
Continuous Flow Measurement with SuperFlow
Zongyi Zhao∗, Xingang Shi∗‖§, Arpit Gupta¶, Qing Li†‡, Zhiliang Wang∗‖, Bin Xiong∗, Xia Yin∗‖

zhaozong16@mails.tsinghua.edu.cn shixg@cernet.edu.cn arpitgupta@cs.ucsb.edu
liq8@sustc.edu.cn wzl@cernet.edu.cn xb19@mails.tsinghua.edu.cn yxia@tsinghua.edu.cn
∗Tsinghua University, †Southern University of Science and Technology, ¶UC Santa Barbara
‡PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen

‖Beijing National Research Center for Information Science and Technology (BNRist), §Corresponding Author

Abstract—Flow-based network measurement enables operators
to perform a wide range of network management tasks in a
scalable manner. Recently, various algorithms have been pro-
posed for flow record collection at very high speed. However,
they all focus on processing traffic in a short time window, but
overlook the fact that flow measurements are typically needed
continuously for unlimited time. To this end, we propose a new
algorithm named SuperFlow to support continuous and accurate
flow record collection at very high speed by monitoring the
flow activeness and exporting the inactive records from the data
plane automatically. Our data structures and the corresponding
algorithms are carefully designed and analyzed, so the above goal
is achieved with limited memory and bandwidth consumption.
We implement SuperFlow on both x86 CPU and state-of-the-art
PISA target. Comprehensive experiments show that SuperFlow
consistently outperforms its competitors significantly. Especially,
compared with the best competitor, it records around 136.7%
more flows, reduces the error in flow size estimation by 51.5%,
and reduces the memory or bandwidth consumption by up to
71.0%, while bringing only negligible throughput degradation.

I. INTRODUCTION

Statistics produced by network measurement tools enable
network operators to perform a wide range of network man-
agement tasks, e.g., traffic engineering, error diagnosis and
attack detection [1]. Flow-level measurement tools such as
NetFlow [2] and IPFIX [3] can aggregate packets with the
same flow ID1 into flows, and report certain properties of
each flow. Such tools are believed to make a good balance
between scalability and informativeness, which is what the
packet sniffing tools [4] and the highly summarized SNMP
counters [5] fail to achieve. To meet the ultra-high link speed
(e.g., 100 Gbps), it is also well recognized that the flow
measurement tools have to be augmented with sampling.
However, even the most elaborate sampling and estimation
algorithms [6–8] under typical settings, e.g., with a sampling
rate of 1/1000 for 100 Gbps traffic, severely reduces the
accuracy of the reported results.

In another direction, sketch [9–11] (i.e., some succinct data
structure) based algorithms have been proposed for efficient
tracking and accurate estimation of specific traffic statistics
such as the total number of flows and the flow size distribution,
but their functional specificity hinders their wide adoption
in practice. Recently, advanced sketches [12–19] have been

1Flow ID can be a set of packet fields like network prefix, address, transport
layer port, or even a keyword. By default, we will use <srcAddr, destAddr,
srcPort, dstPort, protocol> as flow ID if not specified otherwise.

proposed to track flow-level records at ultra-high speed by
leveraging the hardware pipelines and a very small amount of
on-chip memory. Unfortunately, they all focus on processing
traffic in a short time epoch, but overlook the fact that flow
measurements are typically needed continuously for unlimited
time. Without a proper method to make room for new flow
records by exporting the existing ones, they definitely cannot
be used for actual deployment. A possible solution [15] is to
use two sketches alternately, such that at the end of a pre-
configured time epoch, the idle sketch takes over to track flow
records in the next epoch, while the first sketch exports flow
records it has tracked, gets reset, and waits for its turn, and so
on. As this method makes continuous flow measurement with
those sketches possible, it is far from perfect for three reasons:
(1) the memory utilization is low because the early completed
flows, instead of being evicted immediately, have to stay in
the memory until the end of the current epoch; (2) the epoch,
once fixed, cannot adapt to traffic fluctuations such as abrupt
changes of flow concurrency; (3) it’s challenging to pick a
proper epoch length which strikes a good balance between
memory and bandwidth consumption due to the existence of
great number of long-lived flows.

