
ONTAS: Flexible and Scalable Online Network Traffic
Anonymization System

Hyojoon Kim
Princeton University
joonk@princeton.edu

Arpit Gupta
Columbia University

arpitgupta@cs.ucsb.edu

ABSTRACT
Access to packet traces is required not only to detect and diagnose
various network issues related to performance and security, but also
to train intelligent learning models enabling networks that can run
themselves. However, packets in a network carry a lot of informa-
tion which can be used to personally identify users and their online
behavior. This requires network operators to anonymize packet
traces before sharing them with other researchers and analysts.
Existing tools anonymize packet traces in an offline manner, which
incurs significant computational, storage, and memory overhead—
limiting their ability to scale as the volume of the collected packet
trace increases. In this paper, we present the design and imple-
mentation of an Online Network Traffic Anonymization System,
ONTAS, which can flexibly anonymize packet traces in the data
plane itself using modern PISA-based programmable switches.

CCS CONCEPTS
• Networks → Programmable networks; Network privacy
and anonymity.

KEYWORDS
Anonymization, Programmable switches, P4, PISA
ACM Reference Format:
Hyojoon Kim and Arpit Gupta. 2019. ONTAS: Flexible and Scalable Online
Network Traffic Anonymization System. In NetAI ’19: ACM SIGCOMM 2019
Workshop on Network Meets AI & ML, August 23, 2019, Beijing, China. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3341216.3342208

1 INTRODUCTION
Conventionally, network operators have relied on manual diagnosis
of network data for various tasks such as network behavior analysis,
troubleshooting, forensics, anomaly detection, and so on. However,
in recent years, the growing complexity of network management
has pushed network operators and researchers to build self-driving
networks, capable of autonomously detecting and resolving various
network issues. Packet-level network streaming analytics systems
(e.g., Sonata [14], Everflow [33], dShark [31], Marple [19]) are the
building blocks for such self-driving networks. These systems re-
quire continuous ingestion of network data in real time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NetAI ’19, August 23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6872-8/19/08. . . $15.00
https://doi.org/10.1145/3341216.3342208

Collecting network data poses a significant privacy threat. For
example, vendor’s tech support teams typically request packet
traces while troubleshooting a network device. This data can be
potentially used to identify network users and their online activi-
ties. Thus, network operators are required to collect network data
in a privacy-preserving manner. In the past, practitioners and re-
searchers have developed various tools for data collection (e.g.,
tcpdump) and anonymization (e.g., tcpmkpub [20]). Using these
tools, network operators first collect and store raw packet traces
and then apply the anonymization tool over the collected data in
an offline manner. This approach not only results in wasteful usage
of compute, memory, and storage resources but is also not capa-
ble of flexibly anonymizing network data for modern high-speed
networks at line rate. This limitation impedes the development of
self-driving networks that rely on collecting and analyzing network
data at packet-level granularity in real time.

Network operators can perform online anonymization in dif-
ferent ways. One option is to apply the anonymization logic di-
rectly at the collector itself. However, this approach incurs a sig-
nificant processing overhead and is hard to scale for high-speed
networks. Another option is to offload the packet processing for
anonymization to the network interface card (NIC) of the collec-
tor. Though this approach reduces the computational overhead, it
will not work well with network streaming analytics systems that
rely on programmable data planes to scale packet processing. In
contrast, our system, ONTAS, leverages the flexible packet process-
ing capabilities of modern Protocol Independent Switch Architecture
(PISA) switches [5, 6, 15, 29] to anonymize packet streams in the
data plane itself. ONTAS is scalable as it anonymizes packet streams
at line rate for high-speed networks. ONTAS is also flexible as it
supports a policy language for expressing anonymization tasks.

Building such a flexible and scalable anonymization system is
challenging. First, it requires designing a policy interface that lets
network operators express a wide range of anonymization policies
without worrying about lower-level hardware details. Second, it
requires developing a compiler that can translate the network op-
erator’s anonymization policies into the target-specific program.
The compiler needs to make the best use of limited resources and
ensure that switch’s default forwarding behavior is unaffected by
traffic anonymization.

We motivate the usage of online anonymization using PISA-
based switches in Section 2. We present the design and implemen-
tation of ONTAS in Section 3. We use a testbed equipped with a
state-of-the-art hardware switch and data collected from multiple
enterprise networks to compare ONTAS’ resource footprint with
the state-of-the-art anonymization tools in Section 4. We present
a more detailed comparison of ONTAS with the existing online

https://doi.org/10.1145/3341216.3342208
https://doi.org/10.1145/3341216.3342208

NetAI ’19, August 23, 2019, Beijing, China Hyojoon Kim and Arpit Gupta

(and offline) anonymization tools in Section 5 before concluding
the paper in Section 6.

