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Abstract
Network devices such as routers and switches forward traffic
based on entries in their local forwarding tables. Although
these forwarding tables conventionally make decisions based
on a packet header field such as a destination address, tag-
ging flows with sets or sequences of attributes and making
forwarding decisions based on these attributes can enable
richer network policies. For example, devices at the edge of
a network could add a tag to each packet that encodes a set
of egress locations, a set of host permissions, or a sequence
of middleboxes to traverse; simpler devices in the core of the
network could then forward packets based on this tag.

Unfortunately, naive construction of these tags can create
forwarding tables that grow quadratically with the number
of elements in the set or sequence—prohibitive for commod-
ity network devices. In this paper, we present PathSets, a
compression algorithm that makes such encodings practical.
The algorithm encodes sets or sequences (e.g., middlebox ser-
vice chains, lists of next-hop network devices) in a compact
tag that fits in a small packet-header field. Our evaluation
shows that PathSets can encode attribute sets and sequences
for large networks using tag widths competitive with existing
approaches and that the number of forwarding rules grows
linearly with the number of attributes encoded.

CCS Concepts:
Networks→Network management; Programmable networks;
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1 Introduction
Forwarding network traffic increasingly involves more so-
phisticated forwarding operations than simply traversing a
shortest path to a single destination. The values in a packet
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Figure 1: An illustration of the scaling issues of flat tagging. There
are three switches n1,n2,n3 and four middleboxes A,B,C,D. Packets
enter the network on the left and are classified as needing to traverse
one of four service chains, and are tagged as such. If flat matching
is used, no aggregate rules are possible on the four tags.

header may cause the packet to traverse a sequence of mid-
dleboxes, be subject to various access-control policies, or
be forwarded to one of several distinct destinations. These
types of flexible forwarding decisions can require network
switches to have many forwarding table rules, each of which
may match on multiple packet header fields, thus causing
switches to need large tables to handle all possible cases.

Fortunately, although the number of possible combinations
of forwarding decisions could in theory result in an inordi-
nate number of flow table entries, in practice many distinct
traffic flows may be subject to the same forwarding actions,
or forwarding equivalence class (FEC). Along an end-to-end
path, a switch could mark all packets that belong to the same
FEC with a tag that subsequent switches could use to make
forwarding decisions. Switches further downstream on the
path could then make forwarding decisions based on this tag,
as opposed to a complex combination of header fields, po-
tentially reducing switch forwarding table size if the number
of FECs is smaller than the number of unique header field
combinations.

The simplest way to mark a FEC is with a flat tag.
MPLS [22] and VLANs [1] use flat tags, for example, and
newer SDN-based architectures such as FlowTags [6] and our
original SDX architecture [9] also make forwarding decisions
based on flat tags. Flat tags work well in many scenarios
because hardware switches can perform exact matches on
these fields (e.g., using a content-addressable memory); yet,
forwarding tables that match on flat tags do not scale, because
the number of forwarding rules that the switch must store



grows linearly with the number of FECs which traverse that
switch, and small changes to forwarding decisions can trigger
recomputation of a large number of FECs (and tags).

In practice, a FEC constitutes a collection of forwarding
decisions (e.g., a sequence of middleboxes), but two FECs that
differ only slightly might have arbitrarily different flat tags,
making it difficult to aggregate forwarding table rules. For
example, Figure 1 shows an example where a FEC constitutes
a sequence of middleboxes. Two FECs may differ in only
a single middlebox yet matching on flat tags requires the
switch to maintain an entry for each unique sequence. In this
example, switch n1 uses separate rules to forward tags 00 and
01 to A, even though the two sequences are forwarded equally
by n1. In contrast, wildcard matching in the switch, coupled
with a careful assignment of tag bits, can enable the smaller
rule tables shown in the bottom of the figure.

A forwarding mechanism that assigns tags that reflect the
commonality between sequences or sets between different
forwarding equivalence classes could make it possible to ag-
gregate rule-table entries in switches. Fortunately, commodity
switches that support OpenFlow 1.3 [17] can now perform
wildcard matching on arbitrary packet-header fields; emerg-
ing protocol-independent switches supported by languages
such as P4 [5] also support more flexible matching based on
wildcards, as well as the ability to create new header fields
that can serve as tags. These new matching capabilities make
it possible to redesign FEC tagging architectures to achieve
more efficient encodings.

In this paper, we present PathSets, an encoding suite that
takes advantage of these emerging capabilities. PathSets can
encode similar FECs with tags that share common bits, as op-
posed to simply assigning each FEC a distinct flat tag. These
attribute-carrying tags, where attributes can be forwarding
decisions or flow properties, are more compact and reduce
forwarding table size compared to flat tags. We present effi-
cient algorithms for encoding sets and sequences of attributes
in tags and demonstrate how these encodings can reduce
switch rule-table size for a variety of applications, includ-
ing an SDN-based Internet Exchange Point and a service
chaining application. We have publicly released the source
code for the PathSets library that implements this encoding
algorithm [18].

The rest of this paper proceeds as follows. Section 2
presents three motivating applications. Section 3 presents
the basic ideas of PathSets. In Section 4, we extend PathSets
to support sequences of attributes; Section 5 improves the
space efficiency of the encoding using variable-length prefix
codes. In Section 6, we evaluate the encodings over both real
and synthetic data sets for two uses cases. We discuss related
work in Section 7 and conclude in Section 8.

2 Motivating Applications
There are many applications where encoding and reading
attributes is of interest, and in particular we will look at three
of them, which are outlined in Table 1.
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Figure 2: A Software-Defined IXP (SDX) [8].

