP
attacks more difficult due to a priori unknown vantage point loca-
tion. We expressed this experiment using only 14 LLoCs, excluding
challenge protocol implementation (see corresponding tasks in Ap-
pendix E).

B ADDITIONAL ITERATIVE EXPERIMENTS.

In this Appendix, we describe two additional network security
problems that could benefit from our proposed iterative approach.
In each case, we include a description of the problem, describe

the training data used by existing learning models, and discuss
underspecification issues associated with these datasets. Next, we
demonstrate how netUnicorn can be utilized to express data collec-
tion intents for the given problem, especially for the first problem
that considers the widely-used CIC-IDS-2017 setup. Finally, we ex-
plain how netUnicorn can be leveraged to refine the data-collection
experiment and collect new data to address the previously reported
underspecification issues.

B.1 Heartbleed detection.

This scenario concerns the Heartbleed detection problem [58] and
has been previously studied in the context of the CIC-IDS-2017
dataset [103]. A Heartbleed attack is a specifically constructed
network packet that tries to use a heartbeat vulnerability in the
OpenSSL library to obtain random memory bytes from a target
server.

We consider the Heartbleed attack data that is part of the CIC-
IDS-2017 dataset. The data is given in the form of CICFlowMeter
features that we also used in the Section 5. These features describe
different flow statistics, such as packet inter-arrival time (mean,
min, max, std), packet size (mean, min, max. std), and others.

Considering the CIC-IDS-2017 data to represent the dataset for
the initial iteration of our iterative data-collection approach, we can
use explainable ML techniques as part of our newly proposed closed-
loop ML pipeline to explore the data for possible shortcuts and other
types of underspecification issues. Using Trustee, the authors of [62]
showed that for the considered dataset, it was possible to detect all
Heartbleed examples by simply checking the "Bwd Packet Length
Max" feature. Since in the Heartbleed case, attackers try to collect
as much of the target’s memory as possible to extract potentially
valuable data from the target, many Heartbleed attack patterns
require a server to return packets with a big payload, which is
easily detectable in the resulting dataset.

Since for an arbitrary server hosting web pages, backward packet
size typically varies (e.g., small for simple requests, large for re-
turning binary objects), we consider the exclusive use of the "Bwd
Packet Length Max" feature to identify Heartbleed attacks to be
an instance of shortcut learning. To mitigate this shortcut, we can
leverage netUnicorn and implement and perform various realistic
benign traffic pattern tasks (e.g., requesting large files, streaming)
that result in variable-sized backward packets. This change in how
benign traffic is generated will for all practical purposes eliminate
the observed dependency on this single feature for this attack, ef-
fectively eliminating the root cause in the data that was responsible
for the identified shortcut.

After eliminating the noted data issue and using netUnicorn to
collect a new dataset (with benign traffic generated as described
above), we can again apply explainable ML techniques to investi-
gate the resulting data for possible data issues. In fact, as shown

n [62], for black-box models trained with this new dataset, Trustee
identifies "Bwd IAT Total” (Backward Total Inter-Arrival Time) as
the sole feature capable of perfectly separating Heartbleed attacks
from benign traffic. The reason for this is an attack implementation
bug that prevents the closing of TCP sessions between successive
attacks. As a result, single TCP connections stay open for unusually

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://iotanalytics.unsw.edu.au/
https://www.vmware.com/products/vsphere.html
https://www.rfc-editor.org/rfc/rfc3648.html
https://xkcd.com/927/

long periods of time, and this behavior allows for easy and accurate
identification of Heartbleed attacks in the collected data.

