
Sonata:Query-Driven Streaming Network Telemetry
Arpit Gupta

Princeton University

Rob Harrison

Princeton University

Marco Canini

KAUST

Nick Feamster

Princeton University

Jennifer Rexford

Princeton University

Walter Willinger

NIKSUN Inc.

ABSTRACT
Managing and securing networks requires collecting and

analyzing network traffic data in real time. Existing teleme-

try systems do not allow operators to express the range of

queries needed to perform management or scale to large traf-

fic volumes and rates. We present Sonata, an expressive and

scalable telemetry system that coordinates joint collection

and analysis of network traffic. Sonata provides a declarative

interface to express queries for a wide range of common

telemetry tasks; to enable real-time execution, Sonata parti-

tions each query across the stream processor and the data

plane, running as much of the query as it can on the network

switch, at line rate. To optimize the use of limited switch

memory, Sonata dynamically refines each query to ensure

that available resources focus only on traffic that satisfies the

query. Our evaluation shows that Sonata can support a wide

range of telemetry tasks while reducing the workload for the

stream processor by as much as seven orders of magnitude

compared to existing telemetry systems.

CCS CONCEPTS
• Networks→ Network monitoring;

KEYWORDS
analytics, programmable switches, stream processing

ACM Reference Format:
Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer

Rexford, and Walter Willinger. 2018. Sonata: Query-Driven Stream-

ing Network Telemetry. In SIGCOMM ’18: ACM SIGCOMM 2018
Conference, August 20–25, 2018, Budapest, Hungary.ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3230543.3230555

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00

https://doi.org/10.1145/3230543.3230555

1 INTRODUCTION
Network operators routinely perform continuous monitor-

ing to track events ranging from performance impairments

to attacks. This monitoring requires continuous, real-time

measurement and analysis—a process commonly referred

to as network telemetry [55]. Existing telemetry systems can

collect and analyze measurement data in real time, but they

either support a limited set of telemetry tasks [34, 40], or

they incur substantial processing and storage costs as traffic

rates and queries increase [7, 10, 58].

Existing telemetry systems typically trade off scalabil-

ity for expressiveness, or vice versa. Telemetry systems

that rely on stream processors alone are expressive but not

scalable. For example, systems such as NetQRE [58] and

OpenSOC [40] can support a wide range of queries using

stream processors running on general-purpose CPUs, but

they incur substantial bandwidth and processing costs to do

so. Large networks can require performing as many as 100

million operations per second for rates of 1 Tbps and packet

sizes of 1 KB. Scaling to these rates using modern stream pro-

cessors is prohibitively costly due to the lower (2–3 orders of

magnitude) processing capacity per core [37, 39, 41, 59]. On

the other hand, telemetry systems that rely on programmable

switches alone can scale to high traffic rates, but they give

up expressiveness to achieve this scalability. For example,

Marple [34] and OpenSketch [56], can perform telemetry

tasks by executing queries solely in the data plane at line

rate, but the queries that they can support are limited by the

capabilities and memory in the data plane.

Rather than accepting this apparent tradeoff between ex-

pressiveness and scalability, we observe that stream proces-

sors and programmable switches share a common processing

model; they both apply an ordered set of transformations

over structured data in a pipeline. This commonality sug-

gests that an opportunity exists to combine the strengths of

both technologies in a single telemetry system that supports

expressive queries, while still operating at line rate for high

traffic volumes and rates.

To explore this idea, we develop Sonata (Streaming Net-

work Traffic Analysis), a query-driven network telemetry

system. Figure 1 shows the design of Sonata: it provides

a declarative interface that can express queries for a wide

https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3230543.3230555

Query1

Packet
Tuples

Query2 Queryn

Runtime

Programmable Switch

…

Switch
Configs

Results

Packets In Packets Out

Stream
Processor

Figure 1: Sonata architecture.

range of telemetry tasks and also frees the network operator

from reasoning about where or how the query will execute.

To scale query execution, Sonata (1) makes use of both pro-

grammable data-plane targets and scalable stream proces-

sors and (2) iteratively zooms-in on subsets of traffic that

satisfy the query—making the best use of limited data-plane

resources. By unifying stream processing and data-plane ca-

pabilities, Sonata’s runtime can refine query execution in the

data plane to reduce load on the stream processor. This ability

to dynamically refine queries is important because telemetry

queries often require finding “needles in a haystack” where

the fraction of total traffic or flows that satisfies these queries

is tiny. We present the following contributions:

Unified query interface. (Section 2) We design a query

interface that unifies the parsing and compute capabilities

of a programmable switch with those of stream processors.

This interface allows network operators to apply familiar

dataflow operators (e.g., map, filter, reduce) over arbitrary

combinations of packet fields without regard for where the

query will execute. We show that a wide-range of network

telemetry tasks can be expressed in fewer than 20 lines of

Sonata code (Table 3).

Query partitioning based on data-plane constraints.
(Section 3) To reduce load on the stream processor, we design

an algorithm that partitions queries between the switch and

the stream processor.We first show how dataflow queries can

be partitioned without compromising accuracy. However,

data-plane resources, such as switch memory and processing

stages, are quite limited and inelastic by design. To make the

best use of these resources, we develop an accurate model of

common data-plane resource constraints and show how high-

level dataflow operators consume these resources. Sonata’s

query planner uses this model to decide how to partition

query execution between the switch and stream processor.

Dynamic query refinement based on query and work-
load. (Section 4) To efficiently use limited switch resources,

we develop a dynamic refinement algorithm that ignores

most of the traffic and only focuses on the subsets of traffic

that actually satisfy a query. We show that this technique

applies to a wide range of telemetry queries and demon-

strate how Sonata’s query planner considers the structure

of queries and representative traffic traces to compute a re-

finement plan for each query.

Modular and extensible software architecture. (Sec-

tion 5) To support different types of data-plane and streaming

targets, we design Sonata so that it could be extended to sup-

port operations over arbitrary packet fields. The queries

expressed using the Sonata interface are agnostic to the

underlying switch and streaming targets. Our current pro-

totype implements drivers for both hardware (e.g., Bare-

foot Tofino [49]) and software (e.g., BMV2 [50]) protocol-

independent switches as well as the Spark Streaming [48]

stream processor. The current prototype parses packet head-

ers for standard protocols and can be extended to extract

other information, such as queue size along a path [19].

The Sonata prototype is publicly available on Github [52],

and consists of about 9, 000 lines of code; it currently com-

piles queries to a single programmable switch. We use real

packet traces from operational networks to demonstrate that

Sonata’s query planner reduces the load on the stream pro-

cessor by as much as seven orders of magnitude over existing
telemetry systems (Section 6). We also quantify how Sonata’s

performance gains depend on data-plane constraints and traf-

fic dynamics. To date, our open-source software prototype

has been used by both researchers at a large ISP and in a

graduate networking course [5].

2 UNIFIED QUERY INTERFACE
This section presents Sonata’s query interface and shows

example queries to illustrate the types of queries that existing

systems can and cannot support. Sonata provides a query

interface that is as expressive as modern stream processors

but opportunistically achieves the scalability of data-plane

execution. Although Sonata uses programmable switches

to scale query execution, the expressiveness of its query

interface does not depend on the computational capabilities

of these switches. Sonata’s stream processor simply executes

the operations for which no more data-plane resources are

available or which are not supported by the switch (e.g.,

payload processing or floating-point arithmetic).

2.1 Dataflow Queries on Tuples
Extensible tuple abstraction. Information in packet head-

ers naturally constitute key-value tuples (e.g., source and

destination IP address, and other header values). This struc-

ture lends itself to a tuple-based abstraction [16]. Of course,

an operator may want to write queries based on information

that is not in the IP packet header, such as the application

protocol, or DNS query type. To facilitate a broader range

1 packetStream (W)
2 . filter (p => p . tcp . flags == 2)
3 . map (p => (p . dIP, 1))
4 . reduce (keys =(dIP,) , f=sum)
5 . filter ((dIP, count) => count > Th)

Query 1: Detect Newly Opened TCP Connections.

of queries, Sonata allows an operator to extend the tuple

interface to include other fields that could be extracted by

either the programmable switch or the stream processor. For

example, they can specify customized packet-parsing opera-

tions for programmable switches in a language such as P4.

Based on such a specification, the parser can extract all por-

tions of the packet that pertain to the query. Sonata parses

tuples on the switch whenever possible, shunting packets to

the stream processor only when the query requires sophisti-

cated parsing (e.g., parsing of the packet’s payload) or join

operations that the switch itself cannot support.