To this end, we have designed and implemented SuperFlow,
an algorithm to support continuous and accurate flow record
collection at ultra-high speed for unlimited time. Our data
structures, as well as the flow record maintenance and export
procedures, are carefully designed and analyzed, so scalability
and accuracy, as well as informativeness and deployability, are
achieved with limited memory and bandwidth. Specifically, we
make the following contributions:

• We propose a framework that continuously tracks flow
records and automatically exports them.

• We design the sketch structures and the corresponding
algorithms for flow record maintenance. In particular, we
design a new sketch for flow size estimation, and provide
the corresponding theoretical analyses.

• We design a flow record export scheme which detects and
exports inactive flow records automatically to accommo-
date active flows. Only with this scheme can SuperFlow
work continuously for unlimited time.

• We propose an optimization for large flow ID spaces (e.g.,
that of IPv6 traffic), which makes the consumption of
high-speed memory independent of the flow ID length



with little bandwidth overhead.
• We implement SuperFlow on both x86 CPU and a state-

of-the-art Barefoot PISA switch [20], and evaluate its per-
formance against five latest flow measurement algorithms
[12–16] under fair settings.

Under various traffic patterns, SuperFlow consistently out-
performs its competitors significantly. For example, compared
with the best competitor, it records around 136.7% more flows,
reduces the error in flow size estimation by 51.5%, and reduces
the memory or bandwidth consumption by up to 71.0%, while
bringing only negligible throughput degradation.

The remainder of the paper is organized as follows. We
first introduce the motivation and basic ideas of SuperFlow
in Section II, then present the design details in Section III.
In Section IV, the performance of SuperFlow is evaluated and
compared with that of five state-of-the-art competitors. Finally,
we conclude the paper in Section V.

II. MOTIVATION AND BASIC IDEAS

The widely used NetFlow [2] provides continuous tracking
of traffic flows, but providing such a functionality at ultra-high
traffic speed is very difficult, if not impossible, due to the
conflict between the required memory space, the processing
overhead, and the resulting accuracy. For example, sampling
methods [6, 7, 21, 22] can reduce the processing overhead
but at the cost of much worse accuracy. Since sketch based
methods can take advantage of the ultra-high processing ca-
pacity of modern hardware and work under very tight memory
restrictions (e.g., a few megabytes), achieving reasonably good
accuracy meanwhile, we believe they are more promising
to keep up with the ever-increasing traffic speed. However,
to implement continuous tracking in sketches is not easy,
because the explicit “termination” flags usually don’t exist in
various operator-defined flows, waiting a flow until it has been
inactive for a certain time period usually incurs significant
processing and memory overhead, and exporting a single flow
record is impossible for some sketches. Therefore, the existing
sketch based flow measurement algorithms [12–16] have all
overlooked this problem, and focus only on processing traffic
in a small time epoch. A natural remedy to this, as suggested
in [15], is to adopt the periodical export model, by which the
data plane is exported periodically.

0 10 20 30 40 50 60
Time Bin

4
6
8

10
12
14
16
18
20
22

N
um

.
of

F
lo

w
s

(×
10

5
)

(a) Number of Concurrent Flows

4 10 20 30 40 50 60
Export Period (Seconds)

0
10
20
30
40
50
60
70
80

N
um

.
of

S
ub

-F
lo

w
s

(×
10

8
)

(b) Flow Lifetimes

Fig. 1. The number of flows in each one-minute time bin and the number of
sub-flows corresponding to various export periods.

Unfortunately, there are several limitations in this model
which heavily undermines its practicality. First, to avoid
disrupting the flow record collection, usually two independent
copies of the data structures are required, so that one copy
can track flows while the other is being exported. This doubles
the memory consumption, which is undesirable because of the
scarcity of memory in commodity switches. Second, many
flows may go inactive far before the end of the export period,
but cannot be exported until this period ends, thus preventing
the other active flows from being recorded, which degrades
the memory utilization. Third, the number of concurrent flows
often fluctuates greatly. For example, Fig. 1(a) shows that, in
a CAIDA trace [23] spanning one hour, the maximum number
of flows within a one-minute time bin may be 4.7× as large as
the minimum one. Therefore, with a fixed export period, traffic
spikes may easily overwhelm the sketch. Most importantly,
it’s challenging to pick an export period which strikes a good
balance between the memory and bandwidth consumption due
to the existence of the great number of long flows. As an
example, there are 0.4×108 distinct flows in the CAIDA trace.
As shown in Fig. 1(b), if we adopt a relatively small export
period of 4 seconds, as the flows in a single export period are
small enough in number to fit into a fair amount of memory,
up to 19.5 × 108 sub-flows will be exported, increasing the
bandwidth consumption by 54.1× compared with the case
where each flow is exported exactly once. On the contrary,
no more than 1.6 × 108 sub-flows will be exported if we set
the export period to 60 seconds, but up to 2.2 × 106 flows
may exist in a single export period (as shown in Fig. 1(a)),
and, supposing that each flow record occupies 15 bytes (i.e.,
13 bytes for the typical 5-tuple, and 2 bytes for the counter),
31.2 MB of memory is required to accommodate the flows,
which are far greater than that the commodity switches can
provide for the flow measurement algorithms 2.