2.1 Software-Defined IXPs

At an Internet Exchange Point (IXP), multiple autonomous
systems (ASes) connect at a single logical interconnect to
exchange traffic and interdomain routing information. At
an IXP with support for SDN policies, the connected ASes
may wish to enact fine-grained policies based on attributes
beyond a packet’s destination address. Suppose that AS1
wants to send as much of its HTTP traffic to AS2 as possible.
AS2 may not have routes to every HTTP destination, so it is
incorrect for this AS to receive all HTTP traffic, regardless
of destination. If the routing policies do not account for the
BGP routes advertised by each AS, traffic may be forwarded
to networks that cannot handle it.

The initial SDX system used flat tags to encode these dis-
tinct forwarding decisions [9], as shown in Figure 2. Border
routers connect to the IXP fabric and initiate BGP sessions
with the controller. Each router announces BGP routes for IP
prefixes to the controller, and the controller aggregates these,
computes FECs for each IP prefix, and announces a Virtual
Next-Hop (VNH) IP address for IXP participants to reach
that prefix. When a participant attempts to send traffic to a
VNH IP, it first sends an ARP request for the MAC of that
VNH to the IXP fabric. The controller intercepts the ARP
request, and responds with a tag as the destination MAC. The
participant then forwards packets to the IXP fabric with the
appropriate tag in the destination MAC address field. The
tagging technique works without requiring any modifications
to legacy BGP-speaking border routers. This approach works
with unmodified BGP-speaking border routers, simply by
changing the destination MAC address associated with the
border routers’ own forwarding rules.

Unfortunately, the flat tagging approach introduces scal-
ability challenges at the IXP by creating large rule tables
and frequent changes in the installed rules when BGP routes
change. We remedied these issues in the follow-up work
on iSDX [8]. iSDX used a precursor to PathSets for sets of
attributes, taking advantage of OpenFlow 1.3’s support for
wildcard matching on destination MAC addresses.



Application Existing Solution Attributes Tag Field Tags Conveyed By
SDN-Enabled IXP (SDX) iSDX [8] Advertising peers Destination MAC ARP
Service chaining FlowTags [6] Middleboxes IP Fragment Field First Middlebox
Policy enforcement Alpaca [14] Host permissions IP Source Address DHCP

Table 1: Example applications and systems which have solved them by some form of tagging.

2.2 Service Chaining
Network operators often want traffic to traverse a sequence
of middleboxes, such as load balancers or firewalls. Different
flows may be subject to different chains of middleboxes, and
it can be a challenge to design the network in such a way
that every flow traverses only the needed set of middleboxes,
and only in the correct order. Additionally, middleboxes may
modify packet headers, obscuring the original source of the
flow and making it unclear which middlebox chain should be
followed.

FlowTags [6] uses tags to encode how each middlebox
should process each packet. To compress policy informa-
tion into small, repurposed header fields, FlowTags uses flat
tags, where each tag maps to a middlebox sequence and the
packet’s origin host. Whenever a middlebox sees a new flow,
it communicates with a central controller to establish a new
tag, which introduces delay and overhead. The FlowTags
paper does not evaluate the number of rule-table entries that
such a flat tagging scheme might require. Because many
flows may traverse similar sequences of middleboxes, we
expect that service chaining may benefit from PathSets, the
attribute-based tagging approach we present in this paper.

2.3 Host Attributes for Network Policies
In some situations, network policies depend on the sending
or receiving host. For example, users in certain departments
within an organization may be subject to different quality-of-
service or access-control policies. If department information
is not attached to packets directly, it must be inferred from
some combination of packet-header fields, which can result
in unnecessarily complex rule tables.

Alpaca [14] encodes policy information in the low-order
bits of host IP addresses and assigns these addresses to the
hosts via DHCP. Although not explicitly a tag, these IP ad-
dresses can be thought of as a tag appended to the network’s IP
prefix. Alpaca takes advantage of prefix and wildcard match-
ing when constructing tags to overcome the memory scala-
bility challenges of flat tagging, yet each host must receive a
different tag, because each IP must be unique. FEC-based tag-
ging could provide significant opportunities for aggregation
in this setting.

3 Encoding Attribute Sets
In this section, we describe the intuition behind attribute-
carrying tags and the metrics by which they can be evaluated.
We then present a concise encoding structure that achieves

a fair tradeoff between the metrics, and we also present an
algorithm for computing such an encoding.

The simplest way to encode a set of attributes is a bitmask
with one bit for each attribute, at the expense of large tags. In
this section, we present a concise encoding that uses multiple
smaller bitmasks on different subsets of attributes, at the
expense of slightly larger rule tables. We also present an
algorithm for computing the concise encoding.

3.1 Strawman: Bitmask Tags
To illustrate the use of attribute-carrying tags, we begin with
a strawman encoding scheme that takes full advantage of
forwarding tables capable of wildcard matching. The method
proceeds as follows: If there are N possible attributes that
may be encoded in any tag, construct tags of length N: the ith

bit corresponds to the ith attribute. When a packet is classified
and the tag is attached, the ith bit is set to 1 if the ith attribute
is present for that flow, and 0 if it is not. As a result, testing
for the presence of attribute x, requires only checking that x’s
bit is 1 in the tag, rather than exact matching on every tag that
contains x.

This approach is a strawman because the tag is of width
N, and N can be quite large. This can be viewed as an ex-
treme opposite of flat tagging. Flat tagging consumes too
much switch memory as the number of FECs grows, but only
needed a tag width logarithmic in the number of FECs. In
summary, we have traded an extreme in memory usage for an
extreme in tag width. An ideal design would strike the right
balance between these two extremes. In general, any tagging
scheme must simultaneously consider three different metrics:

1. Tag Width: Tags should not be too wide, to avoid wast-
ing packet-header space. Tags should be able to either be
inserted into small repurposed header fields or contribute
little size to custom packet headers.

2. Switch Memory: The amount of memory required to
decode attributes from any tag should be able to easily
fit in modern commodity switches rule tables.

