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Abstract. The explosion of mobile broadband as an essential means of
Internet connectivity has made the scalable evaluation and inference of
quality of experience (QoE) for applications delivered over LTE networks
critical. However, direct QoE measurement can be time and resource
intensive. Further, the wireless nature of LTE networks necessitates that
QoE be evaluated in multiple locations per base station as factors such
as signal availability may have significant spatial variation. Based on
our observations that quality of service (QoS) metrics are less time and
resource-intensive to collect, we investigate how QoS can be used to infer
QoE in LTE networks. Using an extensive, novel dataset representing a
variety of network conditions, we design several state-of-the-art predictive
models for scalable video QoE inference. We demonstrate that our models
can accurately predict rebuffering events and resolution switching more
than 80% of the time, despite the dataset exhibiting vastly different
QoS and QoE profiles for the location types. We also illustrate that our
classifiers have a high degree of generalizability across multiple videos
from a vast array of genres. Finally, we highlight the importance of low-
cost QoS measurements such as reference signal received power (RSRP)
and throughput in QoE inference through an ablation study.
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1 Introduction

More than 60 million people reside in rural regions in the United States [18].
However, cellular deployment is often guided by economic demand, concentrating
deployment in urban areas and leaving economically marginalized and sparsely
populated areas under-served [27]. Few prior studies have focused on assessing
mobile broadband in rural areas of the U.S.; there is a lack of accessible datasets
that are not only comprehensive (include network-level and application-level
traces) but also representative and inclusive of rural demographics. As a result of
the COVID-19 pandemic, the assessment of the quality of experience (QoE) for
applications delivered over mobile broadband has become urgent as stay-at-home
orders and rapid movement to online schooling and work-from-home protocols
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increase the demand for applications that are known to be sensitive to network
quality, such as video streaming and interactive video chat [50]. As a result,
communities without access to usable, high speed broadband, such as many rural
communities, are particularly disadvantaged [8, 32].

Unfortunately, the evaluation of user quality of experience for video stream-
ing applications accessed over LTE in regions where people are most likely to
be smartphone dependent [27, 28, 34] poses a significant scalability challenge.
QoE metric collection over LTE networks in a geographic area requires time
and resource intensive measurements for each network provider. As a result,
experiments at a single geographic point can be quite lengthy. Moreover, in rural
areas, obtaining LTE Internet measurements in places where people are likely to
use mobile broadband (e.g., at their homes or along local transportation corri-
dors) can be challenging [49], as places of interest are far apart (requiring more
resource intensive targeted measurement campaigns) and less densely populated
(prohibiting representative crowd-sourcing measurement efforts). It is in this
context that we ask the following research question: How can we infer the QoE
for video streaming applications over LTE at scale?

While there are few to no existing datasets that measure QoE in rural com-
munities, there are many public and proprietary datasets that report quality
of service (QoS) metrics, such as reference signal received power (RSRP) or
throughput. These metrics are typically reported independently and are mea-
sured over LTE networks in a wide range of locations throughout the U.S. and
globally [46, 51–53, 59, 63]. We argue that the wealth of LTE-QoS data points
across the U.S. represents a key resource that can be leveraged to broadly assess
QoE: while measuring QoE at scale in LTE networks presents significant chal-
lenges, measuring QoS at scale in LTE networks has already been demonstrated
to be feasible. Hence, our goal, and key contribution, is a methodology that can
leverage low-cost QoS measurements to predict QoE.

To study the correlation between mobile QoS and QoE performance, a diverse
set of network measurements that are representative of a wide-range of conditions
is needed. As such, we undertook an extensive measurement campaign to collect
16 datasets comprised of network traces from the Southwestern U.S. for four
major telecom operators: AT&T, Sprint, T-Mobile and Verizon. Our datasets vary
along two primary axes: population density, and network load. To obtain data
from varied population densities, we collected LTE network measurements within
multiple rural and urban communities. For variable network load, we collected
LTE network traces from crowded events in urban locations that resulted in
atypically high volumes of network utilization [5] and, as a result, congestion.
We also collected traces from the same urban locations during typical operating
conditions as a baseline. Our datasets have broad spatial and temporal variability,
but can be classified into three primary categories: under-provisioned (rural),
congested (congested urban), and well-provisioned (baseline urban).1 We leverage

1 Through extensive analysis, we verified that our datasets are representative of the
network characteristics we anticipated: well-provisioned, congested, and/or under-
provisioned. We omit that analysis from this paper due to space constraints.
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these varied datasets to demonstrate the generality of the inference method.
Based on our analysis, we show that predictive models can be used to infer video
QoE metrics using low-cost QoS measurements, so that QoE can be more easily
and scalably determined within difficult to assess regions.

