
Flexible and Scalable Systems for

Network Management

Arpit Gupta

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: Professor Nick Feamster

September 2018

c© Copyright by Arpit Gupta, 2018.

All rights reserved.

Abstract

Our daily lives are heavily reliant upon Internet-connected devices, services, and ap-

plications. This reliance makes it more critical than ever that the underlying networks

they depend on be reliable, performant, and secure. At the same time, the increas-

ing complexity and diversity of today’s devices, services, and applications have made

network management tasks more complicated than ever. Modern network manage-

ment mandates that operators can systematically monitor what is going on in their

networks (network monitoring) and use this information to take real-time preventive

or corrective actions (network control). Achieving these goals while also adhering to

the limited compute and storage resources available on modern network devices poses

significant challenges.

The contribution of this dissertation is the design and implementation of two sys-

tems that enable flexible and scalable network monitoring and control. The network-

monitoring system, Sonata, collects and analyzes network traffic to infer various net-

work events in real time. The network-control system, SDX, enables fine-grained

reactive control actions for interdomain traffic without disrupting the existing rout-

ing protocols. For each of these two systems, the dissertation focuses on (i) the ab-

stractions that allow network operators to express flexible programs for both network

monitoring and control; (ii) the algorithms that make the best use of limited compute

and storage resources; and (iii) the systems that combine the high-level abstractions

and the low-level algorithms and can be deployed in production settings.

The lessons learned from this dissertation can help us design next-generation

network-management systems. More concretely, unlike existing systems that rely

solely on a single device-type, this dissertation shows that designing systems that can

pool resources from a heterogeneous set of devices (targets) is critical for building

flexible and scalable network-management systems. It also demonstrates that as the

networking technologies and protocols evolve rapidly with time, it is imperative to

iii

design modular systems that can swiftly catch up with these changes. Finally, this

research also illustrates that it is crucial to select strategic locations (e.g., Internet ex-

change points) for deployment to drive innovations in Internet-wide traffic monitoring

and control.

iv

Acknowledgments

I am incredibly grateful to my advisor, Nick Feamster, for his patience, guidance,

and positive reinforcement in the past five years. Nick was the best advisor I could

have asked for. His leadership traits as an advisor resonated perfectly with the ones

that I desired as a graduate student. It can’t get any better than this. I especially

admire his integrity as a researcher and how much he values academic freedom over

the short-term gains. Nick not only taught me how to find the right problems to

solve but also how to create an impact in the real world with academic research. Nick

opened the gates of top-quality networking research for me. He ensured that I can

travel to any conference I wanted, have all the resources required to succeed in my

endeavors, and meet all the right people to excel as a researcher. The Ph.D. can

be a very rough journey, and I think I was fortunate to have had Nick as my guide,

ensuring that it was a swift and smooth ride for me.

I am very fortunate to have worked with Jennifer Rexford on both the SDX and

the Sonata project. Both her energy-level and sense-of-humor are infectious. It is

still an unsolved puzzle for me how she manages to be so productive yet so accessible,

effortlessly providing in-depth and insightful comments. Jen taught me how to ask the

right questions while doing research, how to create real-world impact with academic

research, and how to offer leadership to the research community in areas of your

expertise.

I am very thankful to Walter Willinger for tirelessly mentoring me. We worked

together for the Sonata project. Walter was the shepherd for my SIGCOMM paper

on SDX in 2014, so in a way, he mentored me for both the SDX and the Sonata

projects. Walter opened the new world of streaming analytics for network monitoring

to me. Walter taught me how to focus on developing an ambitious long-term research

program, and how to manage risks while pursuing these ambitious goals. As a mentor,

he was very approachable and always full of insightful comments and feedback. After

v

every meeting with him, I felt good about myself and was inspired to do better as a

researcher. This experience made my last few years of Ph.D. incredibly blissful.

I am very thankful to Laurent Vanbever. He mentored me during the early years

of my Ph.D. He taught me how to think like a researcher. I learned a lot working with

him on the SDX and various other related projects. Laurent taught me how efficient

time management makes it is possible to do excellent research while maintaining

a reasonable work-life balance. I was incredibly lucky to have worked with Ethan

Katz-Bassett on a couple of projects during my Ph.D. I learned from him how to

create long-term impact by building and maintaining systems and tools that serve a

broader research community. I am also very thankful to Anurag Kumar at Indian

Institute of Science (IISc). I worked with him as a project assistant before starting

graduate studies. Working with him was my first exposure to networking research

and strengthened my resolve to pursue research in the networked systems area.

I am also very thankful to Marco Canini, who mentored me during the final few

years of my Ph.D. Marco shared his system-building expertise with me and taught

me how to ask the right questions as a systems researcher. I would also like to thank

my mentors at Microsoft research (Ratul Mahajan, Monia Ghobadi, and Hongqiang

Liu) and Google (Nandita Dukkipati), who exposed me to the real-world networked-

systems problems. I owe a great debt to Russ Clark and Chris Tengi, who showed

me various research problems related to campus networks. I am also very thankful

to Rachit Agrawal, Wyatt Lloyd, Marshini Chetty, and Vyas Sekar for taking a deep

interest in my work and providing feedback and support.

I am fortunate to have shared office with wonderful colleagues. Sam Burnett,

Hyojoon Kim, Srikanth Sundaresan, and Robert Lychev at Georgia Tech helped me

get settled as a new graduate student. It was an incredibly rewarding experience

to work with Rudy Birkner, Rob Harrison, and Robert MacDavid on various re-

search projects. I learned a lot about programmable networking from my colleagues:

vi

Mina Tahmasbi Arashloo, Srinivas Narayana, Xin Jin, Naga Katta, Mogjan Ghasemi.

Sarthak Grover, Abhinav Narain, Swati Roy, Ben Jones, Sean Donovan, and Muham-

mad Shahbaz have been companions in both celebration and commiseration.

The research in this dissertation was funded through the following National Sci-

ence Foundation (NSF)’s awards: CNS-1539902, CNS-1704077, CNS-1539920, CNS-

1409056, CNS-1040705, CNS-1040838, CNS1162112, and CNS-1261357. The writing

of this dissertation was fuelled by the coffee beans sourced by Small World Coffee at

Princeton, and Blue Bottle Coffee at the Rockefeller Center in the New York City.

My wife, Ankita Pawar, was extremely patient and supportive of this endeavor.

Many ideas in this dissertation, especially the ones related to system design, came

after intense brainstorming sessions with her. She ensured that I spent my last five

years only as a graduate student, not a poor graduate student. I am indebted to my

brother who shielded me away from all the filial responsibilities, making sure that

I only had my research to worry about. Words aren’t enough to thank my parents

who made great sacrifices for me and helped me stay grounded and focused in life.

My wife, brother, and parents have been a constant source of love and inspiration,

without which this accomplishment would have been impossible. The least I can do

is to dedicate this dissertation to them. My success is also theirs.

vii

To my wife, brother, and parents.

viii

Contents

Abstract . iii

Acknowledgments . v

List of Tables . xiii

List of Figures . xv

Bibliographic Notes . xix

1 Introduction 1

1.1 Network Management . 2

1.1.1 Flexibility Requirements . 2

1.1.2 Available Network Resources 3

1.1.3 Flexibility and Scalability Gap 5

1.2 Network Monitoring with Sonata . 6

1.2.1 Problem . 7

1.2.2 Observations . 7

1.2.3 Contributions . 8

1.3 Network Control with SDX . 9

1.3.1 Problem . 10

1.3.2 Observations . 10

1.3.3 Contributions . 11

1.4 Lessons Learned . 12

1.4.1 Pooling Heterogeneous Resources 12

ix

1.4.2 Designing Modular and Extensible Systems 13

1.4.3 Selecting Strategic Locations for Deployment 14

1.5 Dissertation Outline . 15

2 Network Monitoring with Sonata 16

2.1 Overview . 16

2.2 Background and Motivation . 20

2.3 Unified Query Interface . 23

2.3.1 Dataflow Queries on Tuples 24

2.3.2 Example Network-Monitoring Queries 25

2.4 Query Partitioning . 28

2.4.1 Data Reduction on the Switch 28

2.4.2 Data-Plane Resource Constraints 33

2.4.3 Computing Query-Partitioning Plans 34

2.5 Algorithm: Dynamic Query Refinement 39

2.5.1 Modifying Queries for Refinement 39

2.5.2 Computing Refinement Plans 41

2.6 Implementation . 43

2.7 Evaluation . 47

2.7.1 Setup . 47

2.7.2 Load on the Stream Processor 49

2.7.3 Case Study: Tofino Switch . 52

2.8 Related Work . 53

3 Network Control with SDX 55

3.1 Overview . 55

3.2 Background and Motivation . 58

3.2.1 Conventional IXP Architecture 58

x

3.2.2 Wide-Area Traffic Delivery . 59

3.3 Abstraction: Virtual SDX Switch . 62

3.3.1 Virtual SDX Switch Abstraction 62

3.3.2 Integration with Interdomain Routing 66

3.4 Efficient Compilation . 69

3.4.1 Compilation by Policy Transformation 69

3.4.2 Reducing Data-Plane State 73

3.4.3 Reducing Control-Plane Computation 77

3.5 Implementation and Deployment . 82

3.5.1 Implementation . 83

3.5.2 Deployment . 85

3.6 Performance Evaluation . 88

3.6.1 Experimental Setup . 88

3.6.2 Forwarding-Table Space . 90

3.6.3 Compilation Time . 93

3.7 Related Work . 95

4 Network Control with iSDX 98

4.1 Overview . 98

4.2 SDX: Scaling Challenges . 101

4.2.1 Example Operation . 101

4.2.2 Existing SDX Designs Do Not Scale 105

4.3 Design of an Industrial-Scale SDX . 107

4.3.1 Partition Control-Plane Computation 107

4.3.2 Decouple BGP and SDN Forwarding 107

4.4 Partitioning Control-Plane Computation 108

4.4.1 Partitioning the FEC Computation 109

4.4.2 Distributing Forwarding Rules and Tags 110

xi

4.5 Decoupling SDN Policies from Routing 112

4.5.1 Idea: Statically Encode Routing 113

4.5.2 Encoding Next-Hop and Reachability 114

4.6 Implementation . 117

4.7 Evaluation . 119

4.7.1 Experiment Setup . 119

4.7.2 Steady-State Performance . 120

4.7.3 Runtime Performance . 123

4.8 Related Work . 126

5 Conclusion 128

5.1 Filling the Scalability and Flexibility Gap 128

5.2 Summary of Contributions . 129

5.3 Moving Forward from Lessons Learned 131

5.3.1 Developing Intelligent Network-Monitoring System 132

5.3.2 Expanding Networking-Monitoring Footprint 132

5.3.3 Closing the Network Monitoring and Control Loop 133

5.4 Concluding Remarks . 134

Bibliography 136

xii

List of Tables

1.1 Available network resources. The match and action capabilities repre-

sent the flexibility, and the speed and memory represent the scalability

of each target. 3

2.1 Sonata’s Dataflow Operators. All stateful operators execute with re-

spect to a window interval of W seconds. 25

2.2 Summary of variables in the query-planning problem. 35

2.3 ILP formulation for the query partitioning problem. 36

2.4 Extension of ILP to support dynamic refinement. 44

2.5 Implemented Sonata Queries. We report lines of code considering the

same: (1) refinement plan; (2) partitioning plan, i.e., executing as

many dataflow operators in the switch as possible. 46

2.6 Monitoring systems emulated for evaluation. 48

3.1 IXP datasets. We use BGP update traces from RIPE collectors [96]

in the three largest IXPs—AMS-IX, DE-CIX, and LINX—for January

1–6, 2014, from which we discarded updates caused by BGP session

resets [131]. 81

4.1 Median time (for 60 trials) to compute forwarding table entries for an

IXP with 500 participants. The iSDX column shows the results for

this paper. 105

xiii

4.2 Three distributed SDX Controllers. 119

4.3 Summary of evaluation results for iSDX with 500 IXP participants.

Note that compression times for iSDX are per-participant, since each

participant can compile policies in parallel; even normalizing by this

parallelization still yields significant gains. 119

5.1 Summary of contributions. 129

xiv

List of Figures

1.1 This dissertation focuses on filling the gap between flexibility and scal-

ability for network management. It presents the design and imple-

mentation of two systems for network monitoring and network control

respectively. Each makes unique contributions categorized regarding

new abstractions, algorithms, and systems. 6

2.1 Sonata’s Architecture. 17

2.2 Compiling a dataflow query (Query 2.1) to a sequence of match-action

tables for a PISA switch. Each query consists of an ordered sequence

of dataflow operators, which are then mapped to match-action tables

in the data plane. 29

2.3 Relationship between collision rate and number of unique incoming

keys. 38

2.4 Query augmentation for Query 2.1. The query planner adds the op-

erators shown in red to support refinement. Query 2.1 executes at

refinement level ri = /8 during window T and at level ri+1 =/16 dur-

ing window (T + W). The dashed arrow shows the output from level

ri feeding a filter at level ri+1. 40

2.5 The N and B cost values for executing Query 2.1 at refinement level

ri+1 after executing it at level ri. 41

xv

2.6 Sonata Implementation. Red arrows show compilation control flow and

black ones show packet/tuple data flow 45

2.7 Reduction in workload on the stream processor running: (a) one query

at a time, (2) concurrently running multiple queries. 49

2.8 Effect of switch constraints. 51

2.9 Detecting Zorro attacks using Tofino switch. 51

3.1 SDX programming abstractions. 63

3.2 Multi-stage FIB for each participant, where the first stage corresponds

to the participant’s border router and the second stage corresponds to

the participant’s virtual switch at the SDX. 75

3.3 The SDX controller implementation, which has two pipelines: a policy

compiler and a route server. 83

3.4 Setup for deployment experiments. 85

3.5 Traffic patterns for the two “live” SDX applications. (a) At 565 sec-

onds, the AS C installs an application-specific peering policy, causing

port 80 traffic to arrive via AS B. At 1253 seconds, AS B withdraws

its route to AWS, causing all traffic to shift back to the path via AS A.

(b) At 246 seconds, the AWS network installs a wide-area load bal-

ance policy to shift the traffic for source 204.57.0.67 to arrive at AWS

instance #2. 86

3.6 Number of prefix groups as a function of the number of prefixes, for

different numbers of participants. 91

3.7 The number of forwarding rules as a function of the number of prefix

groups for different number of participants. 92

3.8 Compilation time as a function of the number of prefix groups, for

different numbers of participants. 93

3.9 Number of additional forwarding rules. 94

xvi

3.10 Time to process a single BGP update for various participants. 94

4.1 An example with five IXP participants. Two participants AS A and AS

B have outbound policies. The other three advertise five IP prefixes

to both these participants. 102

4.2 Matrix representation of AS A and AS B’s outbound policies after aug-

mentation and policy compression, as well as the stages of compression

and composition in the original SDX design; the composition stage is

grey to indicate that the Sonata eliminates this stage entirely. 103

4.3 Existing SDX designs can require to maintain millions of forwarding

entries (left) and update 10, 000s of updates per second (right). Such

numbers are far from current hardware capabilities. As an illustration,

the dashed line highlights the hardware capabilities of state-of-the-art

SDN switches [78]. 105

4.4 Partitioning the Control-Plane Computation. 108

4.5 Distributing forwarding rules and tags. 109

4.6 How AS A’s controller uses reachability encoding to reduce the number

of flow rules. 114

4.7 Implementation of iSDX. It has five main modules: (1) IXP controller,

(2) participant SDN controller, (3) ARP relay, (4) BGP relay, and

(5) fabric manager. 117

4.8 Number of forwarding table entries. 121

4.9 Number of virtual next-hop IP addresses for centralized and distributed

control planes. Results for distributed iSDX do not depend on encoding

or compression approach. 122

4.10 Time to perform policy compression. 122

4.11 Rate at which forwarding table entries are updated. 123

4.12 Latency of iSDX-R updates in response to BGP update streams. . . . 124

xvii

4.13 Rate at which a participant’s border router receives gratuitous ARPs. 125

xviii

Bibliographic Notes

Academic Papers

An early version of material presented in Chapter 2 appears in an ACM HotNets

paper (2016) co-authored with Rüdiger Birkner, Marco Canini, Nick Feamster, and

Chris MacStoker [38]; and an Arxiv paper (2017) co-authored with Rob Harrison,

Rüdiger Birkner, Ankita Pawar, Marco Canini, Nick Feamster, and Jennifer Rex-

ford [39]. However, most material in Chapter 2 appears in an ACM SIGCOMM

paper (2018) co-authored with Rob Harrison, Rüdiger Birkner, Ankita Pawar, Marco

Canini, Nick Feamster, and Jennifer Rexford. The early version of the material in

Chapter 3 appears in a tech report co-authored with Arpit Gupta, Muhammad Shah-

baz, Laurent Vanbever, Hyojoon Kim, Russ Clark, Nick Feamster, Jennifer Rexford,

and Scott Shenker [41]. Most of the material in this chapter appears in an ACM

SIGCOMM paper (2014) co-authored with Laurent Vanbever, Muhammad Shahbaz,

Sean Donovan, Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker,

Russ Clark, and Ethan Katz-Bassett [42]. Finally, the material in Chapter 4 ap-

pears in a USENIX NSDI paper (2016) co-authored with Robert MacDavid, Rüdiger

Birkner, Marco Canini, Nick Feamster, Jennifer Rexford, and Laurent Vanbever [40].

Talks

Below, we present the list of talks that cover the subset of materials presented in this

thesis.

• Making the “Net” Work: Flexible and Scalable Systems for Network Manage-

ment at Texas A& M (02/18), UCSB (02/18), Northeastern University (03/18),

xix

University of Virginia (03/18), University of Minnesota (04/18), and University

of Toronto (04/18). Included in chapters 1 and 5.

• Sonata: Query-Driven Streaming Network Telemetry at ACM HotNets (11/16),

NANOG 70 (05/17), P4 Workshop (05/17), Comcast (12/16), NIKSUN Inc.

(06/17), AT&T (10/17), New England Networking & Systems Day, and Boston

University (10/16). Included in chapters 1, 2, and 5.

• SDX: A Software Defined Internet Exchange at ACM SIGCOMM (08/14),

GENI Engineering Conference 20 (06/14), NANOG 59 (10/13), OpenIX Sum-

mit (04/15), Facebook Inc. (08/14), Microsoft (08/14), and NetSeminar, Stan-

ford University (10/14). Included in chapters 1, 3, and 5.

• iSDX: An Industrial-Scale Software Defined Internet Exchange Point at

USENIX NSDI (03/16), USENIX ATC (06/16), GENI Network Innovators

Community Event (12/16), AT&T (10/15), Project Endeavour (10/15), Corsa

(11/15), CloudRouter (01/16), Open Networking Foundation Webinar (04/16),

Appfest (05/16), Networked Systems Laboratory, and USC (08/15). Included

in chapters 1, 4, and 5.

xx

Chapter 1

Introduction

Our daily lives are heavily reliant on Internet-connected devices (e.g., mobile phones,

smart devices) and applications (e.g., email, video streaming, augmented reality).

In turn, these networked devices and applications rely on the underlying networks.

Network operators, responsible for managing these networks, are required first to

monitor various network events (network monitoring) and then react to these events

in real time (network control). However, the scale and the diversity of these Internet-

connected devices and applications have significantly increased the complexity of

network management.

In this chapter, we first describe how the growing complexity of modern networks

makes it harder for the network operators to perform flexible and scalable network

monitoring and control in Section 1.1. We then present two systems that bridge

the gap between flexibility and scalability for network monitoring and control in

Section 1.2 and Section 1.3, respectively. We then summarize the lessons learned from

this dissertation in Section 1.4. Finally, we present the outline of this dissertation in

Section1.5.

1

1.1 Network Management

To keep the networks running, network operators need to perform two basic tasks:

(1) network monitoring, and (2) network control. In this section, we describe the

flexibility requirements of these two tasks and network resources available for their

scalable execution—highlighting the gap between flexibility and scalability.

1.1.1 Flexibility Requirements

In this dissertation, we define the flexibility of programs for network management

(i.e., queries for network monitoring and policies for network control) in terms of the

level of granularity at which they can operate (match) and the range of operations

that they can perform (actions).

Flexibility Requirements for Network Monitoring. Network operators mon-

itor the network to identify what events are going on in their network. For example,

network operators managing the network for a cloud service provider, e.g., Google,

might be interested in figuring out if the video streaming traffic that they deliver to

their customers is jittery. They might also be interested in figuring out whether some

of the hosts within their network are victims of a DNS-based reflection attack [84, 62],

i.e. if any host in their network is receiving DNS response messages from too many

distinct hosts. Note that both these monitoring tasks require collecting an aggregate

metric (i.e., jitter and the number of unique DNS response messages for the two

tasks, respectively) from subsets of the total traffic (i.e., video streaming and DNS

response traffic, respectively). Clearly, there are many ways in which network opera-

tors can specify the subsets of traffic of interest (defined based on address, protocol,

payload, device, location). Similarly, there are many metrics (e.g., jitter, distinct

hosts, volume, delay, loss) they might want to extract. Thus, it is critical that net-

2

Routers Programmable Switches CPUs

Match IP prefixes All header fields All header and payload fields

Actions forward, drop
forward, drop, add, subtract,
bit operations

Any

Speed O(ns) O(ns) O(µs)
Memory O(1M) O(100K) O(1B)

Table 1.1: Available network resources. The match and action capabilities represent
the flexibility, and the speed and memory represent the scalability of each target.

work operators should be able to express queries for network-monitoring tasks with

as much flexibility as possible.

Flexibility Requirements for Network Control. Once the network operators

have figured out what events are going on in the network, they want to react to those

events in real time. For example, after detecting jitter in the video streaming traffic,

the same operators at Google might want to use a different path for this traffic. Also,

after identifying the presence of DNS reflection attack traffic, the network operators

might want to block the attack traffic. Notice that for both of these tasks, network

operators are interested in defining a specific action (e.g., redirect and block, respec-

tively) for subsets of the total traffic (e.g. video streaming and DNS response traffic,

respectively). Again, similar to the case of network monitoring, there can be many

ways in which network operators might want to specify the portion of traffic that they

are interested in and the actions (e.g., redirect, drop, rate limit, modify) they want

to apply over the selected traffic. Thus, similar to network monitoring, it is critical

that network operators should be able to express programs for network control tasks

with as much flexibility as possible.

1.1.2 Available Network Resources

Network operators rely on various network devices, such as switches and routers, to

execute multiple monitoring and control tasks. We classify these network devices

into three categories based on the flexibility (i.e., their match and action capabilities)

3

and scalability (i.e., their packet processing, and storage capabilities) metrics (see

Table 1.1).