3. Churn: Normal network events should not cause too
many rule additions and removals in switch tables.

3.2 Multiple Smaller Subsets of Attributes
In the strawman solution of a simple bitmask, the tag has one
bit for each boolean attribute. For example, Figure 3(a) shows
multiple forwarding equivalence classes (S1-S5) that each
correspond to a different subset of five attributes (A-E). The
network policy determines which traffic has which attributes,
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Figure 3: Two different ways to recover attribute sets. In (a), the
sets are recovered by masking over [A,B,C,D,E]. In (b), the sets are
recovered by masking over either superset [A,B,C] or set [C,D,E].
An X denotes that the set cannot be fully recovered by masking over
the given set. (c) shows how the matrix in (b) can be mapped to tags.

and which combinations of attributes can hold together. For
example, all packets with attributes A and B true, and C,
D, and E false, belong to forwarding equivalence class S1,
and can be encoded with the bitmask "11000". Certain
combinations of attributes may not occur for any traffic (e.g.,
attributes B and D are never true together, though both can
be false as in S3). A single rule can test for any combination
of attributes (e.g., comparing a tag to "1*1**’’" identifies
whether attributes A and C hold, without caring whether B, D,
or E hold). However, when the number of attributes is large,
a bitmask tag becomes quite large.

The PathSets encoding identifies groups of attributes that
commonly appear together, and creates one shorter bitmask
for each such group. In Figure 3, attributes A, B, and C
commonly appear together, as do C, D, and E, leading to
two groups. The right side of Figure 3(b) shows how each
forwarding equivalence class can be encoded as a bitmask on
[A,B,C], [C,D,E], or both. To distinguish the two groups, the
tag can include a one-bit group identifier (e.g., a 0 for [A,B,C]
and a 1 for [C,D,E]), as shown in Figure 3(c). The result is
a four-bit identifier where, for example, S4 with attributes C
and D is encoded as "1110".

The forwarding rules can match on attributes by consider-
ing both the group identifier and the associated bitmask. For
example, a switch could test for attribute D by matching on
(i) group 1 and (ii) the D bit in group 1’s bitmask. Thus, the
rule would have a match of "1*1*". Naturally, however,
some attributes appear in multiple groups, such as attribute C
in the example. The switch can use two rules to test for C: (i)
"0**1"’ for group 0 and (ii) "11**"’ for group 1. Thus,
PathSets slightly increases the forwarding table size over the
simple bitmask approach (by only one rule in this example).

3.3 Computing Concise Encodings of Sets
The tag and rule-table sizes depend on the nature of the en-
coding. A natural starting point is to have one group for each
attribute equivalence class (e.g., [A,B], [A,B,C], [C], [C,D],
and [C,D,E]), at the cost of a large group identifier. A simple
first step is to remove any group with attributes that are a
subset of another group (e.g., removing [A,B] and [C] that
are subsets of [A,B,C], and removing [C,D] that is a subset
of [C,D,E]). In the simple example, this step results in the
two groups ([A,B,C] and [C,D,E]). In examples with more
FECs, this step could still create too many groups. Instead,
the algorithm uses the set of groups (S) produced by the sub-
set removal as an input to an algorithm for optimizing the
selection of groups.

Algorithm 1: Greedy Memory Minimization
Input: Groups S, Attribute Test Counts {qk}, Tag Width

Limit, Wmax, Tag Width Calculator W ().
Output: Groups S with minimal rule-table size.
begin

while |S|> 1 do
bestPair← (None,None)
bestGain← 0
for (si,s j) ∈ S×S do

Stemp← (S−{si,s j})∪{si∪ s j}
if W (Stemp)≤Wmax then

gain← ∑k∈si∩s j qk

if gain > bestGain then
bestGain← gain
bestPair← (si,s j)

if bestPair = (None,None) then
break

(sa,sb)← bestPair
S← (S−{sa,sb})∪{sa∪ sb}

return S

The encoding algorithm iteratively merges pairs of groups
to minimize the rule-table size while staying within some
limit Wmax on the tag size. Suppose a switch has qa clauses
that test whether attribute a is true, and the attribute appears in
ka groups. Then, the switch would require qa · ka rules to test



for that attribute. Merging two groups can reduce the number
of rules but may increase the tag size depending on the num-
ber of attributes the two groups have in common. Suppose
S = {s1,s2, . . . ,sN}, where group si is a subset of attributes.
Replacing any pair of groups {si,s j} with their union si∪ s j
would decrease the number of rules by ∑a∈si∩s j qa because
every attribute a in the intersection of the two groups would
appear in one fewer group after the merge.

We can extend this observation to a greedy algorithm that
repeatedly merges the pair of groups that maximally decreases
the number of rules without exceeding the Wmax tag size. Al-
gorithm 1 shows the pseudocode. The algorithm takes as input
a set of attribute groups S= {s1,s2, . . . ,sN}, the attribute test
counts {qk}, a maximum tag width Wmax, and a tag-width
calculator W (). The tag-width calculator determines the num-
ber of bits in the tag, given the current set of groups S. We
present closed-form equations for the tag-width calculator
later in Section 5.

The algorithm runs for at most N = |S| iterations, and for
each iteration considers N2 pairs of groups, causing the inner
loop to execute O(N3) times.

The inner loop performs two significant operations: a call
to the tag width calculator W (), and a merging of two attribute
groups. If the former takes time TW and the latter takes time
TM , the final running time is O(TW TMN3). In our final im-
plementation, TW is constant and TM is linear in the average
group size.

It is straightforward to extend this algorithm to handle set
updates. If, after groups have been computed, any attribute
set decreases in size, the decreased set is clearly still a subset
of an existing group. As a result, only the tag for that set must
change; no new forwarding table rules are generated. If a
set grows and is no longer a subset of any group, we create
a new group equal to the new set. We then run one more
iteration of the greedy algorithm to attempt to merge the new
set into an existing group, taking O(TMN) time to consider
the N possible merges. If the new set cannot be added without
exceeding the maximum tag width, a full recomputation is
needed. This can be made unlikely by stopping the initial
greedy algorithm at width W ′max =Wmax− x for some x > 0,
to allow space for the groups to grow.