However, in real-world scenarios, the Heartbleed connection is
usually closed after the attack and reopened when a new attack
is initiated. As a result, we consider the sole use of the "Bwd IAT
Total” feature to define yet another shortcut, this time caused by
a Heartbleed attack implementation flaw. Having recognized and
identified this issue with the collected data, we can again use our
new closed-loop ML pipeline to first modify the source code of the
Heartbleed attack so as to avoid the noted original implementation
bug, then redeploy the attacking pipeline to the same nodes as in
the original scenario, and finally collect a new dataset. Note that
this last dataset is of higher quality than the original CIC-IDS-2017
dataset in the sense that the root causes for both identified shortcuts
are no longer present. As a result, the described approach results in
datasets that improve the generalizability of ML models that utilize
these data for training. Importantly, the thus-trained models have
a better chance to perform well in different network scenarios.

B.2 OS Fingerprinting,.

This scenario considers the Operating System Fingerprinting learn-
ing problem described in the nPrint paper [60]. Here, the problem
is to use flow- and packet-level information (e.g., packet headers) to
detect the operating system of the source of the network traffic flow.
Existing tools such as p0f [86] deal with this problem by relying on
different manual heuristics and packet analysis.

We leverage the OS Fingerprinting training data that is part of
the dataset published in the nPrint paper. This dataset contains
PCAP files and OS source information for each flow. The data is
represented as a nPrint vector that contains bits for the fields in
each header of the first five packets in the flow.

Considering this data to be the dataset for the initial iteration of
our iterative data-collection approach, we can again use explain-
able ML techniques to identify the most important features that
ML models trained with this data utilize as part of their decision-
making. In fact, for this dataset, the authors of [62] showed that
TTL (time-to-live) is the most important feature for accurately iden-
tifying OS types. This correlates with known default TTL values
for different OSes (e.g., 64 and 128 for Linux and Windows, respec-
tively). However, in the given dataset, Kali Linux is easily identified
from among all other Linux systems due to the fact that it uses a
lower TTL than the default value (i.e., 126 instead of 128).

Upon closer inspection of how the nPrint data was collected,
the observed difference in TTL values can be traced to the fact
that Kali Linux was only used for attacking machines, all of which
were located “outside" of the network (where the benign traffic
was generated) and had exactly two routers between them and the
traffic collection point. Given that this information is not related
to Kali Linux-specific aspects or properties but derives exclusively
from the considered network configuration and the particular data
collection setup, we consider the sole use of the TTL feature for OS
fingerprinting to be an instance of shortcut learning.

To eliminate this issue with the data, we can use netUnicorn to
redeploy attacking and benign pipelines to different machines so
as to ensure more diversity in measured TTL values. Thus, after
eliminating this way the root cause for the identified shortcut in the

original data, we can leverage netUnicorn to recollect data and then
use the newly obtained data for model training. This will result in
trained models for the OS fingerprinting problem that are better
able to generalize than the ones trained with the original nPrint
data and are therefore expected to have improved performance
when deployed in real-world environments.

C EXPANDING ITERATIVE COLLECTION

We also consider an expanded version of the experiment conducted
in Section 5. In this version, we use the UCSB environment for
training and both the campus-cloud and multi-cloud environments
for testing. In addition, instead of having a fixed testing dataset, we
collect testing datasets using the same experiment modifications
as for training infrastructure, mitigating the possible distribution
difference between training and testing data. Results are presented
in the Table 6 and align with the original experiment in Section 5,
showing improved model generalizability with each iteration.

D IMPLEMENTED CONNECTORS

As a part of the system development, we implemented a number
of connectors to different infrastructures or deployment systems.
Each of these connectors is configurable, complete, and publicly
available at our GitHub organization. Table 8 provides a list of
the connectors and corresponding logical lines of code for their
implementation. We encourage other research groups and individ-
uals to improve existing or create and publish new connectors for
deployment systems and infrastructures we haven’t covered yet.

E IMPLEMENTED TASKS DESCRIPTION

We briefly describe the full list of tasks that we implemented for
netUnicorn. For each task, we provide the task intent, the number
of logical lines of code (LLoC) for standard task implementation,
and the number of LLoC to implement a wrapper for netUnicorn.
The results are provided in the Table 9.