2 BACKGROUND AND MOTIVATION
In this section, we first describe a use case where a researcher re-
quires an anonymized packet trace. We describe the current work-
flow for providing this packet trace to the researcher, which is
slow and inefficient. We then present our proposed workflow using
ONTAS.

2.1 Motivating Use-Case
A network security researcher wants to identify different types
of the Internet of Things (IoT) devices in a campus network and
categorize them. She also plans to detect any unusual (malicious)
network behavior, which is indicative of a possible compromise,
of these devices [10]. To accomplish this, the researcher wants to
first analyze all DNS requests coming from every end-host device
in the target network to identify and classify different types of IoT
devices. She hypothesizes that a specific IoT device class will have a
uniquely identifiable DNS request pattern. Once the researcher has
a list of clustered IoT devices, she plans to analyze traffic coming
from each device in the list to detect any abnormal behavior.

To start this project, the researcher requests access to packet
traces captured at various locations on the target network. The
network operator can easily collect such packet traces. However,
they can only share the data with her after anonymizing all per-
sonally identifiable information (PII), such as MAC or IP addresses.
Network operators need to strike a balance between privacy and
usability of the shared data. For example, a packet trace with all
IP addresses zeroed out preserves privacy but is useless to the re-
searcher. Each device’s IP address should still be unique so that the
researcher can distinguish one from another. The researcher also
prefers to have the subnet or IP prefix information preserved. The
MAC organizationally unique identifier (OUI) of each device is also
valuable information that the researcher wants intact.

2.2 Current Workflow
To provide the requested data to the researcher, a network operator
first needs to create spanning ports on routers or install tapping
devices to generate mirrored traffic, which is then forwarded to a
collector. The next step is to capture and store raw packet traces on
disk. The campus network usually sees around a 3-4 Gbits/s traffic
rate over the Internet in normal business hours. Therefore, captur-
ing a packet trace for even ten minutes will result in 2400 Gigabits,
or 300 Gigabytes of data. The network operator then applies a state-
of-the-art anonymization tool over the raw packet trace to generate
the anonymized version of the trace, which is also stored on disk.
The network operator then transfers the anonymized packet trace
to the customer’s machine, where the researcher will finally be able
to analyze the packet trace.

The current workflow for such a request relies on offline anony-
mization tools, such as crypto-pan [30], pktanon [13], or tcpmkpub
[20]. These tools take raw packet traces as input and return their
anonymized versions as output. Thus, these tools entail the over-
head of redundantly storing both the original as well as the anony-
mized packet trace and redundantly processing (using both CPU and

anonymize_multicast_broadcast : no
anonymize_srcmac_oui : no
anonymize_srcmac_id : yes
anonymize_dstmac_oui : no
anonymize_dstmac_id : yes
anonymize_srcipv4 : [1 7 2 . 1 7 . 1 . 0 / 2 4 , 1 0 . 4 . 0 . 0 / 1 6]
anonymize_dstipv4 : [1 7 2 . 1 7 . 1 . 0 / 2 4 , 1 0 . 4 . 0 . 0 / 1 6]
preserve_pref ix : yes
anonymize_mac_in_arphdr : yes
anonymize_ipv4_in_arphdr : yes

Listing 1: Anonymization policy example.

memory resources) all packets during data collection and anony-
mization. Some of these tools, such as pktanon, have the ability
to anonymize packet traces in online mode. Yet, the tool’s max
anonymization throughput is around 57 Mbits/s even with simple
randomization [13].

2.3 Proposed Workflow
Usage of offline anonymization tools incurs significant storage and
compute overhead. Moreover, offline anonymization tools cannot
provide continuous anonymized traffic feed to streaming analytics
or inference systems in real time since such tools cannot keep up
with the speed of live traffic feed. In contrast, we propose a new
workflow that anonymizes a packet stream, at line rate, in the data
plane itself.

Historically, the use of fixed protocols for transforming raw data
packets in the network prevented network operators from perform-
ing anonymization in the data plane. However, recently proposed
Protocol Independent Switch Architecture (PISA) switches provide
many features that permit the implementation of customized packet
processing logic in the data plane [5, 6, 15, 29].

Here, ONTAS translates a network operator’s anonymization
policy into a target-specific program (e.g., P4 [3]). This program
synthesizes match-action tables in the data plane which anonymize
the incoming packet stream at line rate. Such capability opens up the
possibility of building much-desired network streaming analytics
systems that can process packets at line rate in a privacy-preserving
manner.

3 ONTAS’ DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementation of ON-
TAS that uses PISA switches for enabling online anonymization.