Conventional Routers. Networks that carry high-volume traffic require network

devices to maintain state for millions of unique flows (aggregated based on the desti-

nation IP prefixes) and process packets belonging to these flows in a few nanoseconds.

The most commonly used devices for such networks rely on conventional routers that

are specially designed to match on the destination IP prefixes using ternary con-

tent accessible memory (TCAM) and apply commonly-used actions such as forward,

drop. They are designed to trade flexibility for scalability, maintaining the forwarding

decisions for millions of flows (identified by destination IP address) in the network

and processing the incoming packets in the order of few nanoseconds. They cannot

apply any custom operations over the incoming traffic for monitoring or apply any

fine-grained control actions. These devices are scalable, but not flexible.

General-purpose CPUs. At the other end of the design spectrum, we have

general-purpose CPUs as network devices. They are generally not identified as

network devices, but most of the existing flexible network-monitoring systems (e.g.,

Gigascope [23], NetQRE [129]) rely on CPU-based servers for answering a wide range

of queries concerning various monitoring tasks. These devices can support more

complex parsing operations, and can thus match on deeper packet fields, including

the payload fields. They use dynamic random access memory (DRAM), and can,

therefore, support a wide range of stateful operations at cheaper costs. However,

this flexibility comes at the expense of speed because their packet-processing time

is in the order of microseconds. Also, as these devices are typically not part of the

data path and require mirroring traffic from the data plane for processing, they incur

additional bandwidth cost. These devices are flexible but not scalable.

4

Programmable Switches. In recent years, we have witnessed significant devel-

opments in the design and implementation of programmable switches that are more

flexible than routers (but not as flexible as CPUs) and faster than CPUs. Unlike

conventional routers, which are designed to only match on destination IP prefixes,

these devices are more flexible as they can be programmed to match on any arbitrary

combination of multiple packet header fields. Unlike the CPUs, they are more scalable

as they can process packets at line rate. However, this additional flexibility comes

at the expense of limited state (i.e., they can only support few hundred thousand

match-action entries compared to millions supported by conventional routers).

More recently, we have also witnessed the growing popularity of reconfigurable

protocol-independent switch architecture (PISA) targets [15, 50, 120] in data-center

and wide-area networks. Unlike conventional network devices, these switches sup-

port custom packet processing and state management, implementable in the P4 lan-

guage [14]. More specifically, PISA targets allow programmatic specification of new

header formats for parsing packets. They support computing complex aggregate met-

rics using static random access memory (SRAM) as hash tables and carrying state

along with the packet through the packet processing pipeline or on to the next switch

using custom metadata fields. They also support flexible match/action tables with

programmable actions. These capabilities make it possible to apply flexible operations

over the incoming traffic at scale.

1.1.3 Flexibility and Scalability Gap

As shown in Figure 1.1, there exists a gap between flexibility and scalability for

efficiently managing today’s complex networks. This gap exists for two reasons. On

the one hand, we require systems for network management that can support limitless

creativity regarding expressing programs for figuring out what events are going on

in the network (e.g., congestion, link failures, DDoS attacks, etc.), and then reacting

5

Censorship AvoidanceCongestion Mgmt.
Traffic ScrubbingLoad Balance
DDoS Defense

Limitless Creativity
(Flexibility)

Limited Resources
(Scalability)

Traffic Engineering

Network Devices

Abstractions

Algorithms

SystemsDeployable Gap

Figure 1.1: This dissertation focuses on filling the gap between flexibility and scal-
ability for network management. It presents the design and implementation of two
systems for network monitoring and network control respectively. Each makes unique
contributions categorized regarding new abstractions, algorithms, and systems.

to those events in real time. At the same time, we are faced with limited resources

in the network. While programmable switches are more flexible than conventional

switches and faster than CPUs, they are just a tool and cannot fill the gap between

the flexibility we require and the scalability we look for.

This dissertation focuses on the design and implementation of two systems,

Sonata and SDX, both of which harness the power of programmable switches to

bridge the gap between flexibility and scalability. To fill this gap (see Figure 1.1), we

present: (1) the abstractions that we designed to make it easier for network operators

to express flexible programs for network monitoring and control, (2) the algorithms

that we developed to make the best use of limited network resources, and (3) systems

that glue the high-level abstractions to the low-level algorithms.

1.2 Network Monitoring with Sonata

To describe Sonata, we first define the problem that it is trying to address and then

elaborate on the unique observations that inspired Sonata’s design. Finally, we sum-

6

marize the contributions in terms of abstractions, algorithms, and systems, high-

lighting how in combination they enable Sonata to fill the aforementioned flexibility-

scalability gap.

1.2.1 Problem

Network operators need to monitor a wide range of network activities concurrently.

For example, they are required to detect whether the network is under attack and

also determine whether there is a device failure in the network at the same time. This

process involves extracting multiple features from the traffic data and combining them

to infer activities of interest in real time. Most existing real-time network-monitoring

systems are either not flexible (i.e., they support an insufficient set of monitoring

tasks), or they are not scalable (i.e., they fail to scale as the traffic volume intensifies

and the number of monitoring tasks increases). This dissertation presents the design

and implementation of a flexible and scalable network-monitoring system that can

execute multiple flexible monitoring queries over high-volume network traffic in real

time.

1.2.2 Observations

This dissertation leverages two observations to scale the execution of flexible queries

for network monitoring. (1) Many existing network-monitoring systems take ad-

vantage of either scalable stream processing or programmable data-plane targets for

network monitoring—but not both. While at first glance, these two technologies

seem inherently different, they both apply a sequence of transformations over packets

(tuples). This dissertation leverages the inherent similarity between the two targets

to design a network-monitoring system that uses both stream processors and pro-

grammable switches for query execution. (2) For many network-monitoring tasks,

the fraction of relevant traffic is typically tiny. This dissertation leverages this obser-

7

vation to design a query-driven network-monitoring system which relies on the output

of queries to iteratively zoom-in over the relevant traffic relevant.

1.2.3 Contributions

Abstractions for expressing network-monitoring queries. Requiring network

operators by themselves to individually configure both programmable switches and

stream processors for each query separately can be overwhelming. We design a query

interface that unifies the parsing and compute capabilities of a programmable switch

with those of stream processors. This interface allows network operators to apply

familiar dataflow operators (e.g., map, filter, reduce) over arbitrary combinations

of packet fields without regard to where the query will execute. We show that a wide-

range of network monitoring tasks (see Table 2.5) can be expressed in fewer than 20

lines of code.

Query-planning algorithms. To reduce the load on the stream processor,

Sonata’s query planner would like to execute the monitoring queries using only the

hardware switches. However, the data-plane resources, such as switch memory and

processing stages, are quite limited and inelastic. Thus, Sonata’s query planner

needs to partition the given monitoring queries between the switch and the stream

processor. To design the query-partitioning algorithm that makes the best use of these

resources, we developed a model that accurately captures the common data-plane

resource constraints and quantified how high-level dataflow operators consume these

resources.

To further use limited switch computational and memory resources efficiently,

we developed a dynamic-refinement algorithm that, instead of processing all traffic,

allows the switch to focus only on the subset of traffic that satisfy a query. We show

that this technique applies to a wide range of monitoring queries and demonstrate how

8

Sonata’s query planner considers the structure of queries and representative traffic

traces to compute a refinement plan for each query.

Sonata’s design and implementation. We designed the system to be modular

such that it can support various types of data-plane and stream processing targets and

can be easily extended to support operations over arbitrary packet fields. We also de-

signed Sonata’s query interface to be platform-agnostic, i.e., the network-monitoring

queries expressed using Sonata’s query interface are agnostic to the underlying switch

and streaming targets.

Sonata’s prototype implementation consists of only about 9,000 lines of code

and compiles queries to a single programmable switch. It implements drivers for

both hardware [112] and software [114] protocol-independent switches (e.g., Barefoot

Tofino [112]) as well as the Spark Streaming [111] stream processor. The current pro-

totype parses packet headers for standard protocols and can be extended to extract

other information, such as queue size [46]. We use real packet traces from operational

networks to demonstrate that Sonata’s query planner reduces the load on the stream

processor by as much as seven orders of magnitude over existing network-monitoring

systems. We also quantify how Sonata’s performance gains depend on various data-

plane constraints and traffic dynamics.

1.3 Network Control with SDX

To describe SDX, we first define the problem that it is trying to address and then

elaborate on the unique observations that inspired SDX’s design. We then summarize

our contributions in terms of abstractions, algorithms, and systems, highlighting how

these contributions enable filling the gap between flexibility and scalability. We also

describe how we further improved the scalability of the SDX system by designing and

implementing an industry-scale SDX (iSDX).

9

1.3.1 Problem

After using a network-monitoring system to infer various network events, network op-

erators need to apply fine-grained reactive control actions in the data plane, usually in

multi-domain settings. This part of the thesis focuses on applying flexible control for

the interdomain network settings, where by default the networks use the Border Gate-

way Protocol (BGP) to exchange traffic with each other. In particular, this research

demonstrates that BGP is not suited for applying flexible control actions. Ideally,

one would like to replace BGP with a clean-slate solution supporting programmatic

control at scale. However, the existing Internet-wide deployment of BGP-speaking

routers makes such an approach impractical. Thus, our goal is to design and imple-

ment an incrementally deployable, flexible, and scalable system that ensures maximal

impact with minimal deployment overhead while safely interoperating with BGP.

1.3.2 Observations

In recent years, the proliferation of Internet-connected devices and applications have

also contributed to making the Internet flatter and more densely interconnected.

The emergence of Internet exchange points (IXPs) contributes to the current state

of global interconnections. These IXPs provide a common switching fabric for vari-

ous networks for exchanging traffic with each other and are strategically located to

influence a significant portion of the Internet’s interdomain traffic. In this part of

the dissertation, we present software-defined exchange (SDX) [34] that replaces the

conventional switching fabric with programmable switches at IXPs. While simple in

theory, this dissertation shows that building a practically deployable SDX requires

striking a delicate balance between flexibility and scalability while ensuring that the

system safely operates with the existing routing protocol, i.e., BGP.

10

1.3.3 Contributions

Abstractions for expressing network-control programs. Participating net-

works need a way to create and run flexible control programs, without conflicting

with each other or with the global routing system. SDX presents each participat-

ing network with the illusion of its virtual programmable switch that extends the

footprint of its legacy network and enables flexible policies that interact safely with

today’s BGP.

Compilation algorithms. An SDX needs to compile flexible control programs for

hundreds of participants, hundreds of thousands of IP prefixes, and policies that

match on multiple packet-header fields—all while using a single commodity (pro-

grammable) hardware switch. We show how to combine the policies of multiple par-

ticipants and join them with the current BGP routes while limiting the rule-table size

and computational overhead. More specifically, we develop the minimum-disjoint-set

algorithm that assigns a unique forwarding tag for all prefixes that exhibit forwarding

equivalence. For iSDX, we developed the reachability-encoding algorithm that en-

codes reachability information for each IP prefix as a bitmask—further reducing the

rule-table size in the data plane.

SDX’s design and implementation. We have built a prototype of SDX and

created two example applications. Experiments demonstrate that our prototype scales

(in terms of rule-table size and CPU time) to many participants, policies, and prefixes.

We have also implemented a public, open-source implementation of iSDX, available

on Github [48]; the system is based on Ryu [98], a widely used SDN controller, and

comes with tutorials and instructions that have already helped spur early adoption.

An extensive trace-driven evaluation demonstrates iSDX’s scalability characteristics

using real-world data from one of the world’s largest IXPs. Our evaluation both

11

demonstrates that iSDX can scale to the workload at a large IXPs and provides insight

into precisely how (and to what extent) each of our optimizations and algorithms helps

iSDX scale.

1.4 Lessons Learned

The exponential increase in the number of Internet-connected devices and applica-

tions will require performing more and more flexible network monitoring tasks for

high-volume traffic—overwhelming the human operators. We expect that the next

generation of network-management systems will need to be not only more flexible and

scalable but also capable of running the networks with minimal human intervention.

We will now summarize the lessons learned from this dissertation that can guide the

design and implementation of these next-generation network-management systems.

1.4.1 Pooling Heterogeneous Resources

In theory, we would like to design a special-purpose target that is tailor-made for

the problem at hand. However, in practice, such an approach is not feasible. As a

result, system designers end up selecting a best-fitting target, which they utilize for

all their problems. However, as different network devices, in general, have different

capabilities, using only a single device type irrespective of the nature of the problem

is sub-optimal. It is critical to pool resources of multiple heterogeneous sets of targets

for a given problem.

In this dissertation, we demonstrate that combining the capabilities of a heteroge-

neous set of network devices or targets creates opportunities to build both flexible and

scalable systems for network management. To ensure flexible network control at IXP,

SDX compensates for the limited TCAMs of the programmable switch by designing

mechanisms that offloads the task of matching on IP prefixes to the fixed-function

12

border routers, making the best use of the two different targets. Similarly, to ensure

flexible and scalable network monitoring, Sonata compensates for the slow packet

processing capabilities of the CPU-based targets by opportunistically offloading as

much packet processing as possible to the programmable switch, again making the

best use of the two different targets.

1.4.2 Designing Modular and Extensible Systems

Network monitoring (control) systems perform various complex operations, a majority

of which are common across multiple systems. Many standard tools or libraries exist

to perform these operations. For example, most network-monitoring systems can

use the Scapy [115] for parsing packet fields. Building a system that implements

all these functionalities from scratch is wasteful. Thus, designing a modular system,

which divides the system into independent modules, ensures that it can leverage the

existing tools to expedite system development. Also, networking technologies and

protocols evolve rapidly with time. Designing a system tied to a specific technology

or protocol inhibit its evolvability. Thus designing an extensible system that can

swiftly adapt to these changes over time ensures that the system can evolve with

time.

In this dissertation, we designed and implemented modular and extensive systems

for network control and monitoring. The modular design helped identify operations

that can be offloaded to existing open-source software tools. For example, SDX’s em

bgp-handler module used an existing open-source tool ExaBGP [31] to handle BGP

messages, and Sonata’s emitter modules used Scapy [115] to parse packets. Extensible

design ensured that the systems could evolve with time. For example, the capabilities

of programmable switches in terms of their support for flexible bitmask matching

on destination MAC address field evolved between the year 2013 and 2015. This

development inspired our new hierarchical attribute-encoding algorithm, capable of

13

leveraging the new flexible bitmask matching capability of the switch to improve the

scalability of the SDX system further. An extensible design helped us augment the

attribute-encoding module without requiring any changes to other modules, enabling

SDX to evolve with time.

1.4.3 Selecting Strategic Locations for Deployment

Different network management systems are best suited for deployments at different

locations. Selecting the right locations for deployment is critical for the system’s

real-world adoption. This task entails identifying the locations where the system

can be incrementally deployed to perform the desired tasks while incurring minimal

deployment overhead, and where the new system can incentivize the stakeholders by

improving state of the art.

In this dissertation, we demonstrate that selecting IXPs for enabling flexible traffic

control ensured incremental deployability. Enabling flexible traffic control at IXPs

benefits hundreds of networks either physically or remotely present at the IXPs. For

example, more than 800 networks are connected to DE-CIX at Frankfurt. Also, as

existing IXPs (e.g., LINX, AMS-IX, DE-CIX, etc.) are at the frontline of peering

tussles between the content providers (e.g., Google, Netflix, Facebook, etc.) and

eyeball ISPs (e.g., AT&T, Verizon, etc.), the network operators at these IXPs are

receptive to the idea of flexible traffic control at IXPs. As a result, our solution,

iSDX, became the de-facto system for the Endeavour platform in Europe [29, 109],

which led to a couple of trial deployments across Europe. We expect to see the

deployment of SDXs in production settings soon.

14

1.5 Dissertation Outline

Chapter 2 presents how we use programmable switches to build Sonata, a scalable

and flexible network-monitoring system. In Chapter 3, we detail the design of SDX,

a novel scalable and flexible network-control system that can be deployed at large

IXPs. In Chapter 4, we show how we make the best use of new programmable

switches to develop the industry-scale network-control system iSDX. We describe how

changes in programmable switch technologies enabled us to develop a more efficient

attribute-encoding algorithm and a more modular prototype deployable in production

settings. Chapter 5 concludes the dissertation by summarizing the contributions

and illustrating how the lessons learned from this research can guide the design and

implementation of next-generation intelligent network management systems that can

run the networks by themselves without requiring any human intervention.

15

Chapter 2

Network Monitoring with Sonata

This chapter introduces the design, implementation, and evaluation of the network-

monitoring system, Sonata, that lets network operators express monitoring tasks as

dataflow queries over a stream of packet tuples. It opportunistically uses both pro-

grammable switches and stream processor to scale query execution with the number

of queries and traffic volume.

2.1 Overview

Network operators routinely perform continuous monitoring to track events ranging

from performance impairments to attacks. This monitoring requires continuous, real-

time measurement and analysis—a process commonly referred to as network moni-

toring [125]. Existing monitoring systems can collect and analyze measurement data

in real time, but they either support a limited set of monitoring tasks [76, 90], or

they incur substantial processing and storage costs as traffic rates and the number of

queries increase [23, 129, 13].

Existing monitoring systems typically trade off scalability for flexibility, or vice

versa. Monitoring systems that rely on stream processors alone are flexible but not

scalable. For example, systems such as NetQRE [129] and OpenSOC [90] can support

16

Query1

Packet
Tuples

Query2 Queryn

Runtime

Programmable Switch

…

Switch
Configs

Results

Packets In Packets Out

Stream
Processor

Figure 2.1: Sonata’s Architecture.

a wide range of queries using stream processors running on general-purpose CPUs, but

they incur substantial bandwidth and processing costs to do so. Large networks can

require performing as many as 100 million operations per second for rates of 1 Tbps

and packet sizes of 1 KB. Scaling to these rates using modern stream processors is

prohibitively costly due to their low (2–3 orders of magnitude lower than the line

rate) processing capacity per core [85, 87, 130, 91]. On the other hand, monitoring

systems that rely on programmable switches alone can scale to high traffic rates,

but they give up flexibility to achieve this scalability. For example, Marple [76] and

OpenSketch [126], can perform monitoring tasks by executing queries solely in the

data plane at line rate, but the queries that they can support are limited by the

capabilities and memory in the data plane.

Rather than accepting this apparent tradeoff between flexibility and scalability,

we observe that stream processors and programmable switches share a common pro-

cessing model; they both apply an ordered set of transformations over structured data

in a pipeline. This commonality suggests that an opportunity exists to combine the

strengths of both technologies in a single monitoring system that supports flexible

queries, while still operating at line rate for high traffic volumes and large numbers

of queries.

17

To explore this idea, we develop Sonata (Streaming Network Traffic Analysis), a

query-driven network-monitoring system. Figure 2.1 shows the design of Sonata: it

provides a declarative interface that can express queries for a wide range of moni-

toring tasks and also frees the network operator from reasoning about where or how

the query will execute. To scale query execution, Sonata (1) makes use of both

programmable data-plane targets and scalable stream processors and (2) iteratively

zooms-in on subsets of the traffic that satisfy the query—making the best use of lim-

ited data-plane resources. By unifying stream processing and data-plane capabilities,

Sonata’s runtime can refine query execution in the data plane to reduce load on the

stream processor. This ability to dynamically refine queries is important because

monitoring queries often require finding “needles in a haystack” where the fraction of

the total traffic or flows that satisfies these queries is tiny. We present the following

contributions:

Unified query interface. We design a query interface that unifies the parsing and

compute capabilities of a programmable switch with those of stream processors. This

interface allows network operators to apply familiar dataflow operators (e.g., map,

filter, reduce) over arbitrary combinations of packet fields without regard for where

the query will execute. We show that a wide-range of network-monitoring tasks can

be expressed in fewer than 20 lines of code (Table 2.5).

Query partitioning based on data-plane constraints. To reduce load on the

stream processor, we design an algorithm that partitions queries between the switch

and the stream processor. We first show how dataflow queries can be partitioned with-

out compromising accuracy. However, data-plane resources, such as switch memory

and processing stages, are quite limited and inelastic. To make the best use of these

resources, we develop an accurate model of common data-plane resource constraints

and show how high-level dataflow operators consume these resources. Sonata’s query

18

planner uses this model to decide how to partition query execution between the switch

and stream processor.

Dynamic query refinement based on query and workload. To efficiently use

limited switch compute and memory resources, we develop a dynamic refinement al-

gorithm that, rather than processing all traffic, allows the switch to focus only on

subsets of traffic that actually satisfy a query. We show that this technique applies

to a wide range of monitoring queries and demonstrate how Sonata’s query plan-

ner considers the structure of queries and representative traffic traces to compute a

refinement plan for each query.

Modular and extensible software architecture. To support different types of

data-plane and streaming targets, we design Sonata so that it could be extended

to support operations over arbitrary packet fields. The queries expressed using the

Sonata interface are agnostic to the underlying switch and streaming targets. Our cur-

rent prototype implements drivers for both hardware [112] and software [114] protocol-

independent switches (e.g., Barefoot Tofino [112]) as well as the Spark Streaming [111]

stream processor. The current prototype parses packet headers for standard proto-

cols and can be extended to extract other information, such as queue size along a

path [46].

The Sonata prototype consists of about 9, 000 lines of code and it currently com-

piles queries to a single programmable switch. We use real packet traces from opera-

tional networks to demonstrate that Sonata’s query planner reduces the load on the

stream processor by as much as seven orders of magnitude over existing monitoring

systems. We also quantify how Sonata’s performance gains depend on data-plane

constraints and traffic dynamics. To date, our open-source software prototype has

been used by both researchers at a large ISP and in a graduate networking course.

19

We first review the state of the art in network monitoring in Section 2.2, and then

present Sonata’s programming abstraction in Section 2.3. We show how Sonata makes

the best use of programmable PISA switch in Section 2.4, and how it further reduces

the memory footprint for stateful dataflow operators using dynamic refinement in

Section 2.5. We present the design and implementation of Sonata in Section 2.6, and

its evaluation in Section 2.6. Finally, we survey the related work in Section 2.8.

2.2 Background and Motivation

In this section we review the state of the art in network monitoring. Whereas Sonata

uses queries to jointly perform data collection and analysis, existing network moni-

toring systems primarily tackle either collection or analysis, with analysis typically

occurring only after collection. This section surveys the state of the art in collection

and analysis separately.

Traffic Collection

Network traffic collection and monitoring falls into two classes: packet-level monitor-

ing (sometimes referred to as “deep packet inspection”) and flow-level monitoring.