Expressive dataflow operators. Many network telemetry

tasks require computing aggregate statistics over a subset of

traffic and joining the results from multiple queries, which

can be expressed as a sequential composition of dataflow op-

erators (e.g., filter, map, reduce). Gigascope [10], Chimera [7],

and Marple [34] all use such a programming model, which is

both familiar and amenable for compilation to programmable

switches [34]. Section 3 describes how Sonata compiles

queries across the stream processor and switch. We include

an overview of all the operators Sonata suports in an ex-

tended technical report [42]. Stateful dataflow operators are

all executed with respect to a query-defined time interval, or

window. For example, applying reduce over a sum operation

will return a result at the end of each window. Each query

can explicitly specify the interval’s duration for stateful op-

erations.

Limitations. Sonata supports queries operating at packet-
level granularity, as in existing declarative telemetry sys-

tems [7, 10, 34, 40]; it cannot support queries that require

reassembling a byte stream, as in Bro [43]. Sonata also cur-

rently compiles each query to a single switch, not across
multiple switches. We leave compiling arbitrary queries to

multiple switches as future work, but the set of single-switch

queries considered in this paper is nonetheless directly ap-

plicable to real-world deployments such as a border switch

or an Internet exchange point (IXP).

2.2 Example Network Telemetry Queries
We now present three example queries: one that executes

entirely in the data plane, a second that involves a join of two

sub-queries, and a third that requires parsing packet payloads.

Table 3 summarizes the queries that we have implemented

and released publicly along with the Sonata software [53].

Computing aggregate statistics over a subset of traffic.
Suppose that an operator wants to detect hosts that have

too many recently opened TCP connections, as in a SYN

flood attack. Detection requires parsing each packet’s TCP

flags and destination IP address, as well as computing a sum

over the destination IP address field. Query 1 first applies a

filter operation (line 2) over the entire packet stream to

select TCP packets with just the SYN flag set. It then counts

the number of packets it observed for each host (lines 3–4)

and reports the hosts for which this count exceeds threshold

Th at the end of the window (line 5). This query can be

executed entirely on the switch, so existing systems (e.g.,

Marple [34]) can also execute this type of query at scale.

Joining the results of twoqueries. Amore complex query

involves joining the results from two sub-queries. To detect

a Slowloris attack [45], a network operator must identify

hosts which use many TCP connections, each with low traf-

fic volume. This query (Query 2) consists of two sub-queries:

the first sub-query counts the number of unique connections

by applying a distinct, followed by a reduce (lines 1–6).

The second sub-query counts the total bytes transferred for

each host (lines 8–11). The query then joins the two results

(line 7) to compute the average connections per byte (line 12)

and reports hosts whose average number of connections per

byte exceeds a threshold Th2 (line 13). Marple [34] cannot

support this query as it applies a join after an aggregation

operation (reduce). Also, this query cannot be executed en-

tirely in the data plane as computing an average requires

performing a division operation. Even state-of-the-art pro-

grammable switches (e.g., Barefoot Tofino [49]) do not sup-

port the division operation in the data plane. In general,

existing approaches that only use the data plane for query

execution cannot support queries that require complex op-

erations that cannot be executed in the switch. In contrast,

Sonata’s query planner partitions the query for partial execu-

tion on the switch and performs more complex computations

at the stream processor.

Although this query is written to detect hosts for which

the average bytes per connection exceeds a threshold, it is

equivalent to detecting hosts for which the average bytes

per connection is less than a different threshold; we explain

in Section 4 why it is desirable to express this query using a

“greater than” instead of a “less than” condition.

Processing packet payloads. Consider the problem of de-

tecting the spread of malware via telnet [35], which is a

common tactic targeting IoT devices [1]. Here, miscreants

use brute force to gain shell access to vulnerable Internet-

connected devices. Upon successful login, they issue a se-

quence of shell commands, one of which contains the key-

word “zorro.” The query to detect these attacks first looks

1 packetStream
2 . filter (p => p . proto == TCP)
3 . map (p => (p . dIP,p . sIP,p . tcp . sPort))
4 . distinct ()

5 . map ((dIP,sIP,sPort) => (dIP,1))
6 . reduce (keys =(dIP,) , f=sum)
7 . join (keys =(dIP,) , packetStream
8 . filter (p => p . proto == TCP)
9 . map (p => (p . dIP,p . pktlen))
10 . reduce (keys =(dIP,) , f=sum)
11 . filter ((dIP, bytes) => bytes > Th1))

12 . map ((dIP, (byte,con)) => (dIP, (con / byte))
13 . filter ((dIP, con / byte) => (con / byte > Th2)

Query 2: Detect Slowloris Attacks.

1 packetStream
2 . filter (p => p . tcp . dPort == 23)
3 . join (keys =(dIP,) , packetStream
4 . filter (p => p . tcp . dPort == 23)
5 . map (p => ((p . dIP,p . nBytes / N) , 1))
6 . reduce (keys =(dIP, nBytes) , f=sum)
7 . filter (((dIP,nBytes) ,cnt1) => cnt1 > Th1))
8 . filter (p => p . payload . contains (' zorro '))

9 . map (p => (p . dIP,1))
10 . reduce (keys =(dIP,) , f=sum)
11 . filter ((dIP, count2) => count2 > Th2)

Query 3: Detect Zorro Attacks.

for hosts that receive many similar-sized telnet packets fol-

lowed by a telnet packet with a payload containing the key-

word “zorro.” The query for this task has two sub-queries

(Query 3): the first part identifies hosts that receive more

than Th1 similar-sized telnet packets rounded off by a factor

of N (lines 4–7). The second part joins (line 3) the output of

the first sub-query with the other and reports hosts that re-

ceive more than Th2 packets and contain the keyword “zorro”
in the payload (lines 8–11). Since this query requires parsing

packet payloads, many existing approaches cannot support

it. In contrast, Sonata can support and scale these queries by

performing as much computation as possible on the switch

and then performing the rest at the stream processor.

3 QUERY PARTITONING
Sonata partitions a given query across a stream processor

and a protocol-independent switch that performs part of

the query, ultimately reducing the load (Section 3.1) on the

stream processor. Section 3.2 discusses the constraints of

these switches that the Sonata query planner considers;

the planner solves an optimization problem to partition the

query, as described in Section 3.3.

3.1 Data Reduction on the Switch
A central contribution of Sonata is to use the capabili-

ties of programmable switches to reduce the load on the

stream processor. In contrast to conventional switches,

Deparser

Filter Reduce

Parser
Pktin Pktout

PHVin PHVout

Register

Filter

M A M A M A M A M A M A

Map

Emit

Stage 0 Stage 1 Stage 2 Stage 3

Figure 2: Compiling a dataflow query (Query 1) to a sequence
of match-action tables for a PISA switch. Each query consists
of an ordered sequence of dataflow operators, which are then
mapped to match-action tables in the data plane.

protocol-independent switch architecture (PISA) switches

(e.g., RMT [9], Barefoot Tofino [20], Netronome [54]) offer

programmable parsing and customizable packet-processing

pipelines, as well as general-purpose registers for stateful

operations. These features provide opportunities for Sonata

to perform more of the query on the switch, reducing the

amount of data sent to the stream processor.

3.1.1 Abstract Packet Processing Model. Figure 2 shows
how Query 1 naturally maps to the capabilities of the packet

processing model of a PISA switch. On PISA switches, a re-

configurable parser constructs a packet header vector (PHV)

for each incoming packet. The PHV contains not only fixed-

size standard packet headers but also custom metadata for

additional information such as queue size. A fixed number

of physical stages, each containing one match-action unit

(MAU), then processes the PHVs. The packet processing

pipeline is a sequence of custom match-action tables; MAUs

implement these abstract tables in hardware. Each MAU

performs a self-contained set of match-action operations,

consuming PHVs as input and emitting transformed PHVs as

output. If fields in the PHV match a given rule in the MAU,

then a set of custom actions corresponding to that rule are

applied to the PHV. These actions can be stateless or state-

ful; the stateful operations use register memory to maintain

state. Finally, a deparser reassembles the modified PHV into

a packet before sending it to an output port.

The PISA processing model aligns well with streaming

analytics platforms such as Spark Streaming [59] or Apache

Flink [38]. The processing pipelines for both can be repre-

sented as a directed, acyclic graph (DAG) where each node

in the graph performs some computation on an incoming

stream of structured data. For stream processors, the nodes in

the DAG are dataflow operators and the stream of structured

data consists of tuples. For PISA switches, the nodes in the

DAG are match-action tables and the stream of structured

data consists of packets. Given this inherent similarity, an

ordered set of dataflow query operators could map to an

ordered set of match-action tables in the data plane. We now

describe how Sonata takes advantage of this similarity to

execute dataflow operators directly in the data plane.

