
netFound: A Domain-specific Foundation Model for Network
Security

Anonymous author(s)
ABSTRACT
Despite a rich history of applying ML to network security, most
existing solutions lack generalizability. This lack of progress can
be attributed to an overreliance on supervised learning techniques
and the associated challenges of curating well-specified labeled
training data. In this paper, we take inspiration from the recent
success of foundation models in other application domains (e.g.,
GPT4, Vision Transformer) and the growing ease of collecting (un-
labeled) telemetry data using programmable networks, to develop
a novel transformer-based network foundation model, netFound. It
leverages various attributes and constraints unique to network data
(packet traces) by developing multi-modal embeddings, protocol-
aware tokenization, data-driven token composition, and hierarchical
transformers. This model is pre-trained using abundant and unla-
beled telemetry data from production networks (self-supervised
learning) and fine-tuned for disparate downstream learning tasks
with sparse, skewed, and noisy labeled datasets (supervised learn-
ing). Our evaluation demonstrates the efficacy of the pre-trained
model in capturing the complex hidden network context in produc-
tion settings. We also show that the fine-tuned models not only
outperform existing state-of-the-art ML solutions but are also ro-
bust to noisy labels and resilient to learning shortcuts—scenarios
prevalent in most downstream learning tasks in practice.

1 INTRODUCTION
Machine learning for network security. The National Secu-
rity Commission on AI report [47] indicates that AI advances have
unfavorably empowered malicious actors, making digital ecosys-
tems more vulnerable to a wide range of cyber threats, especially
advanced persistent threats (APTs) [4, 23, 43]. It emphasizes that
our current approach of countering AI-powered cyber threats, such
as APTs, with human intelligence alone is impractical, highlight-
ing a critical need to develop an AI-powered cybersecurity stack,
accessible to all. This system, which has often been referred to as
the self-driving network [19, 45, 62] should leverage tens or per-
haps hundreds of machine learning (ML) models to extract subtle
discriminatory signals in the network telemetry data (i.e., packet
traces, IDS/firewall let’s, etc.) and synthesize surgical corrective
actions to neutralize disparate AI-powered cyber threats.

We have a rich history of developing ML-based solutions for dis-
parate learning problems in network security [2, 6, 27, 44, 56, 58],
which in theory can serve as the building blocks of the envisioned
self-driving network. However, recent works have demonstrated
the limitations of existing state-of-the-art ML artifacts for network
security [7, 29], specifically highlighting their lack of generalizabil-
ity. Consequently, we do not have as rich of a history of deploying
ML-based solutions in production settings.

We can attribute the lack of progress in developing generalizable
ML models for network security to several factors. First, most ML
approaches predominantly employ supervised learning techniques

that require well-specified training data. However, determining
the “right" data for any given learning problem and target network
environment, and more importantly, collecting it, is non-trivial.
Given this inherent challenge, researchers often resort to using
publicly available, yet underspecified training data. These datasets
are typically skewed, limited in size, may include insufficient labels,
and contain noisy or even mislabeled data points [7, 29, 40]. This
reliance on underspecified datasets for training has led to the preva-
lence of underspecification issues in resulting ML artifacts, such
as shortcut learning, out-of-distribution problems, and spurious
correlations [29]. Moreover, this reliance on a limited set of public
datasets has also narrowed the scope of learning problems that
researchers can effectively pursue, resulting in ML solutions that
are overengineered with underspecified data and lack the ability to
generalize in production.
Key observations. These challenges are not unique and have
also impacted other application domains, including vision, natural
language processing (NLP), and more. To address these issues, re-
searchers in these domains have explored the design of foundation
models [76], pre-trained solely using unlabeled data. These pre-
trained models learn the inherent relationships in the data through
self-supervised learning methods, effectively capturing the hidden
context. Applying these pre-trained models to various downstream
tasks has yielded transformative results in different ML application
domains, particularly in NLP (e.g., GPT4 [48], BERT [15]) and vision
(e.g., Vision transformer [60]). Recent works have demonstrated
the transformative potential of foundation models on disparate
application domains beyond NLP, such as text, images, speech, and
reinforcement learning [57]. Moreover, the growing prevalence
of software-defined networks (SDN) and the commoditization of
programmable data-plane targets have facilitated the collection of
unsampled packet traces from production networks for extended
durations [10, 32].
netFound— a network foundation model. Inspired by these ob-
servations, this paper aims to develop a network foundation model,
netFound, which employs self-supervised learning techniques to
utilize abundant and unlabeled telemetry data (e.g., packet traces).
This approach is intended to create a performant and generaliz-
able network foundation model capable of extracting the hidden
networking context from packet-level network traffic data. This
context includes the semantics of different applications, network
protocols, and their interactions with dynamic network conditions.
The model can then be fine-tuned with sparse, skewed, and noisy
labeled data for various downstream learning tasks, ultimately pro-
ducing ML artifacts ready for production use.

Despite all the promises, developing a performant and gener-
alizable network foundation model is challenging as it requires
taking several domain-specific attributes and constraints—unique

1

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

to network traffic data—into consideration. To this end, this pa-
per makes the following four technical innovations to designing
network-specific foundation models:

First, network data is inherentlymulti-modal, comprising diverse
types of information such as packet fields (e.g., TCP Flag), temporal
details (inter-arrival time), contextual information (e.g., direction),
and statistical aggregates (e.g., total number of packets). To extract
the hidden networking context, it is critical to understand relation-
ships between different packet fields within a packet and across
different packets. For instance, relationships within packet fields
are dictated by data-plane protocols (e.g., TCP, IPv4, Ethernet), and
those across a packet stream in a connection (e.g., TCP session) are
influenced by the dynamics between the transport protocol and
application logic under varying network conditions (e.g., packet
loss, queuing delays). Understanding these relationships requires
extracting the inherent multi-modal information. To capture the
multi-modal information effectively, we introduce a novel multi-
modal embedding method that integrates information from packet
fields with relevant metadata (e.g., statistical features, direction,
position, etc.), enhancing our model to accommodate the diverse
data modalities present in network traffic.

Second, network packet headers feature a pre-defined structure
with fields formatted according to networking protocols (e.g., TCP,
UDP, IP). A careful extraction of packet header content is critical
for preserving the semantic meaning of the fields. To accurately
model the packet header structure, we propose a structure-aware
tokenizer that maintains the integrity of the field structures within
header tokens. Rather than treating each byte or byte pair as a
single token, we develop a protocol-aware tokenization method that
implements modifications or splitting of header fields for different
protocols (TCP, UDP, IP, etc.) to preserve their semantic meanings.

Third, network data exhibits a hierarchical structure, with header
fields grouped into packets, packets into bursts,1 bursts into flows,
and flows into services and hosts. Capturing interdependencies
across these hierarchies and modalities is crucial for modeling
the hidden networking context. For example, to understand how
protocols like TCP interact with dynamic network conditions, it is
crucial for the model to learn the relationships between different
multi-modal information (e.g., TCP Flag, inter-arrival time, etc.)
within a burst as well as across groups of (neighboring) bursts. To
effectively capture the inherent hierarchy in network data, we have
designed our model as a hierarchical transformer. This approach
facilitates parameter sharing across different levels of granularity
(e.g., packets, bursts, flows, etc.), enhancing the model’s ability to
learn the inherent hierarchies within the network data.

Finally, the network data exhibits a heavy-tailed sequence length
distribution at all granularities (packets, bursts, flows, etc.), mean-
ing most sequences are short, but some are extremely long. For
instance, the number of fields in a packet, packets in a burst, and
bursts in a flow vary significantly, each exhibiting a heavy-tailed
distribution. This attribute necessitates careful consideration of
the input sequence length for the model at each granularity. While
longer sequences provide more information and can enhance model
training, they also increase overheads; on the other hand, shorter
sequences, though quicker to process, may lack critical insights.

1A burst is a group of unidirectional packets in a flow that are transmitted together.

To effectively manage heavy-tailed sequences across different hi-
erarchies, we develop a data-driven token composition approach to
determine the composition of tokens for sequences at different hier-
archies, i.e., packets, bursts, and flows—striking a balance between
performance and scalability.

By incorporating these innovative features, our transformer-
based network foundation model transforms a sequence of (en-
crypted) network packets as input to fixed-size network data rep-
resentations that capture complex hidden networking context ef-
fectively at different granularities. In contrast, existing network
foundation models [16, 24, 39, 52, 75] fail to leverage the critical
attributes of network data, often simplifying the data into for-
mats like natural language [24, 39] or images [66, 75] for use with
transformer-based models—designed for these specific application
domains (e.g., BERT for NLP).
Contributions. This paper makes the following contributions.

• Novel domain-specific network foundation model. We
present the design (Section 3) and implementation (Section 4)
of a novel network foundation model, netFound, that em-
ploys multi-modal embedding, protocol-aware tokenization,
data-driven token composition, and hierarchical transformer
to leverage unique network data attributes and constraints
to capture complex hidden networking context at different
spatial granularities.

• An extensive evaluation of the pre-trained model (Sec-
tion 5). We pre-train our model, netFound, using packet
traces from a production campus network, demonstrating its
efficacy in capturing the hidden networking context and its
robustness to concept drift. Through a case study, we illus-
trate how netFound effectively learns multi-modal relation-
ships to decode hidden network contexts. An accompanying
ablation study highlights the impact of our design choices.

• An extensive evaluation of fine-tuned models (Sec-
tion 6).We consider five distinct downstream tasks and four
state-of-the-art ML models as baseline, including two net-
work foundation models (i.e., ET-BERT [39] and YaTC [75]).
We demonstrate that netFound outperforms all baselines,
achieving significantly better performance on more challeng-
ing learning problems. For instance, in traffic classification
on a dataset from a production campus network, netFound
shows a 9% higher 𝐹1-score. Additionally, netFound exhibits
robustness to noisy labels, with less than a 5% drop in ac-
curacy even when 40% of the training data is mislabeled.
Finally, we highlight netFound’s generalizability by showing
its resilience to known learning shortcuts that compromise
the generalizability of other baselines.

• Artifacts.We plan tomake the full source code of the system
and the datasets used in the paper publicly available.

2 BACKGROUND AND PROBLEM SCOPE
2.1 Machine learning in Network Security
Network traffic classification/Applicationfingerprinting. This
problem involves the categorization of network traffic based on its
characteristics, patterns, or content [1, 64]. The most common traf-
fic classification task is application identification, which recognizes
applications such as web browsing, file sharing, video streaming,

2

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

and email based on collected network traffic and corresponding
network configurations [49]. ML technique models application clas-
sification as a multi-class classification problem, where each class
represents one application and trains supervised classifiers from a
(well-)labeled training dataset. Existing research has demonstrated
the effectiveness of ML techniques in application classification for
network traffic under various network communication setups (VPN
and Tor) [35, 67, 68], and when network traffic is encrypted [2, 39].
Network intrusion/anomaly detection. This application iden-
tifies network traffic that may indicate malicious activities or in-
trusion attempts. At a coarse-grained level, existing research often
treats anomaly detection as a binary classification problem, where
ML models are trained to determine whether a specific network
packet or group of packets (i.e., a burst or a flow) is benign or ma-
licious. Similar to traffic classification, existing techniques learn
a supervised classifier using a training set with labeled benign
and malicious traffic [27, 71]. Some researchers also explore un-
supervised learning techniques, which train a model to capture
the characteristics of normal traffic and detect deviations from
it [44, 73]. At a more fine-grained level, researchers label traffic
with the specific type of attack it belongs to and train supervised
multi-class classifiers. These classifiers recognize specific intrusion
attack types associated with the analyzed traffic.
Advanced persistent threats detection. Advanced Persistent
Threats (APT) refer to the attacks that typically infiltrate a target
system through malicious uploads, social engineering attacks, etc.
After successful infiltration, they move laterally over relatively
long intervals to expand their presence, with the ultimate goal of
extracting, locking, or transferring critical data. APTs decompose
their tasks into multiple stages so that discriminating each of these
tasks from normal operations is non-trivial. Intrusion detection in-
troduced above defends against APTs during the infiltration stage.
Going beyond this protection, existing research also leverages ma-
chine learning at later stages for APT defense. For example, existing
research uses machine learning to identify the specific attacks in-
volved in an APT attack’s playbook (e.g., Log4J CVE-2021-44228)
or identify which hosts are compromised by attackers [4].
Other learning problems. ML has been successfully applied to
various other network security challenges, including botnet detec-
tion [37], vulnerability assessment [36], etc. These applications are
also modeled as either supervised classification problems, where
the models learn from labeled data to classify instances, or un-
supervised outlier detection problems, where the models identify
anomalies without prior knowledge of specific classes.