Packet monitoring Packet-level monitoring can be performed with software li-

braries such as libpcap, or in hardware, using devices such as the Eagle 10 or En-

dace capture cards [28]. Commonly, collection infrastructure is deployed on a switch

span port, which mirrors traffic going through the switch. A device connected to

the span port—typically a server—captures and stores the mirrored traffic. The col-

lection infrastructure can be configured with filters that can specify conditions for

capturing traffic; configuration can also determine whether complete packet payloads

are captured, or simply an excerpt of the packet, such as packet headers. Packet-

level monitoring can provide precise information for calculating statistics like the

20

instantaneous bitrate, packet loss, or round-trip latency experienced by individual

flows. Access to packet payloads can also be useful for a variety of purposes, such as

determining whether any given packet carries a malicious payload.

Unfortunately, packet-level monitoring has significant drawbacks, due to the high

overhead of collection, storage, and analysis. The sheer volume of network traffic

makes it prohibitive to capture every packet. Even if the infrastructure could capture

every packet, operators face daunting storage and analysis hurdles associated with

storing a complete log of all network traffic. As such, despite the rich possibilities

that packet-level traffic capture offer, many networks do not deploy this type of

infrastructure on a widespread basis. For example, recent figures from a large access

ISP have indicated that deep-packet inspection capabilities are deployed for less than

10% of the network capacity. This sparse deployment makes it essentially prohibitive

to generally perform the types of queries involving network performance or security

that could benefit from packet-level statistics.

Flow monitoring An alternative to packet-level monitoring is flow-level monitoring—

standardized in the Internet Engineering Task Force (IETF) as IPFIX, and commonly

referred to by the Cisco “NetFlow” moniker. IPFIX permits each switch to collect

flow-level statistics that contain coarse-grained information such as the number of

packets and bytes for a particular flow (e.g., as defined by the source and destination

IP address, source and destination port, and protocol), as well as the start and end

time of the flow. This type of information is often gathered in a “sampled” fashion:

on average, one out of every n packets is tabulated in an IPFIX flow record; typical

sampling rates for an ISP backbone network can be in the 1,000 < n < 10,000 range,

meaning that low-volume flows may often not be captured at all. Additionally,

IPFIX records do not contain detailed information about flows, such as packet loss

rates or packet timings, let alone packet payload information.

21

Both packet-level and flow-level monitoring systems can, of course, be tailored to

capture specific subsets of traffic. Packet-level monitoring can be customized with

filters that focus on specific subsets of traffic, and flow-level monitoring can be tuned

so that sampling rates are higher for specific links of interest. The advent of pro-

grammable data planes has also enabled programmatic collection of individual data

flows [101, 65, 126, 132, 108, 129, 89]. Yet, these tools either support limited sets

of queries that can only operate over fixed packet headers (e.g., UnivMon [65] and

OpenSketch [126]) or require custom tools to analyze one specific type of data (e.g.,

BigTap [101] and PLT [89]) precluding any analysis that requires fusing multiple data

streams.

Furthermore, the level of flexibility that all of these systems offers is limited in

the sense that (1) in general, their configurations remain static; (2) decisions about

capturing more fine-grained information are completely decoupled from the queries

or analysis. In short, because the monitoring process is decoupled from analysis, all

of these decisions must be made far in advance of analysis, often resulting in traffic

collection that is either too sparse or too voluminous.

Traffic Analysis

Given the ability to perform packet or flow monitoring on network traffic, network

operators can use systems such as Deepfield [88], Kentic [113], or Velocidata [118] to

perform network analysis in support of network performance or security. For example,

Deepfield Singularity performs joint analysis of packet captures and IPFIX records

to help network operators understand questions such as the relationship between

traffic overload and application performance as well as detect network attacks such

as distributed denial of service attacks. For example, analyzing the average bitrate of

Netflix streams traversing the network requires: (1) capturing the DNS queries (and

responses) for DNS domains corresponding to Netflix streams; (2) joining the resulting

22

IP addresses to the corresponding traffic data (e.g., either IPFIX or packet capture)

that can provide information about the rates that individual flows are seeing. Another

example might be the detection of a DNS reflection and amplification attack, which

involves compromised hosts sending large volumes of DNS queries with the spoofed

source IP address of the victim. Detecting such attacks often involves detecting an

abnormally high number of DNS queries from an IP address (in this case, the IP

address of the victim), typically for DNS query types that elicit large responses (e.g.,

TXT, RRSIG); alternatively, one could look for an abnormally large number of such

responses destined for a given IP address.

Although existing technologies developed by Deepfield and Kentik support certain

aspects of this type of analysis, they do not use the query itself to drive collection of

the traffic data, which often results in collecting, storing and analyzing large volumes

of data that do not pertain to the specific queries. Specifically, these analysis tools

rely on separate collection of DNS data (with packet monitoring) and traffic utilization

information (e.g., with IPFIX), which the analysis tools subsequently joint post hoc.

This approach to analysis also requires capturing a large amount of traffic that is not

relevant to the analysis, which increases the overhead of the analysis, both in terms

of the volume of data and the computation time. Furthermore, because IPFIX data

is often based on sampled traffic traces with high sampling rates, many DNS queries

and responses will not be captured in the IPFIX data at all, severely compromising

accuracy. Finally, the post hoc nature of existing analysis tools also precludes real-time

detection, since all data is collected and warehoused for subsequent joint analysis.

2.3 Unified Query Interface

This section presents Sonata’s query interface and shows example queries to illustrate

the types of queries that existing systems can and cannot support. Sonata provides a

23

query interface that is as flexible as modern stream processors but opportunistically

achieves the scalability of data-plane execution. Although Sonata uses programmable

switches to scale query execution, the computational limitations of these switches do

not affect the flexibility of the query interface. Sonata can execute operations that

are not supported in the switch, such as ones requiring payload processing or floating-

point operations, in the stream processor.

2.3.1 Dataflow Queries on Tuples

Extensible tuple abstraction. Information in packet headers naturally constitute

key-value tuples (e.g., source and destination IP address, and other header values).

This structure lends itself to a tuple-based abstraction [38]. Of course, an operator

may want to write queries based on information that is not in the IP packet header,

such as the application protocol, or DNS query type. To facilitate a wider range

of queries, Sonata allows an operator to extend the tuple interface to include other

fields that could be extracted by programmable switch or stream processor. For

example, they can specify customized packet-parsing operations for programmable

switches in a language such as P4. Based on such a specification, the parser can

extract all portions of the packet that pertain to the query. Sonata parses tuples on

the switch whenever possible, shunting packets to the stream processor only when the

query requires sophisticated parsing or join operations that the switch itself cannot

support (e.g., parsing of the packet’s payload), or information that requires a join

with auxiliary information such as a routing table.

Flexible dataflow operators. Many network-monitoring queries require comput-

ing aggregate statistics over a subset of traffic and joining the results from multiple

queries, which can be expressed as a sequential composition of dataflow operators

(e.g., filter, map, reduce). Gigascope [23], Chimera [13], and Marple [76] all use such

a programming model, which is both familiar and amenable for compilation to pro-

24

grammable switches [76]. Section 2.4 describes how Sonata compiles queries across

the stream processor and switch. Table 2.1 summarizes Sonata’s dataflow operators.

Stateful dataflow operators are all executed with respect to a query-defined time in-

terval, or window. For example, applying reduce over a sum operation will return

a result at the end of each window. Each query can explicitly specify the interval’s

duration for stateful operations.

Operator Description

filter(p) Filter packets that satisfy predicate p.
map(f) Transform each tuple with function f .
distinct() Emit tuples with unique combinations of fields.
reduce(k, f) Emit result of function f applied on key k over the input stream.
join(k, q) Join the output of query q on key field k

Table 2.1: Sonata’s Dataflow Operators. All stateful operators execute with respect
to a window interval of W seconds.

Limitations. Sonata queries operate at packet-level granularity, as in existing

declarative monitoring systems [23, 13, 90, 76]; it cannot support queries that re-

quire reassembling a byte stream, as in Bro. Sonata also currently compiles each

query to a single switch, not across multiple switches. The set of single-switch queries

we present are still practical for many deployments, such as on a border switch or at

an Internet exchange point (IXP). We leave compiling arbitrary queries to multiple

switches as future work.

2.3.2 Example Network-Monitoring Queries

We now present three example queries: one that executes entirely in the data plane,

a second that involves a join of two sub-queries, and a third that requires parsing

packet payloads. Table 2.5 summarizes the queries that we have implemented and

released publicly along with the Sonata software [117].

Computing aggregate statistics over a subset of traffic. Suppose that an

operator wants to detect hosts that have too many recently opened TCP connections,

25

1 packetStream (W)
2 . filter (p => p . tcp . flags == 2)
3 . map (p => (p . dIP, 1))
4 . reduce (keys=(dIP,), f=sum)
5 . filter ((dIP, count) => count > Th)

Query 2.1: Detect Newly Opened TCP Connections.

as in a SYN flood attack. Detection requires parsing each packet’s TCP flags and

destination IP address, as well as computing a sum over the destination IP address

field. Query 2.1 first applies a filter operation (line 2) over the entire packet stream

to select TCP packets with just the SYN flag set. It then counts the number of packets

it observed for each host (lines 3–4) and reports the hosts for which this count exceeds

threshold Th at the end of the window (line 5). This query can be executed entirely

on the switch, so existing systems (e.g., Marple [76]) can also execute this type of

query at scale.

Joining the results of two queries. A more complex query involves joining the

results from two sub-queries. To detect a Slowloris attack [102], a network operator

must identify hosts which use many TCP connections, each with low traffic volume.

This query (Query 2.2) consists of two sub-queries: The first counts the number of

unique connections by applying a distinct, followed by a reduce (lines 1–6). The

second counts the total bytes transferred for each host (lines 8–11). The query then

joins the two results (line 7) to compute the average connections per byte (line 12)

and reports hosts whose average number of connections per byte exceeds a threshold

Th2 (line 13). This query, as presented, is equivalent to detecting hosts for which

average bytes per connection is less than a threshold; in Section 2.5, we discuss why

it is desirable to express the query as the former instead of the latter. Because this

query involves a join operation after an aggregation operation (reduce), Marple can-

not support it. Additionally, the query involves computing an average, which requires

performing division; even state-of-the-art programmable switches do not support this

operation in the data plane [112]. Some queries will naturally need to perform opera-

26

1 packetStream

2 . filter (p => p . proto == TCP)
3 . map (p => (p . dIP,p . sIP,p . tcp . sPort))
4 . distinct ()
5 . map ((dIP,sIP,sPort) => (dIP,1))
6 . reduce (keys=(dIP,), f=sum)
7 . join (keys=(dIP,), packetStream

8 . filter (p => p . proto == TCP)
9 . map (p => (p . dIP,p . pktlen))

10 . reduce (keys=(dIP,), f=sum)
11 . filter ((dIP, bytes) => bytes > Th1))
12 . map ((dIP, (byte,con)) => (dIP, (con/byte))
13 . filter ((dIP, con/byte) => (con/byte > Th2)

Query 2.2: Detect Slowloris Attacks.

1 packetStream

2 . filter (p => p . tcp . dPort == 23)
3 . join (keys=(dIP,), packetStream

4 . filter (p => p . tcp . dPort == 23)
5 . map (p => ((p . dIP,p . nBytes/N), 1))
6 . reduce (keys=(dIP, nBytes), f=sum)
7 . filter (((dIP,nBytes) ,cnt1) => cnt1 > Th1))
8 . filter (p => p . payload . contains (’ zorro ’))
9 . map (p => (p . dIP,1))

10 . reduce (keys=(dIP,), f=sum)
11 . filter ((dIP, count2) => count2 > Th2)

Query 2.3: Detect Zorro Attacks.

tions that are more sophisticated than the switch can support; in such cases, existing

approaches cannot execute these kinds of queries at all. In contrast, Sonata’s query

planner can partition the query for partial execution on the switch and perform more

sophisticated computation not available in the switch at stream processor.

Processing packet payloads. Consider a query to detect the spread of malware

via telnet [80], which is a common tactic targeting IoT devices [4]. Here, miscreants

use brute force to gain shell access to vulnerable Internet-connected devices. Upon

successful login, they issue a sequence of shell commands, one of which contains the

keyword “zorro”. The query to detect these attacks first looks for hosts that receive

many similar-sized telnet packets followed by a telnet packet with a payload contain-

ing the keyword “zorro”. The query for this task has two sub-queries (Query 2.3):

the first part identifies hosts that receive more than Th1 similar-sized telnet packets

27

rounded off by a factor of N (lines 4–7). The second part joins (line 3) the output

of the first sub-query with the other and reports hosts that receive more than Th2

packets and contain the keyword “zorro” in the payload (lines 8–11). Since this query

requires parsing packet payloads, existing approaches cannot support it. In contrast,

Sonata can support and scale these queries by performing as much computation as

possible on the switch and then performing the rest at the stream processor.

2.4 Query Partitioning

Sonata partitions a given query across a stream processor and a protocol-independent

switch that performs part of the query, ultimately reducing the load (Section 2.4.1)

on the stream processor. Section 2.4.2 discusses the constraints of these switches that

the Sonata query planner considers; the planner solves an optimization problem to

partition the query, as described in Section 2.4.3.

2.4.1 Data Reduction on the Switch

A central contribution of Sonata is to use the capabilities of programmable switches

to reduce the load on the stream processor. In contrast to conventional switches,

protocol-independent switch architecture (PISA) switches (e.g., RMT [15], Barefoot

Tofino [50], Netronome [120]) offer programmable parsing and customizable packet-

processing pipelines, as well as general-purpose registers for stateful operations. These

features provide opportunities for Sonata to perform more of the query on the switch,

reducing the amount of data sent to the stream processor.

Abstract Packet Processing Model

Figure 2.2 shows how Query 2.1 naturally maps to the capabilities of the packet pro-

cessing model of a PISA switch. On PISA switches, a reconfigurable parser constructs

28

Deparser

Filter Reduce

Parser
Pktin Pktout

PHVin PHVout

Register

Filter

M A M A M A M A M A M A

Map

Emit

Stage 0 Stage 1 Stage 2 Stage 3

Figure 2.2: Compiling a dataflow query (Query 2.1) to a sequence of match-action
tables for a PISA switch. Each query consists of an ordered sequence of dataflow
operators, which are then mapped to match-action tables in the data plane.

a packet header vector (PHV) for each incoming packet. The PHV contains not only

fixed-size standard packet headers but also custom metadata for additional infor-

mation such as queue size. A fixed number of physical stages, each containing one

match-action unit (MAU), then processes the PHVs. The packet processing pipeline

is a sequence of custom match-action tables; MAUs implement these abstract tables

in hardware. Each MAU performs a self-contained set of match-action operations,

consuming PHVs as input and emitting transformed PHVs as output. If fields in the

PHV match a given rule in the MAU, then a set of custom actions corresponding to

that rule are applied to the PHV. These actions can be stateless or stateful; the state-

ful operations use register memory to maintain state. Finally, a deparser reassembles

the modified PHV into a packet before sending it to an output port.

The PISA processing model aligns well with streaming analytics platforms such as

Spark Streaming [130] or Apache Flink [86]. The processing pipelines for both can be

represented as a directed, acyclic graph (DAG) where each node in the graph performs

some computation on an incoming stream of structured data. For stream processors,

the nodes in the DAG are dataflow operators and the structured-data stream consists

of tuples. For PISA switches, the nodes in the DAG are match-action tables and the

structured-data stream consists of packets. Given this inherent similarity, an ordered

set of dataflow query operators could map to an ordered set of match-action tables

29

in the data plane. We now describe how Sonata takes advantage of this similarity to

execute dataflow operators directly in the data plane.

Compiling Individual Operators

Compiling dataflow queries to PISA switches requires translating the DAG of dataflow

operators into an equivalent DAG of match-action tables. Prior work [76] also faced

the challenge of compiling high-level queries to match-action tables, but limited the

set of input queries to those that can be performed entirely on the switch. Rather

than constraining the set of input queries, Sonata’s query planner partitions all input

queries into a set of dataflow operators than can be executed on the switch and a set

that must be executed at the stream processor. Before Sonata’s query planner can

make this partitioning decision, we must first quantify which limited resources are

consumed by executing individual dataflow operators on the switch.

Filter requires a single match-action table to match a set of fields in the PHV.

For example, line 1 of Query 2.1 requires a single match-action table where the six-

bit tcp.flags field is a column and the value 2 is a single rule (row), as shown in

Figure 2.2. In general, the match-action table for a filter operation has a column

for each field in the predicate. A filter predicate with multiple clauses connected by

“and” leads to multiple rules, one per clause.

Map also requires a single match-action table. For example, line 2 of Query 2.1

transforms all incoming packets into a tuple consisting of the ipv4.dIP field from

the packet’s header and the value 1. These values are stored in query-specific meta-

data for further processing. Although Sonata’s query interface does not constrain

the transformations that map might perform over a set of tuples, the operator can-

not be compiled to the data plane if the switch cannot perform the corresponding

transformation.

30

Reduce requires maintaining state across sequences of packets; Sonata uses regis-

ters, which are simply arrays of values indexed by some key, to do so. Query-specific

metadata fields permit loading and storing values from the registers. As a result,

stateful operations require two match-action tables: one for computing the index of

the value stored in the register and the other for updating state using arithmetic op-

erators supported by the switch, such as add and bit or. A corresponding metadata

field carries the updated state after applying the arithmetic operation. For example,

executing the reduce operator for Query 2.1 in Figure 2.2 requires a match-action

table to compute an index into the register using the dIP header field. A second table

performs the stateful action that increments the indexed value in the register and

stores the updated value. In Section 2.4.3, we describe how Sonata’s query planner

uses representative training data to configure the number of entries for each register.

Distinct operations are similar to a reduce, where the function bit or 1 is applied

to a single bit.

Join operations are costly to execute in the data plane1. In the worst case, this

operation maintains state that grows with the square of the number of packets. Sonata

executes join operations at the stream processor by iteratively dividing the query

into a set of sub-queries. For example, Sonata divides Query 2.2 into two sub-queries:

one that computes the number of unique connections, and a second that computes

the number of bytes transferred for each host. Sonata independently decides how to

execute the two sub-queries and ultimately joins their results at the stream processor.

1Marple’s zip operator [76], which can be executed in the data plane, is a restricted version of
Sonata’s join operator and unlike Sonata, cannot be used to join the results of two separate analyses
together.

31

Compiling Dataflow Queries

In addition to mapping individual dataflow operators to match-action tables, the

resulting data-plane mapping must be synthesized in a way that respects the following

additional considerations.

Preserving packet forwarding decisions. Sonata preserves packet forwarding

decisions by transforming only query-specific metadata fields, rather than the packet

contents that might affect forwarding decisions (e.g., destination address, application

headers, or even payload). The switch extracts values from the packets’ original

header fields and copies them to auxiliary metadata fields before performing any

additional processing. This process leaves the original packet unmodified.

Reporting intermediate results to the stream processor. When a query is

partitioned across the stream processor and the switch, the stream processor may

need either the original packet or just an intermediate result from the switch, so

that it can perform its portion of the query. To facilitate this reporting, the switch

maintains a one-bit report field in metadata for each packet. Each query partitioned

to the switch marks this field whenever a query-specific condition is met that requires

a packet be sent to the stream processor. If this field is set at the conclusion of the

entire processing pipeline, the switch sends to the stream processor all intermediate

results needed to complete processing the query, including the original packet if needed

by the query. If the last operator is stateful (e.g., reduce), then the switch sends only

one packet for each key to the stream processor. This informs the stream processor

which register indices in the data plane must be polled at the end of each window to

retrieve aggregated values stored in the switch (see Section 2.6 for details).

Detecting and mitigating hash collisions. Sonata must detect and mitigate

hash collisions that may result at the switch. The probability of a hash collision is

proportional to the number of hashes performed on unique keys and the size of the

output hash as a consequence of the the pigeonhole principle. In theory, a 32-bit

32

hash has a 50% chance of a collision after hashing fewer than 80,000 keys. Since

true hash-tables with collision resolution are not available on the switch, we instead

use registers with hash-based indices. In practice, these registers contain far fewer

rows than the number of unique values in the hash output, making collisions even

more likely. To detect collisions, switches store the original key when performing

reduce and distinct operations. To mitigate collisions, Sonata uses a sequence of

up to d registers, each using a different hash function for determining indices. If

a key generates a collision, Sonata iterates through each of the d registers, storing

the key in the first register that does not result in a collision. If after iterating

through all d registers, the key still generates a collision, Sonata sends the packet

to the stream processor. At the end of each window, the stream processor adjusts

the results received from the switch with the additional packets processed due to

collisions.

2.4.2 Data-Plane Resource Constraints

Sonata’s query planner must consider the finite resource constraints of PISA switches

for parsing packet header fields, performing actions on packets, storing state in register

memory and performing all of these operations in a limited number of stages.

Parser. The cost of parsing increases with the number of fields to extract from the

packet. This cost is quantified as the number of bits to extract and the depth of the

parsing tree. The size of the PHV limits the number of fields that can be extracted

for processing. Typically, PISA switches have PHVs about 0.5–8 Kb [15] in size. M

represents the maximum storage for metadata in the PHV.

Actions. Most stream processors execute multiple queries in parallel, where each

query operates over its own logical copy of the input tuple. In contrast, PISA switches

transform raw packets to PHVs and then concurrently apply multiple operations over

the PHV in pipelined stages. These mechanisms suggest that PISA switches would

33

be amenable to parallel query execution. In practice, there is a limit on how many

actions can be applied over a PHV in one stage, which limits the number of queries

that can be supported in the data plane. Typically, PISA switches support 100–200

stateless and 1–32 stateful actions per stage [15]; we represent the maximum number

of stateful actions per stage as A.

Registers. The amount of memory required to perform stateful operations grows

with the number of packets and the number of queries. Stream processors scale by

adding more nodes for maintaining additional state. In contrast, stateful operations

in PISA switches can only access register memory locally available to their physical

stage. This register memory is bounded for each stage, which affects the switch’s

ability to handle both increased traffic loads and additional queries. Within a stage,

the amount of memory available to a single register is also bounded. Typically, PISA

switches support 0.5–32 Mb memory for each stage [15]. B represents the maximum

number of register bits available in each stage.

Stages. Queries that lack available resources in a given stage must execute in a

later stage. PISA switches typically support 1–32 physical stages [15]; we represent

the maximum number of stages as S.

2.4.3 Computing Query-Partitioning Plans

Consider a switch with S = 4 stages, B = 3, 000 Kb, and A = 4 stateful actions per

stage. These constraints are more strict than Barefoot’s Tofino switch [112], but they

illustrate how the data-plane resource constraints affect query planning. Sonata runs

Query 2.1 over a one-minute packet trace from CAIDA [24] to compute that the switch

requires 2, 500 Kb to count the number of TCP SYN packets per host (Figure 2.5).