3.1.2 Compiling Each Operator. Compiling dataflow

queries to PISA switches requires translating the DAG of

dataflow operators into an equivalent DAG of match-action

tables. Prior work [34] also faced the challenge of compiling

high-level queries to match-action tables, but limited the set

of input queries to those that can be performed entirely on

the switch. Rather than constraining the set of input queries,

Sonata’s query planner partitions all input queries into a set

of dataflow operators than can be executed on the switch

and a set that must be executed at the stream processor.

Before Sonata’s query planner can make this partitioning

decision, it must first quantify the resource requirements for

individual dataflow operators.

Filter requires a single match-action table to match a set of

fields in the PHV. For example, line 1 of Query 1 requires a

single match-action table where the six-bit tcp.flags field

is a column and the value 2 is a single rule (row), as shown

in Figure 2. In general, the match-action table for a filter
operation has a column for each field in the predicate. A filter

predicate with multiple clauses connected by “and” leads to

multiple rules, one per clause.

Map also requires a single match-action table. For example,

line 2 of Query 1 transforms all incoming packets into a tuple

consisting of the ipv4.dIP field from the packet’s header

and the value 1. These values are stored in query-specific

metadata for further processing. Although Sonata’s query

interface does not constrain the transformations that map
might perform over a set of tuples, the operator cannot be

compiled to the data plane if the switch cannot perform the

corresponding transformation.

Reduce requires maintaining state across sequences of pack-

ets; Sonata uses registers, which are simply arrays of values

indexed by some key, to do so. Query-specific metadata fields

permit loading and storing values from the registers. As a re-

sult, stateful operations require two match-action tables: one

for computing the index of the value stored in the register

and the other for updating state using arithmetic and logic

operators supported by the switch, such as add and bit_or.
A corresponding metadata field carries the updated state

after applying the arithmetic operation. For example, exe-

cuting the reduce operator for Query 1 in Figure 2 requires

a match-action table to compute an index into the register

using the dIP header field. A second table performs the state-

ful action that increments the indexed value in the register

and stores the updated value. In Section 3.3, we describe how

Sonata’s query planner uses representative training data to

configure the number of entries for each register.

Distinct operations are similar to a reduce, where the func-
tion bit_or (with argument 1) is applied to a single bit.

Join operations are costly to execute in the data plane. In the

worst case, this operation maintains state that grows with

the square of the number of packets. Sonata executes join

operations at the stream processor by iteratively dividing the

query into a set of sub-queries. For example, Sonata divides

Query 2 into two sub-queries: one that computes the number

of unique connections, and a second that computes the num-

ber of bytes transferred for each host. Sonata independently

decides how to execute the two sub-queries and ultimately

joins their results at the stream processor.

3.1.3 Compiling Dataflow Queries. In addition to map-

ping individual dataflow operators to match-action tables,

the resulting data-plane mapping must be synthesized in a

way that respects the following additional considerations.

Preserving packet forwarding decisions. Sonata pre-

serves packet forwarding decisions by transforming only

query-specific metadata fields, rather than the packet con-

tents that might affect forwarding decisions (e.g., destination

address, application headers, or even payload). The switch

extracts values from the packets’ original header fields and

copies them to auxiliary metadata fields before performing

any additional processing. This process leaves the original

packet unmodified.

Reporting intermediate results to the stream proces-
sor. When a query is partitioned across the stream processor

and the switch, the stream processor may need either the

original packet or just an intermediate result from the switch,

so that it can perform its portion of the query. To facilitate

this reporting, the switch maintains a one-bit report field
in the metadata for each packet. Each query partitioned to

the switch marks this field whenever a query-specific con-

dition is met that requires a packet be sent to the stream

processor. If this field is set at the conclusion of the entire

processing pipeline, the switch sends to the stream processor

all intermediate results needed to complete processing the

query, including the original packet if needed by the query.

If the last operator is stateful (e.g., reduce), then the switch

sends only one packet for each key to the stream processor.

This informs the stream processor which register indices in

the data plane must be polled at the end of each window to

retrieve aggregated values stored in the switch (see Section 5

for details).

Detecting and mitigating hash collisions. Sonata must

detect and mitigate hash collisions that may result at the

switch. The probability of a hash collision is proportional

to the number of hashes performed on unique keys and the

size of the output hash as a consequence of the pigeonhole

principle. In theory, a 32-bit hash has a 50% chance of a

collision after hashing fewer than 80,000 keys. Since true

hash-tables with collision resolution are not available on

the switch, we instead use registers with hash-based indices.

In practice, these registers contain far fewer rows than the

number of unique values in the hash output, making colli-

sions even more likely. To detect collisions, switches store

the original key when performing reduce and distinct op-
erations. To mitigate collisions, Sonata uses a sequence of

up to d registers, each using a different hash function for

determining indices. If a key generates a collision, Sonata

iterates through each of the d registers, storing the key in

the first register that does not result in a collision. If after

iterating through all d registers, the key still generates a

collision, Sonata sends the packet to the stream processor.

At the end of each window, the stream processor adjusts the

results received from the switch with the additional packets

processed due to collisions.

3.2 Data-Plane Resource Constraints
Sonata’s query planner must consider the finite resource

constraints of PISA switches for parsing packet header fields,

performing actions on packets, storing state in register mem-

ory and performing all of these operations in a limited num-

ber of stages.

Parser. The cost of parsing increases with the number of

fields to extract from the packet. This cost is quantified as

the number of bits to extract and the depth of the parsing

tree. The size of the PHV limits the number of fields that can

be extracted for processing. Typically, PISA switches have

PHVs about 0.5–8 Kb [9] in size. LetM denote the maximum

storage for metadata in the PHV.

Actions. Most stream processors execute multiple queries

in parallel, where each query operates over its own logical

copy of the input tuple. In contrast, PISA switches transform

raw packets to PHVs and then concurrently apply multiple

operations over the PHV in pipelined stages. These mech-

anisms suggest that PISA switches would be amenable to

parallel query execution. In practice, there is a limit on how

many actions can be applied over a PHV in one stage, which

limits the number of queries that can be supported in the

data plane. Typically, PISA switches support 100–200 state-

less and 1–32 stateful actions per stage [9]; we denote the

maximum number of stateful actions per stage as A.
Registers. The amount of memory required to perform

stateful operations grows with the number of packets and

the number of queries. Stream processors scale by adding

more nodes for maintaining additional state. In contrast,

stateful operations in PISA switches can only access register

memory locally available to their physical stage. This register

memory is bounded for each stage, which affects the switch’s

ability to handle both increased traffic loads and additional

queries. Within a stage, the amount of memory available to

a single register is also bounded. Typically, PISA switches

support 0.5–32 Mb memory for each stage [9]. Let B denote

the maximum number of register bits available in each stage.

Stages. Queries that lack available resources in a given stage
must execute in a later stage. PISA switches typically support

Switch Constraints
M Amount of metadata stored in switch.

A Number of stateful actions per stage.

B Register memory (in bits) per stage.

S Number of stages in match-action pipeline.

Input from Queries
Oq Ordered set of dataflow operators for query q.
Tq Ordered set of match-action tables for query q.
Mq Amount of metadata required to perform query q.
Zt Indicates whether table t performs a stateful operation.

Input fromWorkload
Nq,t Number of packets generated after table t of query q.
Bq,t State (bits) required for executing table t of query q.
Output
Pq,t Indicates whether t is the last table partitioned to the

switch for query q.
Xq,t,s Indicates whether table t of query q executes at stage s

in the switch.

Sq,t Stage id for table t for query q.

Table 1: Summary of variables in the query planning problem.

1–32 physical stages [9]; we denote the maximum number

of stages as S .

3.3 Computing Query Partitioning Plans
Consider a switch with S = 4 stages, B = 3, 000 Kb, andA = 4

stateful actions per stage. These constraints are more strict

than Barefoot’s Tofino switch [49], but they illustrate how

the data-plane resource constraints affect query planning.

Sonata runs Query 1 over a one-minute packet trace from

CAIDA [11] to compute that the switch requires 2, 500 Kb to
count the number of TCP SYN packets per host (Figure 5).

Since 2, 500 Kb < B, Sonata can execute the entire query on

the switch, sending only the 77 tuples that satisfy the query

to the stream processor. If B or S were smaller, Sonata could

not execute the reduce operator on the switch and would

need to partition the query. The rest of this section describes

how Sonata computes such query plans.

Sonata’s query planner solves an Integer Linear Program

(ILP) that minimizes the number of packet tuples sent to the

stream processor based on a partitioning plan, subject to

switch constraints, as summarized in Table 2. Our approach

is inspired by previous work on a different problem that

partitions multiple logical tables across physical tables [22].

Table 1 summarizes the variables in the query planning prob-

lem. To select a partitioning plan, the query planner deter-

mines the capabilities of the underlying switch, estimates the

data-plane resources needed to execute individual queries,

and estimates the number of packets sent to the stream pro-

cessor given a partitioning of operators on the switch.