F SCALING DATA COLLECTION

We quantify how our design choices help reduce the computing and
memory overheads incurred by netUnicorn’s core and executor(s).
Executors. Recall that for each experiment, netUnicorn’s
mediation service requests the connectivity-manager to in-
stantiate an executor for all the participating data-collection nodes.
Our goal is to quantify the executor’s overhead for a (relatively)
low-end data-collection node, i.e., a Raspberry Pi (RPi) 4B device
at our UCSB infrastructure. To ensure that our measurements are
not skewed by the nature of the data-collection tasks, processing
stages, and pipelines, we created custom pipelines with varying
numbers of tasks and stages for our evaluation. Specifically, we
evaluated four pipelines: (1) a short pipeline with one stage and one
task, (2) a short pipeline with two stages and ten tasks per stage,
(3) a long pipeline with 100 stages and one task per stage, and (4) a
long pipeline with 100 stages and ten tasks per stage. Each task in
all these pipelines sleeps for 5 seconds.

For each pipeline, we quantify the executor’s computing over-
head as the difference between the completion time for different
tasks and processing stages and related sleep times. We observe that
the executor’s average computing overhead is 1 second per stage

Table 6: Number of LLoC changes, data points, and F1 scores across different environments and iterations.

Initial setup (iteration #0) Iteration 1 Iteration 2
LLoCs 80 +10 +20
UCSB UCSB-cloud multi-cloud UCSB UCSB-cloud multi-cloud UCSB UCSB-cloud multi-cloud
Data points | [56k 1k] | [05k 03k] [5.6k 0.6k] | [13.6k 1.8k] | [105k 16k] [112k 20K] | [91k, 59Kk] | [178.8k, 106.9k] [133.8k, 49.8 K]
MLP 1.0 0.59 0.66 0.97 (-0.03) | 0.82(+0.23) 072 (+0.06) | 0.88 (-0.11) | 0.93 (+0.11) 0.94 (+0.22)
GB 1.0 0.32 0.71 1.0 (+0.00) | 0.78 (+0.46) 0.67 (-0.04) | 0.92(-0.08) | 0.94 (+0.16) 0.92 (+0.25)
RF 1.0 0.42 0.67 1.0 (+0.00) | 057 (+0.15) 0.75(+0.08) | 0.97 (-0.03) | 0.93 (+0.36) 0.93 (+0.18)
Table 7: netUnicorn’s APIL.
Object Operations Description
Task run() Entry point for task execution code
Pipeline then([tasks]) Create a new stage of execution for the pipeline and add tasks to it
Nodes filter(pred) Filter nodes based on given predicate
take(N) Return no more than N nodes with filters applied
Experiment | map(pipeline, hosts) | Assign a pipeline to a host(s) and choose appropriate task implementation
deploy() Start environment compilation and distribution of the experiment
Client execute() Start execution of the deployed experiment
status() Returns status of the experiment (ready, running, finished, etc.)

Table 8: Implemented connectors to different Deployment
Systems and corresponding LLoCs.

Deployment Systems LLoCs
SaltStack 205
Azure Container Instances 138
Local Docker containers 163
Containernet 242
AWS Fargate 179
Kubernetes 197
SSH 186

and 0.13 seconds per task in all pipelines, including the overhead
for process spawning, data serialization, and results collection. We
measure the executor’s memory overhead using a Python-based
tool, memory-profiler [74]. We observe that the executor’s total
memory overhead is 20.2 MB, with the pipeline size from 1 to 19
KB. These results show that the executor’s low computing and mem-
ory overheads will not negatively impact the pipeline’s completion
time or data quality, even for low-end devices like RPis.
netUnicorn’s core. To quantify overheads incurred by netUni-
corn’s core, we use the data-collection experiment for the brute-
force attack detection problem. For this experiment, we collect data
from two infrastructures: UCSB (with RPis) and Azure Container
Instances (ACI) (with AMD64-based Linux containers). For both
infrastructures, we expressed an experiment that uses a different
number of data-collection nodes: 1, 10, and 20. For both of these in-
frastructures, it is possible to configure the computing environment
locally and ship the configured docker image to the data-collection
nodes.