4 Encoding Attribute Sequences

In some applications, the order of attributes is important. For
example, in service chaining, traffic must traverse middle-
boxes in a specified order. In this section, we extend Path-
Sets for encoding sets of attributes to support sequences of
attributes. We first propose a simple representation of the
attribute sequences in a sequence graph. Next, we discuss
how to encode sequences when the attributes follow a partial
order. Then, we show how to encode sequences in general,
even when the attributes do not form a partial order.

4.1 Sequence Graph of Attribute Orderings
When the tag must encode a sequence of attributes, we need
an effective way to identify what ordering of attributes can
occur. Figure 4(a) shows four equivalence classes (S1-S4)
with different sequences of attributes (A-F); for example, S2
has the attribute sequence E-A-B, whereas S4 has A-B-C-D.
We can generate a sequence graph, where each node is an
attribute, and a directed edge from node u to node v exists
if u appears before v in any of the sequences. For example,
the sequence graph in Figure 4(b) has an edge from E to A,
from E to B, and from A to B because of S2, and from D to F
because of S3. Each sequence in the input data corresponds
to a path through the sequence graph. If the sequence graph
is acyclic, the attributes form a partial order, making it easier
to encode all of the sequences concisely.

We expect that many use cases impose a natural order on
the attributes. For example, in traffic steering, typically a
compression middlebox would occur before an encryption
middlebox, and encryption would occur before decryption.
Similarly, a firewall would usually appear before a network
address translator, so the firewall can act on the end-host IP
addresses rather than the address of the NAT. Still, some-
times exceptions can easily arise. In extending PathSets to
encode sequences, we optimize for the case where attributes
mostly follow a natural order, and handle the (presumably)
few exceptions as they arise.

4.2 Sequences Forming a Partial Order
If all of the attributes form a (partial) order, we can easily
construct a single ordered list of all attributes where each
input sequence is a subsequence. We refer to such a sequence
as a supersequence. A supersequence can be computed by
processing the nodes of the (acyclic) sequence graph in order.
For example, suppose the input sequences are X-Y , Y -Z, and
X-Z; then, the resulting supersequence would be X-Y -Z. To
generate the tags, Algorithm 1 can be used “as is” to generate
a concise encoding. The resulting rules in the switches would
simply match on the attributes in the appropriate “order”, e.g.,
a rule that checks for attribute Y would include a 0 bit for X ,
to ensure that middlebox X was already visited (if necessary)
and the associated bit in the tag cleared. We discuss how to
compute the rules in more detail in Section 4.4.

4.3 Sequences Forming a Cycle
When the sequence graph contains a cycle, no supersequence
of attributes exists that is consistent with all of the input se-
quences. For example, the sequence graph in Figure 4(b)
contains a cycle with attributes B and C because S1 has se-
quence A-C-B-D (with C before B) while S4 has sequence
A-B-C-D (with B before C). We considered two approaches
to overcome this obstacle.

Group sequences with consistent attribute orderings (Ap-
proach I): The approach merges groups only if they have
consistent ordering of the attributes. For example, S2 and
S4 could merge because E-A-B-C-D is consistent with both
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sequences. Pairs of groups could merge based on similar
criteria as in Section 3.3, subject to the constraint on consis-
tent attribute order. At the completion of the algorithm, each
group would be assigned a group id and a single ordering of
their combined attributes, represented as a bitmask.

Break cycles by duplicating nodes in the sequence graph
(Approach II): The first approach can sometimes result in
too many groups that cannot merge. The second approach
is strictly more flexible because it permits merging two se-
quences even if they impose a different order on some at-
tributes. To resolve the inconsistency, we break cycles by
duplicating some nodes in the sequence graph, and repre-
senting each copy of the attribute with a different bit in the
bitmask. For example, we can break the cycle in Figure 4(b)
by splitting node B into B1 and B2. This makes it possible
to construct a supersequence E-A-B1-C-B2-D-F (Figure 4(f))
that is consistent with each sequence (Figure 4(g)).

To break cycles in a systematic fashion, we run an algo-
rithm that finds the Strongly Connected Components (SCCs)
on the sequence graph. An SCC is a set of nodes such that for
every pair of nodes u and v in the set, u has a directed path to v
and vice versa. In this context, every SCC corresponds to a set
of attributes that cannot be placed in order. Figure 4(c) shows
the result of finding SCCs on the sequence graph, identifying
the pair of attributes B and C. We then identify a minimal set
of “back edges” to remove, and split nodes to remove each
of these back edges. For example, creating nodes B1 (with
an edge to C) and B2 (with an edge from C) breaks the cycle,
resulting in the acyclic sequence graph in Figure 4(e). It is
redrawn in Figure 4(f) to highlight a suitable ordering of the
attributes, leading to the modified input sequences. Now, we
can simply run Algorithm 1 “as is” to generate the groups and
their corresponding bitmasks.

We must note that finding a minimal set of “back edges” in
step (d) is NP-Hard and is commonly known as the Feedback
Arc Set problem. To complete this step, we use a simple
2-approximation for the dual problem of Maximum Acyclic

Subgraph, which is described in [12]. Additionally, if se-
quences are allowed to have repeating attributes, then finding
a total ordering becomes the more general Shortest Common
Supersequence problem. This is known to be NP-Hard even
for the case of only two attributes [19]. We are not aware of
any works which prove or disprove that our variant is NP-
Hard, and our algorithm seems to perform well when there
are not too many conflicts.

4.4 Constructing Rules That Respect Order
We previously showed how to construct tags and match strings
for attribute sets. Figure 5 shows the process for constructing
rules for sequences of attributes. The process assumes that
the input sequences are drawn from a supersequence (as in
Figure 4(g), shown again in Figure 5(a)), so the input to
this process is the output of the conflict-resolution algorithm
described in Section 4.3.