2.2 Existing Techniques and Limitations
We can divide existing ML-based network security tools into two
categories that are either task-specific or task-agnostic.

2.2.1 Task-specific techniques. The solutions in this category in-
volve extracting different features from the network traffic data
to curate a (labeled) training set and then using it to train a su-
pervised model for each learning task. Most of the techniques in
this category focus on decision-making at the flow-level granu-
larity and vary in the modality of features considered (temporal

information [1, 41, 54, 61], packet fields [13, 38, 42, 53, 73, 74], ag-
gregate statistics [35], etc.), feature extraction methods, and model
specifications.

Among these efforts, a noteworthy solution is “Look Behind the
Curtain" [2] (further denoted as “Curtain” in this paper), which
leverages multi-modal information in network data, outperform-
ing all other solutions in this category. However, developing such
complex models heavily relies on the availability of abundant high-
quality labeled training data that accurately represents the tar-
get environment. Unfortunately, curating such datasets remains a
daunting task, leading to the use of low-quality publicly available
training data that is noisy with limited labeled data points. Recent
works [7, 29] have demonstrated that training complex learning
models with low-quality data results in underspecification issues
(e.g., learn shortcuts, overfit to training data, learn spurious corre-
lations, etc.), leading to poor generalization. Consequently, models
trained using these techniques are either not performant or fail to
generalize effectively.

2.2.2 Task-agnostic techniques. In this category, solutions develop
foundation models using unlabeled network data to learn interme-
diate network data representations, often referred to as pre-trained
or foundation models. These can later be fine-tuned for various
downstream learning tasks using labeled data. These solutions vary
in feature categories, feature extraction methods, and representa-
tion learning models [8, 12, 27, 44]. For instance, nPrintML [27]
represents traffic data as fixed-size binary feature vectors (referred
to as nPrint vectors), where each bit for different packet fields has a
pre-defined position. Although there is no explicit learning compo-
nent, it is argued that the nPrint representation can adapt to various
model architectures for different learning tasks. However, as shown
in Section 6, nPrint vectors can only represent superficial network
features, potentially leading to learning shortcuts in downstream
tasks. In contrast, Kitsune [44] extracts statistical features from the
incoming packet stream across multiple temporal windows. These
features are clustered and fed to an ensemble of AutoEncoders to
learn compressed data representations. While it is theoretically pos-
sible to fine-tune these representations for various tasks, Kitsune
has primarily been used for anomaly detection.
Transformer-based network foundation models. Inspired
by the success of foundation models in other domains and the
ease of collecting unlabeled telemetry data, we have witnessed
the development of multiple network foundation models in recent
years [22, 24, 39, 52, 66, 70, 75]. These solutions vary in embedding,
tokenization, token composition methods, model specifications,
and related pre-training tasks. Most of these solutions treat net-
work data as natural language or images and employ transformer
models developed for these domains for pre-training. For exam-
ple, ET-BERT treats network data as natural language and uses a
transformer architecture designed for NLP, specifically BERT, with
pre-training tasks tailored to network data. In contrast, YaTC [75]
and Flow-MAE [22] treat network data as images and use trans-
formers developed for the computer vision domain, such as Vision
Transformer [17] and Masked Autoencoders [25].

All the existing network foundation models fail to leverage
unique network data attributes and constraints, missing the op-
portunity to fully utilize the network data to extract the underlying

3

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

Table 1: Comparison of different network foundationmodels
in capturing network-specific attributes.

Models Hierarchy Protocol-aware
tokenization

Long
sequences

Multi-
modal

PERT [24]
ET-BERT [39]
Lens [66]
YaTC [75] ✓

Flow-MAE [22] ✓ ✓
MTSecurity [70] ✓ ✓
TrafficGPT [52] ✓ ✓
netFound (ours) ✓ ✓ ✓ ✓

complex hidden networking context (see Table 1). More concretely,
ET-BERT considers only a single information modality (the packet’s
encrypted payload content), employs protocol-agnostic tokeniza-
tion, and does not utilize temporal information to identify packet
bursts. It also limits input to tokens from the first two bytes of up
to five packets, ignoring the inherent hierarchy in network data.
PERT and LENS are similar to ET-BERT but employ different pre-
training tasks. TrafficGPT [52] attempts to handle long sequences
with sparse attention and designs an objective function similar to
GPT models rather than BERT but still fails to preserve the seman-
tic meanings of different packet fields. Moreover, despite ingesting
longer sequences, its approach does not capture the inherent hier-
archy, and naively takes a longer sequence of the first few tokens
as input, compared to previous work. As an improvement, both
YaTC [75] and Flow-MAE [22] attempt to capture the internal hier-
archy of network traffic, but they do not support parameter sharing
to learn interdependencies across different granularities.

This inability to capture some or all these critical attributes
jeopardizes the potential of these foundation models to extract the
hidden networking context, which is reflected in their performance
for various downstream learning tasks (see Section 6 for details).

3 OVERVIEW OF DESIGN CHOICES
We now describe the design choices that enabled us to develop a
network foundation model, which incorporates various domain-
specific attributes and constraints of network data. This approach
addresses the fundamental limitations of existing solutions, offering
better opportunities to learn the complex and dynamic hidden
networking context. By leveraging abundant unlabeled network
telemetry data, our model catalyzes the development of performant,
generalizable, and robust fine-tuned learning models. These models
are tailored for diverse learning problems in network security, even
when faced with sparse, skewed, and noisy labeled data.

3.1 Preserving Packet Field Semantics
As a first step, we explore how to tokenize packet fields in network
data. Recall that packet headers are structured according to vari-
ous data-plane protocols such as TCP, UDP, and IP. To effectively
capture the hidden networking context, it is crucial for the founda-
tion model to consider individual packet fields and preserve their
semantic integrity during tokenization. Traditional approaches like
ET-BERT utilize protocol-agnostic fixed-sized chunks (e.g., 2 bytes)
for tokenization, which can blend different packet fields, resulting in
a loss of semantic meaning. Conversely, nprintML segments packet

headers into one-bit chunks, maintaining their relative positions
across protocols. While this method partially preserves seman-
tic integrity, it complicates the learning process by requiring the
model to discern relationships between tokens that represent seg-
ments of the same packet field, increasing the underspecification
risk [7, 29]. To overcome these challenges, we employ a protocol-
aware tokenization strategy, segmenting packet headers based on
their protocol-specific fields. This approach allows for variable byte
lengths among tokens without complicating embedding or model
training. By preserving the semantic integrity of packet fields, the
model learns the hidden network context more effectively.

3.2 Capturing Multi-Modal Inputs
Next, we explore how to embed multi-modal information/features
into tokens. As previously mentioned, network data contains vari-
ous types of multi-modal information, which are essential for un-
covering the complex hidden networking context. To capitalize on
this, we embed multi-modal data—such as temporal details (times-
tamps), statistical aggregates (e.g., number of bytes or packets per
sequence), and contextual information (e.g., direction, hostname,
ASN)—as metadata within the tokens derived from packet fields.
This metadata is often invariant across tokens within the same
granularity level. For example, all tokens within a burst share the
meta information, such as the same number of packets in a burst.

We have two options for embedding this metadata: directly con-
catenating it to each input token at the finest granularity or combin-
ing it with the learned data representations at coarser granularities.
We opt for the former approach because it enables the transformer
model to discern and utilize cross-modal dependencies between
metadata features and packet content using self-attention mecha-
nisms. This method not only preserves the integrity of the metadata
but also ensures the model’s adaptability for incorporating future,
more effective features. Importantly, by embedding additional meta-
data, we enhance each token’s content without increasing the se-
quence length, thus maintaining scalability. This strategy results
in a thorough capture and utilization of multi-modal information,
significantly enhancing the model’s ability to interpret and leverage
the intricate complexities of network data.

3.3 Handling Variable-Length Sequences
We now explore the selection of input tokens for model training,
addressing two key challenges: (1) the scalability of training models
on very long sequences limits us to a finite number of tokens; and
(2) the heavy-tailed distribution of sequence lengths at various gran-
ularities necessitates maximizing the information extracted from
tokens across different layers such as packets, bursts, and flows to
enhance learning opportunities for the network foundation model.
Existing solutions often overlook the inherent hierarchy in network
data, typically serializing tokens within and across packets and se-
lecting only the initial ones for input, thus neglecting significant
information in later packet fields within a burst or flow and failing
to capture dependencies across packets and bursts [22, 27, 39]. To
overcome these limitations, we adopt a data-driven approach where
we explore the distribution of sequence lengths in the training data
and then select median bursts to represent each flow and median
packets for each burst, using padding for shorter sequences. This

4

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

Flow Encoder

Burst Encoder

W1CLS-B W2CLS-B

... CLS-B ...

WCLS-F

CLS-B

...

W'
CLS-F

Of

(a) Strawman 2

Flow Encoder

Burst Encoder

...W1CLS-B W2CLS-B ...

... CLS-B ...

WCLS-F

CLS-B

...

...W'
1CLS-B W'

2CLS-BW'
CLS-F

...Ob
1 Ob

2 ...Of

(b) Proposed architecture

Figure 1: Comparison between a naive hierarchical model
(strawman 2) and the proposed hierarchical transformer.

median selection strikes a balance between sequence length and
minimizing padded tokens, which is wasteful. Note that selecting
higher percentile values (e.g., max or 100 percentile) instead of the
median would result in longer sequences (difficult to scale) with
a significant fraction of padding (wasteful), whereas smaller per-
centile values would involve selecting fewer tokens, compromising
the learning ability of the pre-trained foundation model.

3.4 Leveraging Inherent Hierarchy
We now explore how to design the model architecture for the net-
work foundation to ensure it leverages inherent hierarchy in net-
work data. As a first step, we utilize the transformer as the core
architecture as it offers several advantages over other architectures,
such as variational auto-encoders (VAEs) [34], generative adversar-
ial networks (GANs) [20]), etc. For instance, transformers excel at
capturing long-term dependencies, handling varied input modali-
ties, and supporting self-supervised learning—crucial for dealing
with the abundant and multi-modal unlabeled data in networking.
These capabilities, coupled with the self-attention mechanism, en-
hance the model’s adaptability and generalizability across different
datasets, making it ideal for learning the inherent network data
hierarchies and applying them to various downstream tasks.
Strawman 1: Disaggregated models. One option is to disaggre-
gate foundation models, i.e., train different foundation models to
represent packets, bursts, flows, sessions, devices, etc. However, this
approach is ineffective at finer granularities and hard to scale for
coarser ones. Specifically, such an approach fails to capture the rela-
tionships across various packets, bursts, flows, and so on, resulting
in ineffectiveness at finer granularities. Moreover, models working
at coarser granularity levels must manage extremely long sequences
to perform effectively. Balancing performance and scalability with
this approach is challenging given the non-linear relationship be-
tween sequence length and training time for transformers [77].
These observations motivate a hierarchical transformer architecture,
where we iteratively feed representations from finer granularities
to learn representations for the coarser ones.
Strawman 2: Naive hierarchical architecture. Figure 1a illus-
trates the adaptation of hierarchical models from NLP and binary
analysis tasks [21, 72] to network data. It shows the division of a
network flow into multiple bursts, each containing a set number of
packets, which in turn hold fixed token counts. The feature vectors

from each burst, detailed later in Section 4, are fed into a burst en-
coder—a transformer that outputs burst representations. These are
then processed by a flow encoder, another transformer, which con-
structs a comprehensive flow representation. However, this method
faces significant challenges: it primarily supports end-to-end su-
pervised learning at the flow level without enabling token-level
self-supervised pre-training, and it fails to account for dependencies
within the same granularity, such as the interplay between packet
attributes across bursts.
Proposed hierarchical architecture. To tackle these limitations,
we borrow the idea from the hierarchical transformer in NLP [46]
and propose a customized hierarchical architecture for network
data with a skip connection. Similar to the naive structure, we also
use a transformer model as the first layer to process each burst. As
demonstrated in Figure 1b, this model outputs a representation for
each token in the current burst together with a holistic represen-
tation for the burst (CLS). Then, we feed the concatenated input
into the second-layer transformer, where we integrate the skipping
connection. More specifically, we only input the burst represen-
tations to the second layer (indicated by the solid lines) and skip
the token representations (indicated by the dash lines). Similar to
the aforementioned hierarchical structure, the first layer can still
capture the token dependencies within bursts, and the second layer
can still capture the cross-burst dependency.