Input. For the set of input queries (Q), Sonata interacts with

the switch to compile the ordered set of dataflow operators

(Oq) in each query q to an ordered set of match-action tables

(Tq) that implement the operators on the switch. In some

cases, more than one dataflow operator can be compiled to

the same table. For instance, the filter operator that checks

Goal
min (N =

∑
q

∑
t
Pq,t · Nq,t)

Constraints

C1 :
∀s :

∑
q

∑
Tq

Xq,t,s · Bq,t ≤ B

C2 :
∀s :

∑
q

∑
Tq

Zt · Xq,t,s ≤ A

C3 : ∀q, t : Sq,t < S
C4 : ∀q, i < j, i, j ∈ Tq : Sq, j > Sq,i

C5 :
∀q :

∑
q

Mq ≤ M

Table 2: ILP formulation for the query partitioning problem.

the threshold after the reduce in Query 1 can be compiled

to the same table as the reduce operator. Zt indicates to

the query planner whether a given table contains a stateful

operator.

Using training data in the form of historical packet traces,

the query planner estimates the number of packet tuples

(Nq,t) sent to the stream processor and the amount of state

(Bq,t) required to execute table t for query q on the switch.

The planner applies all of the packets in the historical traces

to each query q. After applying each table t that contains a
stateful operator, the planner estimates the amount of state

required to perform the stateful operation based on the total

number of keys processed in the historical traces. It also

estimates the number of packets sent to the stream processor

(Nq,t) after table t processes the packets from the historical

traces. The planner divides the historical traces into time

windows of sizeW , computes Bq,t and Nq,t per window, and

inputs the median value across all intervals to the ILP.

Objective. The objective of Sonata’s query planning ILP is

to minimize the number of packets processed by the stream

processor. The query planner models this objective by in-

troducing a binary decision variable Pq,t that captures the
partitioning decision for each query; Pq,t = 1 one if t is the
last table for query q that is executed on the switch. For each

query, only one table corresponding to one operator can be

set as the last table on the switch:

∑
Tq Pq,t ≤ 1. The total

number of packets processed by the stream processor is then

the sum of all packets emitted by the last table processed on

the switch for all queries.

Switch constraints. To ensure that Sonata respects the

constraints from Section 3.2, we introduce variables X and

S . Xq,t,s is a binary variable that reflects stage assignment:

Xq,t,s = 1 only if table t for query q executes at stage s in
the match-action pipeline. Similarly, Sq,t returns the stage
number where table t for query q is executed. These two

variables are related: if Xq,t,s = 1, then Sq,t = s for a given
stage. An accompanying technical report [42] details the

complete ILP and how Sonata’s query planner respects each

of these constraints on: register memory (C1), number of

0.0 0.5 1.0 1.5 2.0
Relative Number of Incoming Keys (k/n)

0.0

0.5

1.0

C
ol

lis
io

n
R

at
e d = 1

d = 2
d = 3
d = 4

Figure 3: Relationship between collision rate and the number
of unique incoming keys (k) relative to the estimate (n).

actions per stage (C2), total stages (C3), ordering of operators
within a query (C4), and total metadata size (C5).
Monitoring traffic dynamics. The query planner uses

training data to decide how to configure the number of en-

tries (n) for each register, and how many registers (d) to use

for each stateful operation. It is possible that the training

data might underestimate the number of expected keys (k)
for a stateful operation due to variations in traffic patterns.

In Figure 3, we show how the collision rates increase as the

number of unique keys grows beyond the original estimate

(n) for a sequence of (d) registers. Here, the x-axis is the num-

ber of incoming keys relative to the original estimate and the

y-axis is the collision rate. The collision rate increases as the

relative number of incoming keys increases and decreases

as the number of registers increases.

Since collision rates are predictable, we choose values of

(n) and (d) to keep collision rates low but still high enough

to send a signal to Sonata’s runtime when the switch is

storing many more unique keys than originally expected.

Sonata’s query planning ILP considers both the number of

additional packets processed by the stream processor and

the additional switch memory while computing the optimal

query partitioning plans.

4 DYNAMIC QUERY REFINEMENT
For certain queries and workloads, partitioning a subset of

dataflow operators to the switch does not reduce the work-

load on the stream processor enough; in these situations,

Sonata uses historical packet traces to refine input queries

dynamically.

To do so, Sonata’s query plannermodifies the input queries

to start at a coarser level of granularity than specified in the

original query (Section 4.1). It then chooses a sequence of

finer granularities that reduces the load on the stream pro-

cessor. This process introduces additional delay in detecting

the traffic that satisfies the input queries. The specific levels

of granularity chosen and the sequence in which they are

Filter
TCP SYN

Map
dIP/8

Filter
Th/8

ri=8

Filter
TCP SYN

Filter
dIP/8

Map
dIP/16

T
T+

W

Map
dIP,1

Reduce
sum

Filter
Th/16

Map
dIP,1

Reduce
sum

ri+1=16

dIP/8

Figure 4: Query augmentation for Query 1. The query planner
adds the operators shown in red to support refinement. Query 1
executes at refinement level ri = /8 during window T and at
level ri+1 =/16 during window (T +W). The dashed arrow
shows the output from level ri feeding a filter at level ri+1.

applied constitute a refinement plan. To compute an opti-

mal refinement plan for the set of input queries, Sonata’s

query planner estimates the cost of executing different re-

finement plans based on historical packet traces. Sonata’s

query planner then solves an extended version of the ILP

from Section 3.3 that determines both partitioning as well as

refinement plans to minimize the workload on the stream

processor (Section 4.2).

4.1 Modifying Queries for Refinement
Identifying refinement keys. A refinement key is a field

that has a hierarchical structure and is used as a key in a

stateful dataflow operation. The hierarchical structure allows

Sonata to replace a more specific key with a less specific ver-

sion without missing any traffic that satisfies the original

query. This applies to all queries that filter on aggregated

counts greater than a threshold. For example, dIP has a hi-
erarchical structure and is used as a key for aggregation

in Query 1. As a result, the query planner selects dIP as a

refinement key for this query. Other fields that have hier-

archical structure can also serve as refinement keys, such

as dns.rr.name and ipv6.dIP. For example, a query for

detecting malicious domains that requires counting the num-

ber of unique resolved IP address for each domain [6], can

use the field dns.rr.name as a refinement key. Here, a fully-

qualified domain name is the finest refinement level and the

root domain (.) is the coarsest. A query can contain mul-

tiple candidate refinement keys and Sonata independently

selects refinement keys for each query. Additionally, express-

ing the second sub-query in Query 2 as the one that reports

flows for which the average connections per bytes exceeds

the threshold ensures that it can benefit from iterative re-

finement, because replacing a more specific key with a less

specific one will not miss any traffic that satisfies the original

query.

Enumerating refinement levels. After identifying candi-

date refinement keys, the query planner enumerates the pos-

sible levels of granularity for each key. Each refinement key

Reduce
sum

Filter
Thi+1

Filter
TCP SYN N1 N2

Filter
ri

Map
ri+1

ri⟶ ri+1 N1 B (Kb) N2

✶⟶ 32
570K

2,500 77
✶⟶ 16 180 99
✶⟶ 8 6 33
8⟶ 32

526K
1,900 77

8⟶ 16 50 98
16⟶ 32 450K 1,200 77

Map
dIP,1

Figure 5: The N and B cost values for executing Query 1 at
refinement level ri+1 after executing it at level ri .

consists of a set of levels R = {r1 . . . rn } where r1 is the coars-
est level and rn is the finest. The inequality r1 > rn means

that r1 is coarser than rn . The semantics of the ith refinement

level is specific to each key; ri = 32 would correspond to a

/32 IP prefix for the key dIP and ri = 2 would correspond to

the second-level domain for the key dns.rr.name. For each
refinement key, the query planner will choose a subset of

these refinement levels for a refinement plan. For simplicity,

we will refer to the chosen subset of refinement levels as R.
Augmenting input queries. To ensure that the finer re-

finement levels only consider the traffic that has already

satisfied coarser ones, Sonata’s query planner augments the

input queries. For example, Figure 4 shows how it augments

Query 1 with refinement key dIP and R ={8, 16, 32} to exe-

cute the query at level ri+1 = 16 after executing it at level

ri = 8. The query planner first adds a map at each level to

transform the original reduction key into a count bucket for

the current refinement level. For example, ri and ri+1 rewrite
dIP as dIP/8 and dIP/16, respectively. By transforming the

reduction key for each refinement level, the rest of the origi-

nal query can remain unmodified. At refinement level ri+1,
the query planner also adds a filter. At the conclusion

of the first time window, the runtime feeds as input to the

filter operator the dIP/8 addresses that satisfy the query

at ri = 8. This filtering ensures that refinement level ri+1
only considers traffic that satisfies the query at ri .