3.1 Expressing anonymization policies
PISA switches can be programmed using the P4 language. Unlike
higher-level programming languages supported by an x86 server
(e.g., Python), the P4 language operates at a relatively lower level
of abstraction. Requiring a network operator to directly express
their anonymization policies as a P4 program increases the par-
ticipation threshold. Not only will it necessitate learning a new
programming language, but will also require them to take vari-
ous low-level resource constraints (e.g., number of physical stages,
number of actions in a stage, etc.) into consideration [14]. Also, it

ONTAS: Flexible and Scalable Online Network Traffic Anonymization System NetAI ’19, August 23, 2019, Beijing, China

will require them to compose their anonymization policies with
forwarding—making the data plane more brittle and error-prone.

ONTAS abstracts away the lower-level hardware details from
network operators for expressing their anonymization policy. To
make it easy and straightforward, ONTAS allows an operator to
specify a custom anonymization policy in a simple (option:value)
formatted configuration file. To make ONTAS as flexible as possible,
we implement essential anonymization features noted by previous
works [20, 30] aswell as the best practices list by CAIDA [8]. ONTAS
currently does not support anonymizing layer 4 (TCP/UDP) fields.
We believe extending ONTAS’ policy interface to support these
fields is incremental and leave this for future work (Section 6).

Listing 1 shows the configuration file for an example anony-
mization policy. Here, network operators specify which packet
fields they want to anonymize. It shows the options in bold. First,
the network operator specifies whether to anonymize multicast
and broadcast packets. Special Ethernet addresses are reserved for
multicast or broadcast traffic, thus are not unique for each device or
user. This gives an option to operators to preserve such information
if desired. We support four different options for anonymizing the
Ethernet addresses. Each option anonymizes the first or the last
24 bits of the source or destination mac address. The first 24 bits
identify an Organizationally Unique Identifier (OUI) and the last 24
bits identify a unique host (interface). By separating the processing
of the MAC OUI and ID field, ONTAS enables anonymization of
each field, independently. The next set of options hash the source
and destination IP addresses in a prefix-preserving manner for the
given set of prefixes. To not preserve the prefix, an operator can
enter no for the preserve_prefix option. The last set of options
specify anonymizing the sender and target MAC and IP addresses
in ARP packets.

3.2 Compiling Anonymization Policies
3.2.1 Abstract Packet Processing Model. On PISA switches, a recon-
figurable parser constructs a packet header vector (PHV) for each
incoming packet. The PHV contains not only fixed-size standard
packet headers but also custom metadata for additional informa-
tion. A PISA switch has a fixed number of physical stages, each
processing the PHVs in sequence. The packet processing pipeline
is a sequence of custom match-action tables implemented using
match-action units (MAU) in each stage. Each MAU applies state-
less or stateful action over PHVs. Finally, a deparser serializes the
transformed PHV into a packet before sending it to an output port.

Online anonymization requires executing a directed acyclic graph
(DAG). Here, each node in the DAG performs the obfuscation
operation corresponding to an option in the configuration file.
This requirement aligns well with PISA’s packet processing model.
Anonymization-related operations for each option can be applied
using a set of match-action tables. Tables for different options can
be combined to execute an anonymization policy on packets. We
now describe how ONTAS leverages this observation to anonymize
network traffic directly in the data plane.

3.2.2 Compiling Options. Compiling anonymization policy to PISA
switches requires translating the DAG of obfuscation options into
an equivalent DAG of match-action tables. We will now focus on

how to map individual obfuscation options into an equivalent set
of match-action tables.

Multicast or broadcast. This option requires identifying whether
a packet is a broadcast or multicast, and tag them for anonymization
if set as yes. These operations can be executed using a single match-
action table in the data plane and adding a metadata skip. The
match-action table inspects the least-significant bit of the first octet
in the packet’s destination Ethernet address. If the bit is set, then the
packet is identified as multicast or broadcast traffic and, depending
on the anonymization policy, the skip field is set to zero or one.
No further obfuscations are applied on packets with skip field set
to one.

Ethernet addresses.As discussed earlier, we support four different
options for anonymizing the Ethernet address. To enable these
options, ONTAS parses the first and the last 24 bits of the two
Ethernet addresses separately. The parser then stores the parsed
values as metadata for further processing. Each of these options
is implemented using a single match-action table. If the option
is enabled, the match-action tables apply a hashing operation to
update the value of the corresponding metadata field.