In addition, our model could further capture the token depen-
dencies across bursts, which cannot be modeled by naive structure
in Figure 1a. More importantly, the outputs of the second layer
contain the representation for each input token. This enables us to
mask input tokens and predict the masked tokens with their hidden
representations. As such, we can train the model with the standard
transformer’s masking and prediction objective function, which is
much more effective and efficient than the auto-encoder objective
function [15]. Our method integrates additional CLS tokens at each
granularity level to obtain a holistic representation, which will then
be used for downstream tasks at that level. As detailed in Section 4,
skip connections facilitate parameter sharing across hierarchical
layers, enabling our model to handle long flows without truncation.

4 NETFOUND’S WORKFLOW
4.1 Data Pre-processing
We describe how we transform raw packet traces into fixed-sized
tokenized representations amenable to transformers.
Step 1: Data extraction. We leverage passively collected packet
traces as input. First, we split the larger packet captures (stored
as pcaps) into smaller files, one for each flow. Similar to previous
works [8, 27, 30], we consider a flow as a group of packets with the
same five tuples, i.e., srcIP, dstIP, srcPort, dstPort, and proto
fields. We discard all flows with just 1-2 packets, as most of them
are attributable to noisy scanning activities and don’t contribute to
learning meaningful networking context.

Next, we categorize packets within a flow into “bursts”, defined as
groups of packets sharing the same direction (inbound or outbound)
and having an inter-packet gap of less than or equal to 10 ms. This
categorization results in variable quantities of packets per burst and
bursts per flow. We have chosen 10 ms as an inter-packet gap as a
value that covers 90% percentile of last-mile RTT for our training

5

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

Extraction 2 3 4 5 6 71

2 3

4 5 6 7

1
Burst #2 Burst #3

Bursts

Network 5-tuple flow

IAT

Packets

2 3

4 5 6 7

1

Multimodal
Meta-information

1

2

Packets

Burst #1

Figure 2: Data extraction & Featurization

data, allowing us to set the clear separation border between bursts.
Please note, that this value can be changed as per the environment
of packet capture.

Then, we standardize the number of packets per burst and bursts
per flow. This enables applying the batch operation for transforming
training that improves the scalability. We consider up to 12 bursts
per flow and six packets (including padding if necessary) per
burst.2 This strategy strikes a reasonable balance between the issues
of excessive padding and sequence length while preserving critical
inter-packet dynamics.
Step 2: Featurization. For each packet in a burst, we extract
various network, transport, and application layer packet fields,
transforming these raw fields into a fixed-size vector. Our model
eschews flow identifiers like IP addresses, port numbers, SNIs, and
domain names, which remain constant within a flow, and do not
contribute to learning the flow’s latent representation. This strat-
egy ensures that our model focuses on understanding how the
hidden networking context influences the spatial-temporal interre-
lations between packet fields within a flow. To this end, we limit
our extraction to the first 12 bytes in the application layer. This spe-
cific choice enables the model to glean insights from unencrypted
application-layer fields (e.g., DNS header) while circumventing po-
tential learning shortcuts via service name identifiers (SNI) in TLS
headers or domain names in DNS messages. Specifically, we con-
sider up to 13 different packet fields and up to 279-bit long vectors
to represent packets, depending on the transport layer protocol. Ta-
ble 8 (in the Appendix B) lists the set of packet fields we consider
for generating the feature vector.

Besides packet fields, we also extract variousmetadata fields from
the network data. Specifically, we extract contextual and statistical
information at packet- and burst-level, such as direction (outbound
vs. inbound), number of bytes per burst, number of packets per
burst, start time of a burst, inter-arrival time, etc. Note that for
tasks necessitating decisions at coarser granularities, such as OS
fingerprinting, we can leverage our modular design to integrate
the hidden representations of a flow, learned by the model with the
flow-level meta information, which includes identifiers (e.g., five-
tuples) as well as various flow-level statistical features (e.g., average

2Note that these numbers are specific to the training data collected from a campus
network, which we used for pre-training (see Section 5 for details).

Packet #1

...0x0004 0x0005 0x000a 0x0003 0x0588

3

Field #3 ...Field #2Field #1

Protocol-aware

Tokenization

Temporal-Contextual
metadata extraction

Figure 3: Protocol-aware Tokenization

inter-arrival time, the total number of bytes, etc.) to decipher the
latent attributes of pertinent target end hosts.
Step 3: Tokenization. To tokenize the extracted packet-level
feature vector, we opt for 2-byte (16-bit) tokens. As mentioned in
2.2, we are using a protocol-aware tokenization strategy, splitting
the tokens as per the packet fields to help model the dependencies
between them.

• We parse the packet headers and extract them to separate
2-byte-wide tokens. We intentionally extract separate fields
from the headers and expand them to 2 bytes if needed,
presenting the model with structurally correct information.
For example, the IP Header Length field takes 4 bits in the IP
packet header and is expanded into a separate 2-byte token
during tokenization.

• As TCP Sequence and Acknowledgement numbers are 32-bit
values, we split them into 2 tokens each, representing higher
bits and lower bits of these fields as separate tokens.

• We don’t consider more than 12 bytes of payload per packet,
this is to ensure shortcuts from TLS fields such as SNI values
are not captured.

• The fields vary across protocols, and hence we generate
different tokens as per protocol.

Consequently, for a given vector, we generate a maximum of
18 tokens per packet, resulting in a maximum of 108 tokens per
burst (up to 6 packets in a burst) and 1296 tokens per flow (up to
12 bursts per flow). In order to discern the change in token lengths
due to protocol, we also add the protocol number as a metadata
feature for each flow.

We also incorporate several special tokens for learning. Firstly,
the [PAD] token is used to equalize input lengths, facilitating batch
operation. For instance, for an input set to 90 tokens, each burst
comprising 108 tokens gets segmented into six inputs, with the
final segment containing 18 [PAD] tokens to maintain uniform
token counts across inputs. Secondly, we introduce two distinct
tokens: a burst-level [CLS-B] token and a flow-level [CLS-F] token.
As illustrated in Figure 1b, the [CLS-B] token precedes each burst,
with its output serving as an aggregate representation of the bursts.
Conversely, the [CLS-F] token is positioned at the forefront of all
burst representations within a flow, providing a comprehensive
representation of the entire flow. Lastly, we employ the [MASK]
token to represent nullified entries that require restoration during
the self-supervised pre-training phase.

6

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

4.2 Token Embedding
This step receives a set of tokens at different granularity levels. To
ensure the model is differentiable, we need to convert the discrete
one-hot representation of each token into a continuous representa-
tion that is differentiable. We consider three types of embedding for
each token: packet field, positional, and metadata. More concretely,
we denote each input sequence as X𝑝 ∈ R𝑙×𝑝 , where 𝑝 = 65, 539
equals the vocabulary size of all tokens, including the special tokens.
The 𝑖-th row in X𝑝 is the one-hot representation of the 𝑖-th token
in the input, with one element as one and all the other elements
as zero. We then denote the meta-information as X𝑚 ∈ R𝑘 , where
each element represents 𝑘 attributes. In our current implementa-
tion, please note that we considered five different meta attributes
(i.e., 𝑘 = 5) for each (packet-field) token: the direction of the burst
it belongs to, the total number of packets and bytes in the burst,
the difference in its burst’s arrival time compared to the previous
one, and protocol for the flow in order to ingest a different number
of tokens due to different header fields across protocols.
Packet field token embedding. Following the classical WordEm-
bedding technique [3], we design a token embedding layer that
takes as input X𝑝 and outputs an embedding for X𝑝 , denoted as
E𝑇 ∈ R𝑙×𝑞 . Here, 𝑞 is a hyper-parameter, standing for the embed-
ding dimension, and 𝑙 denotes the input length. This layer conducts
a linear operation with a learnable weightW𝑇 ∈ R𝑝×𝑞 that trans-
forms X𝑝 into the token embedding E𝑇 ∈ R𝑙×𝑞 (E𝑇 = X𝑝W𝑇).
Positional embeddings. We also designed two positional embed-
dings at the token and the burst level. As demonstrated in Figure 3,
our token-level positional embedding is added to the tokens in each
burst, ranging from 1 to 108. Each positional embedding is con-
verted into a vector E𝑃 ∈ R𝑞 using the positional embedding layer
in the standard transformer model. The readers could refer to [15]
for more details about computing this embedding. For the burst-
level positional embedding, we add the embedding ranging from 1
to 13 to the [CLS-F] and the 12 burst representations obtained from
the burst encoder. We use the same positional embedding layer to
compute this positional embedding.
Metadata embedding. We design a meta-information embed-
ding layer to transform the input meta-information X𝑚 into an
embedding with the same dimension as the token and positional
embedding, denoted as E𝑚 ∈ R𝑞 . Like token embedding, we lever-
age a linear operation to compute E𝑚 . That is E𝑚 = X𝑚W𝑀 , where
W𝑀 ∈ R5×𝑞 is a learnable weight.

After computing these five embeddings, we compute a final
embedding for each token E𝑖 as the summation of the corresponding
three embeddings for each token (E𝑖 = E𝑇

𝑖
+E𝑝

𝑖
+E𝑀). We treat this

concatenation of this embedding as the input to our hierarchical
transformer model, where each input is denoted as E ∈ R𝑙×𝑞 .
Different from the token and positional embedding, all the tokens
in the same burst will share the same meta-information embedding.

4.3 Pre-training netFound
As mentioned above, we build the hierarchical model based on the
transformer, the predominant architecture for foundation models
in various domains [76]. In the following, we introduce the techni-
cal details of the transformer, followed by our design of stacking
transformers with skip connections.

Flow Encoder

W12

Burst Encoder

W1108W1CLS-B W2CLS-B W22

MASK 0x2f43 CLS-B 0x0004

2 108 1 2

WCLS-F

CLS-B

1

Tokens

Position

Direction

bytes in burst ...
1 1 -1 -11

4517 4517 54 544517

6 6 1 16

18 18 25 2518

17 17 17 1717

21

IAT

pkts in burst

Protocol

Flow position

W'
12 W'

1108W'
1CLS-B W'

2CLS-B W'
22W'

CLS-F

Ob
11 Ob

1108Ob
1 Ob

2 Ob
22Of

4

Figure 4: Pre-training—the hierarchical transformer uses a
subset of tokens, selected using data-driven methods, for
model training. These tokens are extracted frompacket fields
through protocol-aware tokenization and are augmented
with multi-modal embeddings.