Sonata’s query planner also augments queries to increase

the efficiency of executing refined queries. Because count-

ing at coarser refinement levels (e.g., /8) will result in larger

sums than at finer levels (e.g., /32), using the original query’s
threshold values at coarser refinement levels would still

be correct but inefficient. Sonata’s query planner instead

uses training data to calculate relaxed threshold values for

coarser refinement levels that do not sacrifice accuracy (e.g.,

Th/8 > Th/16 in Figure 4). For each query and for each refine-

ment level, the planner selects a relaxed threshold that is

the minimum count for all keys satisfying the original query

aggregated at that refinement level.

Dynamic refinement is also appropriate for queries that

require join operations (e.g., Query 2). The two sub-queries

use the same refinement plan and their output at coarser

levels determines which portion of traffic to process for the

finer levels.

By its very nature, dynamic refinement introduces ad-

ditional delay (D) in detecting the traffic that satisfies the

original input queries. In the worst case, Sonata can only

identify network events lasting at leastW × |R | seconds for
each query. Here,W is the interval size and |R | is the to-

tal number of refinement levels considered. However, by

specifying an upper bound on the acceptable delay (Dq), the

network operator can force Sonata to consider fewer refine-

ment levels and reduce the delay to detect traffic that satisfies

the original query.

4.2 Computing Refinement Plans
Dynamic query refinement example. Sonata’s query

planner applies the augmented queries over the training

data to generate Figure 5 for Query 1. This figure shows the

costs to execute Query 1 with refinement key dIP and refine-
ment levels R ={8, 16, 32} over the training data. It shows the
number of packets sent to the stream processor depending

on which refinement level (ri+1) is executed after level ri . If
only the filter operation is executed on the switch, then

N1 packets are sent to the stream processor. If the reduce
operation is also executed on the switch, then N2 packets are

sent, but then B bits of state must also be maintained in the

data plane. For simplicity of exposition, we assume that these

counts remain the same for three consecutive windows.

Consider an approach, Fixed-Refinement, that applies a
fixed refinement plan for all input queries. In this example,

the query planner augments the original queries to always

run at refinement levels 8, 16, and 32. The runtime updates

the filter for the query at level 16 with the output from level

8 and the filter of level 32 with the output from 16. The

costs of this plan are shown in rows * → 8, 8 → 16, and
16→ 32 of Figure 5. Because the switch only supports two

stateful operations (A = 2), the reduce operator could only

be performed on the switch for the first two refinement levels.

This would result in sending 33 packets (N2 for * → 8) at
the end of the first window, 98 packets (N2 for 8→ 16) at
the end of the second window, and 450, 000 (N1 for 16 →
32) packets at the end of the third window to the stream

processor. Compared to the solution without any refinement

from beginning of Section 3.3, Fixed-Refinement reduces the
number of tuples reported to the stream processor from 570K

to 450 K at the cost of delaying two additional time windows

to detect traffic that satisfies the query.

In contrast, Sonata’s query planner uses the costs in Fig-

ure 5 combined with the switch constraints to compute the

refinement plan *→ 8→ 32. Executing the query at refine-

ment level *→ 8 requires only 6 Kb of state on the switch

and sends 33 packet tuples to the stream processor at the

end of the first window. Each packet represents an individ-

ual dIP/8 prefix that satisfies the query in the first window.

Sonata then applies the original input query (dIP/32) over
these 33 dIP/8 prefixes in the second window interval, pro-

cessing 526, 000 packets (N1 for 8→ 32) and consuming only

1900 Kb on the switch. At the end of the second window, the

switch reports 77 dIP/32 addresses to the stream processor.

This refinement plan sends 110 packet tuples to the stream

processor over two window intervals, significantly reducing

the workload on the stream processor while costing only

one additional window of delay.

ILP for dynamic refinement. The ILP for jointly comput-

ing partitioning and refinement plans is an extension to the

ILP from Section 3.3. An accompanying technical report [42]

presents the full version of the extended ILP, including these

new constraints. The objective is the same, but the query

planner must also compute the cost of executing combina-

tions of refined queries to estimate the total cost of candidate

query plans. We add new decision variables Iq,r and Fq,r1,r2
to model the workload on the stream processor in the pres-

ence of refined queries. Iq,r is set to one if the refinement

plan for query q includes level r . Fq,r1,r2 is set to 1 if level r2 is
executed after r1 for query q. These two variables are related
by

∑
r1 Fq,r1,r2 = Iq,r2 . We also augment X and S variables

with subscripts to account for refinement levels as detailed

in our extended technical report [42].

Additional constraints. For queries containing join op-

erators, the query planner can select refinement keys for

each sub-query separately, but it must ensure that both sub-

queries use the same refinement plan. We then add the con-

straint ∀q, r and ∀qi ,qj ∈ q : Iqi ,r = Iqj ,r . The variables qi
and qj represent sub-queries of query q containing a join
operation. The query planner also limits the maximum detec-

tion delay for each query, ∀q :

∑
r Iq,r ≤ Dq . Here, Dq is the

maximum delay query q can tolerate expressed in number

of time windows.

5 IMPLEMENTATION
Figure 6 illustrates the Sonata implementation. For each

query, the core generates partitioned and refined queries;

drivers compile the parts of each query to the appropriate

component. When packets arrive at the PISA switch, Sonata

applies the packet-processing pipelines and mirrors the ap-

propriate packets to a monitoring port, where a software

emitter parses the packets and sends the corresponding tu-

ples to the stream processor. The stream processor reports

the results of the queries to the runtime, which then updates

the switch, via the data-plane driver, to perform dynamic

refinement.

PISA Switch

Packets

Query Interface Q1

Results

Data-Plane Driver Streaming Driver

1

Original Packets

Tuples
Spark StreamingEmitter

Packets

Q2 Qn

Partitioned,
Refined Queries

Partitioned,
Refined Queries

Parsing
Configuration

Compiled
P4 Code

Constraints

Runtime

Query Planner

Co
re

…

Figure 6: Sonata’s implementation: red arrows show compila-
tion control flow and black ones show packet/tuple data flow.
Core. The core has two modules: (1) the query planner and

(2) the runtime. Upon initialization or re-training, the run-

time polls the data-plane driver over a network socket to

determine which dataflow operators the switch is capable of

executing, as well as the values of the data-plane constraints

(i.e., M , A, B, S). It then passes these values to the query

planner which uses Gurobi [17] to solve the query plan-

ning ILP offline and to generate partitioned, refined queries.

The runtime then sends partitioned and refined queries to

the data-plane and streaming drivers. It also configures the

emitter—specifying the fields to extract from each packet for

each query; each query is identified by a corresponding query

identifier (qid). When the switch begins processing packets,

the runtime receives query outputs from the stream proces-

sor at the end of every window. It then sends updates to the

data-plane driver, which in turn updates table entries in the

switch according to the dynamic refinement plan. When it

detects too many hash collisions, the runtime triggers the

query planner to re-run the ILP with the new data.

Drivers. Data-plane and streaming drivers compile the

queries from the runtime to target-specific code that can

run on the switch and stream processor, respectively. The

data-plane drivers also interact with the switch to execute

commands on behalf of the runtime, such as updating filter
tables for iterative refinement at the end of every window.

The Sonata implementation currently has drivers for two

PISA switches: the BMV2 P4 software switch [50], which

is the standard behavioral model for evaluating P4 code;

and the Barefoot Wedge 100B-65X (Tofino) [49], which is a

6.5 Tbps hardware switch. The data-plane driver communi-

cates with these switches using a Thrift API [2]. The current

implementation also has a driver for the Apache Spark [48]

streaming target for processing packet tuples in the user-

space and reporting the output of each query to Sonata’s

runtime.

Emitter. The emitter consumes raw packets from the data-

plane’s monitoring port, parses the query-specific fields in

Lines of Code
Query Sonata P4 Spark
1 Newly opened TCP Conns. [58] 6 367 4

2 SSH Brute Force [21] 7 561 14

3 Superspreader [56] 6 473 10

4 Port Scan [24] 6 714 8

5 DDoS [56] 9 691 8

6 TCP SYN Flood [58] 17 870 10

7 TCP Incomplete Flows [58] 12 633 4

8 Slowloris Attacks [58] 13 1,168 15

9 DNS Tunneling [7] 11 570 12

10 Zorro Attack [35] 13 561 14

11 DNS Reflection Attack [25] 14 773 12

Table 3: Implemented Sonata Queries. We report lines of code
considering the same: refinement and partitioning plans, exe-
cuting as many dataflow operators in the switch as possible.

the packet, and sends the corresponding tuples to the stream

processor. The emitter uses Scapy [51] to extract the unique

(qid) from packets. It uses this identifier to determine how

to parse the remainder of the query-specific fields embedded

in the packet based on the configuration provided by the

runtime. As discussed in Section 3.1.3, the emitter immedi-

ately sends the output of stateless operators to the stream

processor, but it stores the output of stateful operators in a

local key-value data store. At the end of each window inter-

val, it reads the aggregated value for each key in the local

data store from the data-plane registers before sending the

output tuples to the stream processor.