Our key contributions and findings include:

– We collected sixteen measurement datasets2 from twelve locations through
an extensive ground measurement campaign within the Southwestern U.S.
Our data points are representative of three different network conditions:
under-provisioned (rural), congested urban and well-provisioned urban, and
include over 32 Million LTE packets. (§2);

– We develop and evaluate a comprehensive set of predictive models that infer
video QoE from low-cost QoS measurements such as RSRP and throughput.
Our analysis reveals that predictive models can infer video QoE with an
accuracy of at least 80% across all locations and network types (§3);

– We validate our models across multiple video types from a wide variety of
genres. Further, we demonstrate the utility of low-cost RSRP measurements
for inferring video QoE (§3).

2 Methodology and Datasets Overview

QoS metrics, such as received signal strength, latency, throughput, and packet
loss, capture the the state of network connectivity. However, while QoS provides
an indication of network state, there can be a disconnect between QoS and user
experience. QoS network metrics are not Pareto-optimal; one element can get
better or worse without affecting the other. Consequently, estimation of user
experience requires the incorporation of multiple network measures, which may
be unique to time, space and application. Note that while the definition of QoE
can vary depending on the vantage point from which measurements are taken,
we only focus on application-level QoE. Our measurements are active end-user
device/passive user as defined in [61].

2.1 QoS and QoE Metrics

In this section, we describe the QoS and QoE metrics we collected (and estimated)
for this measurement study, as summarized in Table 1.

Quality of Service Metrics: We collect reference signal received power (RSRP)
and throughput synchronously on the same user equipment (UE). RSRP is
defined as the linear average over the power contributions (in Watts) of the
resource elements that carry cell-specific reference signals within the measurement
frequency bandwidth [2] and, as illustrated by [7], is widely accessible through
mobile operating systems. We record instantaneous RSRP readings from the UEs
every one second through the Network Monitor application [43]. We measure
throughput by fetching a pre-specified 500 MB file from an AWS instance in
Virginia using iPerf over TCP to download the file. The large file size allows the

2 The subset of our dataset that we have permission to release is available at [4].
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Table 1: Overview of QoS and QoE metrics at each location, aggregated across
available providers.

Type Metric Test Interval Number of Datapoints Tools

QoS RSRP 1 second 2160 Network Monitor
Throughput 1 second 2160 iPerf

QoE Video resolution 1 second 2160 Selenium, iframe API
Resolution switches 1 second 2160 Selenium, iframe API
Rebuffering events 1 second 2160 Selenium, iframe API

data traffic to fill the pipe and to minimize the effect of slow start. We log the
packet traces at the client during the iPerf tests in order to sample throughput
at 1 second intervals.

Quality of Experience Metrics: We focus on streaming video, currently
the most heavily used QoE-centric service in mobile networks [36]. Internet
video streaming services typically use Dynamic Adaptive Streaming over HTTP
(DASH) [60] to deliver a video stream. DASH divides each video into time
intervals known as segments or chunks, which are then encoded at multiple bit
rates and resolutions. To analyze video stream quality, we gather two QoE metrics:
resolution switches and rebuffering events. For resolution switches, we compute
the number of consecutive samples that had a different resolution as a percentage
of the total number of samples collected during the video. We measure at one-
second granularity, which captures resolution switches that happen between video
chunks that are typically 4–5 seconds long [15]. Finally, a rebuffering event occurs
when video pauses while the application buffer waits to accumulate enough
content to resume playback. We record the video state (rebuffering event or
normal playback) every second.

2.2 Measurement Suite

We run our measurement suite on Lenovo ThinkPad W550s laptops, each of
which are tethered to their own Motorola G7 Power (Android 9) via USB in
order to measure cellular performance. The cellular plans on all our cellular user
equipment (UE) have unlimited data and are hot-spot enabled to effectively
achieve the same level of performance as we would on the mobile device. We run
our measurement suite on laptops tethered to phones; this configuration gives us
the same application performance while facilitating ease of programming, data
extraction, and unification of application-level measurements.

