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Abstract
BGP severely constrains how networks can deliver traffic over the
Internet. Today’s networks can only forward traffic based on the
destination IP prefix, by selecting among routes offered by their
immediate neighbors. We believe Software Defined Networking
(SDN) could revolutionize wide-area traffic delivery, by offering
direct control over packet-processing rules that match on multiple
header fields and perform a variety of actions. Internet exchange
points (IXPs) are a compelling place to start, given their central role
in interconnecting many networks and their growing importance in
bringing popular content closer to end users.

To realize a Software Defined IXP (an “SDX”), we must create
compelling applications, such as “application-specific peering”—
where two networks peer only for (say) streaming video traffic. We
also need new programming abstractions that allow participating
networks to create and run these applications and a runtime that
both behaves correctly when interacting with BGP and ensures that
applications do not interfere with each other. Finally, we must ensure
that the system scales, both in rule-table size and computational
overhead. In this paper, we tackle these challenges and demonstrate
the flexibility and scalability of our solutions through controlled and
in-the-wild experiments. Our experiments demonstrate that our SDX
implementation can implement representative policies for hundreds
of participants who advertise full routing tables while achieving
sub-second convergence in response to configuration changes and
routing updates.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design:
Network Communications
General Terms: Algorithms, Design, Experimentation
Keywords: software defined networking (SDN); Internet exchange
point (IXP); BGP

1 Introduction
Internet routing is unreliable, inflexible, and difficult to manage.
Network operators must rely on arcane mechanisms to perform
traffic engineering, prevent attacks, and realize peering agreements.
Internet routing’s problems result from three characteristics of the
Border Gateway Protocol (BGP), the Internet’s interdomain routing
protocol:
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• Routing only on destination IP prefix. BGP selects and exports
routes for destination prefixes. Networks cannot make more fine-
grained decisions based on the type of application or the sender.
• Influence only over direct neighbors. A network selects among

BGP routes learned from its direct neighbors, and exports selected
routes to these neighbors. Networks have little control over end-
to-end paths.
• Indirect expression of policy. Networks rely on indirect, obscure

mechanisms (e.g., “local preference”, “AS Path Prepending”) to in-
fluence path selection. Networks cannot directly express preferred
inbound and outbound paths.

These problems are well-known, yet incremental deployment of
alternative solutions is a perennial problem in a global Internet
with more than 50,000 independently operated networks and a huge
installed base of BGP-speaking routers.

In this paper, we develop a way forward that improves our existing
routing system by allowing a network to execute a far wider range
of decisions concerning end-to-end traffic delivery. Our approach
builds on recent technology trends and also recognizes the need for
incremental deployment. First, we believe that Software Defined
Networking (SDN) shows great promise for simplifying network
management and enabling new networked services. SDN switches
match on a variety of header fields (not just destination prefix),
perform a range of actions (not just forwarding), and offer direct
control over the data plane. Yet, SDN currently only applies to
intradomain settings, such as individual data-center, enterprise, or
backbone networks. By design, a conventional SDN controller has
purview over the switches within a single administrative (and trust)
domain.

Second, we recognize the recent resurgence of interest in Internet
exchange points (IXPs), which are physical locations where multiple
networks meet to exchange traffic and BGP routes. An IXP is a
layer-two network that, in the simplest case, consists of a single
switch. Each participating network exchanges BGP routes (often
with a BGP route server) and directs traffic to other participants
over the layer-two fabric. The Internet has more than 300 IXPs
worldwide—with more than 80 in North America alone—and some
IXPs carry as much traffic as the tier-1 ISPs [1, 4]. For example,
the Open IX effort seeks to develop new North American IXPs with
open peering and governance, similar to the models already taking
root in Europe. As video traffic continues to increase, tensions grow
between content providers and access networks, and IXPs are on the
front line of today’s peering disputes. In short, not only are IXPs the
right place to begin a revolution in wide-area traffic delivery, but the
organizations running these IXPs have strong incentives to innovate.

We aim to change wide-area traffic delivery by designing, proto-
typing, and deploying a software defined exchange (SDX). Contrary
to how it may seem, however, merely operating SDN switches and a
controller at an IXP does not automatically present a turnkey solu-
tion. SDN is merely a tool for solving problems, not the solution.
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In fact, running an SDN-enabled exchange point introduces many
problems, ranging from correctness to scalability. To realize the
SDX in practice, we must address the following four challenges:

• Compelling applications. The success of the SDX depends on
identifying compelling wide-area traffic-delivery applications that
are difficult to deploy today. We present four motivating appli-
cations: application-specific peering, inbound traffic engineering,
server load balancing, and traffic redirection through middleboxes
(Section 2).

• Programming abstractions. Participating networks need a way
to create and run applications, without conflicting with each other
or with the global routing system. Our SDX design presents each
participating network with the illusion of its own virtual SDN
switch that extends the footprint of its legacy network and enables
flexible policies that interact safely with today’s BGP (Section 3).

• Scalable operation. An SDX needs to support hundreds of par-
ticipants, hundreds of thousands of IP prefixes, and policies that
match on multiple packet-header fields—all while using conven-
tional SDN switches. We show how to combine the policies of
multiple participants and join them with the current BGP routes,
while limiting rule-table size and computational overhead (Sec-
tion 4).

• Realistic deployment. We have built a prototype and created two
example applications (Section 5). Experiments demonstrate that
our prototype scales (in terms of rule-table size and CPU time) to
many participants, policies, and prefixes (Section 6).

We conclude with a discussion of related work (Section 7) and future
possibilities (Section 8).

2 Wide-Area Traffic Delivery
We present four applications that the SDX enables. We describe
how operators tackle these problems today, focusing in particular on
the “pain points” for implementing these functions in today’s infras-
tructure. We also describe how these applications would be easier
to implement with the SDX. We revisit several of these examples
throughout the paper, both demonstrating how the SDX makes them
possible and, in some cases, deploying them in the wide area.
Application-specific peering. High-bandwidth video services like
YouTube and Netflix constitute a significant fraction of overall traffic
volume, so ISPs are increasingly interested in application-specific
peering, where two neighboring AS exchange traffic only for certain
applications. BGP does not make it easy to support such an arrange-
ment. An ISP could configure its edge routers to make different
forwarding decisions for different application packet classifiers (to
identify the relevant traffic) and policy-based routing (to direct that
traffic over a special path). For example, an ISP could configure
its border routers to have multiple VRFs (virtual routing and for-
warding tables), one for each traffic class, and direct video traffic
via one VRF and non-video traffic through another. Still, such an
approach forces the ISPs to incur additional routing and forwarding
state, in proportion to the number of traffic classes, and configure
these mechanisms correctly. SDX could instead install custom rules
for groups of flows corresponding to specific parts of flow space.
Inbound traffic engineering. Because BGP performs destination-
based routing, ASes have little control over how traffic enters their
networks and must use indirect, obscure techniques (e.g., AS path
prepending, communities, selective advertisements) to influence
how ASes reach them. Each of these existing approaches is limited:

prepending cannot override another AS’s local preference for out-
bound traffic control, communities typically only affect decisions
of an immediate neighbor network, and selective advertisements
pollute the global routing tables with extra prefixes. By installing
forwarding rules in SDN-enabled switches at an exchange point,
an AS can directly control inbound traffic according to source IP
addresses or port numbers.
Wide-area server load balancing. Content providers balance client
requests across clusters of servers by manipulating the domain name
system (DNS). Each service has a single domain name (e.g., http:
//www.example.com/) which resolves to multiple IP addresses
for different backend servers. When a client’s local DNS server
issues a DNS request, the service’s authoritative DNS server returns
an IP address that appropriately balances load. Unfortunately, using
DNS for server selection has several limitations. First, DNS caching
(by the local DNS server, and by the user’s browser) results in slower
responses to failures and shifts in load. To (partially) address this
problem, content providers use low “time to live” values, leading
to more frequent DNS cache misses, adding critical milliseconds
to request latency. Instead, a content provider could assign a single
anycast IP address for a service and rewrite the destination addresses
of client requests in the middle of the network (e.g., at exchange
points). SDX could announce anycast prefixes and rewrite the
destination IP address to match the chosen hosting location based
on any fields in the packet header.
Redirection through middleboxes. Networks increasingly rely on
middleboxes to perform a wide range of functions (e.g., firewalls,
network address translators, load balancers). Enterprise networks at
the edge of the Internet typically place middleboxes at key junctions,
such as the boundary between the enterprise and its upstream ISPs,
but large ISPs are often geographically expansive, making it pro-
hibitively expensive to place middleboxes at every location. Instead,
they manipulate the routing protocols to “steer” traffic through a
fixed set of middleboxes. For example, when traffic measurements
suggest a possible denial-of-service attack, an ISP can use internal
BGP to “hijack” the offending traffic and forward it through a traffic
scrubber. Some broadband access ISPs perform similar steering of
a home user’s traffic by routing all home network traffic through a
scrubber via a VPN. Such steering requires ISPs to “hijack” much
more normal traffic than necessary, and the mechanisms are not
well-suited to steering traffic through a sequence of middleboxes. In-
stead, an SDN-enabled exchange point can redirect targeted subsets
of traffic through one or more middleboxes.

3 Programming Abstractions
The SDX enables the operators of participating ASes to run novel
applications that control the flow of traffic entering and leaving their
border routers, or, in the case of remote participants, the flow of
traffic destined for their AS. By giving each AS the illusion of its
own virtual SDN switch, the SDX enables flexible specification
of forwarding policies while ensuring isolation between different
participants. SDX applications can base decisions on the currently
available BGP routes, which offers greater flexibility while ensuring
that traffic follows valid interdomain paths.

3.1 Virtual SDX Switch Abstraction
In a traditional exchange point, each participating AS typically con-
nects a BGP-speaking border router to a shared layer-two network (a
data plane for forwarding packets) and a BGP route server (a control
plane for exchanging routing information). At an SDX, each AS
can run SDN applications that specify flexible policies for dropping,
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(a) Virtual switch abstraction.
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(b) Integration with interdomain routes.

Figure 1: SDX programming abstractions.

modifying, and forwarding the traffic. The SDX must then combine
the policies of multiple ASes into a single coherent policy for the
physical switch(es). To balance the desire for flexibility with the
need for isolation, we give each AS the illusion of its own virtual
SDN switch connecting its border router to each of its peer ASes,
as shown in Figure 1a. AS A has a virtual switch connecting to
the virtual switches of ASes B and C, where each AS can write
forwarding policies as if it is the only participant at the SDX. Yet,
AS A cannot influence how ASes B and C forward packets on their
own virtual switches.

For writing policies, we adopt the Pyretic language [12] that
supports declarative programming based on boolean predicates (that
each match a subset of the packets) and a small set of actions (that
modify a packet’s header fields or location). A Pyretic policy maps
a located packet (i.e., a packet and its location) to a set of located
packets. Returning the empty set drops the packet. Returning a set
with a single packet forwards the packet to its new location. Finally,
returning a set with multiple packets multicasts the packets. In
contrast to vanilla Pyretic policies, we require participants to specify
whether a policy is an inbound or an outbound policy. Inbound
policies apply to the traffic entering a virtual switch on a virtual port
from another SDX participant; outbound policies apply to the traffic
entering a virtual switch on a physical port from the participant’s
own border router. In the rest of the paper, we omit this distinction
whenever it is clear from context. We now present several simple
examples inspired by Section 2.
Application-specific peering. In Figure 1a, AS A has an outbound
policy that forwards HTTP traffic (destination port 80) and HTTPS
traffic (destination port 443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +
(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a
transport port number of 80 or 443, and the >> is the sequential
composition operator that sends the resulting packets to the fwd(B)
(or, respectively, fwd(C)) policy, which in turn modifies the packets’
location to the corresponding virtual switch. The + operator corre-
sponds to parallel composition which, given two policies, applies
them both to each packet and combines their outputs. If neither of
the two policies matches, the packet is dropped.
Inbound traffic engineering. AS B has an inbound policy that
performs inbound traffic engineering over packets coming from
ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +
(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s
top output port, and the remaining traffic (with source IP addresses
starting with 1) to B’s bottom output port. Under the hood, the SDX
runtime system “compiles” A’s outbound policy with B’s inbound
policy to construct a single policy for the underlying physical switch,
such as:

(match(port=A1, dstport=80,
srcip={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport=80,
srcip={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through mul-
tiple virtual switches (here, A and B’s switches). This policy
has a straightforward mapping to low-level rules on OpenFlow
switches [12].
Wide-area server load balancing. An AS can have a virtual switch
at the SDX without having any physical presence at the exchange
point, in order to influence the end-to-end flow of traffic. For exam-
ple, a content provider can perform server load balancing by dividing
request traffic based on client IP prefixes and ensuring connection
affinity across changes in the load-balancing policy [21]. The con-
tent provider might host a service at IP address 74.125.1.1 and
direct specific customer prefixes to specific replicas based on their
request load and geographic location:

match(dstip=74.125.1.1) >>
(match(srcip=96.25.160.0/24) >>

mod(dstip=74.125.224.161)) +
(match(srcip=128.125.163.0/24) >>

mod(dstip=74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider
fast and direct control over the traffic, in contrast to existing indirect
mechanisms like DNS-based load balancing. The content provider
issuing this policy would first need to demonstrate to the SDX that
it owns the corresponding IP address blocks.

3.2 Integration with Interdomain Routing
The ASes must define SDX policies in relation to the advertised
routes in the global routing system. To do so, the SDX allows par-
ticipating ASes to define forwarding policies relative to the current
BGP routes. To learn BGP routes, the SDX controller integrates a
route server, as shown in Figure 1b. Participants interact with the



SDX route server in the same way that they do with a conventional
route server. The SDX route server collects the routes advertised
by each participant BGP router and selects one best route for each
prefix on behalf of each participant, and re-advertises the best BGP
route on the appropriate BGP session(s). In contrast to today’s route
servers, where each participant learns and uses one route per prefix,
the SDX route server allows each participant to forward traffic to all
feasible routes for a prefix, even if it learns only one.