Since 2, 500 Kb < B, Sonata can execute the entire query on the switch, sending

only the 77 tuples that satisfy the query to the stream processor. If B or S were

smaller, Sonata could not execute the reduce operator on the switch and would need

34

Switch Constraints
M Amount of metadata stored in switch.
A Number of stateful actions per stage.
B Register memory (in bits) per stage.
S Number of stages in match-action pipeline.

Input from Queries
Oq Ordered set of dataflow operators for query q.
Tq Ordered set of match-action tables for query q.
Mq Amount of metadata required to perform query q.
Zt Indicates whether table t performs a stateful operation.

Input from Workload
Nq,t Number of packets generated after table t of query q.
Bq,t State (bits) required for executing table t of query q.

Output
Pq,t Indicates whether t is the last table partitioned to the switch for

query q.
Xq,t,s Indicates whether table t of query q executes at stage s in the

switch.
Sq,t Stage id for table t for query q.

Table 2.2: Summary of variables in the query-planning problem.

to partition the query. The rest of this section describes how Sonata computes such

query plans.

Sonata’s query planner solves an Integer Linear Program (ILP) that minimizes

the number of packet tuples sent to the stream processor based on a partitioning

plan, subject to switch constraints, as summarized in Table 2.3. Our approach is

inspired by previous work on a different problem that partitions multiple logical

tables across physical tables [54]. Table 2.2 summarizes the variables in the query

planning problem. To select a partitioning plan, the query planner determines the

capabilities of the underlying switch, estimates the data-plane resources needed to

execute individual queries, and estimates the number of packets sent to the stream

processor given a partitioning of operators on the switch.

Input. For the set of input queries (Q), Sonata interacts with the switch to compile

the ordered set of dataflow operators in each query (Oq) to an ordered set of match-

action tables (Tq) that implement the operators on the switch. Zt indicates to the

35

Goal

min(N =
∑
q

∑
t

Pq,t ·Nq,t)

Constraints

C1 : ∀s :
∑
q

∑
Tq

Xq,t,s ·Bq,t ≤ B

C2 : ∀s :
∑
q

∑
Tq

Zt ·Xq,t,s ≤ A

C3 : ∀q, t : Sq,t < S
C4 : ∀q, i < j, i, j ∈ Tq : Sq,j > Sq,i

C5 : ∀q :
∑
q

Mq ≤M

Table 2.3: ILP formulation for the query partitioning problem.

query planner whether the table has stateful or stateless operators. Using historical

traffic traces, the query planner estimates the number of packet tuples (Nq,t) sent to

the stream processor and the amount of state (Bq,t) required to execute table t for

query q on the switch.

Objective. The objective of Sonata’s query planning ILP is to minimize the number

of packets processed by the stream processor. The query planner models this objective

by introducing a binary decision variable Pq,t that captures the partitioning decision

for each query; Pq,t = 1 one if t is the last table for query q that is executed on the

switch. For each query, only one table corresponding to one operator can be set as

the last table on the switch:
∑

Tq
Pq,t ≤ 1. The total number of packets processed by

the stream processor is then the sum of all packets emitted by the last table processed

on the switch for all queries.

Switch constraints. To ensure that Sonata respects the constraints from Sec-

tion 2.4.2, we introduce variables X and S. Xq,t,s is a binary variable that reflects

stage assignment: Xq,t,s = 1 only if table t for query q executes at stage s in the

match-action pipeline. Similarly, Sq,t returns the stage number where table t for

query q is executed. These two variables are related: if Xq,t,s = 1, then Sq,t = s for

36

a given stage. We will now summarize how Sonata’s query planner models various

data-plane constraints.

C1: Register Memory per stage (B). For each stage, the amount of state allocated

for Sonata’s packet processing cannot exceed B. Since PISA targets can only configure

tables with stateful operations in a single stage, the amount of state required to

execute query q at stage s is
∑

Tq
Xq,t,s · Bq,t. This sum over all queries captures the

total memory required for each stage s.

C2: Number of Actions per stage (A). For each stage, the total number of stateful

operations cannot exceed A. We can again use the X variable to model this constraint.

The expression
∑

Tq
Zt ·Xq,t,s captures the number of stateful operations performed

at stage s for query q. This sum over all queries captures the total number of stateful

actions for each stage s.

C3: Number of Stages (S). The total number of stages required to execute a

query in the data plane cannot exceed S. The variable Sq,t represents the stage where

table t for query q is executed. For every table of each query, this variable should

always be less than S because the last stage is reserved to determine which packet

needs to be reported to the stream processor.

C4: Intra-Query Ordering. We can also use S to express intra-query ordering

constraints. For example, in the Slowloris query (Query 2.2), the tables for the

reduce operator can only be executed after the distinct operator has been applied

in a previous stage. For each query q and any two indices (i, j) in the ordered set of

tables Tq where (i < j), Sq,j is always greater than Sq,i.

C5: Total Metadata (M). Finally, since the PHV consists of a fixed-size, (M)

represents the maximum space available in the PHV to add query-specific metadata

fields. The total metadata used for all queries must then be less than M , i.e.
∑

q Mq ≤

M .

37

0.0 0.5 1.0 1.5 2.0
Number of Incoming Keys

0.00

0.25

0.50

0.75

1.00

Co
llis

io
n
Ra

te

d=1
d=2
d=3
d=4

Figure 2.3: Relationship between collision rate and number of unique incoming keys.

Monitoring traffic dynamics. The query planner uses training data to decide how

to configure the number of entries (n) for each register, and how many registers (d)

to use for each stateful operation. It is possible that the training data might under-

estimate the number of expected keys (k) for a stateful operation due to variations in

traffic patterns. In Figure 2.3, we show how the collision rates increase as the number

of unique keys grows beyond the original estimate (n) for a sequence of (d) registers.

Here, the x-axis is the number of incoming keys and y-axis is the collision rate—both

normalized with respect to n. The collision rate increases as the number of incoming

keys increases and decreases as d increases.

Since collision rates are predictable, we choose values of (n) and (d) to keep

collision rates low but still high enough to send a signal to Sonata’s runtime when

the switch is storing many more unique keys than originally expected. Both of the

costs (packets to processor, and memory on the switch) required to handle collisions

and monitor traffic dynamics are captured in the ILP formulation.

38

2.5 Algorithm: Dynamic Query Refinement

For certain queries and workloads, partitioning a subset of dataflow operators to

the switch does not reduce the workload on the stream processor enough; in these

situations, Sonata dynamically refines the query.

To do so, Sonata’s query planner modifies the input queries to start at a coarser

level of granularity than specified in the original query (Section 2.5.1). It then chooses

a sequence of finer granularities that reduces the load on the stream processor. This

process introduces additional delay in detecting the traffic that satisfies the input

queries. The specific levels of granularity chosen and the sequence in which they

are applied constitute a refinement plan. To compute an optimal refinement plan

for the set of input queries, Sonata’s query planner estimates the cost of executing

different refinement plans based on historical training data. Sonata’s query planner

then solves an extended version of the ILP from Section 2.4.3 that determines both

partitioning as well as refinement plans to minimize the workload on the stream

processor (Section 2.5.2).

2.5.1 Modifying Queries for Refinement

Identifying refinement keys. A refinement key is a field that has a hierarchical

structure and is used as a key in a stateful dataflow operation. The hierarchical

structure allows Sonata to replace a more specific key with a less specific version

without missing any traffic that satisfies the original query. This applies to all queries

that filter on aggregated counts greater than a threshold. For example, dIP has a

hierarchical structure and is used as a key for aggregation in Query 2.1. As a result,

the query planner selects dIP as a refinement key for this query. Other fields that

have hierarchical structure can also serve as refinement keys, such as dns.rr.name

and ipv6.dIP. For example, a query for detecting malicious domains that requires

39

Filter
TCP SYN

Map
dIP/8

Filter
Th/8

ri=8

Filter
TCP SYN

Filter
dIP/8

Map
dIP/16

T
T+

W

Map
dIP,1

Reduce
sum

Filter
Th/16

Map
dIP,1

Reduce
sum

ri+1=16

dIP/8

Figure 2.4: Query augmentation for Query 2.1. The query planner adds the operators
shown in red to support refinement. Query 2.1 executes at refinement level ri = /8

during window T and at level ri+1 =/16 during window (T +W). The dashed arrow
shows the output from level ri feeding a filter at level ri+1.

counting the number of unique resolved IP address for each domain [11], can use the

field dns.rr.name as a refinement key. Here, a fully-qualified domain name is the

finest refinement level and the root domain (.) is the coarsest. A query can contain

multiple candidate refinement keys and Sonata independently selects refinement keys

for each query.

Enumerating refinement levels. After identifying candidate refinement keys,

the query planner enumerates the possible levels of granularity for each key. Each

refinement key consists of a set of levels R = {r1 . . . rn} where r1 is the coarsest level

and rn is the finest. The inequality r1 > rn means that r1 is coarser than rn. The

semantics of the nth refinement level is specific to each key; n = 32 would correspond

to a /32 IP prefix for the key dIP and n = 2 would correspond to second-level domain

for the key dns.rr.name.

Augmenting input queries. To ensure that the finer refinement levels only con-

sider the traffic that has already satisfied coarser ones, Sonata’s query planner aug-

ments the input queries. For example, Figure 2.4 shows how it augments Query 2.1

with refinement key dIP and R ={8, 16, 32} to execute the query at level ri+1 = 16

after executing it at level ri = 8. The query planner first adds a map at each level

to transform the original reduction key into a count bucket for the current refine-

40

Reduce
sum

Filter
Thi+1

Filter
TCP SYN N1 N2

Filter
ri

Map
ri+1

ri⟶ ri+1 N1 B (Kb) N2

✶⟶ 32
570K

2,500 77
✶⟶ 16 180 99
✶⟶ 8 6 33
8⟶ 32

526K
1,900 77

8⟶ 16 50 98
16⟶ 32 450K 1,200 77

Map
dIP,1

Figure 2.5: The N and B cost values for executing Query 2.1 at refinement level ri+1

after executing it at level ri.

ment level. For example, ri and ri+1 rewrite dIP as dIP/8 and dIP/16, respectively.

By transforming the reduction key for each refinement level, the rest of the original

query can remain unmodified. At refinement level ri+1, the query planner also adds a

filter. At the conclusion of the first time window, the runtime feeds as input to the

filter operator the dIP/8 addresses that satisfy the query at ri = 8. This filtering

ensures that refinement level ri+1 only considers traffic that satisfies the query at ri.

Sonata’s query planner also augments queries to increase the efficiency of executing

refined queries. While using the original query’s threshold values for coarser refine-

ment levels would still be correct, Sonata’s query planner instead uses training data

to calculate relaxed threshold values for coarser refinement levels that do not sacrifice

accuracy (e.g., Th/8 and Th/16 in Figure 2.4). Dynamic refinement is also appropriate

for queries that require join operations (e.g., Query 2.2). The two sub-queries use

the same refinement plan and their output at coarser levels determines which portion

of traffic to process for the finer levels.

2.5.2 Computing Refinement Plans

Dynamic query refinement example. Sonata’s query planner applies training

data onto the the augmented queries to generate Figure 2.5 for Query 2.1. This figure

shows the costs to execute Query 2.1 with refinement key dIP and refinement levels

41

R ={8, 16, 32} over the training data. It shows the number of packets sent to the

stream processor depending on which refinement level (ri+1) is executed after level

ri. If only the filter operation is executed on the switch, then N1 packets are sent

to the stream processor. If the reduce operation is also executed on the switch, then

N2 packets are sent, but then B bits of state must also be maintained in the data

plane. For simplicity of exposition, we assume that these counts remain the same for

three consecutive windows.

Consider an approach, Fixed-Refinement, that applies a fixed refinement plan for

all input queries. In this example, the query planner augments the original queries to

always run at refinement levels 8, 16, and 32. The runtime updates the filter for the

query at level 16 with the output from level 8 and the filter of level 32 with the output

from 16. The costs of this plan are shown in rows * → 8, 8 → 16, and 16 → 32 of

Figure 2.5. Because the switch only supports two stateful operations (A = 2), the

reduce operator could only be performed on the switch for the first two refinement

levels. This would result in sending 33 packets (N2 for * → 8) at the end of the first

window, 98 packets (N2 for 8 → 16) at the end of the second window, and 450, 000

(N1 for 16 → 32) packets at the end of the third window to the stream processor.

Compared to the solution without any refinement from beginning of Section 2.4.3,

Fixed-Refinement reduces the number of tuples reported to the stream processor from

570 K to 450 K at the cost of delaying two additional time windows to detect traffic

that satisfies the query.

In contrast, Sonata’s query planner uses the costs in Figure 2.5 combined with the

switch constraints to compute the refinement plan *→ 8→ 32. Executing the query

at refinement level *→ 8 requires only 6 Kb of state on the switch and sends 33 packet

tuples to the stream processor at the end of the first window. Each packet represents

an individual dIP/8 prefix that satisfies the query in the first window. Sonata then

applies the original input query (dIP/32) over these 33 dIP/8 prefixes in the second

42

window interval, processing 526, 000 packets (N1 for 8 → 32) and consuming only

1900 Kb on the switch. At the end of the second window, the switch reports 77

dIP/32 addresses to the stream processor. This refinement plan sends 110 packet

tuples to the stream processor over two window intervals, significantly reducing the

workload on the stream processor while costing only one additional window of delay.

ILP for dynamic refinement. The ILP for jointly computing partitioning and

refinement plans is an extension to the ILP from Section 2.4.3. Table 2.4 presents the

full version of the extended ILP, including these new constraints. The objective is the

same, but the query planner must also compute the cost of executing combinations

of refined queries to estimate the total cost of candidate query plans. We add new

decision variables Iq,r and Fq,r1,r2 to model the workload on the stream processor in

the presence of refined queries. Iq,r is set to one if the refinement plan for query q

includes level r. Fq,r1,r2 is set to one if level r2 is executed after r1 for query q. These

two variables are related by
∑

r1
Fq,r1,r2 = Iq,r2 . We also augment X and S variables

with subscripts to account for refinement levels.

Additional constraints. For queries containing join operators, the query planner

can select refinement keys for each sub-query separately, but it must ensure that

both sub-queries use the same refinement plan. We then add the constraint ∀q, r and

∀qi, qj ∈ q : Iqi,r = Iqj ,r. The variables qi and qj represent sub-queries of query q

containing a join operation. The query planner also limits the maximum detection

delay for each query, ∀q :
∑

r Iq,r ≤ Dq. Here, Dq is the maximum delay query q can

tolerate expressed in number of time windows.

2.6 Implementation

Figure 2.6 illustrates the Sonata implementation. For each query, the core gener-

ates partitioned and refined queries; drivers compile the parts of each query to the

43

Goal

min(N =
∑
q

∑
r2

Lq,t,r2 ·Nq,t,r2)

Nq,t,r2 = Iq,r2 ·
∑
r1

Fq,r1,r2 ·Nq,t,r1,r2

Constraints

C1 :

∀s :
∑
q

Xq,s,t ·Bq,t ≤ Bmax

Bq,t =
∑
r2

Iq,r2
∑
r1

Fq,r1,r2 ·Bq,r2,t

C2 :

∀s :
∑
q

∑
t

Xq,t,s ≤Wmax

Xq,t,s =
∑
r

Iq,r ·Xq,t,s,r

C3 : ∀q, t, r : Sq,t,r ≤ Smax − 1

C4 : ∀q, r, i < j : Sq,j,r < Sq,i,r

C5 : ∀q :
∑
q

∑
r

Iq,r ·Mq,r ≤M

C6 : ∀qi, qj , r : Iqi,r = Iqj ,r

C7 : ∀q :
∑
r

Iq,r ≥ Dq

Table 2.4: Extension of ILP to support dynamic refinement.

appropriate component. When packets arrive at a PISA switch, it applies the packet-

processing pipelines and mirrors the appropriate packets to a monitoring port, where a

software emitter parses the packets and sends the corresponding tuples to the stream

processor. The stream processor reports the results of the queries to the runtime,

which then updates the switch, via the data-plane driver, to perform dynamic refine-

ment.

Core. The core has two modules: (1) the query planner and (2) the runtime. Upon

initialization or re-training, the runtime polls the data-plane driver over a network

socket to determine which dataflow operators the switch is capable of executing, as

well as the values of the data-plane constraints (i.e., M , A, B, S). It then passes

these values to the query planner which uses Gurobi [43] to solve the query planning

ILP offline and to generate partitioned, refined queries. The runtime then sends parti-

44

PISA Switch

Packets

Query Interface Q1

Results

Data-Plane Driver Streaming Driver

1

Original Packets

Tuples
Spark StreamingEmitter

Packets

Q2 Qn

Partitioned,
Refined Queries

Partitioned,
Refined Queries

Parsing
Configuration

Compiled
P4 Code

Constraints

Runtime

Query Planner

Co
re

…

Figure 2.6: Sonata Implementation. Red arrows show compilation control flow and
black ones show packet/tuple data flow

tioned and refined queries to the data-plane and streaming drivers. It also configures

the emitter— specifying the fields to extract from each packet for each query; each

query is identified by a corresponding query identifier (qid). When the switch begins

processing packets, the runtime receives query outputs from the stream processor at

the end of every window. It then sends updates to the data-plane driver, which in

turn updates table entries in the switch according to the dynamic refinement plan.

When it detects too many hash collisions, the runtime triggers the query planner to

re-run the ILP with the new data.

Drivers. Data-plane and streaming drivers compile the queries from the runtime

to target-specific code that can run on the switch and stream processor respectively.

The data-plane drivers also interact with the switch to execute commands on behalf

of the runtime, such as updating filter tables for iterative refinement at the end

of every window. The Sonata implementation currently has drivers for two PISA

switches: the BMV2 P4 software switch [114], which is the standard behavioral model

for evaluating P4 code; and the Barefoot Wedge 100B-65X (Tofino) [112] which is a

45

Lines of Code
Query Sonata P4 Spark
1 Newly opened TCP Conns. [129] 6 367 4
2 SSH Brute Force [53] 7 561 14
3 Superspreader [126] 6 473 10
4 Port Scan [56] 6 714 8
5 DDoS [126] 9 691 8
6 TCP SYN Flood [129] 17 870 10
7 TCP Incomplete Flows [129] 12 633 4
8 Slowloris Attacks [129] 13 1,168 15
9 DNS Tunneling [13] 11 570 12
10 Zorro Attack [80] 13 561 14
11 DNS Reflection Attack [62] 14 773 12

Table 2.5: Implemented Sonata Queries. We report lines of code considering the
same: (1) refinement plan; (2) partitioning plan, i.e., executing as many dataflow
operators in the switch as possible.

6.5 Tbps hardware switch. The data-plane driver communicates with these switches

using a Thrift API [6].

Emitter. The emitter consumes raw packets from the data- plane’s monitoring port,

parses the query-specific fields in the packet, and sends the corresponding tuples to

the stream processor. The emitter uses Scapy [115] to extract the unique (qid) from

packets. It uses this identifier to determine how to parse the remainder of the query-

specific fields embedded in the packet based on the configuration provided by the

runtime. As discussed in Section 2.4.1, the emitter immediately sends the output

of stateless operators to the stream processor, but it stores the output of stateful

operators in a local key-value data store. At the end of each window interval, it reads

the aggregated value for each key in the local data store from the data-plane registers

before sending the output tuples to the stream processor.

46

2.7 Evaluation

In this section, we (1) demonstrate that Sonata is flexible (Table 2.5). We use real-

world packet traces to (2) show that Sonata reduces the workload on the stream

processor by 3–7 orders of magnitude (Figure 2.7) and that these results are robust

to various switch resource constraints (Figure 2.8). We also (3) present a case study

with a Tofino switch to demonstrate how Sonata operates end-to-end, discovering

“needles” of interest without collecting the entire “haystack” (Figure 2.9).

2.7.1 Setup

Monitoring applications. To demonstrate the flexibility of Sonata’s query inter-

face, we implemented eleven different monitoring tasks, as shown in Table 2.5. We

show how Sonata makes it easier to express queries for complex monitoring tasks by

comparing the lines of code needed to express those tasks. For each query, Sonata re-

quired far fewer lines of code to express the same task than the code for the switch [14]

and streaming [111] targets combined. Not only does Sonata reduce the lines of

code, but also the queries expressed with Sonata are platform-agnostic and could

execute unmodified with a different choice of hardware switch or stream processor,

e.g., Apache Flink.

Packet traces. We use CAIDA’s anonymized and unsampled packet traces [92],

which were captured from a large ISP’s backbone link between Seattle and Chicago.

We evaluate over a subset of this data containing 600 million packets and transferring

about 360 GB of data over 10 minutes. This data contains no layer-2 headers or

packet payloads, and the layer-3 headers were anonymized with a prefix-preserving

algorithm [32].

We replay the traffic at 20x speed to evaluate Sonata on a simulated 100 Gbps

workload (i.e., about 20 million packets per second) that might be experienced at

47

Query Plan Description
Monitoring
Systems

All-SP Mirror all incoming packets to the stream processor
Gigascope[23],
OpenSOC[90],
NetQRE[129]

Filter-DP Apply only filter operations on the switch EverFlow[132]

Max-DP Execute as many dataflow operations as possible on the switch
Univmon[65],
OpenSketch[126]

Fix-REF Iteratively zoom-in one refinenement level at a time DREAM[71]

Table 2.6: Monitoring systems emulated for evaluation.

a border switch in a large network. We use a time window (W) of three seconds,

resulting in 60 million packets per window. In the worst case, Sonata can only detect

network events lasting at least W × |R| seconds. However, the network operator

can force Sonata to consider fewer refinement levels with the maximum delay (Dmax)

constraint, which reduces the time required to detect network events.

Targets. Since switches have fixed resource constraints, we choose to evaluate

Sonata’s performance with simulated PISA switches. This approach allows us to

parameterize the various resource constraints and to evaluate Sonata’s performance

over a variety of potential PISA switches. Unless otherwise specified, we present

results for a simulated PISA switch with sixteen stages (S = 16), eight stateful

operators per stage (A = 8), and eight Mb of register memory per stage (B = 8 Mb).

Within each stage, a single stateful operator can use up to four Mb.

Comparisons to existing systems. Since the key performance metric for Sonata

is the number of packet tuples processed by the stream processor, we do not need

to instrument the several existing monitoring systems, such as Gigascope [23],

OpenSOC [91], EverFlow [132], OpenSketch [126], and DREAM [71], for comparison.