We choose YouTube as the streaming platform because of its popularity in the
U.S., capturing over 88% of the mobile market [62]. To collect video QoE metrics,
we run a 3-minute clip of a Looney Tunes video [64], three times across each of the
four LTE providers at each location; we exclude from our results the sessions that
experienced playback errors during execution. We chose this particular video due
its mix of high and low action scenes, which result in variable bitrates throughout
the video (typically, high action scenes have a higher bitrate than low action
scenes). After testing multiple playback duration, we observed that a 3-minute
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window was adequate for the playback to reach steady state, while long enough
to capture rebuffering and/or resolution switches that occur. To infer video
QoE, we collect the input features (RSRP and throughput) synchronously, on a
separate device so as not to bias the video streaming measurements. Synchronous
measurements of throughput, RSRP and QoE metrics are required to train
learning algorithms to infer video QoE for a future time instance. We use different
servers for throughput and YouTube tests so that we can obtain concurrent
QoS and QoE measurements. Our setup reflects the real world scenario where
throughput test servers and YouTube servers are separate while simultaneously
affected by varying conditions from within the cellular network [6]. In LTE, each
bearer (connection from a UE) enjoys a relatively isolated data tunnel before
the egress from the packet gateway, located inside the core [1]. This reduces
contention among UEs competing for resources at a single eNodeB, and as a
result we can accurately record QoS and QoE metrics on two separate devices.

To execute this experiment, we first automate the loading and playback
of the YouTube video on the Chrome browser using Selenium [58]. The video
resolution is set to auto. Then we use YouTube’s iframe API [65] to capture
playback events reported by the video player. The API outputs a set of values
that indicate player state (not started, paused, playing, completed, buffering)
using the getPlayerState() function. The API also provides functions for accessing
information about play time and the remaining buffer size.

2.3 Description of Datasets

We collect 16 datasets from 12 locations across the Southwestern U.S. Eight of the
datasets were collected from rural locations that had sparse cellular deployment.

An additional eight datasets were collected from four urban locations. In each
urban location, we collect two datasets: one during a large event or gathering, in
which we expect cellular network congestion to occur (these datasets are marked
with Cong); and a second during typical operating conditions. We call the latter
dataset the baseline for that location (these datasets are marked with Base).
Hence, our 16 traces are broadly classified into three categories: rural, congested
urban, and baseline urban. The details of each dataset are summarized in Table 2.
The designation of each location as rural or urban is based on Census Bureau
data [57]. Through these measurement campaigns, we collect and analyze over
32.7 Million LTE packets. Note that the “Number of Datapoints” column shown
in Table 1 indicates the QoS/QoE datapoints gathered by the application, while
the “# LTE Packets” column in Table 2 refers to the number of packets collected
in the trace files.

2.4 Video QoE Measurement Scalability Challenges

Collection of ground-truth cellular network measurements, as we explore further
in §4, is a challenging task for multiple reasons. First, it requires physical place-
ment of measurement device at the location to be studied. While there are many
large, publicly accessible datasets that incorporate some QoS measurements, QoE
measurements, particularly in remote regions, are much more difficult. Second,
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Table 2: Summary of Datasets

Location Date # LTE Packets Type Carriers∗

Rural 1 May 28 2019 3.18 Million Rural V,A,T,S
Rural 2 May 29 2019 1.38 Million Rural V,T
Rural 3 May 28 2019 2.03 Million Rural V,A,T,S
Rural 4 May 30 2019 2.16 Million Rural V,A,T,S
Rural 5 May 30 2019 2.27 Million Rural V,A,T,S
Rural 6 May 31 2019 2.33 Million Rural V,A,T,S
Rural 7 May 31 2019 1.26 Million Rural V,T
Rural 8 Jun 01 2019 2.83 Million Rural V,A,T,S