6 EVALUATION
In this section, we first demonstrate that Sonata is expressive

(Table 3). We then use real-world packet traces to show that it

reduces the workload on the stream processor by 3–7 orders

of magnitude (Figure 7) and that these results are robust to

various switch resource constraints (Figure 8). Finally, we

present a case study with a Tofino switch to demonstrate

how Sonata operates end-to-end, discovering “needles” of

interest without collecting the entire “haystack” (Figure 9).

6.1 Setup
Telemetry applications. To demonstrate the expressive-

ness of Sonata’s query interface, we implemented eleven

different telemetry tasks, as shown in Table 3. We show

how Sonata makes it easier to express queries for complex

telemetry tasks by comparing the lines of code needed to ex-

press those tasks. For each query, Sonata required far fewer

lines of code to express the same task than the code for the

switch [8] and streaming [48] targets combined. Not only

does Sonata reduce the lines of code, but also the queries

expressed with Sonata are platform-agnostic and could exe-

cute unmodified with a different choice of hardware switch

or stream processor, e.g., Apache Flink.

Query Plan Description Telemetry Systems

All-SP
Mirror all incoming packets to the

stream processor

Gigascope[10],

OpenSOC[40],

NetQRE[58]

Filter-DP
Apply only filter operations on the

switch

EverFlow[60]

Max-DP
Execute as many dataflow operations as

possible on the switch

Univmon[26],

OpenSketch[56]

Fix-REF
Iteratively zoom-in one refinenement

level at a time

DREAM[29]

Table 4: Telemetry systems emulated for evaluation.

Packet traces. We use CAIDA’s anonymized and unsam-

pled packet traces [44], which were captured from a large

ISP’s backbone link between Seattle and Chicago. We evalu-

ate over a subset of this data containing 600 million packets

and transferring about 360 GB of data over 10 minutes. This

data contains no layer-2 headers or packet payloads, and the

layer-3 headers were anonymized with a prefix-preserving

algorithm [14].

Query planning. For query planning, we consider a max-

imum of eight refinement levels for all queries (i.e., R =
{4, 8, ..., 32}); additional levels offered onlymarginal improve-

ments. We replay the packet traces at 20x speed to evaluate

Sonata on a simulated 100 Gbps workload (i.e., about 20
million packets per second) that might be experienced at a

border switch in a large network. We use a time window

(W) of three seconds. In general, selecting a shorter time

interval is desirable; however, for very short time intervals

the overhead of updating the filter rules in the data plane at

the end of each window can introduce significant errors. Our

choice of three seconds strikes a balance between achieving

a tolerable detection delay and minimizing the errors intro-

duced by the data-plane update overhead. Sonata’s query

planner processed around 60 million packets for each time

interval to estimate the number of packet tuples (N) and the

register sizes (B). We observed that although the ILP solver

could compute near-optimal query plans in 10–20 minutes,

the solver typically required several hours to determine the

optimal plans. Since running the ILP solver for longer du-

rations had diminishing returns, we selected a time limit of

20 minutes for the ILP solver to report the best (possibly

sub-optimal) solution that it found in that period.

Targets. Since switches have fixed resource constraints,

we choose to evaluate Sonata’s performance with simulated

PISA switches. This approach allows us to parameterize the

various resource constraints and to evaluate Sonata’s per-

formance over a variety of potential PISA switches. Unless

otherwise specified, we present results for a simulated PISA

switch with sixteen stages (S = 16), eight stateful operators

per stage (A = 8), and eight Mb of register memory per stage

(B = 8 Mb). Within each stage, a single stateful operator can

use up to four Mb.

Comparisons to existing systems. We compare Sonata’s

performance to that of four alternative query plans. Each

plan is representative of groups of existing systems, such

as Gigascope [10], OpenSOC [41], EverFlow [60], OpenS-

ketch [56], and DREAM [29], as shown in Table 4. Rather

than instrumenting each of these systems, we emulate them

by modifying the constraints on the Sonata’s query-planning

ILP. For example to emulate the Fix-REF plan, we add the

constraint ∀q, r : Iq,r = 1.

6.2 Load on the Stream Processor
We perform trace-driven analysis to quantify how much

Sonata reduces the workload on the stream processor. To

enable comparison with prior work, we evaluate the top

eight queries from Table 3; these queries process only layer 3

and 4 header fields. Fix-REF queries use all eight refinement

levels, while Sonata may select a subset of all eight levels in

its query plans.

Single query performance. Figure 7a shows that Sonata
reduces the workload on the stream processor by as much

as seven orders of magnitude. Filter-DP is efficient for the

SSH brute-force attack query, because this query examines

such a small fraction of the traffic. Filter-DP’s performance

is similar to All-SP for queries that must process a larger

fraction of traffic, such as detecting Superspreaders [56]. For

some queries, such as the SSH brute-force attack, Max-DP
matches Sonata’s performance. In many other cases, large

amounts of traffic are sent to the stream processor due to a

lack of resources. For example, the Superspreader query ex-

hausts stateful processing resources. Fix-REF’s performance

matches Sonata’s for most cases, but uses up to seven addi-

tional windows to detect traffic that satisfies the query.

Multi-query performance. Figure 7b shows how the

workload on the stream processor increases with the num-

ber of queries. When executing eight queries concurrently,

Sonata reduces the workload by three orders of magnitude

compared to other query plans. These gains come at the cost

of up to three additional time windows to detect traffic that

satisfies the query. The performance of Fix-REF degrades the
most because the available switch resources, such as meta-

data and stages, are quickly exhausted when supporting a

fixed refinement plan for several queries. We have also con-

sidered query plans with fewer refinement levels for Fix-REF
and observed similar trends. For example, when considering

just two refinement levels (dIP/16 and dIP/32) for all eight
queries, we observed that the load on the stream processor

was two orders of magnitude greater than Sonata.

As the number of queries increases, the number of tuples

will continue to increase and eventually be similar to All-SP.
Although Sonata makes the best use of limited resources for

a given target, its performance gains are bounded by the

New TCP
SSH Brute

SSpreader
Port Scan DDoS

SYN Flood
Comp. Flows

Slowloris
100

103

106

#
Tu

pl
es

All-SP Filter-DP Max-DP Fix-REF Sonata

(a) Single-query performance

1 2 3 4 5 6 7 8
Number of Queries

101

104

107

#
Tu

pl
es

All-SP
Filter-DP

Max-DP
Fix-REF

Sonata

(b) Multi-query performance

Figure 7: Reduction in workload on the stream processor running: (a) one query at a time, (2) concurrently running multiple
queries.

available switch resources. It is important to differentiate

the limitations on Sonata’s performance from the limitations

imposed by existing hardware switches. While today’s com-

modity hardware switches can support tens of network mon-

itoring applications, we envision that the next-generation

hardware switches will be able to support hundreds if not

thousands of concurrent monitoring queries with Sonata.

Effect of switch constraints. We study how switch con-

straints affect Sonata’s ability to reduce the load on the

stream processor. To quantify this relationship, we vary one

switch constraint at a time for the simulated PISA switch.

Figure 8a shows how the workload on the stream processor

decreases as the number of stages increases. More stages

allow Sonata to consider more levels for dynamic refinement.

Additional stages slightly improve the performance of Fix-
REF as it can now support stateful operations for the queries

at finer refinement levels on the switch. We observe similar

trends as the number of stateful actions per stage (Figure 8b),

memory per stage (Figure 8c), and total metadata size (Fig-

ure 8d) increase. As expected, Max-DP slightly reduces the

load on the stream processor when more memory per stage

is available for stateful operations; increasing the total meta-

data size also allows Fix-REF to execute more queries in the

switch—reducing the load on the stream processor.

Overhead of dynamic refinement. When running all

eight queries concurrently, as many as 200 filter table en-

tries are updated after each time window during dynamic re-

finement. Micro-benchmarking experiments with the Tofino

switch [49] show that updating 200 table entries takes about

127 ms, and resetting registers takes about 4 ms. The total

update time took 131 ms which is about 5% of the specified

window interval (W = 3 s).