IP addresses. ONTAS supports prefix-preserving anonymization
for source and destination IP addresses. This option first requires de-
termining the prefix length (l) and then obfuscating the remaining
(32 − l) bits of the IP address. To enable prefix-preserving anony-
mization, we divide packet processing into two logical stages. The
first stage uses a match-action table to determine the prefix length.
This table updates the prefix length metadata field of the packet and
then stores the prefix-part and the remaining part of the IP address
separately. This enables ONTAS to only hash bits in the remaining
part while leaving the prefix part intact. For example, for the pol-
icy in Listing 1, this table will match on prefixes 172.17.1.0/24
and 10.4.0.0/16 and update the prefix length as 24 and 16 for
the matching packets respectively. The second stage uses a match-
action table to apply the hash function over the source (or destina-
tion) IP address’ remainder (32− l) bits and store the updated value
in the packet’s metadata. Thus, anonymizing IP addresses in prefix
preserving manner requires a total of four match-action tables, two
for each source and destination IP address fields. Finally, ONTAS
recalculates and updates the IPv4 header checksum value using the
post-anonymization IP addresses.

ARP packets. ARP request and reply packets contain sender and
target MAC and IP addresses in the ARP header, which is separate
from the MAC and IP address in the Ethernet and IP frame itself.
In ONTAS, ARP packets are identified at the parser by inspecting
the EtherType 0x0806, which is a two-octet field in an Ethernet
frame. ONTAS then parses ARP packets and locates the sender and
target MAC and IP addresses in the ARP header that should be
hashed. Here, instead of having a separate Ethernet and IP address
anonymization policy for ARP packets, ONTAS follows the policy
that the operator already specified for multicast, broadcast, Ethernet
address, and IP address for the previous stages. For example, if the
operator wrote a policy to preserve the multicast broadcast address,
preserve the MAC OUI, and preserve IP prefix, the same policy will
be applied to the sender and target Ethernet and IP addresses in the

NetAI ’19, August 23, 2019, Beijing, China Hyojoon Kim and Arpit Gupta

Anonymization Policy

Policy Interface

Switch

Packets In Packets Out

Collector

Compiler

Data Plane Driver

P4 Program Anon. Packets

Figure 1: ONTAS architecture.

ARP header. Of course, an operator can also opt out of hashing the
sender and target addresses in ARP packets altogether by putting no
for the respective option in Listing 1. ONTAS will then not install
flow table entries for this stage.

3.2.3 Compiling Policy. We now focus on compiling the anony-
mization policy by composing individual obfuscation operations
into a DAG of match-action tables such that it reports anony-
mized packet streams to the collector without affecting the original
packet’s forwarding behavior.

Composing packet-processing pipeline. In addition tomapping
individual options to match-action tables, ONTAS needs to synthe-
size the resulting data-plane mappings in a way that respects the
ordering between various options. For example, the match-action
tables for the multicast and broadcast option should be applied
before the IP and Ethernet options. For the set of options that do
not require strict ordering between them, ONTAS synthesizes a
pipeline of match-action tables in the data plane without enforcing
any particular order.

Preserving packet’s forwarding behavior. ONTAS preserves
packet forwarding decisions by hashing only the policy-specific
metadata fields, rather than the packet contents thatmight affect for-
warding decisions (e.g., IP address, Ethernet address, etc.). For each
option, it only updates the value in the metadata fields—ensuring
that the original packet field values are not affected by anony-
mization operations. After applying all the anonymization match-
action tables for various options in the policy, ONTAS applies a
match-action table which clones the original packet and updates
various packet fields with their anonymized version before sending
it to a output port, i.e., SPAN port, towards a collector. Updating the
packet fields only for the cloned copy ensures that online anony-
mization does not affect the original packet’s forwarding behavior.

3.3 Prototype Implementation
ONTAS has three main components: (1) policy interface, (2) com-
piler, and (2) data-plane driver (see Figure 1). The policy interface

Trace files:
 - Small-flow
 - Big-flow
 - Campus-flow

Receiver server
w/ tcpdump

Campus traffic

Programmable
Data plane

ONTAS P4 program

Sender server
w/ tcpreplay

10
Gbits/s

10
Gbits/s

10
Gbits/s

Trace files:
 - Small-flow
 - Big-flow
 - Campus-flow

Tools:
 - scrub-tcpdump
 - tcpmkpub
 - pktanon

x86 server for
offline anonymization

Figure 2: Testbed for ONTAS online anonymization.

Traces Size Packets Throughput Duration
Small-flow [25] 9.4 MB 14,261 247 Kbits/s 5 mins
Big-flow [25] 368 MB 791,615 9,477 Kbits/s 5 mins
Campus-flow 23 GB 25,864,345 3,169 Mbits/s 1 min

Table 1: Packet traces used for evaluation.

lets network operators specify their anonymization policy as a
configuration file. Listing 1 shows an example of how network
operators can express anonymization policies using ONTAS.