Instead, we compare Sonata’s performance with four alternative query plans which

are each representative of groups of existing systems as shown in Table 2.6. We

modify the constraints on Sonata’s query planning ILP to generate plans that

48

New TCP
SSH BruteSSprea

derPort Sc
an DDoS

SYN Flood
Comp. Flow

s
Slowloris

100

103

106

Tu

pl
es

All-SP Filter-DP Max-DP Fix-REF Sonata

(a) Single-query performance

1 2 3 4 5 6 7 8
Number of Queries

101

104

107

1010

Tu
pl
es

All-SP
Filter-DP

Max-DP
Fix-REF

Sonata

(b) Multi-query performance

Figure 2.7: Reduction in workload on the stream processor running: (a) one query
at a time, (2) concurrently running multiple queries.

emulate the performance for each of these solutions. For example with the Fix-REF

plan, we add the constraint ∀q, r : Iq,r = 1.

2.7.2 Load on the Stream Processor

We perform trace-driven analysis to quantify how much Sonata reduces the workload

on the stream processor. To enable comparison with prior work, we evaluate the top

eight queries from Table 2.5; these queries process only layer 3 and 4 header fields. We

consider a maximum of eight refinement levels for all queries (i.e., R = {4, 8, ..., 32});

additional levels offered only marginal improvements. Fix-REF queries use all eight

refinement levels, while Sonata may select a subset of all eight levels in its query

plans.

Single query performance. Figure 2.7a shows that Sonata reduces the workload

on the stream processor by as much as seven orders of magnitude. Filter-DP is effi-

cient for the SSH brute-force attack query, because this query examines such a small

fraction of the traffic. Filter-DP’s performance is similar to All-SP for queries that

must process a larger fraction of traffic, such as detecting Superspreaders [126]. For

some queries, such as the SSH brute-force attack, Max-DP matches Sonata’s perfor-

mance. In many other cases, large amounts of traffic are sent to the stream processor

due to a lack of resources. For example, the Superspreader query exhausts stateful

49

processing resources. Fix-REF’s performance matches Sonata’s for most cases, but

uses up to seven additional windows to detect traffic that satisfies the query.

Multi-query performance. Figure 2.7b shows how the workload on the stream

processor increases with the number of queries. When executing eight queries concur-

rently, Sonata reduces the workload by three orders of magnitude compared to other

query plans. These gains come at the cost of up to three additional time windows

to detect traffic that satisfies the query. The performance of Fix-REF degrades the

most because the available switch resources, such as metadata and stages, are quickly

exhausted when supporting a fixed refinement plan for several queries. We have also

considered query plans with fewer refinement levels for Fix-REF and observed sim-

ilar trends. For example, when considering just two refinement levels (dIP/16 and

dIP/32) for all eight queries, we observed that the load on the stream processor was

two orders of magnitude greater than Sonata.

Effect of switch constraints. We study how switch constraints affect Sonata’s

ability to reduce the load on the stream processor. To quantify this relationship,

we vary one switch constraint at a time for the simulated PISA switch. Figure 2.8a

shows how the workload on the stream processor decreases as the number of stages

increases. More stages allow Sonata to consider more levels for dynamic refinement.

Additional stages slightly improve the performance of Fix-REF as it can now support

stateful operations for the queries at finer refinement levels on the switch. We observe

similar trends as the number of stateful actions per stage (Figure 2.8b), memory per

stage (Figure 2.8c), and total metadata size (Figure 2.8d) increase. As expected,

Max-DP slightly reduces the load on the stream processor when more memory per

stage is available for stateful operations; increasing the total metadata size also allows

Fix-REF to execute more queries in the switch—reducing the load on the stream

processor.

50

1 2 4 8 12 16 32
Number of Stages

105

108

Tu

pl
es

Max-DP Fix-REF Sonata

(a) Maximum pipeline depth.

1 2 4 8 12 16 32
Actions/Stage

105

108

Tu
pl
es

Max-DP Fix-REF Sonata

(b) Maximum pipeline width.

0.5 1 2 4 8 12 16 32
Memory/Stage (Mb)

105

108

Tu
pl
es

Max-DP Fix-REF Sonata

(c) Maximum bits per stage.

0.25 0.5 1.0 2.0 4.0 8.0
Metadata Size (Kb)

105

108

Tu
pl
es

Max-DP Fix-REF Sonata

(d) Metadata Size.

Figure 2.8: Effect of switch constraints.

0 5 10 15 20
Time (seconds)

102

105

108

#
 P

a
ck

e
ts

Attack Confirmed
Victim Identified

Received by Switch Reported to Stream Processor

Figure 2.9: Detecting Zorro attacks using Tofino switch.

Overhead of dynamic refinement. When running all eight queries concurrently,

as many as 200 filter table entries are updated after each time window during

dynamic refinement. Micro-benchmarking experiments with the Tofino switch [112]

show that updating 200 table entries takes about 127 ms, and resetting registers takes

about 4 ms. The total update time took 131 ms which is about 5% of the specified

window interval (W = 3s).

51

2.7.3 Case Study: Tofino Switch

We used Sonata to execute Query 2.3 with a Tofino switch [112]. We chose this

query to highlight how Sonata handles join operators and operations over a packet’s

payload. For this experiment, we built a testbed containing four hosts and a Tofino

switch [112]. Each host has two Intel Xeon E5-2630 v4 10-core processors running

at 2.2 Ghz with 128 GB RAM and 10 Gbps NICs. We dedicate two hosts for traffic

generation: one sender and one receiver. We assign a third host for the emitter

component and a fourth for the remaining runtime, streaming driver, and Spark

Streaming [111] components (see Figure 2.6). The data-plane driver runs on the

CPU of the Tofino switch itself. The sender connects to the Tofino switch with

two interfaces: one interface to replay CAIDA traces using the Moongen [27] traffic

generator at about 1.5 Mpps and another to send attack traffic using Scapy [115]. If we

were processing packets at Tofino’s maximum rate of 6.5 Tbps, our setup would only

need to replace the single instance of Spark Streaming with a cluster that supports

the expected data rate.

The attacker starts sending similar-sized telnet packets to a single host

(99.7.0.25) at time t = 10 s. Figure 2.9 shows the number of packets: (1) received

by the switch, and (2) reported to the stream processor on a log scale. Sonata reports

only two packet tuples, out of 1.5M pps, to the stream processor to detect the victim

in three seconds using two refinement levels: ∗ → 24 and 24 → 32. At t = 13 s,

the stream processor starts processing the payload of all telnet packets destined for

the victim host, which is only around 100 pps. The attacker gains shell access at

t = 20 s and sends five packets with the keyword “zorro” in it. Sonata detects the

attack at t = 21 s, demonstrating its ability to perform real-time monitoring using

state-of-the-art hardware switches.

52

2.8 Related Work

Network monitoring. Existing monitoring systems that process all packets at

the stream processor such as Chimera [13], Gigascope [23], OpenSOC [90], and

NetQRE [129] can express a range of queries but can only support lower packet rates

because the stream processor ultimately processes all results. These systems also re-

quire deploying and configuring a collection infrastructure to capture packets from the

data plane for analysis, incurring significant bandwidth overhead. These systems can

benefit from horizontally scalable stream processors such as Spark Streaming [130]

and Flink [86], but they also face scaling limitations due to packet parsing and cluster

coordination [91].

Everflow [132], UnivMon [65], OpenSketch [126], and Marple [76] rely on pro-

grammable switches to execute queries entirely in the data plane. These systems can

process queries at line rate but can only support queries that can be implemented

on switches. Trumpet [73] and Pathdump [108] offload query processing to end-hosts

(VMs in data center networks) but not to switches. Gupta et al. [38] proposed a mon-

itoring system that could coordinate queries across a stream processor and switch,

but the work considered only switches with fixed-function chipsets for single queries,

and required network operators to explicitly specify the refinement and partitioning

plans. In contrast, Sonata supports programmable switches and employs a sophis-

ticated query planner to automatically partition and refine multiple queries. We

also quantify the performance gains and overhead with realistic packet traces and a

programmable hardware switch.

Query planning. Database research has explored query planning and optimiza-

tion extensively [81, 74, 8]. Gigascope performs query partitioning to minimize the

data transfer from the capture card to the stream processor [23]. Sensor networks

have explored the query partitioning problems that are similar to those that Sonata

faces [81, 74, 8, 66, 67, 105]. However, these systems face different optimization prob-

53

lems because they typically involve lower traffic rates and involve special-purpose

queries. Path Queries [75] and SNAP [7] facilitate network-wide queries that exe-

cute across multiple switches; in contrast, Sonata currently only compiles queries to

a single switch, but it addresses a complementary set of problems, such as unifying

data-plane and stream processing platforms to support richer queries and partitioning

sets of queries across a data-plane switch and a stream processor.

Query-driven dynamic refinement. Autofocus [30], ProgME [128], and

DREAM [71], SCREAM [72], MULTOPS [36], and HHH [55] all iteratively zoom

in on traffic of interest. These systems either do not apply to streaming data (e.g.,

ProgME requires multiple passes over the data [128]) they use a static refinement

plan for all queries (e.g., HHH zooms in one bit at a time), or they do not sat-

isfy general queries on network traffic (e.g., MULTOPS is specifically designed for

bandwidth attack detection). These approaches all rely on general-purpose CPUs to

process the data-plane output, but none of them permit additional parsing, joining,

or aggregation at the stream processor, as Sonata does.

54

Chapter 3

Network Control with SDX

In this chapter, we present the design, implementation, and evaluation of network-

control system, SDX, that supports flexible control programs at Internet exchange

points (IXPs). It utilizes both the programmable switch and participants’ fixed-

function border routers at the IXP to scale these control programs with the number

of IXP participants.

3.1 Overview

Internet routing is unreliable, inflexible, and difficult to manage. Network operators

must rely on arcane mechanisms to perform traffic engineering, prevent attacks, and

realize peering agreements. Most of the Internet’s routing problems result from three

characteristics of the Border Gateway Protocol (BGP), the Internet’s interdomain

routing protocol:

• Routing only on destination IP prefix. BGP selects and exports routes for

destination prefixes. Networks cannot make more fine-grained decisions based

on the type of application or the sender.

55

• Influence only over direct neighbors. A network selects among BGP routes

learned from its direct neighbors and exports selected routes to these neighbors.

Networks have little control over end-to-end paths.

• Indirect expression of policy. Networks rely on indirect, obscure mecha-

nisms (e.g., “local preference”, “AS Path Prepending”) to influence path selec-

tion. Networks cannot directly express preferred inbound and outbound paths.

These problems are well-known, yet incremental deployment of alternative solutions

is a perennial problem in a global Internet with more than 50, 000 independently

operated networks and a huge installed base of BGP-speaking routers.

In this chapter, we present a way forward that improves our existing routing

system by allowing a network to execute a far wider range of decisions concerning

end-to-end traffic delivery. Our approach builds on recent technology trends and

also recognizes the need for incremental deployment. First, we argue that Software

Defined Networking (SDN) shows great promise for simplifying network management

and enabling new networked services. SDN switches match on a variety of header

fields (not just destination prefix), perform a range of actions (not just forwarding),

and offer direct control over the data plane. Yet, SDN currently only applies to intra-

domain settings, such as individual data-center, enterprise, or backbone networks. By

design, a conventional SDN controller has purview over the switches within a single

administrative (and trust) domain.

Second, we recognize the recent resurgence of interest in Internet exchange points

(IXPs), which are physical locations where multiple networks meet to exchange traffic

and BGP routes. An IXP is a layer-two network that, in the simplest case, consists of

a single switch. Each participating network exchanges BGP routes (often with a BGP

route server) and directs traffic to other participants over the layer-two fabric. The

Internet has more than 300 IXPs worldwide—with more than 80 in North America

alone—and some IXPs carry as much traffic as some of the tier-1 ISPs. For example,

56

the Open-IX effort seeks to develop new North American IXPs with open peering

and governance, similar to the models already taking root in Europe. As video traffic

continues to increase, tensions grow between content providers and access networks,

and IXPs are on the front line of today’s peering disputes. In short, not only are IXPs

the right place to begin a revolution in wide-area traffic delivery, but the organizations

running these IXPs have strong incentives to innovate.

We aim to change wide-area traffic delivery by designing, prototyping, and de-

ploying a software defined exchange (SDX). Contrary to how it may seem, however,

merely operating SDN switches and a controller at an IXP does not automatically

present a turnkey solution. SDN is merely a tool for solving problems, not the so-

lution. In fact, running an SDN-enabled exchange point introduces many problems,

ranging from correctness to scalability. To realize the SDX in practice, we must

address the following four challenges:

• Compelling applications. The success of the SDX depends on identifying

compelling wide-area traffic-delivery applications that are difficult to deploy

today. We present five motivating applications: application-specific peering, in-

bound traffic engineering, server load balancing, and traffic redirection through

middleboxes (Section 3.2).

• Programming abstractions. Participating networks need a way to create and

run applications, without conflicting with each other or with the global routing

system. Our SDX design presents each participating network with the illusion

of its own virtual SDN switch that extends the footprint of its legacy network

and enables flexible policies that interact safely with today’s BGP (Section 3.3).

• Scalable operation. An SDX needs to support hundreds of participants, hun-

dreds of thousands of IP prefixes, and policies that match on multiple packet-

header fields—all while using conventional SDN switches. We show how to

combine the policies of multiple participants and join them with the current

57

BGP routes, while limiting rule-table size and computational overhead (Sec-

tion 3.4).

• Realistic deployment. We have built a prototype and created two example

applications (Section 3.5). Experiments demonstrate that our prototype scales

(in terms of rule-table size and CPU time) to many participants, policies, and

prefixes (Section 3.6).

We survey the related work in Section 3.7.

3.2 Background and Motivation

In this section, we first present the conventional IXP architecture, followed by how

SDX enables various new applications for flexible wide-area traffic delivery.

3.2.1 Conventional IXP Architecture

An IXP is a physical location where multiple networks meet to exchange traffic. An

IXP is a layer-two network that, in the simplest case, consists of a single switch. Each

member network physically connects one or more edge routers to the IXP, where each

router port has a unique MAC address as well as a dedicated IP address from the

IXP’s own address block. Since all router ports belong to the same IP subnet, one

member can direct traffic to another simply by sending a packet with the appropriate

destination MAC address.

Two members can peer by establishing a Border Gateway Protocol (BGP) session

between their respective edge routers, and applying local policies for selecting and

exporting routes. Each BGP route has various attributes, including the IP prefix,

the Autonomous System (AS) path, and the next-hop IP address of the neighboring

router. Upon choosing a route, the member’s router creates a forwarding-table entry

that maps the destination IP prefix to (1) its output port connected to the IXP and

58

(2) the destination MAC address of the chosen next-hop (resolved from the next-hop

IP address using ARP). As such, the IXP switch does not need any information about

IP prefixes, and simply forwards the packet based on the destination MAC address.

Rather than having a BGP session between each pair of members, IXPs often host

a Route Server (RS) that acts as a sort of BGP multiplexer [52, 37]. Each member

establishes two BGP sessions to the RS, and the RS applies all of the selection and

export policies on each member’s behalf, based on policies provided by the members.

The RS sends each member one “best” BGP route (if any) for each destination IP

prefix, subject to the export policy of the member that announced the route. The

next-hop attribute corresponds to the IP address of this member’s router port, rather

than the RS itself, so the members can exchange data traffic directly. That is, the

RS is purely a control-plane entity, with no participation in packet forwarding. In

practice, IXP members use the RS for most BGP peering relationships, but may have

dedicated BGP sessions for their most important peers [3].

3.2.2 Wide-Area Traffic Delivery

We present five different applications that the SDX enables. We describe how op-

erators tackle these problems today, focusing in particular on the “pain points” for

implementing these functions in today’s infrastructure. We also describe how these

applications would be easier to implement with the SDX. We revisit several of these

examples throughout the paper, both demonstrating how the SDX makes them pos-

sible and, in some cases, deploying them in the wide area.

Application-specific peering. High-bandwidth video services like YouTube and

Netflix constitute a significant fraction of overall traffic volume, so ISPs are increas-

ingly interested in application-specific peering, where two neighboring AS exchange

traffic only for certain applications. BGP does not make it easy to support such an

59

arrangement. An ISP could configure its edge routers to make different forwarding

decisions for different application packet classifiers (to identify the relevant traffic)

and policy-based routing (to direct that traffic over a special path). For example, an

ISP could configure its border routers to have multiple VRFs (virtual routing and

forwarding tables), one for each traffic class, and direct video traffic via one VRF and

non-video traffic through another. Still, such an approach forces the ISPs to incur

additional routing and forwarding state, in proportion to the number of traffic classes,

and configure these mechanisms correctly. SDX could instead install custom rules for

groups of flows corresponding to specific parts of flow space.

Inbound traffic engineering. Because BGP performs destination-based routing,

ASes have little control over how traffic enters their networks and must use indirect,

obscure techniques (e.g., AS path prepending, communities, selective advertisements)

to influence how ASes reach them. Each of these existing approaches is limited:

prepending cannot override another AS’s local preference for outbound traffic control,

communities typically only affect decisions of an immediate neighbor network, and

selective advertisements pollute the global routing tables with extra prefixes. By

installing forwarding rules in SDN-enabled switches at an exchange point, an AS can

directly control inbound traffic according to source IP addresses or port numbers.

Wide-area server load balancing. Content providers balance client requests

across clusters of servers by manipulating the domain name system (DNS). Each

service has a single domain name (e.g., http://www.example.com/) which resolves

to multiple IP addresses for different backend servers. When a client’s local DNS

server issues a DNS request, the service’s authoritative DNS server returns an IP

address that appropriately balances load. Unfortunately, using DNS for server selec-

tion has several limitations. First, DNS caching (by the local DNS server, and by the

user’s browser) results in slower responses to failures and shifts in load. To (partially)

60

http://www.example.com/

address this problem, content providers use low “time to live” values, leading to more

frequent DNS cache misses, adding critical milliseconds to request latency. Instead, a

content provider could assign a single anycast IP address for a service and rewrite the

destination addresses of client requests in the middle of the network (e.g., at exchange

points). SDX could announce anycast prefixes and rewrite the destination IP address

to match the chosen hosting location based on any fields in the packet header.

Blocking of denial-of-service attacks. Denial-of-service attacks are a persistent

security problem. Enterprises and content providers devote substantial resources to

detecting and blocking attacks. However, most techniques block attacks close to the

victim, by measuring and classifying the attacks, and dynamically installing packet

filters to block the offending traffic. Blocking attacks further upstream, closer to

the attacker, avoid wasting network resources near the victim. However, existing

techniques for blocking traffic upstream are quite clumsy. For example, a network

can use BGP “route poisoning” to block an entire sending AS (and any of its single-

homed customers) from directing traffic to a destination prefix. This is done by

placing the offending network’s AS number in the BGP AS-PATH, with the goal of

triggering BGP loop detection that causes this AS to filter the route. However, the

technique relies on “attacking” BGP by sending erroneous routing information, and

only works at the level of destination IP prefixes—leading to substantial “collateral

damage” by blocking substantial benign traffic.

Rather than manipulate BGP, an SDN-enabled exchange point can allow a victim

to remotely specify a fine-grained access-control rule (e.g., matching on source and

destination IP addresses, protocol, and TCP/UDP port numbers) to drop unwanted

traffic close to the sender.

Redirection through middleboxes. Networks increasingly rely on middleboxes

to perform a wide range of functions (e.g., firewalls, network address translators, load

61

balancers). Enterprise networks at the edge of the Internet typically place middle-

boxes at key junctions, such as the boundary between the enterprise and its upstream

ISPs, but large ISPs are often geographically expansive, making it prohibitively ex-

pensive to place middleboxes at every location. Instead, they manipulate the routing

protocols to “steer” traffic through a fixed set of middleboxes. For example, when

traffic measurements suggest a possible denial-of-service attack, an ISP can use inter-

nal BGP to “hijack” the offending traffic and forward it through a traffic scrubber.

Some broadband access ISPs perform similar steering of a home user’s traffic by rout-

ing all home network traffic through a scrubber via a VPN. Such steering requires

ISPs to “hijack” much more normal traffic than necessary, and the mechanisms are

not well-suited to steering traffic through a sequence of middleboxes. Instead, an

SDN-enabled exchange point can redirect targeted subsets of traffic through one or

more middleboxes.

3.3 Abstraction: Virtual SDX Switch

The SDX enables the operators of participating ASes to run novel applications that

control the flow of traffic entering and leaving their border routers, or, in the case

of remote participants, the flow of traffic destined for their AS. By giving each AS

the illusion of its own virtual SDN switch, the SDX enables flexible specification

of forwarding policies while ensuring isolation between different participants. SDX

applications can base decisions on the currently available BGP routes, which offers

greater flexibility while ensuring that traffic follows valid interdomain paths.

3.3.1 Virtual SDX Switch Abstraction

In a traditional exchange point, each participating AS typically connects a BGP-

speaking border router to a shared layer-two network (a data plane for forwarding

62

!"#! !"#$

!"#%

!&

$

%

!
$&

$'
%

! $

%&

"()#*+,-./

!"#$%&'()*"$+,

!"#$%&'()*"$+, !"#$%&'()*"$+,

!"#$%&'(-.#$

-,/)"+&'(-.#$

01+2/304-/.56789&:; <<#=>?0$&;;#@

01+2/304-/.567&'A9&:;#<<#=>?0$';;

!"#$B4#.C,DEC?#5DF./GH#

2-+==./#ICJ.CII-.CJ

!"#!B4#DE2,DEC?#5DF./GH

+55F./+2.DCK45I/.=./#5II-.CJ

01+2/30?425D-26LLM;#<<#=>?0%;;

01+2/30?425D-26A8; <<#=>?0$;;#@

(a) Virtual switch abstraction.

!"#$%&'()*

!"#+,-&'.,/

0123,$!,(4,($50!6

7!7(123,(

7!8(123,(

7!9(123,(

:; !<$9

:(,=)> (,*,)4,/

9?@$(123,A$=1($0!

9?@$A,AA)1-

:B "

:C !<$9

:D #<$8

:E !

$%$&'$()*+,'$-

(b) Integration with interdomain routes.

Figure 3.1: SDX programming abstractions.

packets) and a BGP route server (a control plane for exchanging routing informa-

tion). At an SDX, each AS can run SDN applications that specify flexible policies

for dropping, modifying, and forwarding the traffic. The SDX must then combine

the policies of multiple ASes into a single coherent policy for the physical switch(es).