We report two metrics to quantify the computing overheads:
deployment overhead and execution overhead. Deployment overhead
measures the wall-clock time between the instance when an exper-
iment is submitted to the time when it is ready for execution minus
the time it takes to configure the docker image and distribute the

instructions to the respective data-collection nodes. Execution over-
head measures the wall-clock time between the start and end times
of an experiment minus the wall-clock time for individual tasks.
Please refer to Appendix G for more details about an experiment’s
lifecycle in netUnicorn for docker-based infrastructures.

Table 10 shows the wall-clock overhead for both stages. Note
that we report the image distribution time as part of the execution
overhead for the Azure Container Instances — due to available oper-
ations in Azure Cloud SDK, it is impossible to separate these stages.
We also measured the total memory overhead of the platform on our
servers (a single SuperMicro server platform with AMD64 architec-
ture and Ubuntu 22.04). All services (6 in total) were implemented
using Python 3.11, deployed in Docker containers, and in total con-
sumed 240 MB. In addition, the platform requires a PostgreSQL
database for storing states, pipelines, and results, and optionally a
private docker repository for image storage.

In summary, this evaluation shows the memory and computing
efficiency of netUnicorn’s core and executor(s)—demonstrating its
ability to scale data-collection in realistic settings.

G EXPERIMENT PREPARATION AND
EXECUTION BREAKDOWN

We provide a breakdown of a typical experiment preparation and
execution with a Docker environment:

(1) User defines or imports tasks that should be executed on the
nodes and combines them into pipelines.

(2) User requests a node pool from the platform, defines an
experiment by assigning pipelines to nodes, and submits it
to the netUnicorn.

(3) Platform analyzes the assignment of pipelines and defines
Docker images to compile. This stage could be skipped if for
all pipelines a custom prebuilt image is provided.

(4) netUnicorn’s service compiles requested images and uploads
them to a repository.

Table 9: Implemented tasks description and corresponding LLoC for task and wrapper implementation. Most of the wrapper
code is constant and repetitive and adds little actual overhead for the implementation.

Task Description Core Wrapper | Total
1 | DummyTask Empty task 0 4 4
2 | SleepTask Sleep for a given amount of seconds 1 7 8
3 | ShellCommand Executes a given command in the system shell 1 6 7
4 | Ping Executes a ping command to a target host 65 22 87
5 | PortScan Check if a port on a remote host is open 4 6 10
6 | ArpSpoof ARP poisoning attack [12] 13 11 24
7 | FakeMail Sends a mail with a fake sender via unprotected mail server [12] 8 9 17
8 | MACFlooder Floods the network with packets with random IP and MAC [12] 8 9 17
9 | SlowLoris Slowloris DoS attack [92] 72 12 84
10 | SMBloris SMBloris attack [92] 19 11 30
11 | LANDAttack LAND attack in the network [92] 13 11 24
12 | ICMPRedirection ICMP redirection attack [92] 6 10 16
13 | Patator Patator [88] HTTP endpoint Basic authorization bruteforce 37 14 51
14 | Hydra Hydra [61] HTTP endpoint bruteforce 14 10 24
15 | CVE20140160 CVE-2014-0160 (Heartbleed) [58] vulnerability exploit 74 32 106
16 | CVE202141773 CVE-2021-41773 (Apache 2.4.49 Path) [5] vulnerability exploit 7 7 14
17 | CVE202144228 CVE-2021-44228 (Log4]) [69] vulnerability exploit 5 7 12
18 | UploadToWebDav Uploads a given set of files to a WebDAV [113] server 7 10 17
19 | StartCapture, StopAllTCPDumps | Start and stop of tcpdump tool for capturing the network traffic 7 10 17
20 | YouTubeWatcher Implementation of headless video watcher for the YouTube website | 61 22 83
21 | TwitchWatcher Implementation of headless video watcher for the Twitch website 28 20 48
22 | VimeoWatcher Implementation of headless video watcher for the Vimeo website 48 22 70
23 | QoECollectionServer Implementation of a task for YouTube QoE statistics collection 46 28 74
24 | LetsEncryptDNS@1Validation Implementation of DNS-01 challenge validation for Let’s Encrypt 11 9 20
25 | LetsEncryptHTTP@1Validation Implementation of HHTP-01 challenge validation for Let’s Encrypt 11 10 21