The compiler, implemented in Python, takes this configuration
file as input to generate (1) a P4 program for configuring match-
action tables in the data plane, and (2) a set of commands to con-
figure match-action rules in the data plane. To generate the P4
program, the compiler first analyzes the configuration file to iden-
tify the required set of packet and metadata fields. It uses this
information to configure the packet parser for the PISA switch. It
then generates the necessary P4 program to translate individual
options into a set of match-action tables. Finally, it takes the partial
ordering between different options to synthesize the final packet
processing pipeline. As an example, realizing an anonymization
policy expressed using ten options generated 833 lines of P4 code.

The data-plane driver, implemented in Python, facilitates com-
munication between ONTAS and data-plane targets. The ONTAS
currently has drivers for two PISA switches: the BMV2 P4 software
switch [28], which is the standard behavioral model for evaluating
P4 code; and the Barefoot Wedge 100BF-32X (Tofino) [11], which is
a 6.4 Tbits/s hardware switch. The data-plane driver currently uses
Apache Thrift RPC [4] to remotely interact with the PISA switch.

4 EVALUATION
In this section, we demonstrate the scalability of ONTAS com-
pared to state-of-the-art anonymization tools. More concretely, we
show that ONTAS eliminates the post-processing time spent on
anonymizing packet traces, which can take up to 15 minutes for
one-minute campus traffic, and reduces the required disk space
by half. We also demonstrate that online anonymization of packet
fields in the data plane does not come at the cost of correctness.

ONTAS: Flexible and Scalable Online Network Traffic Anonymization System NetAI ’19, August 23, 2019, Beijing, China

4.1 Setup
Packet traces. To demonstrate the performance of ONTAS under
different workloads, we use three different packet traces for evalu-
ation: Small-flow [25], Big-flow [25], and Campus-flow. Table 1
shows various attributes, such as the number of packets, duration,
etc., for each trace. The Small-flow trace is synthetically generated
by combining packet traces of multiple applications utilizing differ-
ent protocols at a relatively low data rate. The Big-flow trace is
collected from a busy private network’s access point to the Internet.
Compared to Small-flow, Big-flow has a higher data rate and a
smaller average packet size. The Campus-flow trace is collected
between the Internet and Princeton University.

Comparison to existing tools. We compare ONTAS’ performa-
nce with three state-of-the-art anonymization tools: tcpmkpub [20],
scrub-tcpdump [32], and pktanon [13]. To quantify performance
difference, we only selected tools that offer similar (or better) flexi-
bility as ONTAS. We provide a further description of each tool and
the flexibility they offer for packet anonymization in Section 5.

Testbed. Figure 2 shows our testbed setup. We use Edge-core
Wedge 100BF-32X with Barefoot’s Tofino chip [11] as the data-
plane target . This switch can handle up to 100 Gbits/s traffic over
32 physical ports. We use tcpreplay [25] at the sender server to
replay packet traces towards the data plane. We also fed a real-
time packet stream from campus network to the Tofino switch to
simulate a real use-case scenario. The switch mirrors the original
packets and sends the anonymized version of them to the span port
connected to the collector running tcpdump. To avoid packet drops,
we use NIC tuning techniques [12] and PFRING [22] at the collec-
tor. We use a well-provisioned server (2 x Intel Xeon Silver 4114
with 2.2GHz CPU, 40 cores, 96 GB memory, and 240 GB storage) to
quantify the performance of offline anonymization tools.

4.2 Quantifying Overheads
We will now compare the packet processing and storage overheads
for ONTAS with the other anonymization tools.

Packet-processing overhead.ONTAS anonymizes packet stream
at line rate (O (ns)) in the data plane, i.e., it entails 0% packet pro-
cessing overhead. In contrast, the state-of-the-art tools operate over
collected packet traces in an offline manner. Figure 3 shows the
time taken by these tools for completing anonymization of Eth-
ernet address, IP address, and ARP header field against the three
packet traces. We also quantify the packet processing overhead for
tcpmkpub in the speculative mode which trades accuracy for faster
packet processing. We report the elapsed time as average over ten
runs for each trace-tool pair.

As expected, the packet processing time increases with the num-
ber of packets 1. The tcpmkpub tool running in speculative mode
(tcpmkpub_s) shows slightly better performance. Among the offline
tools, scrub-tcpdump is the fastest as it skips the Ethernet layer
and only anonymizes the IP and TCP headers. For Small-flow and
Big-flow traces, all tools take less 20 seconds (7% overhead) to com-
plete. For the Campus-flow trace, however, scrub-tcpdump takes

1tcpmkpub tool failed to anonymize all packets of the Big-flow trace. We are currently
investigating the root cause of this error.