Transformer. The transformer model is composed of a series
of attention layers, where each attention layer applies the self-
attention mechanism [65] multiple times in parallel. More specif-
ically, the first attention layer takes as input a sequence of the
final embedding E introduced above. It consists of 𝐻 self-attention
mechanisms, denoted as attention head. Each attention head first
maps this embedding into three distinct representations, denoted
as Kℎ ∈ R𝑙×𝑞/𝐻 (key), Vℎ ∈ R𝑙×𝑞/𝐻 (value), and Qℎ ∈ R𝑙×𝑞/𝐻
(query). These mappings are computed through three affine trans-
formations with learnable weights (fully connected layer). Then, the
self-attention operation is conducted by computing the attention
weights based on the key and query and then applying the weights
to the value, Oℎ = softmax(Q

ℎ (Kℎ)𝑇√
𝑞/𝐻

)Vℎ , where
√︁
𝑞/𝐻 is a scaling

factor, and softmax is for normalization. The attention weight for
a square matrix Aℎ ∈ R𝑙×𝑙 , where Aℎ

𝑖 𝑗
expresses the weight of

E𝑗 on E𝑖 when updating E𝑖 . The attention output Oℎ ∈ R𝑙×𝑞/𝐻
is a new embedding of the input E that captures the correlations
within the input tokens. Finally, the output of each attention head
will be concatenated and passed through a fully connected layer
to obtain the final output O, which has the same dimensionality
as E. This output fuses the different types of correlations captured
by all attention heads in this layer. By stacking multiple attention
layers, the transformer model can capture various global and local
correlations and dependencies between the input tokens.
Hierarchical transformers with skip connection. To capture
the unique dependency of packet traces at different granularity lev-
els, we explicitly build netFound as a hierarchical structure. Specifi-
cally, each input flow consists of a sequence of 12 bursts. Each burst
starts with a [CLS-B]. In between are the actual tokens (between 0
and 65,535), indicating the header and 12-byte payloads of the pack-
ets in that burst. We first design a burst encoder that takes as input
all the tokens in each burst and outputs a hidden representation
for each token. The output representation of each [CLS-B] token
serves as a holistic representation for the corresponding burst that
summarizes the key information in the burst.

7

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

Then, we append an additional [CLS-F] token at the beginning
of the obtained hidden representations and input them into our
second layer transformer – flow encoder. To capture inter-burst
correlations, we innovatively design skip connections in our flow-
level transformer. As shown in Figure 4, we only input the [CLS-F]
token and the representations of the [CLS-B] tokens together with
their positional embedding into the flow encoder and skip the
intermediate tokens. With this design, the flow-level transformer
could focus more on learning the dependencies across different
bursts. In addition, this skip connection significantly reduces the
input length for the flow encoder, avoiding handling the challenge
of processing ultra-long sequences with the transformer. The output
of the flow-level transformer would be a hidden representation for
each input token that encodes the information of all 12 bursts.
Similar to the standard transformer, our model’s final input is still a
hidden representation for each input token (denoted as O ∈ R𝑙×𝑞).

In addition to explicitly capturing two different levels of correla-
tions within the packet traces, another benefit of our hierarchical
structure is that it enhances the model’s capability of handling long
input sequences. As mentioned in ET-BERT [39], constrained by the
power of the standard transformer, ET-BERT can only process the
input with 512 tokens, corresponding to only the first burst in the
flow. This significantly reduces the model’s capability of capturing
long-term and hidden dependency within a relatively longer flow.
Here, our model allows parameter sharing in the first layer and
skip connection in the second layer, which significantly reduces
the complexity of the model and thus allows the model to handle
much longer input sequences (input with 1296 tokens).
Self-supervised pre-training. We follow the standard approach
to apply masking [15, 39]. We first randomly choose 30% of tokens
from each input sequence. We mask these chosen tokens by replac-
ing them with the special token [MASK] introduced above for 80%
of them, 10% of them remain the same and the remaining 10% are
randomly chosen tokens. We randomize the masked tokens in each
input, even for the same input sequence at different training epochs.
We then input the masked sequence into our foundation model and
obtain the corresponding hidden representation for each input to-
ken, denoted as [O1, ...,O𝑙]. To predict the masked tokens, we then
stack a classification layer on top of the foundationmodel. It takes as
input [O1, ...,O𝑙] and outputs the predicted token [X̂𝑝

1 , ..., X̂
𝑝

𝑙
]. The

pre-training objective is to minimize the token prediction errors via
the negative log-likelihood loss (NLL): min 1

𝑙

∑
𝑖 −X

𝑝

𝑖
log(X̂𝑝

𝑖
). Solv-

ing this objective function with a first-order optimization method
(e.g., ADAM [33]) enables us to efficiently learn the parameters for
the foundation model in a self-supervised fashion.

4.4 Fine-tuning netFound
Given that the foundation model has already been pre-trained to
provide high-quality representations that capture the hidden cor-
relations within the input sequence, for each task, we create a
shallow multi-layer perceptron model (MLP) with only two layers
and stack it on top of the netFound model. This model takes the
output of [CLS-B] or [CLS-F] (for burst-level and flow-level tasks
respectively) token and produces the corresponding prediction.

For training task-specific models we use corresponding loss
functions (such as NLL loss for classification tasks), and we also

unfreeze and update the foundation model during the fine-tuning
process, allowing it to customize the learned representation for the
specific downstream task.

As we use only [CLS-B] (or [CLS-F]) output for downstream
task learning, the fine-tuning process will only update a subset
of parameters that are connected to this token in the foundation
model, which ensures fine-tuning efficiency.

We also explored the possibility of training only the shallow
model for a downstream task without unfreezing the foundation
model. This improves the efficiency of the fine-tuning process and
reduces computational complexity, but significantly downgrades
the resulting performance on downstream tasks. We choose to
update the pre-trained model, given that our selected tasks are
more suitable for customizing the representations (See Section 6).

5 EVALUATION OF PRE-TRAINED MODEL
In this section, we aim to answer the following questions. ❶ How
effectively can the pre-trained model predict missing tokens, and is
it robust to concept drift? ❷ What is the contribution of different de-
sign choices on netFound’s token prediction performance? ❸ How
well can the pre-trained model understand the hidden networking
context, i.e., network protocol and conditions?

5.1 Implementation and Experimental Setup
Implementation. We implement our transformer models using
PyTorch 1.13.1 and Hugging Face Transformers 4.38.2. We select
our model’s hyper-parameters via grid search. Here, we specify
our choice of hyperparameters (See Appendix D for more details).
Specifically, we configure a burst input as a sequence of 108 tokens
(6 packets with 18 tokens each), and a flow with 12 bursts, resulting
in a sequence length of 1296 tokens. For our architecture, we utilize
12 burst encoders and 12 cross-burst encoders in an interleaved
fashion. Each layer has a hidden dimension of 768 and 24 attention
heads. This hidden size aligns with the standards set in both the
BERT and ET-BERT papers, making it a common choice in most
Transformer-related works. To convert metadata into embeddings
of size 768, we employ a two-layer MLP with a hidden size of 1024.
During pre-training, we randomly mask 30% of input tokens and
calculate the loss based on the prediction of these masked tokens.
Datasets. We collect unsampled passive packet traces from our
campus network’s border router for data collection.3 We collect
data in 15-minute bursts from two different campuses in December
2022 (Campus 1) and September 2023 (Campus 2), utilizing four
bursts from each period. To ensure data quality, we exclude flows
with fewer than six packets and those where each burst contains
two or fewer packets. The Campus 1 dataset includes approximately
2.6 million flows. To test our pre-trained model against temporal
variations, we divide Campus 1 flows into a training set (70 %) and
a testing set (30 %) based on timestamps. Additionally, we collected
another testing set from Campus 2, consisting of 5.5 million flows
captured 9 months after the first set.

3Our data collection setup, approved by the university’s IRB and Committee on IT
policies, ensures user privacy by processing only the first 96 bytes and randomizing
downstream IP addresses (i.e., campus users’ IP) in a prefix-preserving manner.

8

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

Table 2: The token prediction 𝐹1 score of our pre-trained
model on two testing sets with different token mask percent-
ages.

Datasets Total Tokens (M) Masked Tokens (%)
10 30 50

Campus 1 22.34 85.89 85.26 83.29
Campus 2 11.32 84.67 84.51 83.01

5.2 Masked Token Prediction (❶)
To answer ❶, we conducted an experiment where we randomly
masked a fraction of tokens in two test sets and tasked the model
with predicting the masked values. The results, shown in Table 2
as F1-scores (𝐹1), demonstrate the model’s proficiency in learning
dependencies between different packet fields across different gran-
ularities under varying network conditions. Specifically, a marginal
decrease in prediction accuracywithmoremasked tokens illustrates
the model’s capacity to capture hidden networking contexts effec-
tively, even with fewer tokens. Notably, the model’s performance
remains robust over time, as evidenced by the minimal perfor-
mance decline on the Campus 2 data, collected 9 months after the
Campus 1 data, indicating its resilience to concept drift—-a highly-
desired attribute for ML models in security applications. Section H
(in Appendix) breaks down netFound’s performance across various
packet fields. Notably, netFound exhibits excellent performance for
high entropy packet fields like ACK24—demonstrating that overall
high performance is not merely attributable to low-entropy fields.
However, token prediction accuracy is lower for deeper payload
fields and UDP fields, which is attributable to the prevalence of
encryption and insufficient representation in pre-training datasets,
respectively.

5.3 Ablation Study (❷)
To investigate the impact of design choices on masked token pre-
diction performance (❷), we conducted experiments with various
netFound variants, each incorporating additional design elements.
The netFound-L model employs a flat transformer architecture and
Byte-Pair Encoding (BPE) for long sequences. It uses the same
data-driven token composition as netFound but does not include
network flow metadata as input. The netFound-LT model enhances
netFound-L by using a protocol-aware tokenizer to preserve the
semantics of packet fields. Further, netFound-LTM improves token
representation by embedding metadata. Lastly, netFound-LTMH
adopts a hierarchical attention transformer architecture, incorpo-
rating all our design choices.

Figure 5 displays the performance of these variants on all packet
fields and specifically on two high-entropy TCP fields: Flags and
ACK2, highlighting the model’s ability to grasp the TCP protocol
dynamics in varied network conditions. We observe performance
improvements with each added feature, confirming the incremen-
tal benefit of individual design choices. Notably, netFound-LTMH
outperforms all other variants, showcasing the synergistic effect
of our comprehensive design approach. This includes a notable
enhancement in handling more tokens effectively, especially for
Flags and leveraging the hierarchical attention mechanism to learn

4Lower 16 bits of the TCP Acknowledgement number

L LT LTM LTMH
Model variants

80

90

100

F 1
 sc

or
es

Overall
ACK2
Flags

Figure 5: The token prediction performance between net-
Found and its different ablated variations using long se-
quences (L), protocol-aware tokenization (T), multi-modality
(M), and hierarchy (H).

relationships across bursts effectively, significantly impacting the
performance on the ACK2 field.
Case study (❸). We conduct an in-depth case study to answer ❸

and demonstrate how effectively the pre-trained model learns the
semantics of the TCP protocol under various network conditions,
capturing relationships between different tokens within a packet,
across packets in a burst, and across bursts in a flow. See Appendix F
for more details.

6 EVALUATION OF FINE-TUNED MODELS
We now aim to answer the following questions:➀Do the fine-tuned
models trained with netFound’s pre-trained model outperform ex-
isting state-of-the-art ML-based solutions for various downstream
learning tasks? Are these fine-tuned models ➁ immune to learn-
ing shortcuts, and ➂ robust to noisy labels? Finally, ➃ what is the
impact of different design choices on downstream tasks?

6.1 Experiment Setup
Datasets for downstream tasks. We consider five different down-
stream supervised learning tasks—traffic classification using the
campus dataset, application fingerprinting using the Crossmar-
ket and ISCX-VPN dataset, intrusion detection using the CIC-IDS
dataset, and HTTP bruteforce attack detection. Among the five
datasets, three of them are publicly available, and we curated the
other two locally. We divided each dataset into training and testing
sets using a 70:30 ratio. In the following, we introduce the selected
dataset for each task.
Campus dataset. We collected packet traces from our campus net-
work and employed the labeling method described in [2], resulting
in 72,577 traffic flows grouped into eleven classes, each represent-
ing a different type of service. This approach primarily leverages
the SNI values in TLS headers for labeling. Table 6 in Appendix A
reports the sample distribution of this dataset. Notably, this dataset
was collected from the same environment as the pretraining dataset,
but we ensured it included traffic with a later timestamp to avoid
overfitting.
Crossmarketss dataset [63]. This publicly available dataset contains
packet traces for 46,179 flows, categorized into 210 distinct classes.