Urban 1 Cong Sep 22 2019 2.25 Million Urban, Congested V,A,T,S
Urban 1 Base Sep 28 2019 1.92 Million Urban, Baseline V,A,T,S
Urban 2 Cong Sep 29 2019 2.51 Million Urban, Congested V,A,T,S
Urban 2 Base Sep 30 2019 1.97 Million Urban, Baseline V,A,T,S
Urban 3 Cong Sep 21 2019 2.65 Million Urban, Congested V,A,T,S
Urban 3 Base Sep 30 2019 2.13 Million Urban, Baseline V,A,T,S
Urban 4 Cong Sep 25 2019 2.18 Million Urban, Congested V,A,T,S
Urban 4 Base Sep 26 2019 2.08 Million Urban, Baseline V,A,T,S
∗This column lists mobile carriers in each data set (some areas had no coverage for particular
network operators). V: Verizon, A:AT&T, T:T-Mobile, S: Sprint.

gathering ground truth data to assess video QoE requires an active connection
to stream a large encoded video file. This consumes a substantial amount of
bandwidth, computational power, memory, and battery, due to the simultaneous
use of LTE modems, display, CPU, and GPU [21] on the user device. For instance,
streaming applications consume memory to load the video and require accelerated
processing to decode and display the stream from the video server. Unlike QoS
metrics, which can often be collected in the background through execution by
back-end scripts, the high resource cost of QoE measurements for the end user
makes this data difficult to crowd-source. In Figure 1 we show the resource
consumption during one hour of RSRP and throughput (QoS) measurements,
compared to one hour of video streaming (QoE), on our data collection phones.
As can be seen in the figure, the resources consumed by the QoE measurements
were significantly higher, both preventing background data collection and more
rapidly draining the device battery.

Rural regions span large geographic areas with terrain that is often hard to
access. QoS data from public sources already struggles to cover these areas. In
particular, crowd-sourced datasets are data-rich in regions where there are higher
density populations. These regions tend to be either urban areas, or other areas
frequented by travelers (i.e. highways, national parks, etc.). Rural communities,

a. CPU Load b. Memory utilization c. System temperature

Fig. 1: Device resource consumption during either RSRP and throughput mea-
surements only, or during video streaming.
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by contrast, with their lower population densities, are often under-represented in
crowd-sourced datasets. Yet it is exactly these regions where under-provisioned
networks typically exist and hence where data is urgently needed. In order to
effectively assess QoE in these remote areas, we need a method to improve
QoE measurement scalability. We address this challenge in the next section,
where we show how predictive models can use the less resource expensive QoS
measurements to infer QoE for streaming video on mobile broadband networks
in a variety of environments.

3 Inferring QoE Metrics for Video

As discussed in §2.4, the collection of QoS measurements is less resource consump-
tive, and hence more scalable, than video QoE measurements. We now describe
our approach to infer QoE metrics for video streaming sessions using low-cost
QoS metrics.

3.1 Learning Problem

Our learning problem’s goal is to infer QoE metrics using a sequence of throughput
and RSRP (QoS metrics) data input. The objective is to build models with
appreciable performance that would work in a wide variety of network conditions
and different region types (e.g., rural and urban locations). These models could
be used to predict application QoE (in our case, video streaming) at a particular
location. We use supervised learning to train two different binary classifiers. The
first classifier infers whether the video’s state is stalled or normal; the second
infers whether there is any change in video resolution. Both models perform the
classification task every one second.

Input: The learning model takes a sequence of RSRP and throughput values
as input. Both of these metrics are low-cost measurements and easily accessible.
Given how adaptive bitrate (ABR) video streaming players operate, the changes
in throughput and RSRP values have a delayed impact on QoE metrics. For
example, a decrease in available throughput will force the video streaming player
to use the buffered data before stalling.

As part of feature engineering, we had to determine how many RSRP and
throughput values to use as input for the learning model. Intuitively, the use of
longer sequences will improve accuracy. However, longer sequences also increases
the complexity of the learning model, which requires more training data to avoid
over-fitting. After varying n = 0 → 180 (total playback time of a session), we
found that using a sequence of three throughput/RSRP values enabled us to
strike a balance between model complexity and accuracy. A typical approach to
assessing throughput would be to log continuous measurements for a long duration
of time and analyze the resulting mean/mode of the distribution. However, our
results (§3.3) indicate that we can infer the video quality from only a 3-second
sample. This has the added benefit of reducing the resource utilization at the
client device, such as data consumption and battery drainage, while accurately
inferring the video stream quality.
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Table 3: Breakdown of training and test set samples for both classifiers.