The input sequences are treated as attribute sets and run
through the PathSets encoding scheme (Algorithm 1), to pro-
duce a tag for each sequence (Figure 5(b)) and a set of un-
ordered match strings for each attribute (middle column of
Figure 5(c)). To produce rules that respect ordering, we con-
sider the concrete example of attribute A. The unordered
tests for A include a rule for each group that contains A.
The first rule ("01****") matches on group id 0 and the
first bit of the bitmask ([A,C,B2,D,F ]), and the second rule
("1*1***") matches on group id 1 and the second bit of the
bitmask ([E,A,B1,C,D]).

The second rule is not appropriate when considering at-
tributes in a sequence because attribute E appears ahead of A
in the sequence E-A-B1-C-D. If attribute E holds for a packet
(i.e., the bit for attribute E is set to 1), the packet should match
a rule concerning attribute E (e.g., "11****") rather than
A. So, policies that impose an ordering on the attributes must
check that all earlier attributes in the bitmask are set to 0. So,
in the right column of Figure 5(c), there is a match string
for each group that contains A, with any bits before A in the
bitmask set to 0 rather than a wildcard. That is, the second



E-A-B1-C-B2-D-F

Unordered 
Encoding 
Algorithm

Seq Group ID Mask

S1 [A,C,B2,D,F] 0 11110

S2 [E,A,B1,C,D] 1 11100

S3 [A,C,B2,D,F] 0 00011

S4 [E,A,B1,C,D] 1 01111

Att. Unordered Ordered

E “11****” “11****”

A “01****”  +  “1*1***” “01****”  +  “101***”

B1 “1**1**” “1001**”

C “0*1***” + “1***1*” “001***” + “10001*”

B2 “0**1**” “0001**”

D “0***1*”  +  “1****1” “00001*”  +  “100001”

F “0****1” “000001”

(a) Sequences

Supersequence

S1:  A-C-B2-D

S2:  E-A-B1

S3:  D-F

S4:  A-B1-C-D

(b) Sequence Tags

(c) Attribute Query Strings

Figure 5: Match strings for attribute sets versus sequences. (a) shows the set of input sequences which, when treated as unordered sets and run
through Algorithm 1, produce a set of tags in (b). The unordered column of (c) shows the query strings produced for checking each attribute in
an unordered fashion. The ordered column is produced by taking the unordered strings and replacing wildcard characters with 0 for every
attribute that appears before the current attribute in the ordering.

rule is "101***" for an ordered test on A, instead of the
"1*1***" match for the unordered test.

5 Variable-length Group Identifiers

In the previous sections, the PathSets encoding imposes a
fixed division of the tag bits into the group identifier and
the bitmask on the attributes in the group. However, some
groups include more attributes than others, making a static
split inefficient. In this section, we describe an enhanced
encoding scheme that reduces the total size of the tag by
allowing variable-length group identifiers, so some groups
can devote more tag bits to the bitmasks.

5.1 Prefix Codes for Group Identifiers

Table 2 illustrates how a fixed division between the group
identifier and the bitmask can waste space in the tag. Ta-
ble 2(a) shows an example output of Algorithm 1 with four
groups with anywhere from two to four attributes. With a
fixed-length group identifier, the tags require a two-bit iden-
tifier (to represent the four groups) and a four-bit bitmask
(to represent the largest bitmask of [W,X ,Y,Z]), for a total
of six bits, as shown in Table 2(b). The other three groups
do not make effective use of the four-bit bitmask. In the gen-
eral case, given N groups where group i has `i attributes, the
width of the tag is determined by the largest group and equals
Wf = dlog2(N)e+maxi∈[1,N] `i.

To reduce the size of the tag, we introduce variable-length
group identifiers. In particular, groups that need larger bit-
masks should have shorter group ids, and vice versa. Ta-
ble 2(c) uses group identifiers 0, 10, 110, and 111, enabling a
smaller tag with just five bits. Notice that the group identifiers
are selected such that none is a prefix (start) of another, i.e.,
the identifiers are codewords in a prefix code. Selecting the
group identifiers in this way allows the switch rules to distin-
guish between the groups for any values for their bitmasks in
the second part of the tag.

(a) Groups

Group attributes
A B C
C D
E F

W X Y Z

(b) Fixed-length group ids

Id Attributes
00 A B C
01 C D
10 E F
11 W X Y Z

(c) Variable-length group ids

Id Attributes
10 A B C

110 C D
111 E F

0 W X Y Z

Table 2: Illustration of variable-length group identifiers. While with
fixed-length ids the maximal width in (b) is 6 bits, with variable-
length identifiers it is reduced in (c) to only 5 bits.

‘’

‘0’ ‘1’

‘10’ ‘11’

‘110’ ‘111’

W,X,Y,Z

A,B,C

C,D E,F

Start

Figure 6: An example prefix code tree, based upon the prefix code
identifiers from Table 2c which are used to identify the attribute sets
[A,B,C], [C,D], [E,F ] and [W,X ,Y,Z].

5.2 Computing Efficient Prefix Codes

Kraft’s inequality [2] formally determines whether prefix
codes of given lengths exist. It says that a code with N
codewords of lengths L1,L2, . . . ,LN exists if and only if the
following inequality holds:



N

∑
i=1

2−Li ≤ 1.

For instance, the lengths of the identifiers in Table 2(c) satisfy
2−1 +2−2 +2−3 +2−3 = 1. This also enables us to exactly
calculate the minimal width Wv that can be achieved for a
given N groups of size `1, . . . , `N using variable-length identi-
fiers as described in the following property:
Property 1: For given groups of size `1, . . . , `N the optimal
(minimal) tag width that can be derived using variable-length
identifiers is given by inequality holds:

Wv =

⌈
log2

N

∑
i=1

2`i

⌉
.