To balance the desire for flexibility with the need for isolation, we give each AS the

illusion of its own virtual SDN switch connecting its border router to each of its peer

63

ASes, as shown in Figure 3.1a. AS A has a virtual switch connecting to the virtual

switches of ASes B and C, where each AS can write forwarding policies as if it is the

only participant at the SDX. Yet, AS A cannot influence how ASes B and C forward

packets on their own virtual switches.

For writing policies, we adopt the Pyretic language [70] that supports declarative

programming based on boolean predicates (that each match a subset of the packets)

and a small set of actions (that modify a packet’s header fields or location). A

Pyretic policy maps a located packet (i.e., a packet and its location) to a set of

located packets. Returning the empty set drops the packet. Returning a set with a

single packet forwards the packet to its new location. Finally, returning a set with

multiple packets multicasts the packets. In contrast to vanilla Pyretic policies, we

require participants to specify whether a policy is an inbound or an outbound policy.

Inbound policies apply to the traffic entering a virtual switch on a virtual port from

another SDX participant; outbound policies apply to the traffic entering a virtual

switch on a physical port from the participant’s own border router. In the rest of the

paper, we omit this distinction whenever it is clear from context. We now present

several simple examples inspired by Section 3.2.2.

Application-specific peering. In Figure 3.1a, AS A has an outbound policy that

forwards HTTP traffic (destination port 80) and HTTPS traffic (destination port

443) to AS B and AS C, respectively:

(match(dstport = 80) >> fwd(B)) +

(match(dstport = 443) >> fwd(C))

The match() statement is a filter that returns all packets with a transport port number

of 80 or 443, and the >> is the sequential composition operator that sends the resulting

packets to the fwd(B) (or, respectively, fwd(C)) policy, which in turn modifies the

packets’ location to the corresponding virtual switch. The + operator corresponds to

64

parallel composition which, given two policies, applies them both to each packet and

combines their outputs. If neither of the two policies matches, the packet is dropped.

Inbound traffic engineering. AS B has an inbound policy that performs inbound

traffic engineering over packets coming from ASes A and C:

(match(srcip = {0.0.0.0/1}) >> fwd(B1)) +

(match(srcip = {128.0.0.0/1}) >> fwd(B2))

AS B directs traffic with source IP addresses starting with 0 to B’s top output port,

and the remaining traffic (with source IP addresses starting with 1) to B’s bottom

output port. Under the hood, the SDX runtime system “compiles” A’s outbound

policy with B’s inbound policy to construct a single policy for the underlying physical

switch, such as:

(match(port=A1, dstport =80,

srcip ={0.0.0.0/1}) >> fwd(B1)) +

(match(port=A1, dstport =80,

srcip ={128.0.0.0/1}) >> fwd(B2))

that achieves the same outcome as directing traffic through multiple virtual switches

(here, A and B’s switches). This policy has a straightforward mapping to low-level

rules on OpenFlow switches [70].

Wide-area server load balancing. An AS can have a virtual switch at the SDX

without having any physical presence at the exchange point, in order to influence

the end-to-end flow of traffic. For example, a content provider can perform server

load balancing by dividing request traffic based on client IP prefixes and ensuring

connection affinity across changes in the load-balancing policy [122]. The content

provider might host a service at IP address 74.125.1.1 and direct specific customer

prefixes to specific replicas based on their request load and geographic location:

65

match(dstip =74.125.1.1) >>

(match(srcip =96.25.160.0/24) >>

mod(dstip =74.125.224.161)) +

(match(srcip =128.125.163.0/24) >>

mod(dstip =74.125.137.139))

Manipulating packet forwarding at the SDX gives a content provider fast and direct

control over the traffic, in contrast to existing indirect mechanisms like DNS-based

load balancing. The content provider issuing this policy would first need to demon-

strate to the SDX that it owns the corresponding IP address blocks.

3.3.2 Integration with Interdomain Routing

The ASes must define SDX policies in relation to the advertised routes in the global

routing system. To do so, the SDX allows participating ASes to define forwarding

policies relative to the current BGP routes. To learn BGP routes, the SDX controller

integrates a route server, as shown in Figure 3.1b. Participants interact with the

SDX route server in the same way that they do with a conventional route server. The

SDX route server collects the routes advertised by each participant BGP router and

selects one best route for each prefix on behalf of each participant, and re-advertises

the best BGP route on the appropriate BGP session(s). In contrast to today’s route

servers, where each participant learns and uses one route per prefix, the SDX route

server allows each participant to forward traffic to all feasible routes for a prefix, even

if it learns only one.

Overriding default BGP routes. Many ASes may be happy with how BGP

computes routes for most of the traffic. Rather than requiring each AS to fully

specify the forwarding policy for all traffic, the SDX allows each AS to rely on a

default forwarding policy computed by BGP, overriding the policy as needed. In the

66

example in Figure 3.1a, AS A’s outbound policy for Web traffic (forwarding to AS

B) applies only to Web traffic; all of the remaining traffic implicitly follows whatever

best route AS A selects in BGP. This greatly simplifies the task of writing an SDX

application: the simplest application specifies nothing, resulting in all traffic following

the BGP-selected routes announced by the route server. The programmer need only

specify the handling of any “non-default” traffic. For example in Figure 3.1b, AS A

would forward any non-Web traffic destined to IP prefix p1 or p2 to next-hop AS C,

rather than to AS B.

Forwarding only along BGP-advertised paths. The SDX should not direct

traffic to a next-hop AS that does not want to receive it. In Figure 3.1b, AS B

does not export a BGP route for destination prefix p4 to AS A, so AS A should not

forward any traffic (including Web traffic) for p4 through AS B. To prevent ASes from

violating these restrictions, and to simplify the writing of applications, the SDX only

applies a match() predicate to the portion of traffic that is eligible for forwarding to

the specified next-hop AS. In Figure 3.1, AS A can forward Web traffic for destination

prefixes p1, p2, and p3 to AS B, but not for p4. Note that, despite not selecting AS B as

the best route for destination prefix p1 and p2, AS A can still direct the corresponding

Web traffic through AS B, since AS B does export a BGP route for these prefixes to

AS A.

Grouping traffic based on BGP attributes. ASes may wish to express policies

based on higher levels of abstraction than IP prefixes. Instead, an AS could handle

traffic based on the organization managing the IP address (e.g., “all flows sent by

YouTube”) or the current AS-PATH for each destination prefix. The SDX allows

a policy to specify a match indirectly based on regular expressions on BGP route

attributes. For example, an AS could specify that all traffic sent by YouTube servers

traverses a video-transcoding middlebox hosted at a particular port (E1) at the SDX:

67

YouTubePrefixes =

RIB.filter(’as_path ’, .*43515$)

match(srcip ={ YouTubePrefixes }) >> fwd(E1)

The regular expression matches all BGP-announced routes ending in AS 43515

(YouTube’s AS number), and generates the list of associated IP prefixes. The

match() statement matches any traffic sent by one of these IP addresses and forwards

it to the output port connected to the middlebox.

Originating BGP routes from the SDX. In addition to forwarding traffic along

BGP-advertised paths, ASes may want the SDX to originate routes for their IP pre-

fixes. In the wide-area load-balancing application, a remote AS D instructs the SDX

to match request traffic destined to an anycast service with IP address 74.125.1.1.

To ensure the SDX receives the request traffic, AS D needs to trigger a BGP route

announcement for the associated IP prefix (announce(74.125.1.0/24)), and withdraw

the prefix when it is no longer needed (withdraw(74.125.1.0/24)). AS D could an-

nounce the anycast prefix at multiple SDXs that each run the load-balancing applica-

tion, to ensure that all client requests flow through a nearby SDX. Before originating

the route announcement in BGP, the SDX would verify that AS D indeed owns the

IP prefix (e.g., using the RPKI).

Integrating SDX with existing infrastructure. Integrating SDX with existing

IXP infrastructure and conventional BGP-speaking ASes is straightforward. Any

participant that is physically connected to a SDN-enabled switch exchanges BGP

routes with the SDX route server can write SDX policies; furthermore, an AS can

benefit from an SDX deployment at a single location, even if the rest of the ASes run

only conventional BGP routing. A participant can implement SDX policies for any

route that it learns via the SDX route server, independently of whether the AS that

68

originated the prefix is an SDX participant. Participants who are physically present at

the IXP but do not want to implement SDX policies see the same layer-2 abstractions

that they would at any other IXP. The SDX controller can run a conventional spanning

tree protocol to ensure seamless operation between SDN-enabled participants and

conventional participants.

3.4 Efficient Compilation

In this section, we describe how the SDX runtime system compiles the policies of all

participants into low-level forwarding rules (Section 3.4.1). We then describe how we

made that process efficient. We consider data-plane efficiency (Section 3.4.2), to min-

imize the number of rules in the switches, and control-plane efficiency (Section 3.4.3),

to minimize the computation time under realistic workloads.

3.4.1 Compilation by Policy Transformation

The policies written by SDX participants are abstract policies that need to be joined

with the BGP routes, combined, and translated to equivalent forwarding rules for the

physical switch(es). We compile the policies through a sequence of syntactic trans-

formations: (1) restricting policies according to the virtual topology; (2) augmenting

the policies with BGP-learned information; (3) extending policies to default to using

the best BGP route; and (4) composing the policies of all the participants into one

main SDX policy by emulating multiple hops in the virtual topology. Then, we rely

on the underlying Pyretic runtime to translate the SDX policy into forwarding rules

for the physical switch.

Enforcing isolation between participants. The first transformation restricts

the participant’s policy so that each participant can only act on its own virtual

69

switch. Each port on a virtual switch corresponds either to a physical port at the

SDX (e.g., A1 in Figure 3.1a) or a virtual connection to another participant’s virtual

switch (e.g., port B on AS A’s virtual switch in Figure 3.1a). The SDX runtime must

ensure that a participant’s outbound policies only apply to the traffic that it sends.

Likewise, its inbound policies should only apply to the traffic that it receives. For

example, in Figure 3.1a, AS A’s outbound policy should only apply to traffic that it

originates, not to the traffic that AS B sends to it. To enforce this constraint, the

SDX runtime automatically augments each participant policy with an explicit match

() on the participant’s port; the port for the match statement depends on whether

the policy is an inbound or outbound policy. For an inbound policy, the match()

it refers to the participant’s virtual port; for an outbound policy, it refers to the

participant’s physical ports. After this step, AS A’s outbound and AS B’s inbound

policies in Figure 3.1(a) become:

PA = (match(port=A1) && match(dstport =80)

>> fwd(B)) +

(match(port=A1) && match(dstport =443)

>> fwd(C))

PB = (match(port=B) && match(srcip ={0/1})

>> fwd(B1)) +

(match(port=B) && match(srcip ={128/1})

>> fwd(B2))

For convenience, we use match(port=B) as shorthand for matching on any of B’s

internal virtual port.

Enforcing consistency with BGP advertisements. The second transformation

restricts each participant’s policy based on the BGP routes exported to the partici-

pant. For instance, in Figure 3.1, AS A can only direct traffic with destination prefixes

70

p1, p2, and p3 to AS B, since AS B did not export a BGP route for p4 or p5 to AS

A. The SDX runtime generates a BGP filter policy for each participant based on the

exported routes, as seen by the BGP route server. The SDX runtime then inserts

these filters inside each participant’s outbound policy, according to the forwarding

action. If a participant AS A is forwarding to AS B (or C), the runtime inserts B’s

(or, respectively, C’s) BGP filter before the corresponding forwarding action. After

this step, AS A’s policy becomes:

PA’ = (match(port=A1) && match(dstport =80) &&

(match(dstip=p1) || match(dstip=p2) ||

match(dstip=p3))

>> fwd(B)) +

(match(port=A1) && match(dstport =443) &&

(match(dstip=p1) || match(dstip=p2) ||

match(dstip=p3) || match(dstip=p4))

>> fwd(C))

AS B does not specify special handling for traffic entering its physical ports, so its

policy PB’ remains the same as PB.

Enforcing default forwarding using the best BGP route. Each participant’s

policy overrides the default routing decision for a select portion of the traffic, with the

remaining traffic forwarded as usual. Each data packet enters the physical switch with

a destination MAC address that corresponds to the BGP next-hop of the participant’s

best BGP route for the destination prefix. To implement default forwarding, the

SDX runtime computes simple MAC-learning policies for each virtual switch. These

policies forward packets from one virtual switch to another based on the destination

MAC address and forward packets for local destinations on the appropriate physical

ports. The default policy for AS A in Figure 3.1(a) is:

71

defA = (match(dstmac=MAC_B1) >> fwd(B)) +

(match(dstmac=MAC_B2) >> fwd(B)) +

(match(dstmac=MAC_C1) >> fwd(C)) +

(match(port=A) >>

modify(dstmac=MAC_A1) >> fwd(A1))

The first part of the policy handles traffic arriving on A’s physical port and forwards

traffic to the participant with the corresponding destination MAC address. The sec-

ond part of the policy handles traffic arriving from other participants and forwards

to A’s physical port. The runtime also rewrites the traffic’s destination MAC ad-

dress to correspond to the physical port of the intended recipient. For example, in

Figure 3.1, A’s diverted HTTP traffic for p1 and p2 reaches B with C1 as the MAC

address, since C is the designated BGP next-hop for p1 and p2. Without rewriting,

AS B would drop the traffic. The runtime then combines the default policy with the

corresponding participant policy. The goal is to apply PA’ on all matching packets

and defA on all other packets. The SDX controller analyzes PA’ to compute the union

of all match predicates in PA’ and applies Pyretic’s if_() operator to combine PA’

and defA, resulting in policy PA’’.

Moving packets through the virtual topology. The SDX runtime finally com-

poses all of the augmented policies into one main SDX policy. Intuitively, when a

participant A sends traffic in the SDX fabric destined to participant B, A’s outbound

policy must be applied first, followed by B’s inbound policy, which translates to the

sequential composition of both policies, (i.e., PA’’ >> PB’’). Since any of the par-

ticipant can originate or receive traffic, the SDX runtime sequentially composes the

combined policies of all participants:

SDX = (PA ’’ + PB ’’ + PC ’’) >> (PA ’’ + PB ’’ + PC ’’)

72

When the SDX applies this policy, any packet that enters the SDX fabric either

reaches the physical port of another participant or is dropped. In any case, the

resulting forwarding policy within the fabric will never have loops. Taking BGP

policies into account also prevent forwarding loops between edge routers. The SDX

enforces two BGP-related invariants to prevent forwarding loops between edge routers.

First, a participant router can only receive traffic destined to an IP prefix for which it

has announced a corresponding BGP route. Second, if a participant router announces

a BGP route for an IP prefix p, it will never forward traffic destined to p back to the

SDX fabric.

Finally, the SDX runtime relies on the underlying Pyretic runtime to translate the

SDX policy to the forwarding rules to install in the physical switch. More generally,

the SDX may consist of multiple physical switches, each connected to a subset of

the participants. Fortunately, we can rely on Pyretic’s existing support for topology

abstraction to combine a policy written for a single SDX switch with another policy

for routing across multiple physical switches, to generate the forwarding rules for

multiple physical switches.

3.4.2 Reducing Data-Plane State

Augmenting each participant’s policy with the BGP-learned prefixes could cause an

explosion in the size of the final policy. Today’s global routing system has more than

500,000 IPv4 prefixes (and growing!), and large IXPs host several hundred partici-

pants (e.g., AMS-IX has more than 600). The participants may have different policies,

directing traffic to different forwarding neighbors. Moreover, composing these policies

might also generate a “cross-product” of their predicates if the participants’ policies

match on different fields. For instance, in Figure 3.1a, AS A matches on dstport, and

B on srcip. As a result, a naive compilation algorithm could easily lead to millions

73

of forwarding rules, while even the most high-end SDN switch hardware can barely

hold half a million rules [77].

Existing layer-two IXPs do not face such challenges because they forward packets

based only on the destination MAC address, rather than the IP and TCP/UDP header

fields. To minimize the number of rules in the SDX switch, the SDX (1) groups prefixes

with the same forwarding behavior into an equivalence class and (2) implicitly tags

the packets sent by each participant’s border router using a virtual MAC address.

This technique substantially reduces the number of forwarding rules, and works with

unmodified BGP routers.

Grouping prefixes into equivalence classes. Fortunately, a participant’s policy

would typically treat a large number of IP prefixes the same way. For instance, in

Figure 3.1, AS A has the same forwarding behavior for p1 and p2 (i.e., send Web

traffic via AS B, and send the rest via AS C). By grouping p1 and p2, we could

implement the policy with only two forwarding rules, directing traffic to AS B and

C, instead of the four currently required. We say that p1 and p2 belong to the same

Forwarding Equivalence Class (FEC). An FEC is a set of IP prefixes that share the

same forwarding behavior throughout the SDX fabric. Ideally, we would install the

minimum set of forwarding rules for each FEC, which is equivalent to the number of

forwarding actions associated with the FEC. Doing so requires a new way to combine

prefixes; conventional IP prefix aggregation does not work because prefixes p1 and p2

might not be contiguous IP address blocks.

Offloading tagging to the participants’ border routers. To group non-

adjacent prefixes belonging to the same FEC, we introduce the abstraction of a

multi-stage Forwarding Information Base (FIB) for each participant, as shown in

Figure 3.2. The first table matches on the destination IP prefix and tags packets

with the associated FEC. Then, a second table simply matches on the tag and

74

!"#$%&'()% *+%(',-$./+(01

!"

!#

!$

!%

!&

'()*"+

'()*#+

'()*$+

'()*%+

Figure 3.2: Multi-stage FIB for each participant, where the first stage corresponds to
the participant’s border router and the second stage corresponds to the participant’s
virtual switch at the SDX.

performs the forwarding actions associated with the FEC. Using a multi-staged FIB

substantially reduces the number of rules in the second table. The first table remains

quite large because of the many IP prefixes. To address this challenge, we implement

the first table using the participant’s own border router. Each border router already

maintains a forwarding table with an entry for each destination prefix, so we can

realize our abstraction without any additional table space! Still, we need (1) a

data-plane mechanism for tagging the packets and (2) a control-plane mechanism for

the SDX to instruct the border router about which tag to use for each prefix. Ideally,

the solution to both problems would be completely transparent to the participants,

rather than requiring them to run or configure an additional protocol (e.g., MPLS)

for this purpose.

Using the MAC address as data-plane tag and the BGP next-hop IP ad-

dress for control-plane signaling. The SDX runtime capitalizes on how BGP-

speaking routers compute forwarding-table entries. Upon choosing a BGP route for a

prefix p, a router (1) extracts the next-hop IP address from the BGP route announce-

ment, (2) consults its ARP table to translate the IP address to the corresponding

MAC address, and (3) installs a forwarding-table entry that sets the destination

MAC address before directing the packet to the output port. Usually, this MAC

75

address corresponds to the physical address of the next-hop interface. In the SDX

though, we have the MAC address correspond to a virtual MAC address (VMAC)—

the tag—which identifies the FEC for prefix p. The SDX fabric can then just match

on the VMAC and perform the forwarding actions associated with the FEC. We refer

to the BGP next-hop IP address sent to the border router as the Virtual Next-Hop

(VNH). Finally, observe that we can assign the same VNH (and, hence, the same

VMAC) to disjoint IP prefixes—the address blocks need not be contiguous.

In practice, the SDX runtime first pre-computes the FEC according to participant

policies and assigns a distinct (VNH, VMAC) pair to each of them. It then transforms

the SDX policies to match on the VMAC instead of the destination prefixes. Finally,

it instructs the SDX route server to set the next-hop IP address (VNH) in the BGP

messages and directs its own ARP server to respond to requests for the VNH IP

address with the corresponding VMAC.

Computing the virtual next hops. Computing the virtual next-hop IP addresses

requires identifying all groups of prefixes that share the same forwarding behavior,

considering both default BGP forwarding and specific SDX policies. To ensure op-

timality, we want the groups of prefixes to be of maximal size; in other words, any

two prefixes sharing the same behavior should always belong to the same group. The

SDX runtime computes the FECs in three passes.

In the first pass, the SDX runtime extracts the groups of IP prefixes for which the

default behavior is affected in the same way by at least one SDX outbound policy.

Figure 3.1 shows that the group {p1, p2, p3} has its default behavior overridden by AS

A’s outbound policies, which forward its Web traffic to AS B. Similarly, the group

{p1, p2, p3, p4} has its default behavior overridden by AS A’s outbound policies, which

forward its HTTPS traffic to AS C. All of the prefixes except p5 have their default

behavior overridden.

76

In the second pass, the SDX runtime groups all the prefixes that had their default

behavior overridden according to the default next-hop selected by the route server. In

the previous example, prefixes p1, p2, p3, p4 will be divided into two groups: {p1, p2, p4}

whose default next-hop is C and {p3} whose default next-hop is B.

In the third pass, the SDX runtime combines the groups from the first two passes

into one group C = {{p1, p2, p3}, {p1, p2, p3, p4}, {p1, p2, p4}, {p3}}}. It then computes

C ′ such that each element of C ′ is the largest possible subset of elements of C with a

non-empty intersection. In the example above, C ′ = {{p1, p2}, {p3}, {p4}} and is the

only valid solution. Intuitively, n prefixes belonging to the same group Ci ∈ C either

always appear altogether in a policy P , or do not appear at all—they share the same

forwarding behavior. We omit the description of a polynomial-time algorithm that

computes the Minimum Disjoint Subset (MDS).

Finally, observe that we do not need to consider BGP prefixes that retain their

default behavior, such as p5 in Figure 3.1. For these prefixes, the SDX runtime does

not have to do any processing and simply behaves like a normal route server, which

transmits BGP announcements with the next-hop IP address unchanged.

3.4.3 Reducing Control-Plane Computation

In this section, we describe how to reduce the time required for control-plane compu-

tation. Many of these operations have a default computation time that is exponential

in the number of participants and thus does not scale as the number of participants

grows. At a high level, the control plane performs three computation-intensive oper-

ations: (1) computing the VNHs; (2) augmenting participants’ SDX policies; and (3)

compiling the policies into forwarding rules. The controller performs these operations

both during initialization and whenever SDX’s operational state changes. We focus

primarily on optimizing policy compilation, as this step is the most computationally

intensive. We first describe optimizations that accelerate the initial computation. We

77

then describe optimizations that accelerate incremental computation in response to

updates (i.e., due to changes in the available BGP routes or the SDX policies). We

describe each optimization along with the insight that enables it.

Optimizing initial compilation

SDX compilation requires composing the policies of every participant AS with every

other participant’s policy using a combination of sequential and parallel composition.