Training Set Test Set
Classifier Type Target Metric Class 0 Class 1 Class 0 Class 1

Classifier 1 Rebuffering Event 22,175 642 9,504 275
Classifier 2 Resolution Switching 22,490 327 9,639 140

Output: We train two separate binary classifiers to predict the video state and
change in resolution at the granularity of one second. Predicting QoE metrics at
such fine granularity enables opportunities to infer QoE with limited training
data. Given the input features, our models infer how likely it is for the video
stream to experience either a video stall or a resolution change in the next instant.

Training data: Our dataset consists of 32,596 data points. Each data point
has input values: a sequence of three RSRP and throughput values, as well as
two boolean labels: video state (playing or stalled) and resolution switches (yes–
resolution will change; no–resolution will not change). We collected this dataset
through our measurement campaign by conducting a total of 181 video streaming
sessions across multiple locations (§2.3). For each classifier, we label the output
training samples into either of the two classes: class 0 is when playback is normal
and devoid of any event (rebuffering or resolution switch), and class 1 is when
there is an event. We carried out the classification task by splitting the entire
dataset into a ratio of 70:30 training to test sets, as described in Table 3. We split
the overall training dataset into training and validation sets (80:20). We chose the
samples proportionate to the size of each dataset category (rural, congested urban,
and baseline urban). We present the models’ performance per location, where
we train the models on specific locations and then test on others not included
in the training. We do not make any distinctions between operators since an
operator-agnostic evaluation is a more comprehensive reflection of coverage and
QoE at a particular location.

3.2 Learning Algorithm

We now present the learning models we used for the learning problem, our model
training approach, and the method for addressing the inherent class-imbalance.

Learning models: We trained a wide range of off-the-shelf classifiers for this
learning problem in order to identify the classifier that strikes the best balance
between performance (precision, recall, etc.) and generalizability. First, we trained
simpler classifiers, such as gradient boosting [29], bagging [13], random forest [14],
ARIMA [12], AdaBoost [30], etc. These classifiers offer better generalizability at
the cost of performance. We also trained neural-network (NN)-based classifiers,
such as a convolutional neural network (CNN) [41] and recurrent neural network
(RNN) [37] (in particular, LSTMs [35] and GRUs [23]), that offer higher accuracy
but require considerable training data to avoid over-fitting.

Setup: We ran all the classifiers on a local machine that runs Ubuntu 18.04,
powered by a 4-core i7-7700 CPU (3.60 GHz) with 64GB RAM and 8GB NVIDIA
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RTX 2080 GPU. We implemented the simpler classifiers using the scikit-learn
0.21 [56] library of Python, and NN-based models using Keras with Tensorflow
backend [24]. We used four fully-connected layers for the NN-based classifiers. For
RNN-LSTM-Focal (see Table 4), the network utilized 64, 32, and then 16 hidden
neurons, in addition to a final output layer with hyperbolic tangent activation
function. We used Grid Search [25] to determine the ideal hyper-parameter
configuration for each neural network. To avoid over-fitting, we use a dropout of
0.4 while training with the Adam gradient descent optimizer [39]. We ran the
RNN-LSTM model for 120 iterations with a batch size of 64.

Class-imbalance problem: As rebuffering and changes in the resolution are
rare, most of our data points are normal, i.e., they do not have any rebuffering
or resolution switching events. As a result, our dataset has the class-imbalance
problem, typical for most anomaly detection problems. To address this issue, we
applied the sampling technique SMOTE [19] to balance the classes artificially.
However, such an approach reduces the number of data points that we can use
for training the classifier, which in turn affects the accuracy. With SMOTE, we
observed no improvements in accuracy with simpler learning models (e.g., SVM,
random forest, etc.), and lower accuracy for NN-based classifiers. Therefore, for
the NN-based classifiers, we adapted a new technique that has proven to increase
classification accuracy in datasets that suffer from the class-imbalance issue for
the object detection problem [42]. This technique addresses the class-imbalance
problem by reshaping the standard cross entropy loss in such a way that it lowers
the weights for the majority class [42]. It also introduces the concept of focal loss
that prevents the majority class from overwhelming the classifier during training.
The focal loss can be represented as:

FL(pj) = α(1− pj)γ log(pj) (1)

Here, FL is the focal loss function, and pj is the softmax probability of the jth

class for a particular observation. α and γ are two regularizing parameters. This
loss function adds more importance when the network predicts a minority sample
as opposed to the overly represented sample—making it ideal for performing
classification on an imbalanced dataset.