6.3 Case Study: Tofino Switch
We used Sonata to execute Query 3 with a Tofino switch [49].

We chose this query to highlight how Sonata handles join
operators and operations over a packet’s payload. For this

experiment, we built a testbed containing four hosts and a

1 2 4 8 12 16 32
Number of Stages

107

#
Tu

pl
es

Max-DP Fix-REF Sonata

(a) Maximum pipeline depth.

1 2 4 8 12 16 32
Actions/Stage

106

108

#
Tu

pl
es

Max-DP Fix-REF Sonata

(b) Maximum pipeline width.

0.5 1 2 4 8 12 16 32
Memory/Stage (Mb)

107

#
Tu

pl
es

Max-DP Fix-REF Sonata

(c) Maximum bits per stage.

0.25 0.5 1.0 2.0 4.0 8.0
Metadata Size (Kb)

107

#
Tu

pl
es

Max-DP Fix-REF Sonata

(d) Metadata Size.

Figure 8: Effect of switch constraints.

0 5 10 15 20
Time (seconds)

101

105

109

#
Pa

ck
et

s

Attack ConfirmedVictim Identified

Received by Switch Reported to Stream Processor

Figure 9: Detecting Zorro attacks using Tofino switch.

Tofino switch [49]. Each host has two Intel Xeon E5-2630 v4

10-core processors running at 2.2 Ghz with 128 GB RAM and

10 Gbps NICs. We dedicate two hosts for traffic generation:

one sender and one receiver. We assign a third host for the

emitter component and a fourth for the remaining runtime,

streaming driver, and Spark Streaming [48] components (see

Figure 6). The data-plane driver runs on the CPU of the

Tofino switch itself. The sender connects to the Tofino switch

with two interfaces: one interface to replay CAIDA traces

using the Moongen [12] traffic generator at about 1.5 Mpps

and another to send attack traffic using Scapy [51]. If wewere

processing packets at Tofino’s maximum rate of 6.5 Tbps,

our setup would only need to replace the single instance of

Spark Streaming with a cluster that supports the expected

data rate.

The attacker starts sending similar-sized telnet packets to

a single host (99.7.0.25) at time t = 10 s. Figure 9 shows

the number of packets: (1) received by the switch, and (2) re-

ported to the stream processor on a log scale. Sonata reports

only two packet tuples, out of 1.5M pps, to the stream proces-

sor to detect the victim in three seconds using two refinement

levels: ∗ → 24 and 24→ 32. At t = 13 s, the stream processor

starts processing the payload of all telnet packets destined

for the victim host, which is only around 100 pps. The at-

tacker gains shell access at t = 20 s and sends five packets

with the keyword “zorro” in it. Sonata detects the attack

at t = 21 s, demonstrating its ability to perform real-time

telemetry using state-of-the-art hardware switches.

7 RELATEDWORK
Network telemetry. Existing telemetry systems that pro-

cess all packets at the stream processor such as Chimera [7],

Gigascope [10], OpenSOC [40], and NetQRE [58] can express

a range of queries but can only support lower packet rates

because the stream processor ultimately processes all re-

sults. These systems also require deploying and configuring

a collection infrastructure to capture packets from the data

plane for analysis, incurring significant bandwidth overhead.

These systems can benefit from horizontally scalable stream

processors such as Spark Streaming [59] and Flink [38], but

they also face scaling limitations due to packet parsing and

cluster coordination [41].

Everflow [60], UnivMon [26], OpenSketch [56], and

Marple [34] rely on programmable switches to execute

queries entirely in the data plane. These systems can process

queries at line rate but can only support queries that can be

implemented on switches. Trumpet [31] and Pathdump [47]

offload query processing to end-hosts (VMs in data center

networks) but not to switches. Our previous work [16] pro-

posed a telemetry system that partitions a single query across

a stream processor and switch, but it only considers switches

with fixed-function chipsets, and requires the network oper-

ators to specify the refinement and partitioning plans man-

ually. In contrast, Sonata supports programmable switches

and employs a sophisticated query planner to automatically

partition and refine multiple queries.

Query planning. Database research has explored query

planning and optimization extensively [4, 32, 36]. Gigascope

performs query partitioning to minimize the data transfer

from the capture card to the stream processor [10]. Sensor

networks have explored the query partitioning problems that

are similar to those that Sonata faces [4, 27, 28, 32, 36, 46].

However, these systems face different optimization problems

because they typically involve lower traffic rates and involve

special-purpose queries. Path Queries [33] and SNAP [3]

facilitate network-wide queries that execute across multiple

switches; in contrast, Sonata currently only compiles queries

to a single switch, but it addresses a complementary set of

problems, such as unifying data-plane and stream-processing

platforms to support richer queries and partitioning sets of

queries across a data-plane switch and a stream processor.

Query-driven dynamic refinement. Autofocus [13],

ProgME [57], and DREAM [29], SCREAM [30], MUL-

TOPS [15], and HHH [23] all iteratively zoom in on traffic of

interest. These systems either do not apply to streaming data

(e.g., ProgME requires multiple passes over the data [57]),

they use a static refinement plan for all queries (e.g., HHH

zooms in one bit at a time), or they do not satisfy general

queries on network traffic (e.g., MULTOPS is specifically de-

signed for bandwidth attack detection). These approaches

all rely on general-purpose CPUs to process the data-plane

output, but none of them permit additional parsing, joining,

or aggregation at the stream processor, as Sonata does.

8 CONCLUSION
Ensuring that networks are secure and performant requires

continually collecting and analyzing data. Sonata makes it

easy to do so, by exposing a familiar, unified query inter-

face to operators and building on advances in both stream

processing and programmable switches to implement these

queries efficiently. Sonata solves an ILP to compute optimal

query plans that use available data-plane resources to mini-

mize the traffic sent by the switch to the stream processor.

Our experiments using real traffic workloads show that by

making the best use of available data-plane resources, Sonata

can reduce traffic rates at the stream processor by several

orders of magnitude.

Sonata provides a foundation for much future work. First,

we are currently extending Sonata to support telemetry appli-

cations such as network-wide heavy hitter detection [18] that

require observing traffic at multiple locations. Second, we

plan to improve on Sonata’s query planning by developing

new (1) methods to minimize the amount of packet traces

required, (2) heuristics for expediting the computation of

query plans, and (3) techniques to make the query planning

more robust. Finally, our long-term goal is to use Sonata as

a building block for closed-loop reaction to network events,

in real time and at scale.

Acknowledgments. We thank our shepherd (Ion Stoica),

Rüdiger Birkner, Ankita Pawar, Mina T. Arashloo, Robert

MacDavid, Chris Mac-Stoker, Rachit Agarwal, and the anony-

mous reviewers for the feedback and comments. This re-

search was supported by NSF Awards CNS-1539902 and

CNS-1704077. Jennifer Rexford was additionally supported

by gifts from Intel and Huawei.

REFERENCES
[1] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein,

E., Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L.,

Kallitsis, M., et al. Understanding the Mirai botnet. In USENIX
Security Symposium (2017).

[2] Apache Thrift API. https://thrift.apache.org/.

[3] Arashloo, M. T., Koral, Y., Greenberg, M., Rexford, J., andWalker,

D. SNAP: Stateful network-wide abstractions for packet processing.

In ACM SIGCOMM (2016).

[4] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K.,

Meng, X., Kaftan, T., Franklin, M. J., Ghodsi, A., et al. Spark SQL:

Relational Data Processing in Spark. In ACM SIGMOD International
Conference on Management of Data (2015).

[5] Assignment 3, COS 561, Princeton University. https:

//github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/

tutorials/Tutorial-1.

[6] Bilge, L., Kirda, E., Kruegel, C., and Balduzzi, M. Exposure: Finding

malicious domains using passive DNS analysis. In USENIX Network
and Distributed System Security Symposium (2011).

[7] Borders, K., Springer, J., and Burnside, M. Chimera: A declarative

language for streaming network traffic analysis. In USENIX Security
Symposium (2012).

[8] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rex-

ford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and

Walker, D. P4: Programming Protocol-independent Packet Processors.

ACM SIGCOMM Computer Communication Review 44, 3 (July 2014),

87–95.

[9] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Iz-

zard, M., Mujica, F., and Horowitz, M. Forwarding metamorphosis:

Fast programmable match-action processing in hardware for SDN. In

ACM SIGCOMM (2013).

[10] Cranor, C., Johnson, T., Spatschek, O., and Shkapenyuk, V. Gigas-

cope: A stream database for network applications. In ACM SIGMOD
International Conference on Management of Data (2003).

[11] The CAIDA UCSD Anonymized Internet Traces 2016-09. http://www.

caida.org/data/passive/passive_2016_dataset.xml.

[12] Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and

Carle, G. Moongen: A scriptable high-speed packet generator. In

ACM Internet Measurement Conference (2015).
[13] Estan, C., Savage, S., and Varghese, G. Automatically inferring pat-

terns of resource consumption in network traffic. In ACM SIGCOMM
(2003).