Performing such compositions is time-consuming, as it requires inspecting each pair

of policies involved to identify overlaps. As illustration, consider the final policy

computed in Section 3.3, without considering default forwarding (for simplicity):

policy_composed =

(PA’’ + PB’’ + PC ’’) >> (PA’’ + PB’’ + PC ’’)

Since the parallel-composition operator is distributive, the compiler can translate the

policy into many pairs of sequential composition, combined together using parallel

composition. Removing terms that apply the same policy in succession (i.e., PA’’

>> PA’’) yields:

policy_composed =

((PA ’’ >> PB ’’)+(PA ’’ >> PC ’’))+

((PB ’’ >> PA ’’)+(PB ’’ >> PC ’’))+

((PC ’’ >> PA ’’)+(PC ’’ >> PB ’’))

Compiling this policy requires executing eleven composition operations—six sequen-

tial (two per line) and five in parallel—to combine the intermediate results together.

Fortunately, a lot of these sequential and parallel composition can be avoided by ex-

ploiting three observations: (1) participant policies tend to involve only a subset of

the participants; (2) participant policies are disjoint by design; and (3) many policy

idioms appear multiple times in the final policy. The first observation reduces the

number of sequential composition operations, and the second reduces the number of

78

parallel composition operations. The third observation prevents compilation of the

same policy more than once. With these optimizations, the SDX can achieve policy

compilation with only three sequential compositions and no parallel compositions.

Most SDX policies only concern a subset of the participants. In the IXP

traffic patterns we observe, a few IXP participants carry most of the traffic. Previous

work has shown that about 95% of all IXP traffic is exchanged between about 5%

of the participants [2]. We thus assume that most SDX policies involve these few

large networks rather than all of the IXP participants. The SDX controller avoids

all unnecessary compositions by only composing policies among participants that

exchange traffic. In this example, AS B has no outbound policy, so compositions

(PB’’ >> PA’’) and (PB’’ >> PC’’) are unnecessary. The same reasoning applies for

AS C. The SDX controller therefore reduces the policy as follows:

policy_composed =

(PA’’ >> PB ’’) + (PA’’ >> PC ’’) + (PC’’ >> PB ’’)

which only involves three sequential composition operations.

Most SDX policies are disjoint. Parallel composition is a costly operation that

should be used only for combining policies that apply to overlapping flow space. For

policies that apply to disjoint flow spaces, the SDX controller can simply apply the

policies independently, as no packet ever matches both policies. The policies are

disjoint by design because they differ with respect to the virtual switch and port

after the first syntactic transformation (i.e., isolation). Also, the same observation

applies within the policies of a single participant. We assume that the vast majority

of participants would write unicast policies in which each packet is forwarded to one

other participant. We do not prevent participants from expressing multicast policies,

but we optimize for the common case. As a result, SDX policies that forward to

79

different participants always differ with respect to the forwarding port and are also

disjoint by construction.

Returning to the previous example, none of the parallel compositions between (PA

’’ >> PC’’), (PA’’ >> PC’’), and (PC’’ >> PB’’) are necessary, since each of them

always applies on strictly disjoint portions of the flow space.

Many policy idioms appear more than once in the global policy. The reuse

of various policy idioms results from the fact that participants exchange traffic with

each other (and, more often than not, with the same participant). For instance, in

an IXP where every participant sends to AS X, AS X’s policies would be sequentially

composed with all policies. Currently, the Pyretic compiler would recompile the same

sub-policy multiple times. It would therefore compile PA’’, PB’’, and PC’’ twice. To

accelerate compilation, the SDX controller memoizes all the intermediate compilation

results before composing the final policy.

Optimizing incremental updates

SDX compilation occurs not only at initialization time, but also whenever a change

occurs in the set of available BGP routes after one or more BGP updates. Efficiently

coping with these changes is important. The SDX runtime supports fast recompilation

by exploiting three characteristics BGP update patterns: (1) prefixes that are likely

to appear in SDX policies tend to be stable; (2) most BGP route changes only affect

a small portion of the forwarding table; and (3) BGP route changes occur in bursts

and are separated by large periods with no change at all. We draw these observations

from a week-long analysis of BGP updates collected at BGP collectors in three of

the largest IXPs in the world. Table 3.1 summarizes the data that we used for this

analysis.

80

AMS-IX DE-CIX LINX

collector peers/-
total peers

116/639 92/580 71/496

prefixes 518,082 518,391 503,392

BGP updates 11,161,624 30,934,525 16,658,819

prefixes seeing
updates

9.88% 13.64% 12.67%

Table 3.1: IXP datasets. We use BGP update traces from RIPE collectors [96] in
the three largest IXPs—AMS-IX, DE-CIX, and LINX—for January 1–6, 2014, from
which we discarded updates caused by BGP session resets [131].

Based on these observations, we augmented the basic SDX compilation with an ad-

ditional compilation stage that is invoked immediately whenever BGP routes change.

The main recompilation algorithm is then executed in the background between subse-

quent bursts of updates. We tune the optimization to handle changes that result from

BGP updates, because BGP updates are significantly more frequent than changes to

the participants’ SDX policies.

Prefixes that are likely to appear in SDX policies tend to be stable. Only

about 10–14% of prefixes saw any BGP updates at all for an entire week, suggesting

that most prefixes are stable. Furthermore, previous work suggests that the stable

prefixes are also the same ones that carry the most traffic [93]. Hence, those stable

prefixes are also the ones that are likely to be associated with SDX policies.

Most BGP update bursts affect a small number of prefix groups. Updates

and best path changes tend to occur in bursts. In 75% of the cases, these update

bursts affected no more than three prefixes. Over one week, we observed only one

update burst that triggered updates for more than 1,000 prefixes. In the common

case, the SDX thus only needs to recompute flow table entries for a few affected prefix

groups. Even in cases where bursts are large, there is a linear relationship between

81

the burst size and recompilation time and, as we explain next, this recompilation can

occur in the background.

BGP bursts are separated by large periods with no changes, enabling

quick, suboptimal reactions followed by background re-optimization. We

observed that the inter-arrival time between BGP update bursts is at least 10 seconds

75% of the time; half of the time, the inter-arrival time between bursts is more than

one minute. Such large inter-arrival times enable the SDX runtime to adopt a two-

stage compilation approach, whereby time is traded for space by combining: (1) a

fast, but suboptimal recompilation technique, that quickly reacts to the updates; and

(2) an optimal recompilation that runs periodically in the background.

The fast stage works as follows. Whenever there is a change in the BGP best path

pertaining to a prefix p, the SDX immediately creates a new VNH for p and recompiles

the policy, considering only the parts related to p. It then pushes the resulting

forwarding rules into the data plane with a higher priority. The computation is

particularly fast because: (1) it bypasses the actual computation of the VNH entirely

by simply assuming a new VNH is needed; (2) it restricts compilation to the parts

of the policy related to p. In Section 3.6, we show that sub-second recompilation is

achievable for the majority of the updates. Although the first stage is fast, it can also

produce more rules than needed, since it essentially bypasses VNH optimization.

3.5 Implementation and Deployment

We now describe the implementation of the SDX controller, as well as our current

deployment. We then describe several applications that we have implemented with the

SDX. We describe one application with outbound traffic control (application-specific

peering) and one with inbound traffic control (wide-area load balance).

82

!"#$%&%'"($)

!*+%&,-."(/+0#

1)*+"$%*(

1(&*#'*#"$%(2-34!

506"7+$-8*#9"#/%(2

:*;'*)%$%*(

!,#0$%&

!*+%&%0)

<="34!

34!->'/"$0)

34!-/0&%)%*(-
'#*&0))

34!-
?((*7(&0;0($)

@'0(8+*9-A7+0)
!""#$$%&'($%)*%!&+%,-./#

@'$%;%B"$%*(
C!"#"D-&*;'7$0-EF.G

!
*
+%&
,
-:
*
;
'
%+0
#

1('7$-A13)

H*&"+-A13)

A*7$0-I0#J0#

0*'11#*%")23'/-,')4

?A!

Figure 3.3: The SDX controller implementation, which has two pipelines: a policy
compiler and a route server.

3.5.1 Implementation

Figure 3.3 shows the SDX controller implementation, which has two main pipelines:

a policy compiler, which is based on Pyretic; and a route server, which is based

on ExaBGP. The policy compiler takes as input policies from individual participants

that are written in Pyretic—which may include custom route advertisements from the

participants—as well as BGP routes from the route server, and it produces forwarding

rules that implement the policies. The route server processes BGP updates from

participating ASes and provides them to the policy compiler and re-advertises BGP

routes to participants based on the computed routes. We briefly describe the steps

of each of these functions below.

83

SDX policy compiler. The policy compiler is a Pyretic process that compiles par-

ticipant policies to forwarding rules. Based on the virtual SDX abstraction from the

SDX configuration (i.e., the static configuration of which ASes are connected to each

other at layer two), the policy compiler isolates the policies that each AS writes by

augmenting each policy with a match statement based on the participant’s port. The

compiler then restricts each participant’s outbound policies according to the current

BGP routing information from the route server and rewrites the participant policies

so that the switch can forward traffic according to the default BGP policies. After

augmenting the policies, the compiler then computes VNH assignments for the adver-

tised prefixes. Finally, the compiler writes the participant policies where necessary,

taking care to avoid unnecessary composition of policies that are disjoint and per-

forming other optimizations such as caching of partial compilations, as described in

Section 3.4.3. It then passes the policies to the Pyretic compiler, which generates the

corresponding forwarding rules.

Because VNHs are virtual IP addresses, the controller also implements an ARP

responder that responds to ARP queries for VNHs with the appropriate VMAC ad-

dresses.

SDX route server. We implemented the SDX route server by extending Ex-

aBGP [31], an existing route server that is implemented in Python. As in other

traditional route servers [82, 12], the SDX route server receives BGP advertisements

from all participants and computes the best path for each destination prefix on be-

half of each participant. The SDX route server also (1) enables integration of the

participant’s policy with interdomain routing by providing advertised route informa-

tion to the compiler pipeline; and (2) reduces data-plane state by advertising virtual

next hops for the prefixes advertised by SDX participants. The SDX route server

recompiles the participants’ policies whenever a BGP update results in changes to

84

!"#

!"#$

%&'()*'&*#+,

!"#!

-).&(/0

12345642473

53489:4242;87

1234564242;87

<
*
*
)
=
*
(
>
?
>
*
@'

!%"#A*'@<*(>

!"#B

$.>?')*#+,

53489:4158489

0-).&(/#C#?<@(DEF'@-)G@C:2H#II#JKFEBH

@=**>.'

"LM#N<OG&(

$%&'()*

(a) Application-Specific Peering.

!"#!

$%&'()&%)#*+

!"#,

-(.%'/0

"12#3456%'

789:;<:8:=9

;9:>?@:8:8A>=

789:;<:8:8A>=

4
)
)
(
B
)
'
C
D
C
)
E&

EB))C.

F)&E4)'C#G> F)&E4)'C#G7

;9:>?@:7;>:>? ;9:>?@:>@H:?9

!$"

789:;<:8:=<

0-(.%'/#I#D4E'JK&6'%-I789:;<:8:=<L#MM#
###############D(N%O/KN&E%-I;9:>?@:>@H:?9L#MM#OPNK,L

(b) Wide-Area Load Balance.

Figure 3.4: Setup for deployment experiments.

best routes for a prefix. When such an update occurs, the route server sends an

event to the policy handler, which recompiles policies associated with the affected

routing updates. The compiler installs new rules corresponding to the BGP update

while performing the optimizations described in Section 3.4.3 in the background. Af-

ter compiling the new forwarding rules, the policy compiler then sends the updated

next-hop information to the route server, which marshals the corresponding BGP

updates and sends them to the appropriate participant ASes.

3.5.2 Deployment

We have developed a prototype of the SDX [100] and a version that can be deployed

using virtual containers in Mininet [45]. Figure 3.4 shows two setups that we have

created in these environments for the purposes of demonstrating two applications:

application-specific peering and wide-area load balance. For each use case, we explain

85

0 200 400 600 800 1000 1200 1400 1600 1800

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

ff
ic

 R
a
te

 (
M

b
p

s
)

application-specific peering policyapplication-specific peering policy

route withdrawalroute withdrawal

AS-A

AS-B

(a) Application-specific peering.

0 100 200 300 400 500 600

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ra

ff
ic

 R
a
te

 (
M

b
p

s
)

load-balance policyload-balance policy

AWS Instance #1

AWS Instance #2

(b) Wide-area load balance.

Figure 3.5: Traffic patterns for the two “live” SDX applications. (a) At 565 seconds,
the AS C installs an application-specific peering policy, causing port 80 traffic to
arrive via AS B. At 1253 seconds, AS B withdraws its route to AWS, causing all
traffic to shift back to the path via AS A. (b) At 246 seconds, the AWS network
installs a wide-area load balance policy to shift the traffic for source 204.57.0.67 to
arrive at AWS instance #2.

the deployment setup and demonstrate the outcome of the running application. For

both use cases, we have deployed an SDX controller (including route server) that is

connected to an Open vSwitch software switch. The ASes that we have connected

86

to the Open vSwitch at the exchange point are currently virtual (as our deployment

has no peers that carry real Internet traffic), and these virtual ASes in turn establish

BGP connectivity to the Internet via the Transit Portal [119]. The client generates

three 1 Mbps UDP flows, varying the source and destination IP addresses and ports

as required for the demonstrations below.

Application-specific peering. Figure 3.4a shows an SDX setup where we test the

application-specific peering use-case described in Section 3.3. The example demon-

strates several features of the SDX controller, including (1) the ability for a partici-

pant to control traffic flows based on portions of flow space other than destination IP

prefix (e.g., port number); and (2) the SDX controller’s ability to guarantee correct

forwarding that is in sync with the advertised BGP routes.

Transit Portal deployments at the University of Wisconsin and at Clemson Uni-

versity both receive a route to the Amazon prefix hosting our Amazon Web Ser-

vices (AWS) instance. They distribute their routes to AS A and AS B, respectively.

These ASes in turn send announcements to the SDX controller, which then selects

a best route for the prefix, which it re-advertises to AS C. AS C’s outbound traffic

then flows through either AS A or AS B, depending on the policies installed at the

SDX controller.

AS C, the ISP hosting the client, installs a policy at the SDX that directs all

traffic to the Amazon /16 IP prefix via AS A, except for port 80 traffic, which travels

via AS B. To demonstrate that the SDX controller ensures that the switch data plane

stays in sync with the BGP control plane messages, we induce a withdrawal of the

route announcement at AS B (emulating, for example, a failure). At this point,

all traffic from the SDX to AWS travels via AS A. Figure 3.5a shows the traffic

patterns resulting from this experiment and the resulting traffic patterns as a result

87

of (1) installation of the application-specific peering policy; (2) the subsequent BGP

route withdrawal.

Wide-area load balancer. The wide-area load balancer application also demon-

strates the ability for a remote network to install a policy at the SDX, even if it is

not physically present at the exchange. Figure 3.4b shows an SDX setup where an

AWS tenant hosts destinations in two distinct AWS instances and wishes to balance

load across those two destinations. The AWS tenant remotely installs a policy that

rewrites the destination IP address for traffic depending on the source IP address

of the sender. Initially, traffic from the clients of AS A directed towards the AWS

tenant’s instances traverses the SDX fabric unchanged and routed out to the Internet

via AS B. After the AWS tenant installs the load-balance policy at the SDX, traffic

that was initially destined only for AWS instance #1 is now balanced across both of

the AWS instances. Figure 3.5b shows the traffic rates from the resulting experiment

and how they evolve when the load balance policy is installed at the SDX. Although

this deployment has only one SDX location, in practice the AWS tenant could adver-

tise the same IP prefix via multiple SDX locations as an anycast announcement, thus

achieving more control over wide-area load balance from a distributed set of locations.

3.6 Performance Evaluation

We now demonstrate that, under realistic scenarios, the SDX platform scales—in

terms of forwarding-table size and compilation time—to hundreds of participants

and policies.

3.6.1 Experimental Setup

To evaluate the SDX runtime, we provide realistic inputs to our compiler. We in-

stantiate the SDX runtime with no underlying physical switches because we are not

88

concerned with evaluating forwarding performance. We then install policies for hypo-

thetical SDX participants, varying both their numbers and their policies. We derive

policies and topologies from the characteristics of three large IXPs: AMS-IX, LINX,

and DEC-IX. We repeat each experiment ten times.

Emulating real-world IXP topologies. Based on the characteristics of existing

IXPs, we define a few static parameters, including the fraction of participants with

multiple ports at the exchange, and the number of prefixes that each participant

advertises. For example, at AMS-IX, approximately 1% of the participating ASes an-

nounce more than 50% of the total prefixes, and 90% of the ASes combined announce

less than 1% of the prefixes. We vary the number of participants and prefixes at the

exchange.

Emulating realistic AS policies at the IXP. We construct an exchange point

with a realistic set of participants and policies, where each participant has a mix of

inbound and outbound policies. Inbound policies include inbound traffic engineer-

ing, WAN load balancing, and redirection through middleboxes. Outbound policies

include application-specific peering, as well as policies that are intended to balance

transit costs. Different types of participants may use different types of policies. To

approximate this policy assignment, we classify ASes as eyeball, transit, or content,

and we sort the ASes in each category by the number of prefixes that they advertise.

Since we do not have traffic characteristics, we use advertised prefixes as a rough

proxy. Only a subset of participants exchange most of the traffic at the IXPs, and

we assume that most policies involve the participants who carry significant amounts

of traffic. We assume that the top 15% of eyeball ASes, the top 5% of transit ASes,

and a random set of 5% of content ASes install custom policies:

Content providers. We assume that content providers tune outbound traffic poli-

cies for the top eyeball networks, which serve as destinations for the majority of

89

traffic flows. Thus, for each content provider, we install outbound policies for three

randomly chosen top eyeball networks. Occasionally, content providers may wish to

redirect incoming requests (e.g., for load balance), so each content provider installs

one inbound policy matching on one header field.

Eyeballs. We assume that eyeball networks generally tune inbound traffic, and,

as a result, most of their policies involve controlling inbound traffic coming from the

large content providers. The eyeball networks install inbound policies and match on

one randomly selected header field; they do not install any outbound policies. For

each eyeball network, we install inbound policies for half of the content providers.

Transit providers. Finally, we assume that transit networks have a mix of inbound

and outbound traffic-engineering policies to balance load by tuning the entry point.

In our experiment, each transit network installs outbound policies for one prefix group

for half of the top eyeball networks and installs inbound policies proportional to the

number of top content providers. Again, the inbound policies match on one header

field that we select at random, and outbound policies match on destination prefix

group plus one additional header field.

In the following subsections, we show that the required forwarding rules and com-

pilation time scale proportionally with the total number of policies for each partici-

pant.

3.6.2 Forwarding-Table Space

We first evaluate the number of prefix groups to implement a particular SDX policy,

given a certain number of participants and prefixes. We then quantify the number of

flow rules that result from a given number of prefix groups.

Number of prefix groups. We estimate the number of prefix groups (and hence,

VNHs) that result when the participant ASes at the SDX apply policies to a certain

90

0 5000 10000 15000 20000 25000 30000

Prefixes

300

600

900

1200

1500

P
re

fi
x

G
ro

u
p

s

300 Participants

200 Participants

100 Participants

Figure 3.6: Number of prefix groups as a function of the number of prefixes, for
different numbers of participants.

number of prefixes. When policies involve portions of flow space other than desti-

nation IP address, the number of prefix groups can be larger than the number of

participants times the number of next-hop IP addresses at the exchange, since the

resulting policies can create more forwarding equivalence classes.

To study the relationship between the number of prefixes and the number of prefix

groups, we consider the approximately 300 ASes at AMS-IX which announce more

than one prefix (about half of all ASes at the exchange). The results are similar for

other large IXPs. Each experiment has two parameters, N and x, defining the set of

ASes that participate (the top N by prefix count, for N ∈ {100, 200, 300}) and the

set of prefixes with SDX policies (|px| = x ∈ [0, 25000], selected at random from the

default-free routing table). In a given experiment, for AS i ∈ [1, . . . , N], let pi be the

set of prefixes announced by AS i, and let p′i = pi ∩ px. We then run the minimum

disjoint subset algorithm over the collection P ′ = {p′1, . . . , p′N}, yielding the set of

prefix groups.

Figure 3.6 shows that the number of prefix groups is sub-linear in the number of

prefixes. As the number of prefixes to which SDX policies are applied increases, more

91

200 400 600 800 1000

Prefix Groups

0

6000

12000

18000

24000

30000

Fl
ow

R
ul

es

300 Participants
200 Participants
100 Participants

Figure 3.7: The number of forwarding rules as a function of the number of prefix
groups for different number of participants.

prefixes are advertised by the same number of participants, thereby increasing the

likelihood that the advertised prefixes are part of the same forwarding equivalence

class. We also note that the number of prefix groups is significantly smaller than the

number of prefixes, and that the ratio of prefix groups to prefixes decreases as the

number of prefixes increases, indicating good scaling properties.

Number of forwarding rules. Figure 3.7 shows how the number of forwarding

rules varies as we increase the number of prefix groups, for different numbers of

participants. We select the number of prefix groups based on our analysis of the prefix

groups that might appear in a typical IXP (Figure 3.6). We run the experiment as

described above, selecting participant ASes according to common policies at IXPs.

The number of forwarding rules increases roughly linearly with the number of prefix

groups. Because each prefix group operates on a disjoint portion of the flow space,

the increase in forwarding rules is linear in the number of prefix groups.

92

200 400 600 800 1000

Prefix Groups

0

150

300

450

600

750

Ti
m

e
(s

ec
on

ds
)

300 Participants
200 Participants
100 Participants

Figure 3.8: Compilation time as a function of the number of prefix groups, for different
numbers of participants.

3.6.3 Compilation Time

We measure the compilation time for two scenarios: (1) initial compilation time, which

measures the time to compile the initial set of policies to the resulting forwarding rules;

and (2) incremental compilation time, which measures how long it takes to recompute

when changes occur.

Initial compilation time. Figure 3.8 shows how the time to compute low-level

forwarding rules from higher-level policies varies as we increase both the number of

prefix groups and IXP participants. The time to compute the forwarding rules is on

the order of several minutes for typical numbers of prefix groups and participants.

The results also show that compilation time increases roughly quadratically with the

number of prefix groups. The compilation time increases more quickly than linearly

because, as the number of prefix groups increases, the interactions between policies

of pairs of participants at the SDX also increases. The time for the SDX to compute

VNHs increases non-linearly as the number of participants and prefix groups increases.

93

0 20 40 60 80 100

Burst Size (BGP Updates)

0

600

1200

1800

2400

3000

A
d

d
it
io

n
a

l
R

u
le

s

300 Participants

200 Participants

100 Participants

Figure 3.9: Number of additional forwarding rules.