Overriding default BGP routes. Many ASes may be happy with
how BGP computes routes for most of the traffic. Rather than re-
quiring each AS to fully specify the forwarding policy for all traffic,
the SDX allows each AS to rely on a default forwarding policy
computed by BGP, overriding the policy as needed. In the example
in Figure 1a, AS A’s outbound policy for Web traffic (forwarding
to AS B) applies only to Web traffic; all of the remaining traffic
implicitly follows whatever best route AS A selects in BGP. This
greatly simplifies the task of writing an SDX application: the sim-
plest application specifies nothing, resulting in all traffic following
the BGP-selected routes announced by the route server. The pro-
grammer need only specify the handling of any “non-default” traffic.
For example in Figure 1b, AS A would forward any non-Web traffic
destined to IP prefix p1 or p2 to next-hop AS C, rather than to AS
B.

Forwarding only along BGP-advertised paths. The SDX should
not direct traffic to a next-hop AS that does not want to receive it. In
Figure 1b, AS B does not export a BGP route for destination prefix
p4 to AS A, so AS A should not forward any traffic (including Web
traffic) for p4 through AS B. To prevent ASes from violating these
restrictions, and to simplify the writing of applications, the SDX
only applies a match() predicate to the portion of traffic that is
eligible for forwarding to the specified next-hop AS. In Figure 1,
AS A can forward Web traffic for destination prefixes p1, p2, and p3
to AS B, but not for p4. Note that, despite not selecting AS B as the
best route for destination prefix p1 and p2, AS A can still direct the
corresponding Web traffic through AS B, since AS B does export a
BGP route for these prefixes to AS A.

Grouping traffic based on BGP attributes. ASes may wish to
express policies based on higher levels of abstraction than IP pre-
fixes. Instead, an AS could handle traffic based on the organization
managing the IP address (e.g., “all flows sent by YouTube”) or the
current AS-PATH for each destination prefix. The SDX allows a
policy to specify a match indirectly based on regular expressions
on BGP route attributes. For example, an AS could specify that
all traffic sent by YouTube servers traverses a video-transcoding
middlebox hosted at a particular port (E1) at the SDX:

YouTubePrefixes =
RIB.filter(’as_path’, .*43515$)

match(srcip={YouTubePrefixes}) >> fwd(E1)

The regular expression matches all BGP-announced routes ending
in AS 43515 (YouTube’s AS number), and generates the list of
associated IP prefixes. The match() statement matches any traffic
sent by one of these IP addresses and forwards it to the output port
connected to the middlebox.

Originating BGP routes from the SDX. In addition to forwarding
traffic along BGP-advertised paths, ASes may want the SDX to
originate routes for their IP prefixes. In the wide-area load-balancing
application, a remote AS D instructs the SDX to match request
traffic destined to an anycast service with IP address 74.125.1.1. To
ensure the SDX receives the request traffic, AS D needs to trigger a

BGP route announcement for the associated IP prefix (announce
(74.125.1.0/24)), and withdraw the prefix when it is no longer
needed (withdraw(74.125.1.0/24)). AS D could announce the
anycast prefix at multiple SDXs that each run the load-balancing
application, to ensure that all client requests flow through a nearby
SDX. Before originating the route announcement in BGP, the SDX
would verify that AS D indeed owns the IP prefix (e.g., using the
RPKI).

Integrating SDX with existing infrastructure. Integrating SDX
with existing IXP infrastructure and conventional BGP-speaking
ASes is straightforward. Any participant that is physically connected
to a SDN-enabled switch exchanges BGP routes with the SDX route
server can write SDX policies; furthermore, an AS can benefit
from an SDX deployment at a single location, even if the rest of
the ASes run only conventional BGP routing. A participant can
implement SDX policies for any route that it learns via the SDX
route server, independently of whether the AS that originated the
prefix is an SDX participant. Participants who are physically present
at the IXP but do not want to implement SDX policies see the
same layer-2 abstractions that they would at any other IXP. The
SDX controller can run a conventional spanning tree protocol to
ensure seamless operation between SDN-enabled participants and
conventional participants.

4 Efficient Compilation
In this section, we describe how the SDX runtime system compiles
the policies of all participants into low-level forwarding rules (Sec-
tion 4.1). We then describe how we made that process efficient. We
consider data-plane efficiency (Section 4.2), to minimize the number
of rules in the switches, and control-plane efficiency (Section 4.3),
to minimize the computation time under realistic workloads.

4.1 Compilation by Policy Transformation

The policies written by SDX participants are abstract policies that
need to be joined with the BGP routes, combined, and translated to
equivalent forwarding rules for the physical switch(es). We compile
the policies through a sequence of syntactic transformations: (1) re-
stricting policies according to the virtual topology; (2) augmenting
the policies with BGP-learned information; (3) extending policies to
default to using the best BGP route; and (4) composing the policies
of all the participants into one main SDX policy by emulating mul-
tiple hops in the virtual topology. Then, we rely on the underlying
Pyretic runtime to translate the SDX policy into forwarding rules
for the physical switch.

Enforcing isolation between participants. The first transforma-
tion restricts the participant’s policy so that each participant can
only act on its own virtual switch. Each port on a virtual switch cor-
responds either to a physical port at the SDX (e.g., A1 in Figure 1a)
or a virtual connection to another participant’s virtual switch (e.g.,
port B on AS A’s virtual switch in Figure 1a). The SDX runtime
must ensure that a participant’s outbound policies only apply to
the traffic that it sends. Likewise, its inbound policies should only
apply to the traffic that it receives. For example, in Figure 1a, AS
A’s outbound policy should only apply to traffic that it originates,
not to the traffic that AS B sends to it. To enforce this constraint,
the SDX runtime automatically augments each participant policy
with an explicit match() on the participant’s port; the port for the
match statement depends on whether the policy is an inbound or
outbound policy. For an inbound policy, the match() it refers to
the participant’s virtual port; for an outbound policy, it refers to the



participant’s physical ports. After this step, AS A’s outbound and
AS B’s inbound policies in Figure 1(a) become:

PA = (match(port=A1) && match(dstport=80)
>> fwd(B)) +

(match(port=A1) && match(dstport=443)
>> fwd(C))

PB = (match(port=B) && match(srcip={0/1})
>> fwd(B1)) +

(match(port=B) && match(srcip={128/1})
>> fwd(B2))

For convenience, we use match(port=B) as shorthand for match-
ing on any of B’s internal virtual port.
Enforcing consistency with BGP advertisements. The second
transformation restricts each participant’s policy based on the BGP
routes exported to the participant. For instance, in Figure 1, AS A
can only direct traffic with destination prefixes p1, p2, and p3 to AS
B, since AS B did not export a BGP route for p4 or p5 to AS A. The
SDX runtime generates a BGP filter policy for each participant based
on the exported routes, as seen by the BGP route server. The SDX
runtime then inserts these filters inside each participant’s outbound
policy, according to the forwarding action. If a participant AS A is
forwarding to AS B (or C), the runtime inserts B’s (or, respectively,
C’s) BGP filter before the corresponding forwarding action. After
this step, AS A’s policy becomes:

PA’ = (match(port=A1) && match(dstport=80) &&
(match(dstip=p1) || match(dstip=p2) ||
match(dstip=p3))

>> fwd(B)) +

(match(port=A1) && match(dstport=443) &&
(match(dstip=p1) || match(dstip=p2) ||
match(dstip=p3) || match(dstip=p4))

>> fwd(C))