Proof. A width of Wv allows assigning an identifier of length
Wv− `i to the i-th group. By Kraft’s inequality the width Wv
must satisfy:

1≥
N

∑
i=1

2−(Wv−`i) = 2−Wv ·
N

∑
i=1

2`i .

Accordingly we have 2Wv ≥ ∑
N
i=1 2`i . Since Wv is defined

as the minimal possible width with that property, the result
follows.

The fixed-length group identifier is a special case of the
variable-length identifiers, so Wv ≤Wf .

A selection of variable-length group identifiers satisfying
Kraft’s inequality can be described as a subset of leaves in a
binary tree. A path from the root node to a node corresponds
to a binary string where visits of the left child or the right
child of a node stand for bits of 0 and 1, respectively. The
path length to a leaf corresponds to the identifier length in
bits. Figure 6 illustrates the corresponding tree for the four
identifiers from Table 2(c). Shorter identifiers appear higher
in the tree.

For a given set of groups, after calculating Wv as the mini-
mal possible width enabled by variable-length identifiers, we
can easily find identifiers that realize it. If a group has `i ele-
ments, then the maximum size the group identifier may have
is Wv− `i bits. To assign every group an identifier, we begin
with a complete version of the binary tree seen in Figure 6,
but with a depth of Wv. Recall the ith level of the tree contains
all binary strings of length i, and each node’s string is a prefix
of all its descendants’ strings.

The tree is traversed in level-order, beginning at the root.
At each level i, if a group s without an identifier exists such
that i=Wv−`s, a binary string from a tree node in that level is
assigned as the group’s identifier, and all descendants of that
tree node are deleted. By Kraft’s inequality, we are guaranteed
to not run out of tree nodes until all groups are assigned
identifiers. A naive implementation of this description can
result in an exponential running time, but a linear running
time can be achieved by avoiding explicitly constructing the

full tree, and instead only constructing each tree node as it is
traversed.

5.3 Optimizing the Selection of Groups
Recall that Algorithm 1 takes a list of groups S and greedily
merges them to minimize memory usage. The algorithm
assumes that S does not require tags that are close to the
maximum tag width in size, so that it is able to perform some
meaningful number of merges to minimize memory. To aid
this assumption, we can perform some preprocessing on S
using our new knowledge of variable-length prefix identifiers.
By Property 1 the number of groups and their identifiers
should be selected such that their sizes `1, . . . , `M minimize
the term T = ∑

M
i=1 2`i f.

We begin with the input list of attribute groups S =
s1, . . . ,sN . Next, we consider each pair of groups, and calcu-
late the benefit to the term T if that pair of groups were to be
replaced by their union, decreasing the number of groups by
1. For two groups si,s j of size `i, ` j and intersection size `i j,
the impact to T of replacing them with their union si

⋃
s j is

equal to−2`i−2` j +2`i j . However, it may be the case that no
pair of groups has an impact less than 0. In such a case, we
choose the pair which has minimum impact to T , and replace
them with their union anyway. We do this because it may be
the case that such a step will enable beneficial union steps
later on. After each union, we record the current value of T
and the set of groups S that achieved this value. This process
is repeated until there is only one group remaining. After one
group remains, we go back and identify the set of groups S
that achieved the minimum value of T , and return this as our
answer. This process closely resembles Algorithm 1, with
the exception that we are minimizing the sum T , rather than
switch memory usage.

5.4 Handling Updates
We briefly touched on handling changes to sets at the end
of the section 3, but we must take into account the addition
of sequence encoding and variable-length identifiers. An
update occurs when the attributes associated with a FEC
change, and a new tag must be generated which encodes these
attributes. Forwarding table entries may also need to change
if any encoding group changes. For the case of unordered
attributes, PathSets makes no changes to forwarding tables
if the new set is a subset of an existing group. Only the tag
associated with the updated FEC need change.

If the set is not a subset, we either attempt to merge the new
set into an existing group, or create an entirely new group
just for this set. New forwarding table entries need to be
generated in both cases. In the latter case, the new group
must be assigned a prefix-code identifier. If we do not have
an unused prefix-code identifier, we can take the identifier I
from an existing group and “split” it into two identifiers I+′ 0′

and I +′ 1′, if there is space. If there is not enough space, we
must generate the encoding from scratch, and replace all
forwarding table entries. As we said in section 3, this can be



made unlikely by forcing each tag to have some amount of
padding during the initial compilation.

For the case of ordered attributes, if the new sequence
is a subsequence of the topological ordering of attributes
discussed in section 4, then the sequence can be converted to
a totally ordered set and treated as an update to an unordered
encoding. We leave for the future work the case where a
new sequence does not adhere to the topological ordering;
currently this results in a full recomputation. In practice this
can be avoided if all sequences are known in advance.

6 Evaluation
We now evaluate how the PathSets encoding performs on tag
width and memory usage for the applications of service chain-
ing and Software-Defined IXPs (SDX). Our implementation
was written in about 1000 lines of Java. All experiments were
run on a single laptop with a 2.5 GHz 4-core processor and
16GB of RAM. Full computation of an encoding scheme was
under a few seconds in all cases.

6.1 Software-Defined IXPs
To evaluate the Software-Defined IXP setting, we must iden-
tify the characteristics of an IXP that ultimately determine
tagging efficiency. For each packet in this setting, the at-
tributes of a packet are the set of next-hop IXP participants
which have announced routes to that packet’s destination.
Two packets share an FEC if they can take the same list of
next-hops to exit the IXP switch. An attribute (next-hop) is
queried if there is some policy which wants to forward traffic
to that next-hop. Thus, to evaluate the proposed encoding
algorithm over Software-Defined IXPs, we need (1) route
announcements and (2) forwarding policies.