9

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

Table 3: 𝐹1 scores of netFound and baseline models on the selected downstream tasks. The p-value in each cell is computed by
comparing the corresponding result with the result of netFound. We highlight the statistically significant best performance in
bold. 𝐴𝑐𝑐@10 represents the accuracy when the correct label is among the top predicted 10 classes.

Task Type Dataset Curtains (%) nPrintML (%) ET-BERT (%) YaTC (%) netFound (our) (%)

1 Traffic Classification Campus dataset 54.53 ± 0.97 87.22 ± 0.12 72.26 ± 0.38 76.54 ± 0.23 96.08 ± 0.04
𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 –

2
Application Fingerprinting

Crossmarkets [63] (𝐴𝑐𝑐@10) 20.64 ± 0.13 64.83 ± 0.28 35.62 ± 0.39 58.13 ± 0.89 66.35 ± 0.99
𝑝 < 0.001 𝑝 = 0.098 𝑝 < 0.001 𝑝 = 0.010 –

3 ISCXVPN-2016 [18] 66.85 ± 2.21 84.10 ± 0.41 77.57 ± 1.20 83.84 ± 0.24 91.02 ± 0.10
𝑝 = 0.003 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 –

4 Intrusion Detection CICIDS2017 [55] 99.75 ± 0.16 99.93 ± 0.01 99.94 ± 0.01 99.92 ± 0.01 99.99 ± 0.01
𝑝 = 0.082 𝑝 = 0.012 𝑝 = 0.018 𝑝 = 0.005 –

5 HTTP Bruteforce Detection netUnicorn [11] 96.82 ± 0.22 98.51 ± 0.02 98.63 ± 0.02 98.73 ± 0.10 99.01 ± 0.01
𝑝 = 0.006 𝑝 < 0.001 𝑝 < 0.001 𝑝 = 0.030 –

The distribution of the number of flows across these classes is
heavy-tailed, meaning most classes have very few samples while
a few have a large number of flows, averaging 220 examples per
class. Previous studies have highlighted the vulnerability of com-
plex models trained on such underspecified and sparse datasets
to spurious correlations [7, 29]. Additionally, many flows across
different classes correspond to REST calls for retrieving images in
related applications such as Amazon, Audible, and Kindle. These
flows do not provide sufficient discriminatory information for dif-
ferentiating between classes at the flow level. Eliminating flows
common to multiple application classes would lead to even sparser
datasets, increasing susceptibility to spurious correlations. As a
compromise, we revised the original application fingerprinting
problem’s scope and now report top-10 accuracy score,5 checking
if the correct label is among the top 10 predictions out of the 210
classes to accommodate all related applications.

We also identified a learning shortcut in this dataset, where
the timestamps in the TCP Options field were the same for all
traffic within a class. The presence of this shortcut, ignored by
previous works, explains why most previous efforts reported over
90% accuracy scores for this problem. We removed this shortcut
and only reported the performance for all models using the dataset
without the learning shortcut. Section 6.3 further evaluates the
resilience of all considered models to such shortcuts.
ISCXVPN2016 dataset [18]. This publicly available dataset contains
9,536 flows categorized into 17 classes and is widely used in network
security for classifying applications running behind VPNs. The
inclusion of a VPN presents new challenges due to the increased
entropy in the data and variations in packet distribution.
CIC-IDS-2017 dataset [35]. This publicly available dataset contains
a mix of “benign” traffic and seven different malicious traffic activi-
ties, such as DDoS, SSH-Patator, or other network intrusion attacks.
Table 7 in Appendix A describes the dataset in more details.
HTTP bruteforce attack detection. We followed the methodology
described in previous work [11] to curate a labeled dataset for
HTTP brute-force attack detection. Specifically, we utilized netUni-
corn [11] to generate traffic for both benign (i.e., login attempts with
valid credentials) andmalicious (brute-force attack using the Patator

5On the Crossmarket dataset, throughout the paper we intentionally use accuracy
instead of 𝐹1 for top-10 predictions as a widely adopted metric.

tool [50]) activities within a multi-cloud environment (see Appen-
dix C for details). The dataset comprises 251,047 benign and 142,377
malicious flows.
Baselines. We compare netFound with four leading ML-based ap-
proaches: Curtains [2], nPrintML [27], YaTC [75], and ET-BERT [39].
This comparison assesses if netFound surpasses state-of-the-art
task-specific methods like Curtains, evaluates the advantages of
self-supervised learning over rule-based approaches like nPrintML,
and benchmarks our domain-specific strategy against existing net-
work foundation models like ET-BERT and YaTC. We exclude other
models from Table 1 due to the lack of open-source implementa-
tions (e.g., TrafficGPT [52], MT-Security [70] and LENS [66]) or
because our selected baselines already enhance these models (e.g.,
PERT [24] and Flow-MAE [22]). We employ three popular clas-
sifiers—shallow MLP, random forest [26], and SVM [14] for the
task-agnostic solutions—-choosing the best performer for results
reporting. We have meticulously tuned hyperparameters for each
method (see Appendix D for details).

6.2 Effectiveness on Downstream Tasks (➀)
Design. To answer ➀, we compare netFound with selected baseline
methods across five downstream tasks. Unless specified otherwise,
we report the mean and standard deviation of the 𝐹1 scores to
quantify performance, along with the p-value from the paired t-
tests [59] to establish the statistical significance of our comparisons
with netFound. Note that we report the top-10 accuracy (𝐴𝑐𝑐@10)
for the Crossmarkets dataset. This dataset has a large number of
classes and each method has a low F1 score.
Results. Table 3 shows that netFound outperforms all four base-
lines across five downstream tasks, with the most notable advan-
tage observed in the most challenging task, namely, traffic clas-
sification over production traffic from our campus network. We
note statistically significant performance differences in the applica-
tion fingerprinting tasks using Crossmarket and ISCXVPN datasets
and in the HTTP bruteforce detection task using the netUnicorn
dataset. The disparity in performance between Curtain and other
network foundation models, particularly netFound, underscores
the value of task-agnostic pre-training.6 The differences between
netFound and YaTC/ET-BERT highlight the benefits of our domain-
specific approach. Although netFound surpasses nPrintML in all
6We identified and eliminated a shortcut learning instance in Curtain, where it used
the TLS SNI field both as a feature and for data labeling.

10

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

Table 4: 𝐹1 score of netFound and baselines on original ver-
sions of datasets (with shortcuts) and fixed (without short-
cuts). Performance drop signalizes that the model is vulnera-
ble to shortcut learning.

CIC-IDS (Heartbleed) Crossmarket (𝐴𝑐𝑐@10)
Original Fixed Original Fixed

Curtains 99.43 ± 0.02 86.73 ± 0.04 20.64 ± 0.13 20.64 ± 0.13
nPrintML 99.99 ± 0.01 0.0 ± 0.0 98.35 ± 0.05 64.83 ± 0.28
ET-BERT 99.99 ± 0.01 0.0 ± 0.0 99.82 ± 0.03 35.62 ± 0.39
YaTC 99.99 ± 0.01 0.01 ± 0.01 99.69 ± 0.03 58.13 ± 0.89

netFound 99.99 ± 0.01 99.99 ± 0.01 66.35 ± 0.99 66.35 ± 0.99

tasks, nPrintML somewhat unexpectedly, outperforms YaTC and
ET-BERT. We suspect this anomaly might be due to spurious cor-
relations, as it considers a massive input vector size for relatively
smaller datasets. Its vulnerability to spurious correlations has been
illustrated by previous work [29]. These results conclusively show
that the domain-specific design choices embraced by netFound en-
able the development of performant fine-tuned models for various
downstream tasks in different settings.

6.3 Resilience to Learning Shortcuts (➁)
Design. To address ➁, we compare the resilience of different
models to learning shortcuts. Specifically, we examine two learning
tasks: intrusion detection (Section 6.3.1) and traffic classification
(Section 6.3.2). For each task, we use two versions of datasets: the
original version with known learning shortcuts (“Original”) and
an updated version with the shortcut removed (“Fixed”). We train
models on the “Original” dataset with a 70:30 split and evaluate
their performance on both the “Original” and “Fixed” datasets. This
experiment helps to identify a model’s vulnerability to learning
shortcuts, thereby testing its generalizability.

6.3.1 CIC-IDS-2017 (Heartbleed). The “Original” dataset is a sub-
set of the CIC-IDS-2017 dataset, which includes only the Heart-
bleed attack traffic as malicious. Previous work identified a learning
shortcut in this dataset because the TCP connections for Heart-
bleed attacks were not closed between the heartbeat messages [29],
enabling most models to learn to distinguish samples using the
backward inter-arrival time feature. We use the publicly available
“Fixed" version of this dataset (see [29] for details), which gener-
ated new traffic while addressing this issue, thereby removing this
specific shortcut.
Results. Table 4 displays high performance on the “Original”
dataset for nPrintML, ET-BERT, and YaTC, and extremely poor
performance on the “Fixed" version, highlighting their vulnerabil-
ity to this learning shortcut. Although the performance degradation
for Curtain is not as significant, its 𝐹1 score drops by more than
10 %. In contrast, netFound’s performance remains consistent in
both settings, demonstrating its resilience to learning shortcuts. We
attribute this to netFound’s effective learning from unlabeled data
during pre-training, making it immune to such shortcuts.

6.3.2 TCP Options Shortcut in the Crossmarkets Dataset. As dis-
cussed before, we identified a new learning shortcut in the widely-
used Crossmarkets dataset, where all TCP packets included an

0 10 20 30 40
Noisy label rate (Pn)

20

15

10

5

0

Re
la

tiv
e

ch
an

ge
 in

 F
1 s

co
re

netFound
YaTC
ET-BERT
nPrint
Curtains

Figure 6: The testing performance of netFound and baselines
trained on training sets with different noisy label rates (𝑃𝑛).

additional Timestamp TCP Option field indicating the session time.
Analysis revealed that all flows from a single application were col-
lected nearly simultaneously, thus their Timestamp TCP Option
values were similar. This bias in the training data could potentially
allow models to classify traffic based on timing information, which
we consider a learning shortcut. The “Original" version contains
this bias, while in the “Fixed" version, this feature is randomized.
Results. Table 4 shows that all models, except Curtains and net-
Found, experience a significant performance drop after removing
the shortcut, indicating overoverreliance on this field for classifi-
cation. Curtains and netFound, which do not use TCP Options for
flow analysis, demonstrate stable performance on both the “Origi-
nal” and “Fixed” datasets, underscoring the importance of domain
knowledge in the tokenization process. Note that although we do
not observe a drop in performance for Curtains, its performance is
significantly poorer compared to netFound in both settings.

6.4 Robustness against Label Noises (➂)
Design. To evaluate the robustness of netFound and baseline mod-
els to noise in the training data, we generate several noisy training
datasets from the campus dataset for the traffic classification prob-
lem. Specifically, we randomly select 𝑃𝑛 percent of samples from
each class and assign them labels other than their true labels. We
consider the uniform noisy distribution, setting the probability of
assigning a selected sample to each incorrect class as 1

𝑁−1 , where 𝑁
is the number of classes in the original dataset, excluding the correct
class. Through this process, we construct noisy training datasets
with a noise label rate of 𝑃𝑛 . We vary 𝑃𝑛 = 10%/20%/30%/40% to
construct four different training datasets.
Results. Figure 6 shows the relative drop in performance, i.e.,
the decrease in 𝐹1 score compared to models trained using the
original dataset without noise, as the noisy label rate (𝑃𝑛) increases.
We observe only marginal performance degradation for netFound,
YaTC, and nPrintML, demonstrating their robustness to noisy labels.
In contrast, we observe significant performance degradation for
ET-BERT and Curtains.

6.5 Ablation Study (➃)
Design. We report the fine-tuning performance of different ablated
variants of netFound. Each variant differs based on its support for

11

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

Table 5: Fine-tuning performance of different variants of
netFound for two downstream tasks. We highlight variants
with significant performance improvements (more than 1 %).
𝐴𝑐𝑐@10 is top-10 accuracy.