3.3 Results

We now present the performance of the different classifiers we used for this learning
problem. For those that performed well, we also quantify their performance across
different locations and video types. Finally, we quantify the contribution of an
LTE-specific QoS metric, RSRP, in improving the accuracy of our learning models.

Performance: We analyze the performance of learning models in terms of
accuracy, precision, recall, and training time. Table 4 summarizes the performance
of all classifiers we explored. We observe that the accuracy of the rebuffering-event
classifier is better than the resolution-switching one, as depicted in Figure 2.
This difference is attributable to the smaller number of anomalous data points
(resolution switches) in the data (see Table 3). In terms of accuracy, RNN-LSTM-
Focal performs best. This is expected as this model makes the best use of the
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Table 4: Performance metrics of the classification models.

Rebuffering Events Resolution Switching
Models Accuracy Precision Recall Accuracy Precision Recall

Boosting 0.87 0.88 0.88 0.84 0.85 0.84
Bagging 0.80 0.82 0.82 0.71 0.73 0.72
Random Forest 0.85 0.87 0.86 0.79 0.80 0.80
ARIMA 0.81 0.81 0.81 0.77 0.78 0.78
Decision Trees 0.80 0.80 0.98 0.75 0.75 0.75
Extra Randomized Tree 0.77 0.78 0.77 0.72 0.73 0.72
AdaBoost 0.62 0.60 0.63 0.51 0.55 0.53
Support Vector Machine 0.72 0.72 0.73 0.70 0.71 0.70
K-nearest neighbors 0.60 0.56 0.62 0.58 0.57 0.49
CNN 0.72 0.73 0.73 0.68 0.69 0.69
CNN - Focal 0.84 0.85 0.84 0.81 0.81 0.81
RNN - LSTM 0.82 0.83 0.83 0.80 0.79 0.80
RNN - LSTM - Focal 0.89 0.89 0.89 0.86 0.86 0.87
RNN - GRU 0.82 0.82 0.84 0.80 0.82 0.82
RNN - GRU - Focal 0.86 0.86 0.85 0.83 0.84 0.84

sequence of throughput and RSRP values and is best suited to handle the class
imbalance problem. On the other hand, though RNN-LSTM-Focal has the highest
accuracy, the accuracy gains are marginal when compared to simpler learning
models, especially Boosting. Given these marginal gains and the complexity of
training NN-based classifiers (5 vs. 214 seconds), we use the Boosting classifier
to characterize the performance across different network and video types.

Generalizability: We now quantify the generalizability of the Boosting classifier.
First, we show how its performance varies across different network types. Figure 2
depicts the performance of inferring video rebuffering using Boosting at each
location. We observe that the performance differences across different network
types are marginal (< 2% deviation between categories). We saw similar trends
for the Boosting-based classifier when inferring resolution switching.

Our initial measurements only collected the QoE metrics for the Looney
Tunes video. To verify that our results generalize for other video types, we
collected the QoS/QoE data for 108 additional video streaming sessions (a total
of 48,825 new data points) at our research facility (baseline-urban). We selected
18 different videos from seven genres: action (trailers/movie clips), music videos,
sports, online learning content, news, documentary, and animation (including the
original Looney Tunes video) [16]. We selected top trending videos for each genre.
Given that the videos were of varying duration, we capped each measurement to
a maximum of ten minutes. We streamed each video over three different telecom
providers (AT&T, T-Mobile, and Verizon); we were not able to obtain Sprint
measurements because of closures of Sprint retail outlets due to the COVID-19

a. Rebuffering events b. Resolution switching

Fig. 2: Performance of Boosting across different locations.