For route announcements, we used routing tables and mes-
sages from the AMS-IX exchange point [3], retrieved from
the Routing Information Service raw data webpage [21].
This dataset includes 63 participating ASes advertising over
600,000 prefixes. To simulate smaller instances when de-
termining growth functions, we randomly sample subsets of
these IXP participants. We repeat this sampling procedure
multiple times to average together multiple results. To sim-
ulate interdomain forwarding policies, we generate a fixed
number of forwarding actions that each forward to a random
IXP participant. Our evaluation only depends upon the desti-
nation of each forwarding policy, and not the decision logic,
so a more realistic policy simulation is not needed. To evalu-
ate update performance, we parsed 24 hours of BGP update
messages. Our tests show that new routing table entries are
virtually never needed, as the vast majority of changes do not
result in expanding sets. Each update results in only a new
tag for the associated FEC.

For the SDX [9] and iSDX [8] systems, tags are attached to
the destination MAC field of packets, which has a limit of 48
bits. iSDX attaches additional information to the MAC field,
leaving only 37 bits available for tagging. For PathSets to be
used in iSDX, the tags must fit within 37 bits. We operate
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Figure 7: Minimum number of bits required by a feasible solution
for a random policy which forwards to a random subset of partici-
pants.
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Figure 8: Number of rules required after encoding for a random
policy of 1000 rules to random subsets of participants.

under this constraint when evaluating the number of rules
required for the evaluation we present in this paper.

Figure 7 shows the number of bits required by PathSets
with uniformly randomly chosen IXP participant subsets, re-
peated 500 times for each subset size. In the worst case,
18 bits were required when considering all 63 participants.
The graphs appear to show that the number of bits required
scales linearly with the number of participants present in the
active set. If this is the case, extrapolating the data yields
that PathSets can encode over 100 attributes in the worst case,
allowing for very complex forwarding policies.

Figure 8 shows the number of rules required by PathSets
after running the greedy algorithm up to the limit of 37 bits.
In this experiment, we began with a baseline forwarding
policy of 1000 rules, with each rule forwarding to a next-hop
chosen uniformly at random from the set of all next-hops.
The policy was then augmented with our tagging scheme’s
attribute testing strings.
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Figure 9: Ratio of flow rules required by PathSets versus the un-
compressed case on random policies involving random subsets of
participants.
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Figure 10: Comparison of the number of flow rules required by Path-
Sets to the previous state-of-the-art MDS encoding algorithm and the
uncompressed case for a random policy involving all participants.

Figure 9 shows how the number of flow rules generated by
PathSets compares to the naive case of zero compression. The
compression ratio of our approach versus the naive approach
is 20,000 to 1 in the worst case for all active set sizes, and
50,000 to 1 in the median case.

Figure 10 compares PathSets to the uncompressed case, as
well as to the previous state-of-the-art, the MDS algorithm
used in the original SDX system [9]. The comparisons were
all made using the same approach of generating 1000 random
rules, with the exception of the MDS simulation. The MDS
algorithm requires each prefix’s default next-hop as part of
the input, so in each trial we chose next-hops uniformly at
random from the list of available next-hops. The graph shows
that our approach consistently compresses the number of
flow rules by two orders of magnitude greater than the MDS
algorithm, which itself compressed the number of flow rules
required by the naive case by three orders of magnitude.
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Figure 11: Minimum number of bits required by PathSets to encode
every service chain as the number of service chains increases. All
paths generated had a 0.05 probability of reordering.

6.2 Service Chaining
Recall that for the service chaining setting, attributes of an
FEC are middleboxes that packets in the FEC must visit, and
that these attributes are ordered. To evaluate service chains,
we simulate a network policy by generating a set of random
middlebox paths. The number of attributes in the service
chaining application is equal to the number of distinct types
of middleboxes. Sherry et al. [29] provide a lower bound of
eleven middlebox categories, so we evaluate up to M = 40
middleboxes to emulate a reasonably sized network.

To generate random paths over these M middleboxes, we
assume that all service chains follow a fixed underlying or-
dering. A random starting point in the ordering is chosen,
and a path is constructed by making random jumps to mid-
dleboxes further down the ordering, stopping once the end of
the ordering is reached. To simulate conflicting orderings, we
post-process each random path to add ordering conflicts. For
each pair of adjacent middleboxes in a path, we swap their
positions with some probability perr. We chose a value of 5%
for perr, as we believe reordering of middleboxes to be rare.
We did not simulate changes to service chains, because we
did not have a realistic model of how ordinary network events
can affect middlebox paths.

Figure 11 evaluates the minimum widths required by Path-
Sets across varying numbers of random paths and middle-
boxes. Recall that if there are P distinct paths, flat tagging re-
quires log2(P) bits to encode every path. Since log2(800)= 9,
PathSets requires roughly twice the tag width of flat tagging
for this experiment.

Figure 12 compares the number of rules required by Path-
Sets to the number of rules required by flat tags. Since Path-
Sets uses less memory when the tag is permitted to be wider,
we evaluate the memory usage for tag widths of 20, 30, and
40. We observed that 20 bits was the minimum necessary for
our tagging scheme on this dataset, as seen in Figure 11, so
we begin at that width. Flat tagging does not have any tunable
parameters for making a width-memory tradeoff, so it is only
evaluated once.
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Figure 12: Number of forwarding table entries required for tags
of different widths, over a distribution of paths with different sets
of attributes, compared to the number of entries required by a flat
tagging scheme.

The number of rules needed by PathSets is less than half
that used by flat tagging in this application. While this is an
improvement, we suspect the benefits will be much greater
for real datasets, as there should be more redundancy in the
paths for PathSets to exploit.