In this paper, we argue that a simple scheme which we
call Inactive Flow Eviction (IFE), when combined with the
specially designed data structures, may overcome these defects
effectively. Specifically, IFE should try its best to sense the
flow activeness, keep active flows in memory, and evict the
inactive flows to save space for newly started ones. The policy
of evicting inactive flows, we believe, is the key to allow a
sketch to function well for unlimited time without performance
degradation. With IFE, a long flow can stay in the memory as
long as it is active, avoiding the bandwidth overhead caused by
the frequent exports of its segments. But once it gets stale, it
will be evicted to make room for the new flows, thus improving
the memory utilization. On the other hand, IFE should be able
to adapt to traffic spikes by exploiting the transient activeness
of flows and evicting aged records. For example, the same
memory space can be used to accommodate f1, then used to
accommodate f2 when f2 grows more active, and then used
to accommodate f3 when f3’s activeness exceeds that of f2.

Another technique we adopt in designing SuperFlow is to

2Our P4 switch has only a few hundreds of Mb of SRAM, and they have
to be shared between many different functions.



decouple memory consumption from flow ID size, by storing
in memory the shorter flow ID fingerprints and recovering
the full ID in the control plane later. This mechanism can
effectively reduce the memory consumption when coping with
large flow IDs, such as the typical five-tuple flow IDs which
are of 37 bytes in IPv6.

III. THE DESIGN OF SUPERFLOW

A. Overall Framework and Data Structures

As shown in Fig. 2(a), SuperFlow consists of two parts. The
data plane part is responsible for flow record maintenance and
export, and can be implemented in the pipelines of a PISA
switch. It contains two tables, i.e., a main table M and an
ancillary table A, where the former is further split into d
(d = 3 by defult) sub-tables M1, · · · ,Md. The control plane
part receives records from the data plane, then decodes and
saves them. The structure of each bucket in Mi and A is
illustrated in Fig. 2(b). In a bucket of Mi, there are two 32-
bit fields, namely fingerprint and count. In a bucket of A,
there are four 8-bit fields, which are digest, status, count
and snapshot. Besides, we have a set of independent hash
functions h1, · · · , hd and g. The main workflow is as follows.

When a packet arrives, SuperFlow extracts its flow ID f as
the key3, and in a pipeline fashion, uses hi as an index function
to map it into a bucket in each Mi. A 32-bit fingerprint is
computed for f , and by comparing it with the fingerprint
fields of the buckets, we can tell (approximately) whether all
of the d buckets are already occupied by flows other than f .
If this happens, the packet will be passed to A which uses g
for indexing, as will be described a little later. Otherwise, we
arrive at an empty bucket or a bucket with an existing record
for f in M, so we update it accordingly.

If a packet of f is passed to the ancillary table A, some
information about f can be estimated there, based on which
we can tell whether f is larger or more active than some flow
stored in M. If this is true, we export the latter one and use its
bucket space to accommodate the former. With this scheme,
flow records are continuously maintained and exported.

Next, we explain the detailed algorithm, and present the
pseudo code in Algorithm 1.

Ancillary
table

Main
table

Control Plane

Data Plane

promote

export

(a) Framework of SuperFlow (b) Bucket Structures of M and A

Fig. 2. The framework of SuperFlow and bucket structures of M and A

3We also use f to represent the flow itself when it is clear from the context.