AS B does not specify special handling for traffic entering its physi-
cal ports, so its policy PB’ remains the same as PB.
Enforcing default forwarding using the best BGP route. Each
participant’s policy overrides the default routing decision for a select
portion of the traffic, with the remaining traffic forwarded as usual.
Each data packet enters the physical switch with a destination MAC
address that corresponds to the BGP next-hop of the participant’s
best BGP route for the destination prefix. To implement default for-
warding, the SDX runtime computes simple MAC-learning policies
for each virtual switch. These policies forward packets from one
virtual switch to another based on the destination MAC address and
forward packets for local destinations on the appropriate physical
ports. The default policy for AS A in Figure 1(a) is:

defA = (match(dstmac=MAC_B1) >> fwd(B)) +
(match(dstmac=MAC_B2) >> fwd(B)) +
(match(dstmac=MAC_C1) >> fwd(C)) +

(match(port=A) >>
modify(dstmac=MAC_A1) >> fwd(A1))

The first part of the policy handles traffic arriving on A’s physical
port and forwards traffic to the participant with the corresponding
destination MAC address. The second part of the policy handles
traffic arriving from other participants and forwards to A’s physical
port. The runtime also rewrites the traffic’s destination MAC address
to correspond to the physical port of the intended recipient. For
example, in Figure 1, A’s diverted HTTP traffic for p1 and p2 reaches
B with C1 as the MAC address, since C is the designated BGP next-
hop for p1 and p2. Without rewriting, AS B would drop the traffic.

The runtime then combines the default policy with the corresponding
participant policy. The goal is to apply PA’ on all matching packets
and defA on all other packets. The SDX controller analyzes PA’
to compute the union of all match predicates in PA’ and applies
Pyretic’s if_() operator to combine PA’ and defA, resulting in
policy PA’’.
Moving packets through the virtual topology. The SDX runtime
finally composes all of the augmented policies into one main SDX
policy. Intuitively, when a participant A sends traffic in the SDX
fabric destined to participant B, A’s outbound policy must be applied
first, followed by B’s inbound policy, which translates to the sequen-
tial composition of both policies, (i.e., PA’’ >> PB’’). Since any
of the participant can originate or receive traffic, the SDX runtime
sequentially composes the combined policies of all participants:

SDX = (PA’’ + PB’’ + PC’’) >> (PA’’ + PB’’ + PC’’)

When the SDX applies this policy, any packet that enters the SDX
fabric either reaches the physical port of another participant or is
dropped. In any case, the resulting forwarding policy within the
fabric will never have loops. Taking BGP policies into account also
prevent forwarding loops between edge routers. The SDX enforces
two BGP-related invariants to prevent forwarding loops between
edge routers. First, a participant router can only receive traffic
destined to an IP prefix for which it has announced a corresponding
BGP route. Second, if a participant router announces a BGP route
for an IP prefix p, it will never forward traffic destined to p back to
the SDX fabric.

Finally, the SDX runtime relies on the underlying Pyretic runtime
to translate the SDX policy to the forwarding rules to install in the
physical switch. More generally, the SDX may consist of multiple
physical switches, each connected to a subset of the participants.
Fortunately, we can rely on Pyretic’s existing support for topology
abstraction to combine a policy written for a single SDX switch
with another policy for routing across multiple physical switches, to
generate the forwarding rules for multiple physical switches.

4.2 Reducing Data-Plane State
Augmenting each participant’s policy with the BGP-learned prefixes
could cause an explosion in the size of the final policy. Today’s
global routing system has more than 500,000 IPv4 prefixes (and
growing!), and large IXPs host several hundred participants (e.g.,
AMS-IX has more than 600). The participants may have different
policies, directing traffic to different forwarding neighbors. More-
over, composing these policies might also generate a “cross-product”
of their predicates if the participants’ policies match on different
fields. For instance, in Figure 1a, AS A matches on dstport, and
B on srcip. As a result, a naive compilation algorithm could easily
lead to millions of forwarding rules, while even the most high-end
SDN switch hardware can barely hold half a million rules [13].

Existing layer-two IXPs do not face such challenges because they
forward packets based only on the destination MAC address, rather
than the IP and TCP/UDP header fields. To minimize the number of
rules in the SDX switch, the SDX (1) groups prefixes with the same
forwarding behavior into an equivalence class and (2) implicitly tags
the packets sent by each participant’s border router using a virtual
MAC address. This technique substantially reduces the number of
forwarding rules, and works with unmodified BGP routers.
Grouping prefixes into equivalence classes. Fortunately, a partic-
ipant’s policy would typically treat a large number of IP prefixes the
same way. For instance, in Figure 1, AS A has the same forwarding
behavior for p1 and p2 (i.e., send Web traffic via AS B, and send



!"#$%&'()% *+%(',-$./+(01

!"

!#

!$

!%

!&

'()*"+

'()*#+

'()*$+

'()*%+

Figure 2: Multi-stage FIB for each participant, where the first stage corre-
sponds to the participant’s border router and the second stage corresponds
to the participant’s virtual switch at the SDX.

the rest via AS C). By grouping p1 and p2, we could implement
the policy with only two forwarding rules, directing traffic to AS B
and C, instead of the four currently required. We say that p1 and p2
belong to the same Forwarding Equivalence Class (FEC). An FEC is
a set of IP prefixes that share the same forwarding behavior through-
out the SDX fabric. Ideally, we would install the minimum set of
forwarding rules for each FEC, which is equivalent to the number
of forwarding actions associated with the FEC. Doing so requires
a new way to combine prefixes; conventional IP prefix aggregation
does not work because prefixes p1 and p2 might not be contiguous
IP address blocks.

Offloading tagging to the participants’ border routers. To group
non-adjacent prefixes belonging to the same FEC, we introduce the
abstraction of a multi-stage Forwarding Information Base (FIB)
for each participant, as shown in Figure 2. The first table matches
on the destination IP prefix and tags packets with the associated
FEC. Then, a second table simply matches on the tag and performs
the forwarding actions associated with the FEC. Using a multi-
staged FIB substantially reduces the number of rules in the second
table. The first table remains quite large because of the many IP
prefixes. To address this challenge, we implement the first table
using the participant’s own border router. Each border router already
maintains a forwarding table with an entry for each destination
prefix, so we can realize our abstraction without any additional table
space! Still, we need (1) a data-plane mechanism for tagging the
packets and (2) a control-plane mechanism for the SDX to instruct
the border router about which tag to use for each prefix. Ideally,
the solution to both problems would be completely transparent to
the participants, rather than requiring them to run or configure an
additional protocol (e.g., MPLS) for this purpose.

Using the MAC address as data-plane tag and the BGP next-
hop IP address for control-plane signaling. The SDX runtime
capitalizes on how BGP-speaking routers compute forwarding-table
entries. Upon choosing a BGP route for a prefix p, a router (1) ex-
tracts the next-hop IP address from the BGP route announcement,
(2) consults its ARP table to translate the IP address to the corre-
sponding MAC address, and (3) installs a forwarding-table entry that
sets the destination MAC address before directing the packet to the
output port. Usually, this MAC address corresponds to the physical
address of the next-hop interface. In the SDX though, we have the
MAC address correspond to a virtual MAC address (VMAC)—the
tag—which identifies the FEC for prefix p. The SDX fabric can
then just match on the VMAC and perform the forwarding actions
associated with the FEC. We refer to the BGP next-hop IP address
sent to the border router as the Virtual Next-Hop (VNH). Finally,
observe that we can assign the same VNH (and, hence, the same
VMAC) to disjoint IP prefixes—the address blocks need not be
contiguous.