Too Late for Playback 11

a. Rebuffering events b. Resolution switching

Fig. 3: Performance of Boosting across different video genres.

pandemic. Figure 3 shows the performance of Boosting for both video rebuffering
and resolution switching. We observe marginal variations (< 1.5% and < 3%
deviation for rebuffering and resolution switching, respectively) in accuracy across
different video genres, implying that our learning model generalizes reasonably
well to different video types. Note that we do not claim that these results
generalize for other video players (e.g., Hulu, Netflix), client platforms or devices;
we plan to quantify the performance of our learning models for other platforms,
devices and non-YouTube videos in the future. Finally, we do not claim to have
developed models that generalize across other locations or network conditions –
rather we use this study to demonstrate the feasibility of inferring video QoE at
scale within a limited, but diverse, dataset.

Ablation Study: To better understand the impact of an LTE-specific metric
(i.e., RSRP) in inferring QoE metrics, we performed an ablation study. Figure 4
compares the accuracy of the Boosting classifier in inferring rebuffer events with
and without the RSRP values. We observe that the average increase in accuracy,
with RSRP as an input, is 9.28%, while the maximum gain is 18.61%. This
result could be attributed to the exposition of the relationship, by the non-linear
models, between RSRP and throughput to identify the target metrics at any given
location successfully. This study highlights the importance of LTE-specific RSRP
measurements in accurate prediction of rebuffering and resolution switching.

4 Related Work

Prior work most similar to ours, which focuses on quantifying the user experience,
typically infers the QoE of video streaming from QoS of fixed broadband networks
[22, 31, 38]. In contrast, our work focuses on mobile broadband, which often
exhibits a wide variation in performance over time and space. Some past work
on mobile broadband, such as [3, 11, 20, 54], has examined metrics solely from
the application and network layers. [15, 26, 33, 40, 44, 45] require direct access

Fig. 4: Inferring video rebuffering using Boosting with and without RSRP as an
input feature.
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to (encrypted or unencrypted) network traffic to infer video QoE. In contrast,
our approach is independent of network traces and incorporates low-cost signal
and throughput measurements for rapid QoE prediction. Few publicly available
QoS datasets include synchronous RSRP measurements. [17, 48, 63] analyze
network traces that contain performance indicators captured during streaming
sessions, and experiment metadata from mobile broadband networks. All of these
datasets, however, have limited types of datapoints (primarily from dense, urban
locations); the datasets have minimal to no measurements from networks that
are under-provisioned or located in remote regions. We believe it is challenging to
utilize existing prior datasets (from primarily urban scenarios) to evaluate diverse
network conditions in the context of the measurements examined in this work,
either due to non-overlapping and non-scalable nature of prior measurements
or lack of a comprehensive and representative dataset. Further, the accuracy of
our models, given the inexpensive measurements, indicates the feasibility and
scalability of our approach.

Prior work that has focused on charting the relationship between RSRP and
QoE has important limitations. For instance, [10] presents a mapping of RSRP
and video QoE that is derived using only simulated experiments. The authors
of [47] explore the effect of radio link quality, such as RSRP, on streaming video
QoE. The presented results are limited in scope as their setup streams a custom
video hosted on their own server; by omitting evaluation of a popular streaming
service, such as YouTube or Netflix, the work does not accurately capture the
application and network performance experienced by actual users. [9] undertakes
a study similar to ours, however, with a modest dataset that is limited to a small
portion of a local transit route and is thus difficult to generalize.

5 Conclusion

Through an extensive measurement campaign, we collect 16 datasets with widely
varying performance profiles. Our dataset includes representation of: i) the
variability of mobile broadband performance as a consequence of either sparse
deployments or network congestion, and ii) the communities most likely to be
dependent on mobile broadband (rural areas). Through our analysis, we highlight
the challenges of quantifying QoE metrics at scale, particularly in remote locations.
To address this challenge, we develop learning models that use low-cost and easily
accessible QoS data (LTE-specific RSRP and throughput) to predict QoE metrics.
Our models can be generalized to video content from different genres, as well
as to other locations that share network characteristics similar to those of our
dataset. The observed efficacy of the models indicates that video QoE can be
more easily and scalably determined within difficult to assess regions, using
low-cost QoS measurements. For instance, given the increased load on video
streaming platforms during COVID-19 [50], cellular operators could employ our
approach to detect sectors with possible bottlenecks without having to rely on
user feedback/complaints, particularly in remote locations. This has the potential
to lead to faster turnaround times for network troubleshooting [55], and therefore
may lower outage periods for users heavily dependent on video streaming.
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31. Goran, N., Hadžialić, M.: Mathematical Bottom-to-up Approach in Video Quality
Estimation based on PHY and MAC Parameters. IEEE Access 5, 25657–25670
(2017)