Small-flow Big-flow Campus-flow
Packet Trace

10−1

100

101

102

103

El
ap

se
d

Ti
m

e
(se

co
nd

s)

scrub-tcpdump pktanon tcpmkpub tcpmkpub_s

Figure 3: Elapsed time (in log-scale) when anonymiz-
ing packet traces using existing tools. tcpmkpub_s denotes
tcpmkpub tool running in the speculative mode.

around two minutes (200% overhead) while others take around 15
minutes (1500% overhead) to complete the anonymization.

Storage overhead.The storage overhead for offline anonymization
tools is double than that of online ones. They require additional
storage to store raw packets before anonymization. As we discussed
earlier, existing online anonymizations do not scale for high-speed
networks. Thus, network operators are currently forced to incur this
additional storage overhead. For example, an one-minute packet
trace, collected from campus network operating at a modest data
rate (3 Gbps), requires 23 GB storage space. Training learning al-
gorithms for the self-driving networks will need capturing packet
traces for multiple hours, which translates to TBs of storage over-
head. Thus, reducing the disk space requirement by half, by using
ONTAS, is a significant saving as the rate and size of a packet trace
increases.

4.3 Validating Correctness
Line-rate anonymization of a packet stream in the data plane does
not sacrifice correctness. To validate that ONTAS correctly applies
different anonymization policies, we compared the packet traces
before and after anonymization for different policies. For brevity,
we only show the results using the Small-flow trace.

To compare the two packet traces, we compare packets from two
files in chronological order. For each packet pair, we detect if they
differ and if so, for which field (e.g., IP address, MAC address, etc.).
Note that the Small-flow trace has 14,261 packets in total. For a
given policy, we report the total number of pairwise distinct values
for each packet field. We present the results of this analysis for four
different anonymization policies.
Policy-1. This policy should only anonymize source MAC ad-
dresses but preserve the OUI information. Table 2 shows that only
the source MAC address differs between the two traces. Our script
also confirms that ONTAS preserves the OUIs for this policy.
Policy-2. This policy should anonymize both source and desti-
nation MAC addresses, but not broadcast and multicast packets.
Table 2 shows that out of total 14, 261 packets, 14, 202 have distinct
MAC address between the two traces. The difference of 59 packets
is attributable to multicast and broadcast packets.
Policy-3. This policy augments policy-2 by additionally anonymiz-
ing all source and destination IP addresses. It does not anonymize
these fields in a prefix-preserving manner. Table 2 shows that out

NetAI ’19, August 23, 2019, Beijing, China Hyojoon Kim and Arpit Gupta

Src Mac Dst Mac Src IP Dst IP
Policy-1 14,261 0 0 0
Policy-2 14,261 14,202 0 0
Policy-3 14,261 14,202 14,243 14,233
Policy-4 14,261 14,202 686 860

Table 2: Validating correctness. For a given policy, it shows the
total number of pairwise distinct values for each packet field.

of total 14, 243 IPv4 packets, we observe 14, 243 distinct source and
14, 233 distinct destination IP addresses between the two traces. The
difference of 10 packets is attributable to IPv4 broadcast packets.
Policy-4. The goal of this policy is similar to policy-3, except
that it anonymizes IP addresses belonging to prefix 10.0.0.0/16
in a prefix-preserving manner. The original trace has 686 and 860
distinct source and destination IP addresses for prefix 10.0.0.0/16.
Thus, the result in Table 2 validates that ONTAS anonymized the
data in a prefix-preserving manner correctly.

5 RELATEDWORK

Offline anonymization. Crypto-pan [30] is a well-known tool
for anonymizing IP addresses in a prefix-preserving manner and
is widely-used by various institutions including CAIDA [9]. TC-
PAnon [24] can obfuscate fields in the application layer such as
HTTP, SMTP, POP3, IMAP4, and FTP. However, the tool can only
replace themwith a constant value. Tcpmkpub [20] supports anony-
mization of IP (prefix-preserve), Ethernet addresses (OUI-preserve),
and various fields in ARP, ICMP, UDP, and TCP. ONTAS sup-
ports most of the Tcpmkpub features. However, unlike these offline
tools that only operate over stored raw packet trace files, ONTAS
anonymizes packets in the data plane itself at line rate.

Online anonymization. Tcpurify [26] is a packet capture tool
similar to tcpdump, but only anonymizes the IP address with ran-
dom permutation and truncates the payload before writing to disk.
Anonyflow [18] is an in-network IP address anonymization system
that uses OpenFlow switches [17]. Anonyflow’s goal is a bit differ-
ent; it hides users’ identity while they use the network, similar to
what onion routing [23] (e.g., Tor) achieves. Scrub-tcpdump [32]
can do random permutation on IP addresses, TCP/UDP ports, TCP
sequence number, TCP flags, TTL, packet length, and so on. It can
run in both offline and online mode. The tool, however, cannot
anonymize MAC addresses. PktAnon [13] is an offline and online
anonymization tool that can obfuscate ARP, Ethernet, ICMP, IPv4,
IPv6, TCP, and UDP fields. It is also possible to select different
hashing algorithms for each field. The tool is rich in anonymization
features and can run in online mode. However, unlike ONTAS, the
processing performance is around 310Mbit/s for just overwriting
fields with a constant value, and simple randomization degrades it
further down to 57 Mbit/s.