B. Update the Main Table M

When a packet p with flow ID f arrives, a 32-bit fingerprint
F is generated from its flow ID, then it is hashed into a bucket
M1[idx] in M1 where idx = h1(f). If M1[idx] is empty, we
save F in the fingerprint field, set the count field to 1, and
export the ID f to the control plane. On the other hand, if
the bucket is already occupied by a flow record with the same
fingerprint F , the count field is simply increased by 1 4. In
either case, a proper bucket has been found for p, and the
processing of this packet is finished. Otherwise, we encounter
a collision, where two flows with different fingerprints are
hashed into the same bucket, so we repeat the above process in
each sub-table Mi one by one, using hi as the corresponding
indexing function. If no proper bucket can be found in any
of the d sub-tables, we further process this packet in A. In
this case, p must have passed through all the d sub-tables of
M, and the corresponding d buckets that p has been hashed
into constitute a matching path of p. We use max and min
to represent the maximum and minimum values of the count
fields on p’s matching path, respectively.

C. Update the Ancillary Table A

Each bucket in A records the most active flow mapped into
it recently. Specifically, the digest field records an 8-bit digest
generated from its flow ID, the status field accumulates a
resistance count that keeps this flow from being evicted by
another flow mapped into the same bucket, the count field tries
to remember how many packets of the flow have been recently
hashed into this bucket, and the snapshot field records the
max value (i.e., the maximum count on the aforementioned
matching path) collected when a flow seizes the bucket. In
particular, the status and count fields will be used for the
estimation of flow activeness and size. The packet processing
in A contains the following three schemes.

Elastic Collision Resolution. When a packet p of flow f
comes in, an 8-bit digest D is generated from its flow ID f ,
then we use the hash function g to map it to a bucket A[idx]
in A, where idx = g(f). If A[idx] is an empty bucket, we
set both status and count of this bucket to 1, and record D
and max in digest and snapshot. If the bucket is already
occupied by a flow with the same digest D, with a high
probability this existing flow is f , so its status and count are
both incremented by 1. In this case,we also promote f back to
the main table M under certain conditions, as will be explained
in the elephant flow promotion and inactive flow eviction
procedures below. At last, if we encounter a different digest
D, A[idx] will be updated in a more subtle way, depending
on the value of the status field. Specifically, if status>0, we
decrease it by 1, reducing the existing flow’s resistance to be
evicted. Otherwise, status has reached 0, indicating that the
existing flow has exhausted its resistant power and should be
evicted by the incoming f , so we update the digest field with
D, set status to 1, increment count by 1, and set snapshot to

4We neglect the small probability that different flows hashed into the same
bucket happen to have the same fingerprint or digest.



max. This scheme, while reducing the impact caused by flow
collisions in A, is specifically designed for tracking elephant
and active flows.

Elephant Flow Promotion. If we find that an existing flow
f in A is larger than some flow in M, we will promote f back
to M. This is accomplished by comparing the count value in
A[idx] with min, which is the minimal count on the matching
path of p. If the count value of A[idx] is larger than min,
we export the flow record (in M) corresponding to min as
well as the flow ID f to the control plane, and substitute that
record with f ’s fingerprint and the count value in A[idx]. In
this way, SuperFlow prefers to save room for elephant flows.

Inactive Flow Eviction. If the elephant flow promotion
scheme fails to be carried out, we check whether a stale
elephant flow in the main table M should be exported.
Remember that the snapshot field records the old max value
a packet of f saw in M when f seized A[idx]. When a
subsequent packet of f passes through M, sees a new max
value, and arrives at A[idx], very probably the old and the new
max values are from the same elephant flow record f ′ in M.
So we know max−snapshot packets of f ′ have arrived during
this time period. On the other hand, the number of packets
in flow f that have arrived during the same period is at least
status. So we treat f as a more active one than f ′ if the status
value is greater than max−snapshot.5 In this case, we export
the flow record of f ′ (i.e., the one corresponding to max in
M), as well as the flow ID f , to the control plane, and update
the bucket of f ′ with f ’s fingerprint and the count value of
A[idx]. In this way, SuperFlow prevents stale elephant flows
from staying in M and wasting the precious space.

Since the elephant flow promotion and inactive flow eviction
schemes evict small and elephant flows from M respectively,
there’s little chance that a flow will stay in the memory forever
but never get exported. Together with the elastic collision
resolution scheme, they enable SuperFlow to efficiently collect
accurate flow records in a continuous manner.