In practice, the SDX runtime first pre-computes the FEC accord-
ing to participant policies and assigns a distinct (VNH, VMAC) pair
to each of them. It then transforms the SDX policies to match on the
VMAC instead of the destination prefixes. Finally, it instructs the
SDX route server to set the next-hop IP address (VNH) in the BGP
messages and directs its own ARP server to respond to requests for
the VNH IP address with the corresponding VMAC.

Computing the virtual next hops. Computing the virtual next-hop
IP addresses requires identifying all groups of prefixes that share the
same forwarding behavior, considering both default BGP forwarding
and specific SDX policies. To ensure optimality, we want the groups
of prefixes to be of maximal size; in other words, any two prefixes
sharing the same behavior should always belong to the same group.
The SDX runtime computes the FECs in three passes.

In the first pass, the SDX runtime extracts the groups of IP prefixes
for which the default behavior is affected in the same way by at
least one SDX outbound policy. Figure 1 shows that the group
{p1, p2, p3} has its default behavior overridden by AS A’s outbound
policies, which forward its Web traffic to AS B. Similarly, the
group {p1, p2, p3, p4} has its default behavior overridden by AS
A’s outbound policies, which forward its HTTPS traffic to AS C. All
of the prefixes except p5 have their default behavior overridden.

In the second pass, the SDX runtime groups all the prefixes that
had their default behavior overridden according to the default next-
hop selected by the route server. In the previous example, prefixes
p1, p2, p3, p4 will be divided into two groups: {p1, p2, p4} whose
default next-hop is C and {p3} whose default next-hop is B.

In the third pass, the SDX runtime combines the
groups from the first two passes into one group C =
{{p1, p2, p3},{p1, p2, p3, p4},{p1, p2, p4},{p3}}}. It then
computes C′ such that each element of C′ is the largest possible
subset of elements of C with a non-empty intersection. In the
example above, C′ = {{p1, p2},{p3},{p4}} and is the only valid
solution. Intuitively, n prefixes belonging to the same group Ci ∈C
either always appear altogether in a policy P, or do not appear
at all—they share the same forwarding behavior. We omit the
description of a polynomial-time algorithm that computes the
Minimum Disjoint Subset (MDS).

Finally, observe that we do not need to consider BGP prefixes
that retain their default behavior, such as p5 in Figure 1. For these
prefixes, the SDX runtime does not have to do any processing and
simply behaves like a normal route server, which transmits BGP
announcements with the next-hop IP address unchanged.

4.3 Reducing Control-Plane Computation

In this section, we describe how to reduce the time required for
control-plane computation. Many of these operations have a default
computation time that is exponential in the number of participants
and thus does not scale as the number of participants grows. At a
high level, the control plane performs three computation-intensive
operations: (1) computing the VNHs; (2) augmenting participants’
SDX policies; and (3) compiling the policies into forwarding rules.
The controller performs these operations both during initialization
and whenever SDX’s operational state changes. We focus primarily
on optimizing policy compilation, as this step is the most computa-
tionally intensive. We first describe optimizations that accelerate the
initial computation. We then describe optimizations that accelerate
incremental computation in response to updates (i.e., due to changes
in the available BGP routes or the SDX policies). We describe each
optimization along with the insight that enables it.



4.3.1 Optimizing initial compilation

SDX compilation requires composing the policies of every partici-
pant AS with every other participant’s policy using a combination of
sequential and parallel composition. Performing such compositions
is time-consuming, as it requires inspecting each pair of policies in-
volved to identify overlaps. As illustration, consider the final policy
computed in Section 3, without considering default forwarding (for
simplicity):

policy_composed =
(PA’’ + PB’’ + PC’’) >> (PA’’ + PB’’ + PC’’)

Since the parallel-composition operator is distributive, the compiler
can translate the policy into many pairs of sequential composition,
combined together using parallel composition. Removing terms that
apply the same policy in succession (i.e., PA’’ >> PA’’) yields:

policy_composed =
((PA’’ >> PB’’)+(PA’’ >> PC’’))+
((PB’’ >> PA’’)+(PB’’ >> PC’’))+
((PC’’ >> PA’’)+(PC’’ >> PB’’))

Compiling this policy requires executing eleven composition
operations—six sequential (two per line) and five in parallel—to
combine the intermediate results together. Fortunately, a lot of these
sequential and parallel composition can be avoided by exploiting
three observations: (1) participant policies tend to involve only a sub-
set of the participants; (2) participant policies are disjoint by design;
and (3) many policy idioms appear multiple times in the final policy.
The first observation reduces the number of sequential composition
operations, and the second reduces the number of parallel composi-
tion operations. The third observation prevents compilation of the
same policy more than once. With these optimizations, the SDX can
achieve policy compilation with only three sequential compositions
and no parallel compositions.
Most SDX policies only concern a subset of the participants. In
the IXP traffic patterns we observe, a few IXP participants carry
most of the traffic. Previous work has shown that about 95% of all
IXP traffic is exchanged between about 5% of the participants [1].
We thus assume that most SDX policies involve these few large
networks rather than all of the IXP participants. The SDX controller
avoids all unnecessary compositions by only composing policies
among participants that exchange traffic. In this example, AS B
has no outbound policy, so compositions (PB’’ >> PA’’) and
(PB’’ >> PC’’) are unnecessary. The same reasoning applies for
AS C. The SDX controller therefore reduces the policy as follows:

policy_composed =
(PA’’ >> PB’’) + (PA’’ >> PC’’) + (PC’’ >> PB’’)

which only involves three sequential composition operations.
Most SDX policies are disjoint. Parallel composition is a costly
operation that should be used only for combining policies that apply
to overlapping flow space. For policies that apply to disjoint flow
spaces, the SDX controller can simply apply the policies indepen-
dently, as no packet ever matches both policies. The policies are
disjoint by design because they differ with respect to the virtual
switch and port after the first syntactic transformation (i.e., isola-
tion). Also, the same observation applies within the policies of a
single participant. We assume that the vast majority of participants
would write unicast policies in which each packet is forwarded to
one other participant. We do not prevent participants from express-
ing multicast policies, but we optimize for the common case. As
a result, SDX policies that forward to different participants always

AMS-IX DE-CIX LINX
collector peers/total peers 116/639 92/580 71/496
prefixes 518,082 518,391 503,392
BGP updates 11,161,624 30,934,525 16,658,819
prefixes seeing updates 9.88% 13.64% 12.67%

Table 1: IXP datasets. We use BGP update traces from RIPE collectors [16]
in the three largest IXPs—AMS-IX, DE-CIX, and LINX—for January 1–6,
2014, from which we discarded updates caused by BGP session resets [23].

differ with respect to the forwarding port and are also disjoint by
construction.

Returning to the previous example, none of the parallel compo-
sitions between (PA’’ >> PC’’), (PA’’ >> PC’’), and (PC’’

>> PB’’) are necessary, since each of them always applies on
strictly disjoint portions of the flow space.