6 CONCLUSION AND FUTUREWORK
In this paper, we present ONTAS, an online anonymization solution
that can obfuscate major personally identifiable information (PII),

such as Ethernet and IP addresses, from a packet stream. We lever-
age the recent development of programmable data planes, such as
Barefoot Tofino [27], for anonymizing a packet stream at line rate.
Streaming analytics systems are the building blocks for self-driving
networks [2], but their inability to process network traffic in a
privacy-preserving manner has been a roadblock for their adoption.
ONTAS’s ability to anonymize packet streams at line rate opens
up the vast opportunities for building streaming analytics systems
without compromising privacy, which in turn will catalyze research
in the area of self-driving networks.

ONTAS prototype lacks some features, such as anonymizing
TCP/UDP field values. This is because our first and foremost focus
was on PII fields, such as IP and MAC addresses. That said, as
TCP/UDP fields can be used to identify certain device types or
applications used in the network [20], we plan to extend ONTAS to
support anonymizing them. As ONTAS’ resource usage footprint
is minimal, we believe such an extension will be trivial.

Currently, ONTAS does not support concurrently applying mul-
tiple privacy policies. It only applies one privacy policy at a time.
For example, it is not possible to express, “apply policy 1 for traffic
with the source IP address in the 192.168.1.2/24 subnet, and policy 2
for the rest." Given the flexibility of PISA switches, we believe ex-
tending ONTAS to concurrently apply multiple privacy policies and
express predicates for each policy is trivial. We leave this extension
as one of our future works.

Currently, ONTAS prototype uses a built-in, outdated hashing
algorithm: Cyclic Redundancy Check 32-bit (CRC-32) [16, 21]. CRC-
32 is meant to calculate checksums and is not a secure cryptographic
hashing algorithm. The P4 language supports adding a salt to the
algorithm, making it harder to reverse the hashed values. However,
support for a better hashing algorithm in PISA-based switch is
much more desirable. We believe this limitation is not fundamen-
tal. Recent work demonstrates implementing more secure hashing
algorithms using existing resources [1]. The latest version of the
P4 language [7] supports usage of external cryptographic hashing
algorithms. In the future, we plan to extend ONTAS to use more
secure hashing algorithms for anonymization.

We believe integrating ONTAS with streaming analytics system
such as Sonata [14] is a promising future direction. Such integration
will enable flexible network monitoring without compromising the
privacy of network users at scale. This integration will entail (1) pro-
viding a unified programming abstraction to simplify expressing
and composing anonymization policies with monitoring queries,
and (2) designing an efficient compilation algorithm to make the
best use of limited network resources.

REFERENCES
[1] AES encryption P4 implementation. https://github.com/chenxiaoqino/p4-

projects/tree/master/AES.p4app.
[2] Workshop on Self-Driving Networks-Report. https://nsf-srn-2018.cs.princeton.

edu/nsf-srn-report.pdf.
[3] The P4 Language Specification Version 1.0.5. https://p4.org/p4-spec/p4-14/v1.0.

5/tex/p4.pdf, November 2018.
[4] Apache Thrift API. https://thrift.apache.org/.
[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. ACM SIGCOMM,
2013.

[6] Gordon Brebner. P4 for an FPGA Target. In P4 Workshop, 2015. https://schd.ws/
hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf.

https://github.com/chenxiaoqino/p4-projects/tree/master/AES.p4app
https://github.com/chenxiaoqino/p4-projects/tree/master/AES.p4app
https://nsf-srn-2018.cs.princeton.edu/nsf-srn-report.pdf
https://nsf-srn-2018.cs.princeton.edu/nsf-srn-report.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://thrift.apache.org/
https://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
https://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf

ONTAS: Flexible and Scalable Online Network Traffic Anonymization System NetAI ’19, August 23, 2019, Beijing, China

[7] Mihai Budiu and Chris Dodd. The p416 programming language. Operating
Systems Review, 51(1):5–14, 2017.

[8] CAIDA: Summary of Anonymization Best Practice Techniques. https://www.
caida.org/projects/predict/anonymization/.