D. Recover Full Flow Records in the Control Plane

The control plane receives raw flow records and flow IDs
exported from the data plane. 6. Since a raw flow record
maintained in the main table M contains a fingerprint instead
of a flow ID, we have to recover the flow ID to get a full flow
record. To be specific, the control plane maintains a reverse
mapping from fingerprints to flow IDs. When receiving an
exported flow ID, it computes the corresponding fingerprint
and updates the mapping dictionary. In this way, when a raw
flow record is received, the corresponding flow ID can be
looked up easily, and the full flow record (i.e., flow ID and
flow size) can be recovered and saved for other tasks. It should
be noted that, after this lookup, the corresponding entry in the
dictionary has to be deleted, so that entries cannot accumulate

5The status value is a conservative estimation on f ’s size, so it helps to
prevent radical evictions of elephant flows in M. Besides, in our actual code,
we use status>max−snapshot+1 to avoid some exceptional conditions.

6Although a raw flow record and a flow ID may be exported at the same
time, they are actually unrelated, i.e., not of the same flow.

Algorithm 1: SuperFlow
Input: packet p
min←∞,max← 0, f ← p.flowID
generate a 32-bit fingerprint F for f
for i = 1 to d do

idx← hi(f)
if Mi[idx] == (0, 0) then

Mi[idx]← (F, 1), export f
return

else if Mi[idx].fingerprint == F then
Mi[idx].count + +
return

else
if Mi[idx].count < min then

min←Mi[idx].count
tmin ← i, idxmin ← idx

if Mi[idx].count > max then
max←Mi[idx].count
tmax ← i, idxmax ← idx

generate an 8-bit digest D for f
idx← g(f), max← max%28

if A[idx] == (0, 0, 0, 0) then
A[idx]← (D, 1, 1,max) ⇐ p1

else if A[idx].digest == D then
A[idx].status + +
A[idx].count + + ⇐ p4

if A[idx].count > min then
promote record(tmin, idxmin, f, F,A[idx].count)
A[idx]← (0, 0, 0, 0) ⇐ p9

else if
A[idx].status > max−A[idx].snapshot + 1
then

promote record(tmax, idxmax, f, F,A[idx].count)
A[idx]← (0, 0, 0, 0) ⇐ p7

else if A[idx].status > 0 then
A[idx].status−− ⇐ p6

else if A[idx].status == 0 then
A[idx].{digest, status, snapshot} ← {D, 1,max}
A[idx].count + + ⇐ p2

Function promote_record(t, idx, f, F, c):
export Mt[idx] and f
Mt[idx]← (F, c)

infinitely in the dictionary, and the probability that two flows
happen to have the same fingerprints will always be negligible.

IV. EVALUATION

In this section, we evaluate SuperFlow against five state-
of-the-art flow measurement algorithms, i.e., HashFlow [12],
HashPipe [13], FlowRadar [15], Elastic [16] and PRECI-
SION [14], and we denote the algorithms by SF, HF, HP, FR,
EL, and PR respectively when necessary.



A. Methodology

All algorithms are implemented in C++ on x86 CPU plat-
form for general performance comparison, based on codes
publicly available or provided by the authors. To make the
comparisons fair, we augment the competitors by using two
copies of the sketches that operate in the periodical export
model alternately. We evaluate the performance of the algo-
rithms using a 40 Gbps backbone link trace from CAIDA [23],
a 10 Gbps link trace from a campus network, and another
two traces from different ISP access networks. The basic
notations and evaluation metrics we use are listed in TABLE I
and TABLE II respectively. By default, we allocate 1 MB
of memory to the algorithms, and set the export periods of
the competitors in such a way that they consume the same
export bandwidth as SuperFlow. We will state it explicitly
when different settings are adopted.