Many policy idioms appear more than once in the global policy.
The reuse of various policy idioms results from the fact that partic-
ipants exchange traffic with each other (and, more often than not,
with the same participant). For instance, in an IXP where every
participant sends to AS X, AS X’s policies would be sequentially
composed with all policies. Currently, the Pyretic compiler would
recompile the same sub-policy multiple times. It would therefore
compile PA’’, PB’’, and PC’’ twice. To accelerate compilation,
the SDX controller memoizes all the intermediate compilation re-
sults before composing the final policy.

4.3.2 Optimizing incremental updates

SDX compilation occurs not only at initialization time, but also
whenever a change occurs in the set of available BGP routes after
one or more BGP updates. Efficiently coping with these changes
is important. The SDX runtime supports fast recompilation by
exploiting three characteristics BGP update patterns: (1) prefixes
that are likely to appear in SDX policies tend to be stable; (2) most
BGP route changes only affect a small portion of the forwarding
table; and (3) BGP route changes occur in bursts and are separated by
large periods with no change at all. We draw these observations from
a week-long analysis of BGP updates collected at BGP collectors in
three of the largest IXPs in the world. Table 1 summarizes the data
that we used for this analysis.

Based on these observations, we augmented the basic SDX com-
pilation with an additional compilation stage that is invoked im-
mediately whenever BGP routes change. The main recompilation
algorithm is then executed in the background between subsequent
bursts of updates. We tune the optimization to handle changes that
result from BGP updates, because BGP updates are significantly
more frequent than changes to the participants’ SDX policies.

Prefixes that are likely to appear in SDX policies tend to be
stable. Only about 10–14% of prefixes saw any BGP updates at
all for an entire week, suggesting that most prefixes are stable.
Furthermore, previous work suggests that the stable prefixes are also
the same ones that carry the most traffic [15]. Hence, those stable
prefixes are also the ones that are likely to be associated with SDX
policies.

Most BGP update bursts affect a small number of prefix groups.
Updates and best path changes tend to occur in bursts. In 75% of
the cases, these update bursts affected no more than three prefixes.
Over one week, we observed only one update burst that triggered
updates for more than 1,000 prefixes. In the common case, the SDX
thus only needs to recompute flow table entries for a few affected
prefix groups. Even in cases where bursts are large, there is a linear
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Figure 3: The SDX controller implementation, which has two pipelines: a
policy compiler and a route server.

relationship between the burst size and recompilation time and, as
we explain next, this recompilation can occur in the background.
BGP bursts are separated by large periods with no changes, en-
abling quick, suboptimal reactions followed by background re-
optimization. We observed that the inter-arrival time between BGP
update bursts is at least 10 seconds 75% of the time; half of the
time, the inter-arrival time between bursts is more than one minute.
Such large inter-arrival times enable the SDX runtime to adopt a
two-stage compilation approach, whereby time is traded for space
by combining: (1) a fast, but suboptimal recompilation technique,
that quickly reacts to the updates; and (2) an optimal recompilation
that runs periodically in the background.

The fast stage works as follows. Whenever there is a change in
the BGP best path pertaining to a prefix p, the SDX immediately
creates a new VNH for p and recompiles the policy, considering
only the parts related to p. It then pushes the resulting forwarding
rules into the data plane with a higher priority. The computation
is particularly fast because: (1) it bypasses the actual computation
of the VNH entirely by simply assuming a new VNH is needed;
(2) it restricts compilation to the parts of the policy related to p. In
Section 6, we show that sub-second recompilation is achievable for
the majority of the updates. Although the first stage is fast, it can
also produce more rules than needed, since it essentially bypasses
VNH optimization.

5 Implementation and Deployment
We now describe the implementation of the SDX controller, as well
as our current deployment. We then describe several applications
that we have implemented with the SDX. We describe one applica-
tion with outbound traffic control (application-specific peering) and
one with inbound traffic control (wide-area load balance).

5.1 Implementation
Figure 3 shows the SDX controller implementation, which has two
main pipelines: a policy compiler, which is based on Pyretic; and
a route server, which is based on ExaBGP. The policy compiler
takes as input policies from individual participants that are written
in Pyretic—which may include custom route advertisements from

the participants—as well as BGP routes from the route server, and it
produces forwarding rules that implement the policies. The route
server processes BGP updates from participating ASes and provides
them to the policy compiler and re-advertises BGP routes to partici-
pants based on the computed routes. We briefly describe the steps
of each of these functions below.
SDX policy compiler. The policy compiler is a Pyretic process
that compiles participant policies to forwarding rules. Based on the
virtual SDX abstraction from the SDX configuration (i.e., the static
configuration of which ASes are connected to each other at layer
two), the policy compiler isolates the policies that each AS writes
by augmenting each policy with a match statement based on the
participant’s port. The compiler then restricts each participant’s
outbound policies according to the current BGP routing information
from the route server and rewrites the participant policies so that
the switch can forward traffic according to the default BGP policies.
After augmenting the policies, the compiler then computes VNH
assignments for the advertised prefixes. Finally, the compiler writes
the participant policies where necessary, taking care to avoid unnec-
essary composition of policies that are disjoint and performing other
optimizations such as caching of partial compilations, as described
in Section 4.3. It then passes the policies to the Pyretic compiler,
which generates the corresponding forwarding rules.

Because VNHs are virtual IP addresses, the controller also imple-
ments an ARP responder that responds to ARP queries for VNHs
with the appropriate VMAC addresses.
SDX route server. We implemented the SDX route server by ex-
tending ExaBGP [5], an existing route server that is implemented
in Python. As in other traditional route servers [2, 14], the SDX
route server receives BGP advertisements from all participants and
computes the best path for each destination prefix on behalf of each
participant. The SDX route server also (1) enables integration of
the participant’s policy with interdomain routing by providing ad-
vertised route information to the compiler pipeline; and (2) reduces
data-plane state by advertising virtual next hops for the prefixes
advertised by SDX participants. The SDX route server recompiles
the participants’ policies whenever a BGP update results in changes
to best routes for a prefix. When such an update occurs, the route
server sends an event to the policy handler, which recompiles poli-
cies associated with the affected routing updates. The compiler
installs new rules corresponding to the BGP update while perform-
ing the optimizations described in Section 4.3 in the background.
After compiling the new forwarding rules, the policy compiler then
sends the updated next-hop information to the route server, which
marshals the corresponding BGP updates and sends them to the
appropriate participant ASes.

5.2 Deployment
We have developed a prototype of the SDX [18] and a version that
can be deployed using virtual containers in Mininet [7]. Figure 4
shows two setups that we have created in these environments for the
purposes of demonstrating two applications: application-specific
peering and wide-area load balance. For each use case, we explain
the deployment setup and demonstrate the outcome of the running
application. For both use cases, we have deployed an SDX controller
(including route server) that is connected to an Open vSwitch soft-
ware switch. The ASes that we have connected to the Open vSwitch
at the exchange point are currently virtual (as our deployment has
no peers that carry real Internet traffic), and these virtual ASes in
turn establish BGP connectivity to the Internet via the Transit Por-
tal [19]. The client generates three 1 Mbps UDP flows, varying the
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(b) Wide-Area Load Balance.