Variants Traffic Classification App. Fingerprinting # Epochs
(Campus) (Crossmarkets)

L T M H PT 𝐹1 (%) 𝐴𝑐𝑐@10 (%)
✓ 77.62 ± 0.13 40.95 ± 0.89 5

✓ ✓ 94.51 (+16.89) ± 0.03 57.58 (+16.63) ± 0.95 8
✓ ✓ ✓ 94.69 (+0.18) ± 0.39 58.17 (+0.59) ± 0.91 5
✓ ✓ ✓ ✓ 94.98 (+0.29) ± 0.14 64.63 (+6.46) ± 0.91 4
✓ ✓ ✓ ✓ ✓ 96.08 (+1.10)± 0.04 66.35 (+1.72) ± 0.99 4
✓ ✓ ✓ ✓ 87.44 (-8.64) ± 0.31 50.58 (-15.77) ± 0.24 7

long sequences (L), use of protocol-aware tokenization (T), the
embedding of multi-modal data as metadata (M), employment of
a hierarchical attention-based transformer (H), and whether the
model was pretrained on unlabeled traffic rather than being fine-
tuned from scratch (PT). We fine-tune each of these models using
the campus 1 dataset (traffic classification) and the Crossmarkets
dataset (application fingerprinting) and report the 𝐹1 scores and
𝐴𝑐𝑐@10, respectively.
Results. Table 5 shows a monotonic increase in performance
as we cumulatively add domain-specific design elements to each
preceding variant. The final version, which incorporates all de-
sign elements, outperforms all other variants. This result aligns
with the observations from the ablation study of the pre-trained
model. However, in contrast to the pre-trained model’s ablation
study, we observe that different problems benefit differently from
our design choices. Specifically, the traffic classification problem
benefits significantly from considering longer sequences and a hi-
erarchical transformer. In contrast, the application fingerprinting
problem shows significant improvements for all features except
protocol-aware tokenization. These results highlight the varied and
synergistic impact of different design choices on the performance
of fine-tuned models for disparate downstream tasks.

Furthermore, the pretrained netFound outperforms netFound
trained directly on the classification task from scratch, achieving
faster convergence (4 vs. 7 iterations). This underscores the value
of pre-training, as it learns general correlations within the input
that benefit various downstream tasks, akin to NLP tasks.

7 DISCUSSION
Enhancing netFound with more networking-specific meta
attributes. We acknowledge that going beyond the attributes dis-
cussed in this paper, there are more networking-specific attributes
worth modeling. First, beyond traffic data, we recognize the exis-
tence of other data sources in providing valuable information for
network security problems. For instance, to defend against APT at-
tacks, we can collect data from deployed intrusion detection systems
and system logs [5]. These data sources present heterogeneity and
diverse modalities. As part of our future endeavors, we plan to ex-
plore the extension of our input embedding layers to accommodate
more data modalities, thus empowering our model to effectively
handle heterogeneous data. Second, although our model currently
comprises two layers, it can be readily extended to capture more
fine- or coarse-grained hierarchies of network traffic by simply
adding additional transformer layers. Our future work will assess

incorporating more layers to netFound to learn packet-level and
host-level representations for network traffic. Third, in addition to
our current objective function, we will investigate other possible
objective functions to train netFound in our future research. For
example, we plan to explore leveraging metric learning [31] to ex-
plicitly guide the model to identify different network environment
setups. We will also explore adding the extra attention layer during
the pre-training phase to yield lower-dimensional representations
for the foundation model. Finally, we mainly evaluate netFound
in an offline setup. Our future work will extend netFound to on-
line setups, where the model needs to be continuously updated
and generate representations for dynamic packet traces. We will
explore efficient model updating with fast fine-tuning techniques
(e.g., LoRA [28]) and integrate our model with methods that support
dynamic representation generation (e.g., NTT [16]).
Adversarial robustness. Similar to other transformer-based foun-
dation models, netFound can be vulnerable to adversarial attacks,
including poisoning attacks and adversarial evasion attacks. Recent
research has explored adversarial attacks against transformer-based
models in the field of CV [69] and NLP [51]. However, generalizing
these attacks to our model presents challenges, as it necessitates
adversarial samples to be actual network traffic that preserves the
original semantics. Given that network traffic is often encrypted,
manipulating raw bytes while preserving the underlying semantic
meaning becomes exceedingly difficult. To the best of our knowl-
edge, there are no existing methods for generating adversarial at-
tacks against transformer models that take as input raw bytes of
network traffic. Thus, we defer the assessment of our model’s ad-
versarial robustness to future research.
Other futureworks. First, wewill investigate collectingmore data
from diverse network environments (e.g., data centers or satellite
networks) for pre-training and exploring whether and how having
a larger number and more diverse pre-training data will affect our
foundation model’s performance and generalizability. Second, we
acknowledge that there are a large number of existing methods
for building ML models for network security problems. We focus
on comparing netFound with the most representative ones and
plan to conduct more extensive comparisons with other relevant
methods in future research. Finally, we will explore the possibility
of further increasing the sequence length using various methods
(e.g., Longformer [9]) to improve the model’s capabilities.

8 CONCLUSION
This paper presents the design and implementation of netFound—a
domain-specific network foundation model. Through comprehen-
sive evaluations using unlabeled production traffic from our campus
network and five labeled datasets across four learning tasks, we
demonstrate how our design choices enhance the model’s ability
to utilize unlabeled telemetry data effectively. This approach not
only improves the performance, robustness, and generalizability of
fine-tuned models for various learning tasks using sparse, skewed,
and noisy data but also advances the capabilities of network founda-
tion models beyond existing methods. netFound’s modular design
facilitates further exploration and development of advanced ML
solutions for complex network security problems, paving the way
for future self-driving networks.

12

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

REFERENCES
[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé.

2018. Multi-classification approaches for classifying mobile app traffic. J. Netw.
Comput. Appl. 103 (2018), 131–145.

[2] Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba,
Bertrand Mathieu, Stephanie Moteau, and Stephane Tuffin. 2021. A Look Behind
the Curtain: Traffic Classification in an Increasingly Encrypted Web. Proc. ACM
Meas. Anal. Comput. Syst. 5, 1, Article 04 (feb 2021), 26 pages. https://doi.org/10.
1145/3447382

[3] Felipe Almeida and Geraldo Xexéo. 2023. Word Embeddings: A Survey.
arXiv:1901.09069 [cs.CL]

[4] Meaad Alrehaili, Adel Alshamrani, and Ala Eshmawi. 2022. A Hybrid Deep
Learning Approach for Advanced Persistent Threat Attack Detection. In The 5th
International Conference on Future Networks & Distributed Systems (Dubai, United
Arab Emirates) (ICFNDS 2021). Association for Computing Machinery, New York,
NY, USA, 78–86. https://doi.org/10.1145/3508072.3508085

[5] Adel Alshamrani, Sowmya Myneni, Ankur Chowdhary, and Dijiang Huang. 2019.
A survey on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities. IEEE Communications Surveys & Tutorials 21, 2 (2019),
1851–1877.

[6] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti, Alessandro Guido, and
Mirco Marchetti. 2018. On the effectiveness of machine and deep learning for
cyber security. 2018 10th International Conference on Cyber Conflict (CyCon)
(2018), 371–390. https://api.semanticscholar.org/CorpusID:49656174

[7] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos
and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 3971–3988.
https://www.usenix.org/conference/usenixsecurity22/presentation/arp

[8] Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wolman, Jack W. Stokes, Geoff
Outhred, and Lechao Diwu. 2020. PrivateEye: Scalable and Privacy-Preserving
Compromise Detection in the Cloud. In Proceedings of the 17th Usenix Confer-
ence on Networked Systems Design and Implementation (Santa Clara, CA, USA)
(NSDI’20). USENIX Association, USA, 797–816.

[9] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv:2004.05150 [cs.CL]

[10] Roman Beltiukov, Sanjay Chandrasekaran, Arpit Gupta, and Walter Willinger.
2023. PINOT: Programmable Infrastructure for Networking. In Proceedings of
the Applied Networking Research Workshop (San Francisco, CA, USA) (ANRW
’23). Association for Computing Machinery, New York, NY, USA, 51–53. https:
//doi.org/10.1145/3606464.3606485

[11] Roman Beltiukov, Wenbo Guo, Arpit Gupta, and Walter Willinger. 2023. In
Search of netUnicorn: A Data-Collection Platform to Develop Generalizable ML
Models for Network Security Problems. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS) (Copenhagen, DK).

[12] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teix-
eira, and Nick Feamster. 2019. Inferring Streaming Video Quality from Encrypted
Traffic: Practical Models and Deployment Experience. Proc. ACM Meas. Anal.
Comput. Syst. 3, 3, Article 56 (dec 2019), 25 pages. https://doi.org/10.1145/3366704

[13] Zhiyong Bu, Bin Zhou, Pengyu Cheng, Kecheng Zhang, and Zhen-Hua Ling.
2020. Encrypted network traffic classification using deep and parallel network-
in-network models. Ieee Access 8 (2020), 132950–132959.

[14] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ArXiv abs/1810.04805 (2019).

[16] Alexander Dietmüller, Siddhant Ray, Romain Jacob, and Laurent Vanbever. 2022.
A New Hope for Network Model Generalization. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks (Austin, Texas) (HotNets ’22). Association for
Computing Machinery, New York, NY, USA, 152–159. https://doi.org/10.1145/
3563766.3564104

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
arXiv:2010.11929 [cs.CV]

[18] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic using
Time-related Features. In International Conference on Information Systems Security
and Privacy.

[19] Nick Feamster and Jennifer Rexford. 2017. Why (and How) Networks Should
Run Themselves. CoRR abs/1710.11583 (2017). arXiv:1710.11583 http://arxiv.org/
abs/1710.11583

[20] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv:1406.2661 [stat.ML]

[21] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. 2019. DEEP-
VSA: Facilitating Value-set Analysis with Deep Learning for Postmortem Program
Analysis.. In USENIX Security Symposium.

[22] Zijun Hang, Yuliang Lu, Yongjie Wang, and Yi Xie. 2023. Flow-MAE: Leverag-
ing Masked AutoEncoder for Accurate, Efficient and Robust Malicious Traffic
Classification. In Proceedings of the 26th International Symposium on Research in
Attacks, Intrusions and Defenses (<conf-loc>, <city>Hong Kong</city>, <coun-
try>China</country>, </conf-loc>) (RAID ’23). Association for Computing Ma-
chinery, New York, NY, USA, 297–314. https://doi.org/10.1145/3607199.3607206

[23] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical provenance
analysis for endpoint detection and response systems. In Proceedings - 2020
IEEE Symposium on Security and Privacy, SP 2020 (Proceedings - IEEE Symposium
on Security and Privacy). Institute of Electrical and Electronics Engineers Inc.,
United States, 1172–1189. https://doi.org/10.1109/SP40000.2020.00096 Publisher
Copyright: © 2020 IEEE.; 41st IEEE Symposium on Security and Privacy, SP 2020
; Conference date: 18-05-2020 Through 21-05-2020.

[24] Hong Ye He, Zhi Guo Yang, and Xiang Ning Chen. 2020. PERT: Payload Encoding
Representation from Transformer for Encrypted Traffic Classification. In 2020
ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K). 1–8. https:
//doi.org/10.23919/ITUK50268.2020.9303204

[25] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and
Ross Girshick. 2021. Masked Autoencoders Are Scalable Vision Learners.
arXiv:2111.06377 [cs.CV]

[26] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[27] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2020. New
Directions in Automated Traffic Analysis. Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2020).

[28] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[29] Arthur S. Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit
Gupta, and Lisandro Z. Granville. 2022. AI/ML for Network Security: The Emperor
Has No Clothes. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[30] Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt, and Nick
Feamster. 2023. AC-DC: Adaptive Ensemble Classification for Network Traffic
Identification. arXiv:2302.11718 [cs.NI]

[31] Mahmut Kaya and Hasan Şakir Bilge. 2019. Deep metric learning: A survey.
Symmetry 11, 9 (2019), 1066.