Total 562 313 875

Table 10: Wall-time (seconds) overhead of different stages of
experiments, required for services interaction. Due to the
specific nature of ACI, the steps for image distribution and
execution have been merged, as indicated by the underlined
text in the table.

ucsB ACI
Nodes # 1 10 20| 1 10 20
Deployment |3 4 3 |5 4 5
Execution |4 13 19| 31 47 49

(5) netUnicorn requests connector to upload images to the nodes.
This stage could be skipped if custom images were provided
and they are already presented on the target nodes.

(6) netUnicorn marks the experiment as READY.

(7) User requests the platform to start a ready experiment.

(8) netUnicorn requests connector to distribute the start com-
mand to all ready nodes participating in the experiment.

(9) Each node starts the container with an executor which exe-
cutes the tasks and reports results back to the platform.

(10) The platform awaits for all nodes to report the results or
time out, and then sets the experiment status to FINISHED.

H COMPARISON WITH EXISTING CLASSES
OF TOOLS.

Here we provide a more detailed comparison of netUnicorn with
existing classes of tools suitable for data collection purposes in
the networking area [115], mentioned in Section 8. We consider
three main classes of tools that can enable data collection for our
scenarios and provide a combined description of their differences
from our system in Table 11.

Workflow management platforms. These solutions are de-
signed to define and execute a data processing pipeline using one
of the available platforms. Typical examples of such systems are
Airflow [1], SnakeMake [76], Luigi [71], Dagster [33], and others.
Unfortunately, these systems do not always provide convenient
ways of selecting nodes for code execution (relying on affinity set-
tings, like Airflow Kubernetes operator or similar), which is critical
for network experiments for precise data collection control. They
also rarely try to minimize system overhead (especially between
task execution) and require nodes to have a constant stable connec-
tion to the platform, which is not always available in our scenarios
(e.g., nodes could be situated in remote locations with intermittent
network connectivity).

Orchestration platforms. Such systems are usually used to
change the configuration of controlled nodes (servers, laptops, etc.)
or deploy containers or virtual machines to particular nodes. Com-
mon examples of these systems are Ansible [4], SaltStack [99],
Chef [27], Puppet [91], and Kubernetes [66], VMware vSphere [112]

Roman Beltiukov, Wenbo Guo, Arpit Gupta, and Walter Willinger

Table 11: A comparison between Workflow Management Platforms (WMP), Orchestration Platforms (OP), Continuous Integra-
tion / Continuous Deployment tools (CI/CD), and netUnicorn. In the table, + stands for mainly provided by a majority of tools, -
for unsupported by the majority of tools, -/+ represents the mixed support, and ? is used for netUnicorn to represent extensible

features to be implemented in near future.

Requirement | Feature name WMP | OP | CI/CD | netUnicorn
Pipeline and Task abstractions + - + +
Extensibility Com.pl'ex directed a?yclic graphs (conditions, loops) ~/+ ~/+ ?
Explicit node selection mechanisms - + + +
Different executor architecture (Linux, Windows, OpenWRT, etc.) -/+ -/+ -/+ +
Pipeline execution synchronization + -/+ - +
Scalability Low runtime execution overhead - + - +
Multiple node environments (shells, containers, VMs) + - + +
Other Cross-instance experiment synchronization - - - ?
Data analytics platforms integration + - - ?

for containers and VMs deployment. These systems typically need
a specific infrastructure setup and administration, which requires
root access to nodes. They are challenging to integrate with or run
alongside other systems, limiting their implementation in other
infrastructures. These systems’ pipelines (playbooks) are often cus-
tomized with unique information about certain nodes, complicating
mapping them to other nodes or infrastructures.