TABLE I
BASIC NOTATIONS

F , F̂ The flow set in the traffic and that reported by an algorithm

n, n̂ The number of flows in F and F̂

sf , ŝf The actual and estimated size of flow f

wf The weight of flow f in F , defined as wf =
sf∑

f∈F sf

T The threshold for a flow to be classified as a heavy hitter

H, Ĥ The actual and reported set of heavy hitters with respect to T

H̃ The intersection of H and Ĥ (i.e., H∩ Ĥ)

c, ĉ, c̃ The number of heavy hitters in H, Ĥ and H̃ respectively

TABLE II
METRICS AND DEFINITIONS

Flow Record Report

Flow Set Coverage (FSC) n̂
n

Weighted Flow Set Coverage (WFSC)
∑

f∈F̂ wf

Average Relative Error (ARE) 1
n

∑
f∈F

∣∣∣ sf−ŝf
sf

∣∣∣
Weighted Relative Error (WRE) 1

n

∑
f∈F wf

∣∣∣ sf−ŝf
sf

∣∣∣
Heavy Hitter Detection

Recall Rate (RR) c̃/c

Precision Rate (PR) c̃/ĉ

F1 Score 2×PR×RR
PR+RR

Average Relative Error (ARE) 1
c

∑
f∈H

∣∣∣ sf−ŝf
sf

∣∣∣
B. Application Performance

We first evaluate the performance of SuperFlow and its
competitors in flow record report and heavy hitter detection.

Flow Record Report. As shown in Fig. 3, SuperFlow
can record more than 69.8% of the total flows, which is

up to 136.7% better than those of the best competitors, and
the average relative error (ARE) of SuperFlow in flow size
estimation is as small as 0.21, which is up to 51.5% smaller
than those of the best competitors. One special observation is
that FlowRadar can report nearly no flows (FSC≈0) under all
cases, because its decoding procedure fails when the number of
flows exceeds its capacity. Therefore, we will avoid evaluating
the performance of FlowRadar in the following.

CAID
A

CAID
A 6

CM
PS

CM
PS 6

ISP1
ISP1 6

ISP2
ISP2 6

Traces

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F
S

C

SF
FR

HF
HP

PR
EL

(a) Flow Set Coverage

CAID
A

CAID
A 6

CM
PS

CM
PS 6

ISP1
ISP1 6

ISP2
ISP2 6

Traces

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
R

E

SF
FR

HF
HP

PR
EL

(b) Average Relative Error

Fig. 3. Performance in flow record report

Heavy Hitter Detection. In Fig. 4 we present the per-
formance of the algorithms in detecting heavy hitters. For a
threshold larger than 40, SuperFlow achieves the F1 Score
of 0.99 and the ARE of 0.02, so it is perfect in heavy
hitter detection. Even when the threshold is as low as 10, its
F1 Score (0.94) and ARE (0.08) are still very attractive, and
are at least 11.8% and 78.1% better than its competitors.

20 40 60 80 100
Threshold (Packets)

0.75

0.80

0.85

0.90

0.95

1.00

F
1

S
co

re

SF
HF
HP

PR
EL

20 40 60 80 100
Threshold (Packets)

0.0

0.1

0.2

0.3

0.4

0.5

A
R

E

SF
HF
HP

PR
EL

Fig. 4. Performance in heavy hitter detection

C. Memory & Bandwidth Consumption

In this section, we demonstrate that, to achieve the same
level of accuracy, SuperFlow needs much less memory and
bandwidth than the other algorithms, usingthe ISP2 trace. For
a fair comparison, we first let SuperFlow achieve a fixed
ARE (i.e., 0.1 ∼ 0.5) in flow size estimation, and compute
its memory and bandwidth consumption. Then, to measure
the memory usage of a competing algorithm, we adjust the
memory and export period used by the algorithm, so that
it consumes the same export bandwidth as SuperFlow while
achieving this ARE. For bandwidth consumption, we use the



similar approach by letting them use the same memory size. As
shown in Fig. 5, to achieve the ARE of 0.1, SuperFlow requires
the memory size of 3.77 MB, and results in the bandwidth
consumption of 12.92 Mbps. However, to achieve the same
level of accuracy, the best competitors require the memory size
of 6.11 MB or the bandwidth consumption of 21.58 Mbps.

0.1 0.2 0.3 0.4 0.5
ARE

0

5

10

15

20

25

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

SF
FR
HF

HP
PR
EL

0.1 0.2 0.3 0.4 0.5
ARE

25

50

75

100

125

150
B

an
dw

id
th

C
on

su
m

pt
io

n
(M

bp
s)

SF
FR
HF

HP
PR
EL

Fig. 5. Memory and bandwidth consumption

V. CONCLUSION

In this paper, we propose SuperFlow, a highly efficient
algorithm to continuously track flow records. With carefully
designed data structures and procedures, SuperFlow realizes
the schemes of elastic collision resolution, elephant flow
promotion and inactive flow eviction, which help to improve
measurement accuracy and reduce memory and bandwidth
consumption. These merits are demonstrated with comprehen-
sive experiments on various traces.