32. Grant Samms (Forbes): As Cities Face COVID-19, The Digital Divide Becomes More
Acute. https://www.forbes.com/sites/pikeresearch/2020/04/02/as-cities-

face-covid-19-the-digital-divide-becomes-more-acute/#277c93e558c5

(Apr 2020), (Accessed on 05/10/2020)
33. Gutterman, C., Guo, K., Arora, S., Wang, X., Wu, L., Katz-Bassett, E., Zussman, G.:

Requet: Real-time QoE Detection for Encrypted YouTube Traffic. In: Proceedings
of the 10th ACM Multimedia Systems Conference. pp. 48–59 (2019)

https://www.census.gov/newsroom/press-releases/2016/cb16-210.html
https://www.census.gov/newsroom/press-releases/2016/cb16-210.html
https://github.com/keras-team/keras
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/grid_search.html
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2018-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2018-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2019-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2019-broadband-deployment-report
https://www.forbes.com/sites/pikeresearch/2020/04/02/as-cities-face-covid-19-the-digital-divide-becomes-more-acute/#277c93e558c5
https://www.forbes.com/sites/pikeresearch/2020/04/02/as-cities-face-covid-19-the-digital-divide-becomes-more-acute/#277c93e558c5


Too Late for Playback 15

34. Hansi Lo Wang (NPR): Native Americans On Tribal Land Are ‘The Least Connected’
To High-Speed Internet. https://www.npr.org/2018/12/06/673364305/native-

americans-on-tribal-land-are-the-least-connected-to-high-speed-

internet (December 2018)
35. Hochreiter, S., Schmidhuber, J.: Long Short-term Memory. Neural Computation

9(8), 1735–1780 (1997)
36. Hoßfeld, T., Seufert, M., Sieber, C., Zinner, T.: Assessing Effect Sizes of Influence

Factors towards a QoE Model for HTTP Adaptive Streaming. In: 6th International
Workshop on Quality of Multimedia Experience (QoMEX). pp. 111–116. IEEE
(2014)

37. Jordan, M.I.: Attractor Dynamics And Parallelism in a Connectionist Sequential
Machine. Artificial Neural Networks: Concept Learning pp. 112–127 (1990)

38. Kim, H.J., Choi, S.G.: A Study on a QoS/QoE Correlation Model for QoE Evaluation
on IPTV Service. In: 12th International Conference on Advanced Communication
Technology (ICACT). vol. 2, pp. 1377–1382. IEEE (2010)

39. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (2014)

40. Krishnamoorthi, V., Carlsson, N., Halepovic, E., Petajan, E.: BUFFEST: Predicting
Buffer Conditions and Real-time Requirements of HTTP (S) Adaptive Streaming
Clients. In: Proceedings of the 8th ACM on Multimedia Systems Conference. pp.
76–87 (2017)

41. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet Classification With Deep
Convolutional Neural Networks. In: Advances in Neural Information Processing
Systems. pp. 1097–1105 (2012)

42. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal Loss for Dense Object
Detection. CoRR abs/1708.02002 (2017), http://arxiv.org/abs/1708.02002

43. Lubek, B.: Network Monitor, https://github.com/caarmen/network-monitor
44. Mangla, T., Halepovic, E., Ammar, M., Zegura, E.: MIMIC: Using Passive Network

Measurements to Estimate HTTP-based Adaptive Video QoE Metrics. In: 2017
Network Traffic Measurement and Analysis Conference (TMA) (2017)

45. Mangla, T., Halepovic, E., Ammar, M., Zegura, E.: eMIMIC: Estimating HTTP-
Based Video QoE Metrics from Encrypted Network Traffic. In: 2018 Network Traffic
Measurement and Analysis Conference (TMA) (2018)

46. Midoglu, C., Moulay, M., Mancuso, V., Alay, O., Lutu, A., Griwodz, C.: Open
Video Datasets over Operational Mobile Networks with MONROE. In: Proceedings
of the 9th ACM Multimedia Systems Conference. p. 426–431 (2018)
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