[14] Fan, J., Xu, J., Ammar, M. H., and Moon, S. B. Prefix-preserving IP

address anonymization: Measurement-based security evaluation and

a new cryptography-based scheme. Computer Networks (2004).
[15] Gil, T. M., and Poletto, M. MULTOPS: A data-structure for band-

width attack detection. In USENIX Security Symposium (2001).

[16] Gupta, A., Birkner, R., Canini, M., Feamster, N., MacStoker, C.,

and Willinger, W. Network Monitoring as a Streaming Analytics

Problem. In ACM HotNets (2016).
[17] Gurobi Solver. http://www.gurobi.com/.

[18] Harrison, R., Qizhe, C., Gupta, A., and Rexford, J. Network-Wide

HeavyHitter Detectionwith Commodity Switches. InACMSymposium
on SDN Research (SOSR) (2018).

[19] Hira, M., and Wobker, L. J. Improving Network Monitoring and

Management with Programmable Data Planes. Blog posting, http:

//p4.org/p4/inband-network-telemetry/, September 2015.

[20] Izzard, M. The Programmable Switch Chip Consigns Legacy Fixed-

Function Chips to the History Books. https://goo.gl/JKWnQc, Septem-

ber 2016.

[21] Javed, M., and Paxson, V. Detecting stealthy, distributed SSH brute-

forcing. In ACM SIGSAC Conference on Computer & Communications

Security (2013), pp. 85–96.

[22] Jose, L., Yan, L., Varghese, G., and McKeown, N. Compiling packet

programs to reconfigurable switches. In USENIX NSDI (2015).
[23] Jose, L., Yu, M., and Rexford, J. Online measurement of large traffic

aggregates on commodity switches. In Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(March 2011).

[24] Jung, J., Paxson, V., Berger, A. W., and Balakrishnan, H. Fast

portscan detection using sequential hypothesis testing. In IEEE Sym-
posium on Security and Privacy (2004), IEEE, pp. 211–225.

[25] Kührer, M., Hupperich, T., Rossow, C., and Holz, T. Exit from

hell? Reducing the impact of amplification DDoS attacks. In USENIX
Security Symposium (2014).

[26] Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., and Braverman,

V. One sketch to rule them all: Rethinking network flow monitoring

with UnivMon. In ACM SIGCOMM (2016).

[27] Madden, S., Franklin, M. J., Hellerstein, J. M., and Hong, W. TAG:

A Tiny Aggregation Service for Ad-hoc Sensor Networks. In USENIX
OSDI (2002).

[28] Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W.

TinyDB: An Acquisitional Query Processing System for Sensor Net-

works. ACM Transaction on Database System 30, 1 (2005).
[29] Moshref, M., Yu, M., Govindan, R., and Vahdat, A. Dream: Dy-

namic resource allocation for software-defined measurement. ACM
SIGCOMM (2015).

[30] Moshref, M., Yu, M., Govindan, R., and Vahdat, A. Scream:

Sketch resource allocation for software-defined measurement. In

ACM CoNEXT (2015).

[31] Moshref, M., Yu, M., Govindan, R., and Vahdat, A. Trumpet: Timely

and precise triggers in data centers. In ACM SIGCOMM (2016).

[32] Mullin, J. K. Optimal Semijoins for Distributed Database Systems.

IEEE Transactions on Software Engineering 16, 5 (1990).
[33] Narayana, S., Arashloo, M. T., Rexford, J., and Walker, D. Com-

piling path queries. In USENIX NSDI (2016).
[34] Narayana, S., Sivaraman, A., Nathan, V., Goyal, P., Arun, V., Al-

izadeh, M., Jeyakumar, V., and Kim, C. Language-directed Hardware

Design for Network Performance Monitoring. In ACM SIGCOMM
(2017).

[35] Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T.,

and Rossow, C. IoTPOT: Analysing the rise of IoT compromises. In

USENIX Workshop on Offensive Technology (2015).

[36] Polychroniou, O., Sen, R., and Ross, K. A. Track join: Distributed

joins with minimal network traffic. In ACM SIGMOD International
Conference on Management of Data (2014).

[37] An update on the Memcached/Redis benchmark. http://oldblog.antirez.

com/post/update-on-memcached-redis-benchmark.html.

[38] Apache Flink. http://flink.apache.org/.

[39] Benchmarking Apache Kafka: 2 Million Writes Per Second (On

Three Cheap Machines). https://engineering.linkedin.com/kafka/

benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines.

[40] OpenSOC. http://opensoc.github.io/.

[41] OpenSOC Scalability. https://goo.gl/CX2jWr.

[42] Sonata’s technical report. http://www.cs.princeton.edu/~arpitg/pdfs/

sonata_tr.pdf.

[43] The Bro Network Security Monitor. https://www.bro.org/.

[44] The CAIDA Anonymized Internet Traces 2016 Dataset. https://www.

caida.org/data/passive/passive_2016_dataset.xml.

[45] Slowloris HTTP DoS. https://web.archive.org/web/20150426090206/

http://ha.ckers.org/slowloris, June 2009.

[46] Srivastava, U., Munagala, K., and Widom, J. Operator Placement

for In-Network Stream Query Processing. In Symposium on Principles
of Database Systems (2005).

https://thrift.apache.org/
https://github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/tutorials/Tutorial-1
https://github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/tutorials/Tutorial-1
https://github.com/Sonata-Princeton/SONATA-DEV/tree/tutorial/sonata/tutorials/Tutorial-1
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.gurobi.com/
http://p4.org/p4/inband-network-telemetry/
http://p4.org/p4/inband-network-telemetry/
https://goo.gl/JKWnQc
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://flink.apache.org/
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://opensoc.github.io/
https://goo.gl/CX2jWr
http://www.cs.princeton.edu/~arpitg/pdfs/sonata_tr.pdf
http://www.cs.princeton.edu/~arpitg/pdfs/sonata_tr.pdf
https://www.bro.org/
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris

[47] Tammana, P., Agarwal, R., and Lee, M. Simplifying datacenter net-

work debugging with PathDump. In USENIX OSDI (2016).
[48] Apache Spark. http://spark.apache.org/.

[49] Barefoot’s Tofino. https://www.barefootnetworks.com/technology/.

[50] P4 software switch. https://github.com/p4lang/behavioral-model.

[51] Scapy: Python-based interactive packet manipulation program. https:

//github.com/secdev/scapy/.

[52] SONATA Github. https://github.com/Sonata-Princeton/

SONATA-DEV.

[53] Sonata Queries. https://github.com/sonata-queries/sonata-queries.

[54] Vinnakota, B. P4 with the Netronome Server Networking Platform.

https://goo.gl/PKQtC7, May 2016.

[55] Wu, Q., Strassner, J., Farrel, A., and Zhang, L. Network telemetry

and big data analysis. Network Working Group Internet-Draft (2016

(Expired)).

[56] Yu, M., Jose, L., and Miao, R. Software Defined Traffic Measurement

with OpenSketch. In USENIX NSDI (2013).
[57] Yuan, L., Chuah, C.-N., and Mohapatra, P. ProgME: Towards Pro-

grammable Network Measurement. In ACM SIGCOMM (2007).

[58] Yuan, Y., Lin, D., Mishra, A., Marwaha, S., Alur, R., and Loo, B. T.

Quantitative Network Monitoring with NetQRE. In ACM SIGCOMM
(2017).

[59] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I.

Discretized streams: Fault-tolerant streaming computation at scale. In

ACM SOSP (2013).

[60] Zhu, Y., Kang, N., Cao, J., Greenberg, A., Lu, G., Mahajan, R., Maltz,

D., Yuan, L., Zhang, M., Zhao, B. Y., and Zheng, H. Packet-level

telemetry in large datacenter networks. In ACM SIGCOMM (2015).

http://spark.apache.org/
https://www.barefootnetworks.com/technology/
https://github.com/p4lang/behavioral-model
https://github.com/secdev/scapy/
https://github.com/secdev/scapy/
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/sonata-queries/sonata-queries
https://goo.gl/PKQtC7

	Abstract
	1 Introduction
	2 Unified Query Interface
	2.1 Dataflow Queries on Tuples
	2.2 Example Network Telemetry Queries

	3 Query Partitoning
	3.1 Data Reduction on the Switch
	3.2 Data-Plane Resource Constraints
	3.3 Computing Query Partitioning Plans

	4 Dynamic Query Refinement
	4.1 Modifying Queries for Refinement
	4.2 Computing Refinement Plans

	5 Implementation
	6 Evaluation
	6.1 Setup
	6.2 Load on the Stream Processor
	6.3 Case Study: Tofino Switch

	7 Related Work
	8 Conclusion
	References