[32] Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford. 2021. Experience-
Driven Research on Programmable Networks. SIGCOMM Comput. Commun. Rev.
51, 1 (mar 2021), 10–17. https://doi.org/10.1145/3457175.3457178

[33] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[34] Diederik P Kingma and Max Welling. 2022. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

[35] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based Features.
In International Conference on Information Systems Security and Privacy.

[36] Triet H. M. Le, Huaming Chen, and M. Ali Babar. 2022. A Survey on Data-Driven
Software Vulnerability Assessment and Prioritization. ACM Comput. Surv. 55, 5,
Article 100 (dec 2022), 39 pages. https://doi.org/10.1145/3529757

[37] Moemedi Lefoane, Ibrahim Ghafir, Sohag Kabir, and Irfan-Ullah Awan. 2022. Ma-
chine Learning for Botnet Detection: An Optimized Feature Selection Approach.
In The 5th International Conference on Future Networks & Distributed Systems
(Dubai, United Arab Emirates) (ICFNDS 2021). Association for Computing Ma-
chinery, New York, NY, USA, 195–200. https://doi.org/10.1145/3508072.3508102

[38] Rui Li, Xi Xiao, Shiguang Ni, Haitao Zheng, and Shutao Xia. 2018. Byte seg-
ment neural network for network traffic classification. In 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[39] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu.
2022. ET-BERT: A Contextualized Datagram Representation with Pre-Training
Transformers for Encrypted Traffic Classification. In Proceedings of the ACM
Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for
Computing Machinery, New York, NY, USA, 633–642. https://doi.org/10.1145/
3485447.3512217

[40] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. 2022.
Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-
CIC-IDS-2018. In 2022 IEEE Conference on Communications and Network Security
(CNS). 254–262. https://doi.org/10.1109/CNS56114.2022.9947235

[41] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime
Lloret. 2017. Network traffic classifier with convolutional and recurrent neural
networks for Internet of Things. IEEE access 5 (2017), 18042–18050.

[42] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep packet: A novel approach for encrypted
traffic classification using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

13

https://doi.org/10.1145/3447382
https://doi.org/10.1145/3447382
https://arxiv.org/abs/1901.09069
https://doi.org/10.1145/3508072.3508085
https://api.semanticscholar.org/CorpusID:49656174
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://arxiv.org/abs/2004.05150
https://doi.org/10.1145/3606464.3606485
https://doi.org/10.1145/3606464.3606485
https://doi.org/10.1145/3366704
https://doi.org/10.1145/3563766.3564104
https://doi.org/10.1145/3563766.3564104
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1710.11583
http://arxiv.org/abs/1710.11583
http://arxiv.org/abs/1710.11583
https://arxiv.org/abs/1406.2661
https://doi.org/10.1145/3607199.3607206
https://doi.org/10.1109/SP40000.2020.00096
https://doi.org/10.23919/ITUK50268.2020.9303204
https://doi.org/10.23919/ITUK50268.2020.9303204
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2302.11718
https://doi.org/10.1145/3457175.3457178
https://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3529757
https://doi.org/10.1145/3508072.3508102
https://doi.org/10.1145/3485447.3512217
https://doi.org/10.1145/3485447.3512217
https://doi.org/10.1109/CNS56114.2022.9947235

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

[43] Sadegh M. Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V.N.
Venkatakrishnan. 2019. HOLMES: Real-Time APT Detection through Corre-
lation of Suspicious Information Flows. In 2019 IEEE Symposium on Security and
Privacy (SP). 1137–1152. https://doi.org/10.1109/SP.2019.00026

[44] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion Detection. In 25th
Annual Network and Distributed System Security Symposium, NDSS. The Internet
Society.

[45] National Science Foundation: Workshop on Self-Driving Networks. [n. d.]. https:
//www.nsf.gov/awardsearch/showAward?AWD_ID=1748793

[46] Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser, Yuhuai Wu,
Christian Szegedy, andHenrykMichalewski. 2022. Hierarchical Transformers Are
More Efficient Language Models. In Findings of the Association for Computational
Linguistics: NAACL 2022, Marine Carpuat, Marie-Catherine de Marneffe, and
Ivan Vladimir Meza Ruiz (Eds.). Association for Computational Linguistics, Seat-
tle, United States, 1559–1571. https://doi.org/10.18653/v1/2022.findings-naacl.117

[47] nscai [n. d.]. National Security Commission on Artificial Intelligence.
https://www.nscai.gov/.

[48] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[49] Eva Papadogiannaki and Sotiris Ioannidis. 2021. A Survey on Encrypted Network

Traffic Analysis Applications, Techniques, and Countermeasures. ACM Comput.
Surv. 54, 6, Article 123 (jul 2021), 35 pages. https://doi.org/10.1145/3457904

[50] patator [n. d.]. Patator. https://github.com/lanjelot/patator.
[51] Shilin Qiu, Qihe Liu, Shijie Zhou, and Wen Huang. 2022. Adversarial attack and

defense technologies in natural language processing: A survey. Neurocomputing
492 (2022), 278–307. https://doi.org/10.1016/j.neucom.2022.04.020

[52] Jian Qu, Xiaobo Ma, and Jianfeng Li. 2024. TrafficGPT: Breaking the Token
Barrier for Efficient Long Traffic Analysis and Generation. ArXiv abs/2403.05822
(2024). https://api.semanticscholar.org/CorpusID:268351552

[53] Shahbaz Rezaei, Bryce Kroencke, and Xin Liu. 2019. Large-scale mobile app
identification using deep learning. IEEE Access 8 (2019), 348–362.

[54] Tal Shapira and Yuval Shavitt. 2019. FlowPic: Encrypted Internet Traffic Classifi-
cation is as Easy as Image Recognition. IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS) (2019), 680–687.

[55] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic Character-
ization. In Proceedings of the 4th International Conference on Information Sys-
tems Security and Privacy - Volume 1: ICISSP,. INSTICC, SciTePress, 108–116.
https://doi.org/10.5220/0006639801080116

[56] Kamran Shaukat, Suhuai Luo, Vijay Varadharajan, Ibrahim A. Hameed, and Min
Xu. 2020. A Survey on Machine Learning Techniques for Cyber Security in
the Last Decade. IEEE Access 8 (2020), 222310–222354. https://doi.org/10.1109/
ACCESS.2020.3041951

[57] Kevin Shen. 2024. Multi-world Model in Continual Reinforcement Learning.
Proceedings of the AAAI Conference on Artificial Intelligence 38, 21 (Mar. 2024),
23757–23759. https://doi.org/10.1609/aaai.v38i21.30555

[58] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. In 2010 IEEE Symposium on
Security and Privacy. 305–316. https://doi.org/10.1109/SP.2010.25

[59] Student. 1908. The probable error of a mean. Biometrika (1908), 1–25.
[60] Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang, Chen Qian, Changshui

Zhang, Xiaogang Wang, and Chang Xu. 2021. Vision Transformer Architecture
Search. ArXiv abs/2106.13700 (2021).

[61] Mengxuan Tan, Alfonso Iacovazzi, Ngai-Man Man Cheung, and Yuval Elovici.
2019. A neural attention model for real-time network intrusion detection. In 2019
IEEE 44th conference on local computer networks (LCN). IEEE, 291–299.

[62] The Self-Driving Network: Restoring Economic Sustainability to Your Infrastruc-
ture. [n. d.]. https://www.juniper.net/us/en/dm/the-self-driving-network/.

[63] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J.
Dubois, Martina Lindorfer, David R. Choffnes, Maarten van Steen, and Andreas
Peter. 2020. FlowPrint: Semi-SupervisedMobile-App Fingerprinting on Encrypted
Network Traffic. Proceedings 2020 Network and Distributed System Security Sym-
posium (2020). https://api.semanticscholar.org/CorpusID:211265114

[64] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J.
Dubois, Martina Lindorfer, David Choffness, Maarten van Steen, and Andreas
Peter. 2020. FlowPrint: Semi-SupervisedMobile-App Fingerprinting on Encrypted
Network Traffic. In NDSS. The Internet Society.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[66] Qineng Wang, Chen Qian, Xiaochang Li, Ziyu Yao, and Huajie Shao. 2024. Lens:
A Foundation Model for Network Traffic in Cybersecurity. ArXiv abs/2402.03646
(2024). https://api.semanticscholar.org/CorpusID:267628222

[67] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017.
End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. 2017 IEEE International Conference on Intelligence and Security
Informatics (ISI) (2017), 43–48.

[68] Wenting Wei, Tianjie Ju, Han Liao, Weike Zhao, and Huaxi Gu. 2022. FLAG:
Flow Representation Generator Based on Self-Supervised Learning for Encrypted
Traffic Classification. In 5th Asia-Pacific Workshop on Networking (APNet 2021)
(Shenzhen, China, China) (APNet 2021). Association for Computing Machinery,
New York, NY, USA, 14–20. https://doi.org/10.1145/3469393.3469394

[69] Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein,
and Yu-Gang Jiang. 2022. Towards transferable adversarial attacks on vision
transformers. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 2668–2676.

[70] Jin Yang, Xinyun Jiang, Yulin Lei, Weiheng Liang, Zicheng Ma, and Siyu Li. 2024.
MTSecurity: Privacy-Preserving Malicious Traffic Classification using Graph
Neural Network and Transformer. IEEE Transactions on Network and Service
Management (2024), 1–1. https://doi.org/10.1109/TNSM.2024.3383851

[71] Kun Yang, Samory Kpotufe, and Nick Feamster. 2020. A Comparative Study of
Network Traffic Representations for Novelty Detection. CoRR abs/2006.16993
(2020). arXiv:2006.16993 https://arxiv.org/abs/2006.16993

[72] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
2016. Hierarchical attention networks for document classification. In NAACL.

[73] Yi Zeng, Huaxi Gu, Wei Wenting, and Yantao Guo. 2019. Deep-Full-Range: A
Deep Learning Based Network Encrypted Traffic Classification and Intrusion
Detection Framework. IEEE Access PP (01 2019), 1–1. https://doi.org/10.1109/
ACCESS.2019.2908225

[74] Ruijie Zhao, Xianwen Deng, Zhicong Yan, Jun Ma, Zhi Xue, and YijunWang. 2022.
MT-FlowFormer: A Semi-Supervised Flow Transformer for Encrypted Traffic
Classification. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (Washington DC, USA) (KDD ’22). Association for
Computing Machinery, New York, NY, USA, 2576–2584. https://doi.org/10.1145/
3534678.3539314

[75] Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan
Gui, and Zhi Xue. 2023. Yet Another Traffic Classifier: A Masked Autoencoder
Based Traffic Transformer with Multi-Level Flow Representation. Proceedings
of the AAAI Conference on Artificial Intelligence 37, 4 (Jun. 2023), 5420–5427.
https://doi.org/10.1609/aaai.v37i4.25674

[76] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng
Ji, Qiben Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie,
Caiming Xiong, Jian Pei, Philip S. Yu, and Lichao Sun. 2023. A Comprehensive
Survey on Pretrained Foundation Models: A History from BERT to ChatGPT.
arXiv:2302.09419 [cs.AI]

[77] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein,
Anima Anandkumar, and Bryan Catanzaro. 2021. Long-Short Transformer:
Efficient Transformers for Language and Vision. In Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates,
Inc., 17723–17736. https://proceedings.neurips.cc/paper_files/paper/2021/file/
9425be43ba92c2b4454ca7bf602efad8-Paper.pdf

A DATASETS

Table 6: Table of traffic distribution across all the classes for
the Traffic Classification dataset

Service Type Number of flows

Streaming 3,868
Chat 1,316

Download 4,018
Social 10,000
Games 1,047
Search 6,637
Mail 3,933
Web 10,000
Cloud 10,000

WebApp 10,000
Advertisements 10,000

In this appendix, we provide brief information about traffic distri-
bution between different classes for the campus fine-tuning dataset
(see Table 6) and for CIC-IDS-2017 (see Table 7).