VI. ACKNOWLEDGEMENT

This work is supported by National Key R&D Program of
China (No. 2018YFB1800400).

REFERENCES

[1] C. Estan and G. Varghese, “New Directions in Traffic
Measurement and Accounting,” in SIGCOMM, Aug.
2002, pp. 323–336.

[2] B. Claise, “Cisco Systems NetFlow Services Export
Version 9,” Tech. Rep., Oct. 2004, RFC3954.

[3] B. Claise, B. Trammell, and P. Aitken, “Specification
of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of Flow Information,” Tech. Rep., Sep.
2013, RFC7011.

[4] P. Goyal and A. Goyal, “Comparative Study of Two
Most Popular Packet Sniffing Tools-Tcpdump and Wire-
shark,” in CICN, 2017, pp. 77–81.

[5] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple
Network Management Protocol (SNMP),” Tech. Rep.,
May 1990, RFC1157.

[6] Random Sampled NetFlow, https://www.cisco.com/c/
en/us/td/docs/ios/12 2sb/feature/guide/sbrsnf.html.

[7] C. Estan, K. Keys, D. Moore, and G. Varghese, “Build-
ing a Better NetFlow,” in SIGCOMM, 2004, pp. 245–
256.

[8] R. Jang, D. Min, S. Moon, D. Mohaisen, and D.
Nyang, “SketchFlow: Per-Flow Systematic Sampling
Using Sketch Saturation Event,” in INFOCOM, Jul.
2020, pp. 1339–1348.

[9] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V.
Braverman, “One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon,” in SIG-
COMM, 2016, pp. 101–114.

[10] S. Muthukrishnan, “Data Streams: Algorithms and Ap-
plications,” Foundations and Trendsr in Theoretical
Computer Science, vol. 1, pp. 117–236, 2005.

[11] G. Cormode and S. Muthukrishnan, “An Improved
Data Stream Summary: The Count-Min Sketch and Its
Applications,” in LATIN 2004: Theoretical Informatics,
2004, pp. 29–38.

[12] Z. Zhao, X. Shi, X. Yin, Z. Wang, and Q. Li, “HashFlow
for Better Flow Record Collection,” in ICDCS, Jul.
2019, pp. 1416–1425.

[13] V. Sivaraman, S. Narayana, O. Rottenstreich, S.
Muthukrishnan, and J. Rexford, “Heavy-Hitter Detec-
tion Entirely in the Data Plane,” in SOSR, 2017,
pp. 164–176.

[14] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstre-
ich, “Efficient Measurement on Programmable Switches
Using Probabilistic Recirculation,” in ICNP, Sep. 2018,
pp. 313–323.

[15] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar:
A Better NetFlow for Data Centers,” in NSDI, 2016,
pp. 311–324.

[16] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig, “Elastic Sketch: Adaptive
and Fast Network-wide Measurements,” in SIGCOMM,
Aug. 2018, pp. 561–575.

[17] M. Yu, L. Jose, and R. Miao, “Software Defined Traf-
fic Measurement with OpenSketch,” in NSDI, 2013,
pp. 29–42.

[18] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C.
Chen, and G. Zhang, “SketchVisor: Robust Network
Measurement for Software Packet Processing,” in SIG-
COMM, 2017, pp. 113–126.

[19] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli,
and E. Waisbard, “Constant Time Updates in Hierarchi-
cal Heavy Hitters,” in SIGCOMM, 2017, pp. 127–140.

[20] Barefoot Tofino: World’s Fastest P4-Programmable Eth-
ernet Switch ASICs, https://barefootnetworks.com/.

[21] P. Tune and D. Veitch, “Towards Optimal Sampling for
Flow Size Estimation,” in SIGCOMM, 2008, pp. 243–
256.

[22] N. Hohn and D. Veitch, “Inverting Sampled Traffic,” in
SIGCOMM, 2003, pp. 222–233.

[23] CAIDA UCSD Anonymized Internet Traces Dataset -
2018, http : / / www. caida . org / data / passive / passive
dataset.xml.