[9] CAIDA: Data Collection, Curation and Sharing. https://www.caida.org/data/.
[10] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Machine learning ddos detec-

tion for consumer internet of things devices. In 2018 IEEE Security and Privacy
Workshops (SPW), pages 29–35. IEEE, 2018.

[11] Edge-core Wedge 100BF-32X [Online]. https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&id=335, 2019.

[12] ESnet Host and NIC tuning. https://fasterdata.es.net/host-tuning/.
[13] Th Gamer, Chr Mayer, and Marcus Schöller. Pktanon–a generic framework for

profile-based traffic anonymization. PIK-Praxis der Informationsverarbeitung und
Kommunikation, 31(2):76–81, 2008.

[14] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. Sonata: Query-driven streaming network telemetry. In Pro-
ceedings of the ACM SIGCOMM, pages 357–371. ACM, 2018.

[15] Martin Izzard. The Programmable Switch Chip Consigns Legacy Fixed-Function
Chips to the History Books. https://goo.gl/JKWnQc, September 2016.

[16] Philip Koopman. 32-bit cyclic redundancy codes for internet applications. In
Proceedings International Conference on Dependable Systems and Networks, pages
459–468. IEEE, 2002.

[17] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, 2008.

[18] Marc Mendonca, Srini Seetharaman, and Katia Obraczka. A flexible in-network ip
anonymization service. In 2012 IEEE international conference on communications
(ICC), pages 6651–6656. IEEE, 2012.

[19] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim.
Language-directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM SIGCOMM, pages 85–98. ACM, 2017.

[20] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The devil and packet
trace anonymization. ACM SIGCOMM CCR, 36(1):29–38, 2006.

[21] William Wesley Peterson and Daniel T Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49(1):228–235, 1961.

[22] PFRING: High-speed packet capture, filtering and analysis. https://www.ntop.
org/products/packet-capture/pf_ring/.

[23] Michael G Reed, Paul F Syverson, and David M Goldschlag. Anonymous con-
nections and onion routing. IEEE Journal on Selected areas in Communications,
16(4):482–494, 1998.

[24] tcpanon [Online]. http://netweb.ing.unibs.it/~ntw/tools/tcpanon/, 2009.
[25] Tcpreplay sample captures. http://tcpreplay.appneta.com/wiki/captures.html.
[26] TCPurify [Online]. http://irg.cs.ohiou.edu/~eblanton/tcpurify/, 2016.
[27] Barefoot’s Tofino. https://www.barefootnetworks.com/technology/.
[28] P4 software switch. https://github.com/p4lang/behavioral-model.
[29] Bapi Vinnakota. P4 with the Netronome Server Networking Platform. https:

//goo.gl/PKQtC7, May 2016.
[30] Jun Xu, Jinliang Fan, Mostafa H Ammar, and Sue B Moon. Prefix-preserving

ip address anonymization: Measurement-based security evaluation and a new
cryptography-based scheme. In IEEE International Conference on Network Proto-
cols, 2002. Proceedings., pages 280–289. IEEE, 2002.

[31] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,
and Lihua Yuan. dshark: a general, easy to program and scalable framework for
analyzing in-network packet traces. In Proceedings of the 16th USENIX Confer-
ence on Networked Systems Design and Implementation, pages 207–220. USENIX
Association, 2019.

[32] William Yurcik, Clay Woolam, Greg Hellings, Latifur Khan, and Bhavani Thu-
raisingham. Scrub-tcpdump: A multi-level packet anonymizer demonstrating
privacy/analysis tradeoffs. In 2007 Third International Conference on Security and
Privacy in Communications Networks and the Workshops-SecureComm 2007, pages
49–56. IEEE, 2007.

[33] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In ACM SIGCOMM 2015, volume 45, pages 479–491.

https://www.caida.org/projects/predict/anonymization/
https://www.caida.org/projects/predict/anonymization/
https://www.caida.org/data/
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://fasterdata.es.net/host-tuning/
https://goo.gl/JKWnQc
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
http://netweb.ing.unibs.it/~ntw/tools/tcpanon/
http://tcpreplay.appneta.com/wiki/captures.html
http://irg.cs.ohiou.edu/~eblanton/tcpurify/
https://www.barefootnetworks.com/technology/
https://github.com/p4lang/behavioral-model
https://goo.gl/PKQtC7
https://goo.gl/PKQtC7

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivating Use-Case
	2.2 Current Workflow
	2.3 Proposed Workflow

	3 ONTAS' Design and Implementation
	3.1 Expressing anonymization policies
	3.2 Compiling Anonymization Policies
	3.3 Prototype Implementation

	4 Evaluation
	4.1 Setup
	4.2 Quantifying Overheads
	4.3 Validating Correctness

	5 Related Work
	6 Conclusion and Future Work
	References