Figure 4: Setup for deployment experiments.
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Figure 5: Traffic patterns for the two “live” SDX applications. (a) At 565
seconds, the AS C installs an application-specific peering policy, causing
port 80 traffic to arrive via AS B. At 1253 seconds, AS B withdraws its route
to AWS, causing all traffic to shift back to the path via AS A. (b) At 246
seconds, the AWS network installs a wide-area load balance policy to shift
the traffic for source 204.57.0.67 to arrive at AWS instance #2.

source and destination IP addresses and ports as required for the
demonstrations below.
Application-specific peering. Figure 4a shows an SDX setup
where we test the application-specific peering use-case described in

Section 3. The example demonstrates several features of the SDX
controller, including (1) the ability for a participant to control traffic
flows based on portions of flow space other than destination IP prefix
(e.g., port number); and (2) the SDX controller’s ability to guarantee
correct forwarding that is in sync with the advertised BGP routes.

Transit Portal deployments at the University of Wisconsin and
at Clemson University both receive a route to the Amazon prefix
hosting our Amazon Web Services (AWS) instance. They distribute
their routes to AS A and AS B, respectively. These ASes in turn
send announcements to the SDX controller, which then selects a
best route for the prefix, which it re-advertises to AS C. AS C’s
outbound traffic then flows through either AS A or AS B, depending
on the policies installed at the SDX controller.

AS C, the ISP hosting the client, installs a policy at the SDX
that directs all traffic to the Amazon /16 IP prefix via AS A, except
for port 80 traffic, which travels via AS B. To demonstrate that the
SDX controller ensures that the switch data plane stays in sync with
the BGP control plane messages, we induce a withdrawal of the
route announcement at AS B (emulating, for example, a failure).
At this point, all traffic from the SDX to AWS travels via AS A.
Figure ?? shows the traffic patterns resulting from this experiment
and the resulting traffic patterns as a result of (1) installation of the
application-specific peering policy; (2) the subsequent BGP route
withdrawal.
Wide-area load balancer. The wide-area load balancer application
also demonstrates the ability for a remote network to install a policy
at the SDX, even if it is not physically present at the exchange. Fig-
ure 4b shows an SDX setup where an AWS tenant hosts destinations
in two distinct AWS instances and wishes to balance load across
those two destinations. The AWS tenant remotely installs a policy
that rewrites the destination IP address for traffic depending on the
source IP address of the sender. Initially, traffic from the clients
of AS A directed towards the AWS tenant’s instances traverses the
SDX fabric unchanged and routed out to the Internet via AS B. After
the AWS tenant installs the load-balance policy at the SDX, traffic
that was initially destined only for AWS instance #1 is now balanced
across both of the AWS instances. Figure ?? shows the traffic rates
from the resulting experiment and how they evolve when the load
balance policy is installed at the SDX. Although this deployment
has only one SDX location, in practice the AWS tenant could ad-
vertise the same IP prefix via multiple SDX locations as an anycast
announcement, thus achieving more control over wide-area load
balance from a distributed set of locations.

6 Performance Evaluation
We now demonstrate that, under realistic scenarios, the SDX plat-
form scales—in terms of forwarding-table size and compilation
time—to hundreds of participants and policies.

6.1 Experimental Setup
To evaluate the SDX runtime, we provide realistic inputs to our com-
piler. We instantiate the SDX runtime with no underlying physical
switches because we are not concerned with evaluating forwarding
performance. We then install policies for hypothetical SDX partic-
ipants, varying both their numbers and their policies. We derive
policies and topologies from the characteristics of three large IXPs:
AMS-IX, LINX, and DEC-IX. We repeat each experiment ten times.
Emulating real-world IXP topologies. Based on the characteris-
tics of existing IXPs, we define a few static parameters, including
the fraction of participants with multiple ports at the exchange, and
the number of prefixes that each participant advertises. For example,



at AMS-IX, approximately 1% of the participating ASes announce
more than 50% of the total prefixes, and 90% of the ASes combined
announce less than 1% of the prefixes. We vary the number of
participants and prefixes at the exchange.

Emulating realistic AS policies at the IXP. We construct an ex-
change point with a realistic set of participants and policies, where
each participant has a mix of inbound and outbound policies. In-
bound policies include inbound traffic engineering, WAN load bal-
ancing, and redirection through middleboxes. Outbound policies
include application-specific peering, as well as policies that are
intended to balance transit costs. Different types of participants
may use different types of policies. To approximate this policy
assignment, we classify ASes as eyeball, transit, or content, and
we sort the ASes in each category by the number of prefixes that
they advertise. Since we do not have traffic characteristics, we use
advertised prefixes as a rough proxy. Only a subset of participants
exchange most of the traffic at the IXPs, and we assume that most
policies involve the participants who carry significant amounts of
traffic. We assume that the top 15% of eyeball ASes, the top 5% of
transit ASes, and a random set of 5% of content ASes install custom
policies:

Content providers. We assume that content providers tune out-
bound traffic policies for the top eyeball networks, which serve as
destinations for the majority of traffic flows. Thus, for each content
provider, we install outbound policies for three randomly chosen
top eyeball networks. Occasionally, content providers may wish to
redirect incoming requests (e.g., for load balance), so each content
provider installs one inbound policy matching on one header field.

Eyeballs. We assume that eyeball networks generally tune in-
bound traffic, and, as a result, most of their policies involve con-
trolling inbound traffic coming from the large content providers.
The eyeball networks install inbound policies and match on one
randomly selected header field; they do not install any outbound
policies. For each eyeball network, we install inbound policies for
half of the content providers.

Transit providers. Finally, we assume that transit networks have a
mix of inbound and outbound traffic-engineering policies to balance
load by tuning the entry point. In our experiment, each transit
network installs outbound policies for one prefix group for half of
the top eyeball networks and installs inbound policies proportional
to the number of top content providers. Again, the inbound policies
match on one header field that we select at random, and outbound
policies match on destination prefix group plus one additional header
field.

In the following subsections, we show that the required forward-
ing rules and compilation time scale proportionally with the total
number of policies for each participant.

6.2 Forwarding-Table Space

We first evaluate the number of prefix groups to implement a partic-
ular SDX policy, given a certain number of participants and prefixes.
We then quantify the number of flow rules that result from a given
number of prefix groups.

Number of prefix groups. We estimate the number of prefix groups
(and hence, VNHs) that result when the participant ASes at the SDX
apply policies to a certain number of prefixes. When policies involve
portions of flow space other than destination IP address, the number
of prefix groups can be larger than the number of participants times
the number of next-hop IP addresses at the exchange, since the
resulting policies can create more forwarding equivalence classes.
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Figure 6: Number of prefix groups as a function of the number of prefixes,
for different numbers of participants.
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Figure 7: The number of forwarding rules as a function of the number of
prefix groups for different number of participants.

To study the relationship between the number of prefixes and
the number of prefix groups, we consider the approximately 300
ASes at AMS-IX which announce more than one prefix (about
half of all ASes at the exchange). The results are similar for other
large IXPs. Each experiment has two parameters, N and x, defining
the set of ASes that participate (the top N by prefix count, for
N ∈ {100,200,300}) and the set of prefixes with SDX policies
(|px| = x ∈ [0,25000], selected at random from the default-free
routing table). In a given experiment, for AS i ∈ [1, . . . ,N], let pi
be the set of prefixes announced by AS i, and let p′i = pi∩ px. We
then run the minimum disjoint subset algorithm over the collection
P′ = {p′1, . . . , p′N}, yielding the set of prefix groups.