7 Related Work
Software-defined Internet exchange points. The first
SDX [9] prototype in 2014 used a flat tag to identify the
set of valid next hops (i.e., BGP neighbors) that can direct
traffic to a destination prefix to avoid installing forwarding
table entries for each destination IP prefix in the IXP switch;
this prototype SDX controller proactively installed rules to de-
code each tag. The follow-up industrial scale iSDX [8] project
reduced forwarding-table size and rule churn to make opera-
tion at large IXPs practical. The iSDX uses the technique for
encoding sets of attributes described in Section 3, although
our iSDX paper did not describe the encoding scheme in
much detail. In addition, the iSDX design supports neither
the encoding of sequences of attributes (Section 4) nor the
optimizations possible with variable-length group identifiers
(Section 5).
Service chaining with flat tags. Recent works on traffic
steering through middleboxes uses a flat tag to identify the
service chain each packet should traverse. FlowTags [6] is a
prominent example, where the first middlebox in a path tags
the packet with the rest of the service chain. Rules to decode
each tag are installed reactively when switches see a new
tag for the first time. In contrast, PathSets results in fewer
rules, and allows for proactive rule installation. Incorporating
PathSets would make FlowTags scale to larger sequences of
middleboxes when switches have limited table size.
Encoding end-host attributes in IP addresses. Alpaca [14]
embeds the attributes of end hosts into the packet header with
the goal of easing network policy enforcement. Alpaca fo-
cuses on a special case where attributes are embedded in the
least significant bits of the IP address. This mechanism re-
quires a unique attribute encoding for each host. In addition,

Alpaca does not support the encoding of sequences of at-
tributes. As such, PathSets can solve the problem introduced
in Alpaca, but the reverse is not true.

Compressing Forwarding Entries in Routing Tables The
topic of memory efficient representation of network poli-
cies such as QoS and forwarding information is well studied.
The policies include matching rules examining packet fields
and are associated with an action that has to be applied on
the matching traffic. Various compression schemes rely on
properties of the special memory like TCAM [16, 24, 27] or
SRAM [28]. These schemes also take advantage of the type
of represented information (e.g., rules that allow a range of
consecutive values, disjointness of rules) [15]. It was shown
that schemes can often achieve compression rates close to
theoretical lower bounds from Information theory [20]. Our
work achieves the same of goal of decreasing switch memory
usage, but by compressing information in packets, rather than
in switches.

Forwarding with flat tags. Throughout the paper we have
compared PathSets to flat tagging. MPLS [22] is a well-
established source-routing protocol for forwarding packets
by writing and matching on flat labels in packet headers. By
default, MPLS tags only instruct the packet how to reach the
next node in a path. To use MPLS across multiple hops in
succession, MPLS performs label swaps, where the tag is
swapped out for a new tag. MPLS can extended to support
segment routing [7], by having each label represent a path
segment, rather than a single hop. While powerful, an issue
with MPLS is that labels are often stacked for path aggre-
gation, causing packets to have variable length as they are
forwarded. The Path Switching work [10] presents an alterna-
tive to MPLS for source routing which has the advantage of
encoding forwarding information in a fixed amount of exist-
ing space in the packet headers. PathSets can be used for this
purpose, if there is redundancy in the paths chosen.

Encoding sets concisely in Bloom filters. A Bloom fil-
ter [4, 25, 26] is a common data structure that represents a
set of items with a fixed amount of memory. A Bloom filter
supports membership queries but suffers from false positives,
where some elements can be wrongly reported as members of
the set. In contrast, PathSets has no false positives. Although
minimizing the tag width is an key property of our scheme,
the memory for a Bloom filter is several times larger than the
number of elements—10-20 times for a false-positive proba-
bility of 0.01–1%. Bloom filters also require each value to be
hashed into a large bit vector, which might not be possible in
some switch architectures.

Efficient coding using prefix codes. Variable-length prefix
codes have been used for various applications. The seminal
work of Huffman [13] describes an algorithm for an optimal
selection of prefix codes for lossless compression of source
symbols. The selection minimizes the encoding length by
using fewer bits for common symbols, achieving results close
to lower bounds from information theory. More recently,



prefix codes were suggested as a way to encode paths, while
reducing the maximum length of any encoded path [11]. A
similar approach was suggested for the encoding for fixed-
width memories [23]. In all of these schemes, the encoding
concatenates the codes of the attributes and thus is often long
when the number of attributes is large. In contrast, PathSets
combines input sets or sequences with common attributes (or
common orderings of attributes) and uses prefix codes for the
group identifiers to further reduce tag size.

8 Conclusion
Many network architectures and mechanisms, from SDN-
based exchange points to middlebox service chains, encode
sets or sequences in forwarding equivalence classes. Previous
work has generally encoded each FEC with a flat tag, which is
amenable to exact matching but scales poorly as the size of a
set or the number of unique orderings increases. In this paper,
we propose PathSets, a mechanism that takes advantage of the
ability of commodity switches to perform wildcard matching
on arbitrary packet header fields; this capability, which has
been enabled by protocols such as OpenFlow 1.3, facilitates
more efficient encodings that allow aggregation of similar
FECs, through wildcard-based encoding.

Our evaluation for two deployment scenarios—for ser-
vice chaining and an SDN-based IXP—demonstrates that
a wildcard-based encoding can reduce the number of forward-
ing table entries in each switch by several orders of magnitude,
given typical levels of redundancy in the sets or sequences that
are typical in forwarding policies for these scenarios. Path-
Sets can capture both unordered sets and ordered sequences;
it can also efficiently capture rare perturbations to sequences
that appear more frequently.

The PathSets encoding algorithm reduces forwarding table
size, at the cost of larger tags. A possible avenue for future
work involves exploring this tradeoff more thoroughly, as well
as exploring alternative ways to handle attribute sequences
that have conflicting attribute orderings. Every application
that we presented relies on a different method to attach tags to
packets. To make it easier to tag packets for arbitrary network
deployment scenarios, we plan to investigate more general
techniques for tagging packets that could apply to a wider
range of use cases.
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