Continuous integration and continuous delivery tools. These
tools provide a way to execute a set of instructions on specified
nodes, usually for application development automation or deploy-
ment. The most popular examples of such systems are Jenkins [63],
Gitlab CI/CD [49], and Github Actions [48]. These tools can be
adjusted for data collection. Still, they do not optimize important
data generation properties (such as overhead between tasks), use
declarative language for configuration, do not separate deployment
and execution of pipelines, or restrict the scalability of solutions
(e.g., GitHub Actions Free plan supports only 20 parallel jobs, and
only up to 180 parallel jobs in GitHub Enterprise).

Specialized data-collection platforms and infrastructures.
This category includes platforms designed for specific (often
community-based) data-collection experiments. Popular examples
include platforms such as RIPE Atlas [9], Puffer experiment [116],
Netrics [80], etc. Unfortunately, these platforms cannot be easily
extended to support data collection for multiple learning problems
from one or more network environments.

I SOURCE CODE AND SUPPLEMENTARY
MATERIALS

In this section, we describe the netUnicorn repositories and their
purpose.

netUnicorn’s code . The system’s code is available in this repos-
itory: https://github.com/g4allthewaydown/paper-181-system. It
contains all of netUnicorn’s code for deploying core services of
the system on an arbitrary infrastructure, supported by existing
connectors. This repository also contains technical documentation
of the system and examples of use cases.

netUnicorn’s library . The library of tasks and pipelines imple-
mentations is available here: https://github.com/g4allthewaydown/
paper-181-library. This repository contains all tasks, mentioned in

20

this paper, together with other tasks, contributed by the community.
We encourage users of the system to freely propose requests to
include their tasks and pipeline implementations for public usage
in the community.

Paper’s supplemental materials. The paper’s supplemental ma-
terials (such as experiments’ code, collected datasets, and required
Dockerfiles) are available in this repository: https://github.com/
g4allthewaydown/paper-181-supplemental. While supporting the
work described in this paper, this repository will not be used for
further system development.

https://github.com/g4allthewaydown/paper-181-system
https://github.com/g4allthewaydown/paper-181-library
https://github.com/g4allthewaydown/paper-181-library
https://github.com/g4allthewaydown/paper-181-supplemental
https://github.com/g4allthewaydown/paper-181-supplemental

	Abstract
	1 Introduction
	2 Background and Problem Scope
	2.1 Existing ML Pipeline for Network Security
	2.2 Model Generalizability Issues
	2.3 Existing Approaches
	2.4 Limitations of Existing Approaches
	2.5 Our Approach in a Nutshell

	3 On ``in vivo'' Data-Collection
	3.1 Existing Approaches
	3.2 An ``Hourglass'' Design to the Rescue

	4 Realizing the ``Thin Waist'' Idea
	4.1 Programming Abstractions
	4.2 System Design
	4.3 Prototype Implementation

	5 Evaluation: Augmented ML Pipeline
	5.1 Experimental Setup
	5.2 Identifying and Removing Shortcuts
	5.3 Comparison with Exogeneous Methods
	5.4 Combating ood-specific Issues

	6 Evaluation: netUnicorn
	6.1 Experimental Setup
	6.2 Simplifying Data Collection Effort
	6.3 Scaling Data Collection

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Validating Let's Encrypt challenges from multiple vantage points.
	B Additional iterative experiments.
	B.1 Heartbleed detection.
	B.2 OS Fingerprinting.

	C Expanding Iterative Collection
	D Implemented connectors
	E Implemented Tasks Description
	F Scaling Data Collection
	G Experiment Preparation and Execution Breakdown
	H Comparison with Existing Classes of Tools.
	I Source Code and Supplementary Materials