Figure 6 shows that the number of prefix groups is sub-linear in
the number of prefixes. As the number of prefixes to which SDX
policies are applied increases, more prefixes are advertised by the
same number of participants, thereby increasing the likelihood that
the advertised prefixes are part of the same forwarding equivalence
class. We also note that the number of prefix groups is significantly
smaller than the number of prefixes, and that the ratio of prefix
groups to prefixes decreases as the number of prefixes increases,
indicating good scaling properties.

Number of forwarding rules. Figure 7 shows how the number
of forwarding rules varies as we increase the number of prefix
groups, for different numbers of participants. We select the number
of prefix groups based on our analysis of the prefix groups that
might appear in a typical IXP (Figure 6). We run the experiment as
described above, selecting participant ASes according to common
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Figure 8: Compilation time as a function of the number of prefix groups, for
different numbers of participants.

policies at IXPs. The number of forwarding rules increases roughly
linearly with the number of prefix groups. Because each prefix
group operates on a disjoint portion of the flow space, the increase
in forwarding rules is linear in the number of prefix groups.

6.3 Compilation Time
We measure the compilation time for two scenarios: (1) initial
compilation time, which measures the time to compile the initial set
of policies to the resulting forwarding rules; and (2) incremental
compilation time, which measures how long it takes to recompute
when changes occur.

Initial compilation time. Figure 8 shows how the time to com-
pute low-level forwarding rules from higher-level policies varies
as we increase both the number of prefix groups and IXP partici-
pants. The time to compute the forwarding rules is on the order of
several minutes for typical numbers of prefix groups and partici-
pants. The results also show that compilation time increases roughly
quadratically with the number of prefix groups. The compilation
time increases more quickly than linearly because, as the number of
prefix groups increases, the interactions between policies of pairs of
participants at the SDX also increases. The time for the SDX to com-
pute VNHs increases non-linearly as the number of participants and
prefix groups increases. We observed that for 1,000 prefix groups
and 100 participants, VNH computation took about five minutes.

As discussed in Section 4.3, the SDX controller achieves faster
compilation by memoizing the results of partial policy compilations.
Supporting caching for 300 participants at the SDX and 1,000 prefix
groups could require a cache of about 4.5 GB. Although this require-
ment may seem large, it is on the order of the amount of memory
required for a route server in a large operational IXP today.

Incremental compilation time. Recall that in addition to comput-
ing an initial set of forwarding table rules, the SDX controller must
recompile them whenever the best BGP route for a prefix changes
or when any participant updates its policy. We now evaluate the ben-
efits of the optimizations that we discussed in Section 4.3 in terms
of the savings in compilation time. When new BGP updates arrive
at the controller, the controller must recompute VNH IP addresses
for the affected routes to establish new prefix groups.

Figure 9 shows the number of additional rules that are generated
when a “burst” of BGP updates of a certain size arrives. These
rules must reside in the forwarding table until the SDX controller
recomputes the minimum disjoint set. The figure represents a worst-
case scenario, whereby each BGP update results in a change to the
best path and, hence, an additional VNH in the table, causing a
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Figure 9: Number of additional forwarding rules.
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Figure 10: Time to process a single BGP update for various participants.

number of additional forwarding rules that depends on the number
of participants with policies installed. In practice, as we discussed
in Section 4.3, not every BGP update induces changes in forwarding
table entries. When a BGP update arrives, the SDX controller installs
additional flow table rules for the affected flows and computes a new
optimized table in the background to ultimately coalesce these flows
into the smaller, minimal forwarding tables. As shown in Figure 10,
re-computing the tables takes less than 100 milliseconds most of the
time.

7 Related Work
We briefly describe related work in SDN exchange points, interdo-
main route control, and policy languages for SDNs.
SDN-based exchange points. The most closely related work is
Google’s Cardigan project [22], which shares our broad goal of using
SDN to enable innovation at IXPs. Cardigan runs a route server
based on RouteFlow [17] and uses an OpenFlow switch to enforce
security and routing policies. The Cardigan project is developing
a logical SDN-based exchange point that is physically distributed
across multiple locations. Unlike the SDX in this paper, Cardigan
does not provide a general controller for composing participant
policies, offer a framework that allows IXP participants to write
policies in a high-level language, or introduce techniques for scaling
to handle a large number of participants and policies.
Interdomain route control. Previous work on applying SDN to
interdomain routing has focused on how to use the separation of data
and control planes to improve the manageability of routing within a
single AS [8, 9]. Similarly, earlier work such as the Routing Control
Platform (RCP) developed a BGP route controller for influencing



route selection within a single AS and enabled various functions,
such as re-routing traffic within an AS in the event of attack or
traffic surge [3]. These systems apply SDN to help operators route
interdomain traffic more efficiently within an AS, but they do not
provide a way for multiple ASes to independently define policies
which can then be composed into a single coherent forwarding
policy for forwarding traffic between ASes. Previous work has also
proposed outsourcing end-to-end path selection to third parties with
an SDN controller [10, 11], but unlike SDX, these systems require
ASes to modify their existing routing infrastructure.
Policy languages for SDNs. SDX takes advantage of recent ad-
vances in programming languages for SDNs that allow opera-
tors to express policies at a higher level of abstraction than flow
rules [6, 12, 20]. In particular, Pyretic provides both topology ab-
straction and composition operators that we take advantage of when
implementing the SDX policy compiler. It is worth pointing out,
of course, that these languages only make it possible to imple-
ment something like the SDX—as discussed in Section 5, Pyretic
is merely the language that we use to encode SDX policies, but the
controller must first perform syntactic transformation and incorpo-
rate BGP routing information to ensure forwarding according to
AS policies that is congruent with the BGP routes that the SDX
participants advertise.

8 Conclusion
SDX can break the logjam on long-standing problems in interdomain
routing by enabling entirely new policies with fine-grained control
over packet handling. The SDX supports policies that match and act
on multiple header fields, and allow ASes to have remote control
over the traffic. The SDX addresses many of the challenges of
an SDN-enabled IXP. The virtual switch abstraction ensures that
ASes cannot see or control aspects of interdomain routing outside
of their purview. Policy compilation allows the SDX controller to
combine policies, resolving conflicts that arise between participants.
The SDX policy compilation algorithm ensures that forwarding is
consistent with BGP route advertisements; various optimizations
ensure that SDX policies can be efficiently compiled to flow rules;
and that these rules can be updated quickly when policies or BGP
routes change. We have run experiments with the SDX in both
controlled settings and in the wide area, and we have released a
preliminary version of the SDX controller [18]. In ongoing work, we
are working with a large regional IXP to deploy OpenFlow switches
and our SDX controller for an initial deployment of interdomain
routing applications beyond BGP.

As demand grows for more flexible data-plane functionality, we
believe that BGP should also evolve to support richer patterns (be-
yond destination prefix) and actions (beyond selecting a single next-
hop). We also envision that participant ASes might eventually write
policies not only to control how traffic flows between ASes, but also
to control how traffic flows through middleboxes (and other cloud-
hosted services) along the path between source and destination,
thereby enabling “service chaining” through middleboxes.
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