14

https://doi.org/10.1109/SP.2019.00026
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1748793
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1748793
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3457904
https://github.com/lanjelot/patator
https://doi.org/10.1016/j.neucom.2022.04.020
https://api.semanticscholar.org/CorpusID:268351552
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1609/aaai.v38i21.30555
https://doi.org/10.1109/SP.2010.25
https://api.semanticscholar.org/CorpusID:211265114
https://api.semanticscholar.org/CorpusID:267628222
https://doi.org/10.1145/3469393.3469394
https://doi.org/10.1109/TNSM.2024.3383851
https://arxiv.org/abs/2006.16993
https://arxiv.org/abs/2006.16993
https://doi.org/10.1109/ACCESS.2019.2908225
https://doi.org/10.1109/ACCESS.2019.2908225
https://doi.org/10.1145/3534678.3539314
https://doi.org/10.1145/3534678.3539314
https://doi.org/10.1609/aaai.v37i4.25674
https://arxiv.org/abs/2302.09419
https://proceedings.neurips.cc/paper_files/paper/2021/file/9425be43ba92c2b4454ca7bf602efad8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9425be43ba92c2b4454ca7bf602efad8-Paper.pdf

netFound: A Domain-specific Foundation Model for Network Security CCS’24, October 14-18, 2024, Salt Lake City, US

Table 7: Table of traffic distribution across all the classes for
CIC-IDS-2017

Attack type Number of flows

SSH Patator 3,958
FTP Patator 2,464

DDOS 45,168
DOS 29,754
Web 2,019

Infiltration 3,757
Port Scan 159,554
Benign 249,044

B PACKET FIELDS USED FOR TOKENIZATION
Table 8 provides information about what packet fields were used
for different protocols in the tokenization process. In this work, we
used some of the network and transport layer fields for tokenization,
as well as the first 12 bytes of the payload. This selection of fields
allowed us to include the most relevant information about the
packet in the tokenization process but avoid possible shortcuts.

Table 8: Packet fields used in Tokenization

Protocol Fields
IPv4 HeaderLen ToS TotalLen Flags TTL
TCP Flags WinSize SeqNum AckNum UrgentPtr
UDP Length
ICMP Type Code
Payload 12 bytes

C PATATOR MULTI-CLOUD DATASET
The PatatorMulti-Cloud dataset is generated using virtual machines
(VMs) in different cloud and physical infrastructures. We deployed
two clusters of machines (five nodes each) on Amazon AWS and our
campus infrastructure to use as attacker machines hosting Patator
software [50], that were targeting the single victim VM, deployed
in Microsoft Azure. We also deployed two clusters of machines (five
nodes each) on Amazon AWS and our campus infrastructure to
generate benign profile trafficwith a pattern similar to the attacker’s
traffic targeting the same victim VM as attacker machines. We
captured the full network traffic on the victim VM using tcpdump.

D HYPERPARAMETERS
For the netFound model, we used the hidden representation of 768
and 12 layers of BERT encoders for Burst and Flow transformations,
and 24 attention heads for the model in total. For the pretraining
of netFound model, we chose the learning rate of 2𝑒−5 and the
StepLR parameter as 0.995 every 10,000 steps. During the fine-
tuning process, we chose the smaller learning rate of 𝑒−5 to prevent
significant deviations of the already pre-trained weights.

For the ET-BERT implementation, we followed the original paper
and used the original hyperparameters, i.e., the learning rate of 2𝑒−5,
hidden size representation of 768, 12 encoders, and 12 attention
heads.

Table 9: The testing performance of netFound trained on
training sets with different noisy label rates (𝑃𝑛) using the
Traffic Classification dataset.

Noise rate Curtains(%) NprintML (%) ET-BERT (%) YaTC (%) netFound (%)
0 54.53 ± 0.97 87.22 ± 0.12 72.26 ±0.38 76.54 ± 0.23 96.08 ± 0.04

10% 47.14 ± 0.26 86.52 ± 0.17 63.67 ± 0.32 75.77 ± 0.09 95.07 ± 0.14
20% 41.16 ± 0.35 85.36 ± 0.19 62.77 ± 0.52 74.89 ± 0.04 94.38 ± 0.2
30% 37.81 ± 0.69 83.30 ± 0.16 61.88 ± 0.44 73.91 ± 0.08 93.28 ± 0.14
40% 34.48 ± 0.95 80.54 ± 0.22 60.52 ± 0.19 71.75 ± 0.37 92.18 ± 0.11

Table 10: Attention weights for flags in packets of the 3rd
burst. The green color indicates the labels that were correctly
predicted. The color of the cells represents the attention
weights. The darker the cell, the more weight it has in the
attention vector of the corresponding packet’s flag.

Pkt # TCP Flag Burst-3 Length Window Seq # Ack #
(Masked)

𝑁 ACK CLS 52 271 517 1922
𝑁 + 1 ACK CLS 1426 271 517 1922
𝑁 + 2 ACK CLS 308 271 1891 1922
𝑁 + 3 ACK+PSH CLS 459 271 2147 1922

For the Curtains implementation, we also followed the approach
of the original paper and used the original hyperparameters, i.e.
the learning rate of 𝑒−3 and the StepLR parameter of 0.995.

E NOISY LABEL PERFORMANCE
In this section, we provide the performance of netFound and base-
lines using the Traffic Classification dataset. We introduce noisy
labels in the training set by randomly flipping the labels of a certain
percentage of the training samples to any label except the original.
We evaluate the performance of the models on the correct test set
(without noise). The results are shown in Table 9. We observe that
netFound demonstrates the best performance compared to the base-
lines across all noise rates, and demonstrate robustness to noisy
labels comparable to the baselines.

F CASE STUDY
To answer ❸, i.e., demonstrating the pre-trained model’s under-
standing of the hidden networking context, we conduct a case study.
In this study, we demonstrate how the pre-trained model learns
hidden relationships between various packet fields, revealing the
behavior of a network protocol (TCP) and its interaction with the
underlying network conditions.

Specifically, we sample 100 K flows from the test data, ensuring
they have at least three bursts, and then mask the TCP flag field for
all packets in the third burst. By focusing on the third burst, we aim
to illustrate the model’s ability to comprehend hidden relationships
in flows with longer sequence lengths. This sets our approach
apart from existing foundation models like ET-BERT, which only
focus on the first burst in a flow. Our findings reveal a prediction
accuracy of 92.2%, indicating that the model successfully learned
the concealed relationships among different packet fields, which
can be attributed to the TCP protocol’s logic and specification, as
well as its interaction with the underlying network conditions.

To gain a deeper understanding of the relationships the model
is learning, we further analyze the decision-making for one of the

15

CCS’24, October 14-18, 2024, Salt Lake City, US Anonymous author(s)

Table 12: 𝐹1 prediction score of masked headers fields and
their corresponding entropy in the pretraining dataset.

Feature Names TCP UDP
Entropy 𝐹1 Entropy 𝐹1

IP header length 0 99.99 0 99.99
IP Type of Service 0.42 99.99 0.67 98.69
IP total length 3.36 89.52 4.75 89.31

IP flags 0.50 99.30 0.53 99.43
TTL 2.84 95.10 2.08 97.76

TCP flags 1.34 98.15 - -
TCP wsize 5.25 88.10 - -
TCP seq 1 0.22 99.79 - -
TCP seq 2 6.14 84.10 - -
TCP ack 1 0.74 98.67 - -
TCP ack 2 6.77 85.33 - -
TCP urp 0.001 99.99 - -

UDP length - - 4.75 88.72
Payload 1 2.56 89.87 8.67 24.19
Payload 2 2.77 88.57 8.99 62.12
Payload 3 4.55 73.33 9.11 63.27
Payload 4 4.17 74.75 10.29 55.10
Payload 5 4.42 74.43 10.62 33.60
Payload 6 4.73 67.44 10.64 32.41

Table 11: The performance between netFound and its dif-
ferent ablated variations using long sequences (L), protocol-
aware tokenization (T), multi-modality (M), and hierarchy
(H), on the traffic classification task. “# Epochs” means the
number of epochs needed for the model to converge during
the fine-tuning.

Variations Features Token Prediction Traffic Classification # Epochs
L T M H 𝐹1 (%) 𝐹1 (%)

DNN - 49.12 ± 1.93 15
netFound-Zero 88.75 77.62 ± 0.13 5
netFound-L ✓ 79.07 ± 0.04 94.51 ± 0.03 8
netFound-LT ✓ ✓ 81.38 ± 0.03 94.69 ± 0.39 5
netFound-LTM ✓ ✓ ✓ 81.55 ± 0.02 94.98 ± 0.14 4
netFound-LTH ✓ ✓ ✓ 85.04 ± 0.04 95.92 ± 0.10 4
netFound-LHM ✓ ✓ ✓ 80.46 ± 0.41 94.52 ± 0.08 9
netFound-NoPT ✓ ✓ ✓ ✓ - 87.44 ± 0.31 7
netFound-LTMH ✓ ✓ ✓ ✓ 85.26 ± 0.03 96.08 ± 0.04 4

flows in the test data. Randomly selecting a flow with at least three
bursts, we mask the TCP flag fields for all packets in the third burst
and use the pre-trained model to predict these fields. Table 10 shows
that the model accurately predicted TCP flags for all six packets.
We report the attention weights for a subset of relevant input fields,
highlighting their contribution to predicting the TCP flag field.

We observe that the model gives weightage to the burst represen-
tations (CLS). Note that a burst representation captures interdepen-
dencies between different tokens within a burst as well as between
other bursts in the flow. This result shows the value of employing
a hierarchical transformer to capture sequence-wide relationships
explicitly. The next highest weight is assigned to tokens pertaining
to the packet length field. This finding indicates that the model suc-
cessfully inferred that a higher value for packet length is a strong
indicator for the ACK+PUSH flag. This aligns with the ACK+PUSH
flag’s purpose of piggybacking data along with the acknowledg-
ment. Thus, the model autonomously learned this protocol-specific
behavior. The other fields have little to no weightage, reaffirming
that the model correctly learned that these other packet fields are
unrelated to TCP flag fields in a burst.

G ABLATION PERFORMANCE
In Table 11 we show the performance of netFound with different
combinations of features enabled for both token prediction and
traffic classification. Note that netFound-NoPT represents the full
model without pretraining (so, trained only on the traffic classifi-
cation dataset), and DNN represents the simple (non-transformer)
linear model fully trained only on the traffic classification dataset.

H HEADERS ENTROPY AND PREDICTION
ACCURACY

The Table 12 shows the entropy of the packet headers in our pre-
training dataset and the corresponding 𝐹1 score of predicting these
fields if they are masked. The results demonstrate that the model
successfully predicts fields even with high entropy, which demon-
strates its ability to grasp complex patterns of traffic.

16

	Abstract
	1 Introduction
	2 Background and Problem Scope
	2.1 Machine learning in Network Security
	2.2 Existing Techniques and Limitations

	3 Overview of Design Choices
	3.1 Preserving Packet Field Semantics
	3.2 Capturing Multi-Modal Inputs
	3.3 Handling Variable-Length Sequences
	3.4 Leveraging Inherent Hierarchy

	4 netFound's Workflow
	4.1 Data Pre-processing
	4.2 Token Embedding
	4.3 Pre-training netFound
	4.4 Fine-tuning netFound

	5 Evaluation of Pre-trained Model
	5.1 Implementation and Experimental Setup
	5.2 Masked Token Prediction (❶)
	5.3 Ablation Study (❷)

	6 Evaluation of Fine-tuned Models
	6.1 Experiment Setup
	6.2 Effectiveness on Downstream Tasks (➀)
	6.3 Resilience to Learning Shortcuts (➁)
	6.4 Robustness against Label Noises (➂)
	6.5 Ablation Study (➃)

	7 Discussion
	8 Conclusion
	References
	A Datasets
	B Packet Fields used for tokenization
	C Patator Multi-Cloud Dataset
	D Hyperparameters
	E Noisy Label Performance
	F Case Study
	G Ablation performance
	H Headers entropy and prediction accuracy