0 100 200 300 400 500 600

Time (milliseconds)

0.2

0.4

0.6

0.8

1.0

P
(T

im
e
≤

x
)

300 Participants

200 Participants

100 Participants

Figure 3.10: Time to process a single BGP update for various participants.

We observed that for 1,000 prefix groups and 100 participants, VNH computation took

about five minutes.

As discussed in Section 3.4.3, the SDX controller achieves faster compilation by

memoizing the results of partial policy compilations. Supporting caching for 300

participants at the SDX and 1,000 prefix groups could require a cache of about 4.5 GB.

Although this requirement may seem large, it is on the order of the amount of memory

required for a route server in a large operational IXP today.

94

Incremental compilation time. Recall that in addition to computing an initial

set of forwarding table rules, the SDX controller must recompile them whenever the

best BGP route for a prefix changes or when any participant updates its policy. We

now evaluate the benefits of the optimizations that we discussed in Section 3.4.3 in

terms of the savings in compilation time. When new BGP updates arrive at the

controller, the controller must recompute VNH IP addresses for the affected routes

to establish new prefix groups.

Figure 3.9 shows the number of additional rules that are generated when a “burst”

of BGP updates of a certain size arrives. These rules must reside in the forwarding

table until the SDX controller recomputes the minimum disjoint set. The figure

represents a worst-case scenario, whereby each BGP update results in a change to

the best path and, hence, an additional VNH in the table, causing a number of

additional forwarding rules that depends on the number of participants with policies

installed. In practice, as we discussed in Section 3.4.3, not every BGP update induces

changes in forwarding table entries. When a BGP update arrives, the SDX controller

installs additional flow table rules for the affected flows and computes a new optimized

table in the background to ultimately coalesce these flows into the smaller, minimal

forwarding tables. As shown in Figure 3.10, re-computing the tables takes less than

100 milliseconds most of the time.

3.7 Related Work

We briefly describe related work in SDN exchange points, interdomain route control,

and policy languages for SDNs.

SDN-based exchange points. The most closely related work is Google’s Cardigan

project [123], which shares our broad goal of using SDN to enable innovation at IXPs.

Cardigan runs a route server based on RouteFlow [97] and uses an OpenFlow switch

95

to enforce security and routing policies. The Cardigan project is developing a logical

SDN-based exchange point that is physically distributed across multiple locations.

Unlike the SDX in this paper, Cardigan does not provide a general controller for

composing participant policies, offer a framework that allows IXP participants to

write policies in a high-level language, or introduce techniques for scaling to handle

a large number of participants and policies.

Interdomain route control. Previous work on applying SDN to interdomain rout-

ing has focused on how to use the separation of data and control planes to improve the

manageability of routing within a single AS [51, 47]. Similarly, earlier work such as

the Routing Control Platform (RCP) developed a BGP route controller for influencing

route selection within a single AS and enabled various functions, such as re-routing

traffic within an AS in the event of attack or traffic surge [17]. These systems apply

SDN to help operators route interdomain traffic more efficiently within an AS, but

they do not provide a way for multiple ASes to independently define policies which

can then be composed into a single coherent forwarding policy for forwarding traffic

between ASes. Previous work has also proposed outsourcing end-to-end path selec-

tion to third parties with an SDN controller [60, 63], but unlike SDX, these systems

require ASes to modify their existing routing infrastructure.

Policy languages for SDNs. SDX takes advantage of recent advances in pro-

gramming languages for SDNs that allow operators to express policies at a higher

level of abstraction than flow rules [121, 70, 35]. In particular, Pyretic provides both

topology abstraction and composition operators that we take advantage of when im-

plementing the SDX policy compiler. It is worth pointing out, of course, that these

languages only make it possible to implement something like the SDX—as discussed

in Section 3.5, Pyretic is merely the language that we use to encode SDX policies,

but the controller must first perform syntactic transformation and incorporate BGP

96

routing information to ensure forwarding according to AS policies that is congruent

with the BGP routes that the SDX participants advertise.

97

Chapter 4

Network Control with iSDX

In this chapter, we present the design, implementation, and evaluation of the network-

control system, iSDX, that improves the scalability of the SDX system further. More

specifically, this system build up on the SDX system to leverage the arbitrary bitmask

matching capability of the programmable switches and develops a new attribute-

encoding algorithm, enabling iSDX to scale participants’ flexible control programs

with the number of IXP participants.

4.1 Overview

In Chapter 3, we presented an initial design of SDX and showed how introducing SDN

functionality at even a single IXP could catalyze new traffic-management capabilities,

ranging from better inbound traffic engineering to application-specific peering and

server load balancing.

The earlier deployments [106, 68, 10, 64] of SDX, including the one we presented

in Chapter 3, remain relatively small-scale or limited in scope because the currently

available switch hardware cannot support large forwarding tables and because ef-

ficiently combining the policies of independently operated networks as routes and

policies change presents a significant scaling challenge.

98

In this chapter, we tackle these scalability challenges with the design and imple-

mentation of iSDX, an industrial-scale SDX that can support interconnection for the

largest IXPs on the Internet today. We design mechanisms that allow the number of

participants, BGP routes, and SDN policies to scale, even for the limited table sizes of

today’s switches. We develop algorithms for compiling traffic-control policies at the

scale and speed that these IXP would require. We have implemented these algorithms

in Ryu [98], a widely used SDN controller. We have released our implementation to

the public with documentation and tutorials.

In the design and implementation of iSDX, we address two scalability challenges

that are fundamental to any SDX design. The first challenge relates to how the control

plane combines the policies of individual networks into forwarding entries in the data

plane. Compiling traffic control policies expressed in a higher-level policy language to

forwarding table entries can be slow since this process involves composing the policies

of multiple participants into a single coherent set of forwarding-table entries. This

slow process is exacerbated by the fact that any change to BGP routing may change

forwarding behavior; SDX designs, including the one presented in Chapter 3, trigger

recompilation every time a BGP best route changes, which is not tractable in prac-

tice. The main scalability challenge thus involves efficiently composing the policies of

individual participants and ensuring that the need to recompile the forwarding table

entries is wholly decoupled from (frequent) BGP routing changes.

To scale the control plane, we introduce a new design that exploits the fact that

each participant expresses its SDN policy independently, which implies that each

participant can also compile its SDN policies independently, as well. This change

enables more aggressive compression of the forwarding tables than is possible when

all of the policies are compressed together and also allows for participant policies to

be compiled in parallel. As a result, iSDX compiles the forwarding tables two orders

99

of magnitude faster than the existing approaches; the tables are also two orders of

magnitude smaller, making them suitable for practical hardware-switch deployments.

The second challenge relates to the data plane: the number of forwarding table

entries that might go into the forwarding table at an IXP switch can quickly grow

unacceptably large. Part of the challenge results from the fact that the policies that

each network writes have to be consistent with the BGP routes that each participant

advertises, to ensure that an SDN policy cannot cause the switch to forward traffic

on a path that was never advertised in BGP. This process significantly inflates the

number of forwarding table entries in the switch and is a considerable deployment

hurdle. Large industrial-scale IXPs can have over 700 participants exchanging traf-

fic for hundreds of thousands of prefixes; combined with the fact that each of these

participants may now introduce policies for specific traffic flows, the number of for-

warding table entries quickly becomes intractable. Although the design presented in

Chapter 3 reduced the size of the forwarding tables, we show that the size of these

tables remained prohibitively large for industrial-scale deployments.

To address the data-plane challenge, we introduce an efficient encoding mechanism

where the IXP fabric forwards the packet based on an opaque tag that resides in the

packet’s destination MAC field. This tag explicitly encodes both the next-hop for the

packet and the set of ASes that advertise BGP routes for the packet’s destination,

thus making it possible to remove this information from the switch tables entirely.

This separation prevents BGP routing updates from triggering recomputation and

recompilation of the forwarding table entries. Using features in OpenFlow 1.3 that

support matching on fields with arbitrary bitmasks, we significantly reduce the size

of this table by grouping tags with common bitmasks.

In summary, we present the following contributions in this chapter:

• The design and implementation of iSDX, the first SDX controller that scales

to large industrial-scale IXPs. We devised new mechanisms for distributing

100

control-plane computation, compressing the forwarding tables, and responding

to BGP routing changes, reducing the compilation time and forwarding table

size by several orders magnitude. (Sections 4.3–4.5)

• A public, open-source implementation of iSDX, publicly available on Github [48];

the system is based on Ryu, a widely used SDN controller, and is accompanied

with tutorials and instructions that have already helped spur early adoption.

(Section 4.6)

• An extensive evaluation of iSDX’s scalability characteristics using a trace-driven

evaluation from one of the largest IXPs in the world. Our evaluation both

demonstrates that iSDX can scale to the largest IXPs and provides insight into

specifically how (and to what extent) each of our optimizations and algorithms

helps iSDX scale. (Section 4.7)

We survey the related work in Section 4.8.

4.2 SDX: Scaling Challenges

We begin with a demonstration that the designs presented in Chapter 3 cannot scale

to the production settings of a large IXP.

4.2.1 Example Operation

Figure 4.1a shows an example topology with five participants; Figure 4.1b shows the

routes advertised to A and B and the BGP routes that they select for each prefix (in

bold). Both A and B express outbound policies. To ensure that SDN policies cause

the IXP to forward traffic in a way that is consistent with the advertised BGP routes,

the SDX controller augments each outbound policy with the reachability information.

Intuitively, augmentation restricts forwarding policies so that traffic is forwarded only

on paths that correspond to BGP routes that the participant has learned.

101

AS C

P1,P2,

P3,P4

P1,P2,P3,

P4,P5

P4,P5

Control

Plane

IXP

Fabric

AS D

AS EAS B

router

AS A

router

announces

announces

announces

(a) Example Topology

A B
P1 C, D C, D
P2 C, D C, D
P3 C, D C, D
P4 C, D, E C, D, E
P5 D, E D, E

(b) Reachability and Next Hops (in bold) for AS A and AS B

Figure 4.1: An example with five IXP participants. Two participants AS A and AS
B have outbound policies. The other three advertise five IP prefixes to both these
participants.

For example, suppose that A has the following outbound policies:

dPort=443→ fwd(C)

dPort=22→ fwd(C)

dPort=80 ∧ sIp=10/24→ fwd(D)

dPort=80 ∧ sIp=40/24→ fwd(D)

These policies forward traffic based on values of packet header fields, overriding BGP

behavior. For instance, the first policy specifies HTTPS traffic (dPort=443) should

be forwarded to C. Without augmentation, A would also forward the HTTPS traffic

destined for prefix P5 to C, even though C never advertised a path for P5 to A. In

our example, A’s policies are then augmented as follows:

dIp ∈ {P1,P2,P3,P4} ∧ dPort=443→ fwd(C)

dIp ∈ {P1,P2,P3,P4} ∧ dPort=22→ fwd(C)

102

Policy CompressionAugmentation Composition Compilation

Control Plane Updates Data Plane Updates

P1 P2 P3 P4 P5

SDNA,C 2 2 2 2 0

SDNA,D 2 2 2 2 2

SDNB,E 0 0 0 1 1

BGPA,D 1 1 1 1 0

BGPA,E 0 0 0 0 1

BGPB,C 1 1 1 0 0

BGPB,E 0 0 0 1 1

{P1, P2, P3} P4 P5

SDNA,C 2 2 0

SDNA,D 2 2 2

SDNB,E 0 1 1

BGPA,D 1 1 0

BGPA,E 0 0 1

BGPB,C 1 0 0

BGPB,E 0 1 1

PolA
PolB

Policies

BGP

13

5

23

7

4

1

Total Outbound Rules of A

Total Outbound Rules of B

Forwarding Actions of B

Forwarding Actions of A

Forwarding Equivalence

Figure 4.2: Matrix representation of AS A and AS B’s outbound policies after aug-
mentation and policy compression, as well as the stages of compression and compo-
sition in the original SDX design; the composition stage is grey to indicate that the
Sonata eliminates this stage entirely.

dIp ∈ {P1,P2,P3,P4,P5} ∧ dPort=80 ∧ sIp=10/24→ fwd(D)

dIp ∈ {P1,P2,P3,P4,P5} ∧ dPort=80 ∧ sIp=40/24→ fwd(D) Augmentation enforces that

the destination IP (dIp) matches one of the prefixes that either C or D announces to

A, therefore ensuring congruence with BGP routing. Observe that a straightforward

realization of this policy requires one distinct match-action rule for each of the five

prefixes. Hence, the augmented policies would result in 18 forwarding rules instead

of the four rules necessary to implement the original policy.

Similarly, if B’s outbound policy is:

dPort=443→ fwd(E)

the SDX controller augments the policy, doubling the number of necessary rules, as

follows:

dIp ∈ {P4,P5} ∧ dPort=443→ fwd(E)

To better illustrate the scalability challenge, we capture the expansion of the switch

forwarding tables using an augmentation matrix (Figure 4.2, left matrix). In this

matrix, a row labeled as SDNX,Y refers to an SDN policy written by X that results

in traffic being forwarded to Y , while columns refer to IP prefixes. The value of

an element (i, j) indicates the number of forwarding table entries (i.e., match-action

103

rules) in participant i’s policy where prefix j appears. Similarly, BGPX,Y indicates

whether X selects Y as the next hop for some BGP-advertised prefix, and element

(i, j) is 1 if participant A selects the route advertised by B for the prefix corresponding

to column j.

For example, the element in row SDNA,C and column P1 reflects the fact there

are two forwarding table entries that correspond to prefix P1: one for traffic with

dPort=443 and one for traffic with dPort=22. The same applies for columns P2, P3,

and P4. We can determine the total number of forwarding table entries (and the

number contributed by each participant) by summing up the corresponding elements

in the matrix. We will use this notation to describe compression techniques (and

their effects) throughout the paper.

Previously developed compression techniques. Intuitively, the number of for-

warding rules increases as the number of SDX participants with outbound policies

increases (more rows) and as forwarding policies are defined for additional prefixes

(more columns). To limit the number of forwarding rules, the original SDX design

(Chapter 3) identified the Minimum Disjoint Set (MDS) of prefixes (columns) with

the same SDN policies and grouped each equivalent set into a Forwarding Equivalence

Class (FEC). In the rest of this paper, we refer to this algorithm as MDS compression.

For instance, in the preceding example, prefixes P1, P2, P3 belong to the same FEC,

as indicated by the boldface entries in the left matrix in Figure 4.2. MDS compres-

sion reduces the number of forwarding table entries by assigning a virtual next-hop to

each FEC, rather than to each individual prefix. Figure 4.2 also depicts the number

of forwarding table entries before and after MDS compression. In particular, MDS

compression reduces the number of columns from the total number of prefixes (5) to

the number of FECs (3).

104

100 200 300 400 500

Participants

103

104

105

106

107

108

109

Fo
rw

ar
di

ng
Ta

bl
e

E
nt

rie
s

Unoptimized
MDS SDX-Central

iSDX
Optimal

(a) Number of Forwarding Table Entries.

100 200 300 400 500

Participants

0

8000

16000

24000

32000

Fl
ow

-M
od

s

MDS SDX-Central
Unoptimized

iSDX

(b) Data-Plane Update Rate.

Figure 4.3: Existing SDX designs can require to maintain millions of forwarding
entries (left) and update 10, 000s of updates per second (right). Such numbers are far
from current hardware capabilities. As an illustration, the dashed line highlights the
hardware capabilities of state-of-the-art SDN switches [78].

Unoptimized Centralized MDS-SDX (Chapter 3) iSDX
Time (s) 4572.15 1740.93 2.82

Table 4.1: Median time (for 60 trials) to compute forwarding table entries for an IXP
with 500 participants. The iSDX column shows the results for this paper.

4.2.2 Existing SDX Designs Do Not Scale

In this section, we show that existing SDX designs do not scale to the demands of

industrial-scale IXPs. We explore two different state-of-the-art SDX designs: (1) an

unoptimized SDX that does not compress policies, such as that used by Google’s

Cardigan SDX [123]; (2) a simple, centralized SDX controller that applies MDS com-

pression, as in Chapter 3. We also preview the results from this paper, showing that

our new architecture, iSDX, reduces the compilation time, number of forwarding ta-

ble entries, and data-plane update rate by more than two orders of magnitude, thus

making operation in an industrial-scale IXP practical. In each case, we evaluate the

time to compute the forwarding table entries, the number of forwarding table entries,

and the rate at which changes in BGP routing information induce changes in the

forwarding table entries. We use a real BGP trace from one the largest IXPs in the

world for this evaluation. Section 4.7 provides details about our experiment setup.

105

Existing SDX designs can take minutes to compute forwarding table en-

tries. Table 4.1 shows the median time over 60 trials to compute forwarding table

entries for an IXP with 500 participants for two state-of-the-art SDX designs, as well

as for iSDX, the design that we present in this paper. iSDX reduces the average time

to compute forwarding table entries from 30 minutes to less than three seconds.

Existing SDX designs can require millions of forwarding table entries. Fig-

ure 4.3a shows how the number of forwarding table entries increases as the number

of participants increases from 100 to 500. MDS compression reduces the number of

entries by an order of magnitude, but the forwarding table is still too large for even

the most high-end hardware switches, which have about 100, 000 TCAM entries [78].

The iSDX design ensures that the number of forwarding table entries is approximately

the number of SDN policies that each participant expresses (shown as “optimal” in

Figure 4.3a), thus allowing the number of forwarding table entries to be in the tens

of thousands, rather than tens of millions.

Existing SDX designs require hundreds of thousands updates per second

to the data plane. Figure 4.3b shows the worst-case data-plane update rate that

an SDX controller must sustain to remain consistent with existing BGP updates. The

update rates of existing designs are several orders of magnitude above what even top-

of-the-line hardware switches can support [78] (i.e., about 2,500 updates per second).

In constrast, iSDX usually eliminates forwarding table updates in response to BGP

updates.

106

4.3 Design of an Industrial-Scale SDX

We introduce the design of an industrial-scale SDX (iSDX), which relies on two prin-

ciples to reduce compilation time, the number of forwarding table entries, and for-

warding table update rates.

4.3.1 Partition Control-Plane Computation

Problem: Considering all policies together reduces opportunities for com-

pression. Centralized SDX controllers perform control-plane computations for all

IXP participants. Doing so not only forces the controller to process a large single

combined policy, it also creates dependencies between the policies of individual IXP

participants. For example, a change to any participant’s inbound policy triggers the

recompilation of the policies of all participants who forward traffic to that participant.

This process requires significant computation and also involves many (and frequent)

updates to the forwarding table entries at the IXP switch.

Solution: Partition computation across participants. We solve this problem

by partitioning the control-plane computation across participants. Doing so ensures

that participant policies stay independent from each other. In addition, partitioning

the computation enables more efficient policy compression by operating on smaller

state, reducing both computation time and data plane state. Partitioning the control-

plane computation among participants also enables policy compilation to scale out as

the number of IXP participants and routes grows. Section 4.4 details this approach.

4.3.2 Decouple BGP and SDN Forwarding

Problem: Frequent BGP updates trigger recompilation. Coupling BGP and

SDN policies during compilation inflates the number of resulting forwarding table

107

Policy CompressionAugmentation Compilation

Control Plane Updates Data Plane Updates

P1 P2 P3 P4 P5

SDNA,C 2 2 2 2 0

SDNA,D 2 2 2 2 2

BGPA,D 1 1 1 1 0

BGPA,E 0 0 0 0 1

{P1, P2, P3, P4} P5

SDNA,C 2 0

SDNA,D 2 2

BGPA,D 1 0

BGPA,E 0 1

BGP

Policy A

4

1

23

7

8

3

Forwarding Actions of A

Total Outbound Rules of A

Total Outbound Rules of B

Figure 4.4: Partitioning the Control-Plane Computation.

entries and also implies that any change to BGP routing triggers recompilation of

the forwarding table entries, which is costly. Our previous design partially addressed

this problem, but this design still requires millions of flow rules in the data plane as

shown in Figure 4.3a. Additionally, our previous approach to reduce the number of

forwarding table entries increases the forwarding table update rates, since any change

in BGP routing may affect how entries are compressed.

Solution: Encode BGP reachability information in a separate tag. We

address this problem by encoding all information about BGP best routes (and corre-

sponding next hops) into the destination MAC addresses, which reduces the number

of forwarding table entries, as well as the number of changes to the forwarding table

when BGP routes change. Section 4.5 discusses our approach in detail.

4.4 Partitioning Control-Plane Computation

To achieve greater compression of the rule matrix, we need to reduce the constraints

that determine which prefixes belong to the same FEC. Rather than computing one

set of equivalence classes for the entire SDX, iSDX computes separate FECs for each

participant. We first discuss how partitioning by participant reduces the size of the

rule matrices and, as a side benefit, allows for faster computation. We then describe

108

IXP Fabric

IXP Controller

C1’s Router

C2’s Router

A’s Router

e
a

match
dstmac

modify
dstmac

Inbound Table

… …

C C2
VMAC-1

Packet

e
a

match
srcmac, VMAC

modify
dstmac

Outbound Table

… …

SRC_A CVMAC-1

C’s ControllerA’s Controller

A C

e
a

match
inport

mod srcmac
and forward

Input Table

inport_A
… …

SRC_A

e
a

match
dstmac

write dstmac,
output packet

Output Table

… …

C1

C2

Fwd C1

Fwd C2

C1_MAC

C2_MAC

Forwarding RulesSteering Rules

A’s Outbound Rules C’s Inbound Rules

Fabric Manager

Figure 4.5: Distributing forwarding rules and tags.

how we use multiple match-action tables and ARP relays to further improve scalabil-

ity, setting the stage for further optimizations in Section 4.5.

4.4.1 Partitioning the FEC Computation

Figure 4.4 shows similar compression and compilation steps as the ones done in Fig-

ure 4.2, with the important distinction that it takes place on behalf of participant

A only; similar operations take place on behalf of other participants. Figure 4.4

highlights two important benefits of partitioning the computation of FEC across par-

ticipants:

• Computing separately for each participant reduces the number of next-hops,

leading to a smaller number of larger forwarding equivalence classes. In Fig-

ure 4.4, the number of columns reduces from five to two.

• The computational complexity of computing FECs is proportional to the num-

ber of rows times the number of columns in the rule matrix. Now, each rule

matrix is smaller, and the computation for different participants can be per-

formed in parallel.

In practice, the SDX controller could compute the FECs for each participant, or each

participant could run its own controller for computing its own FECs. In the rest

109

of the paper, we assume each participant runs its own controller for computing its

FECs.

4.4.2 Distributing Forwarding Rules and Tags

In addition to computing the FECs for each participant, the iSDX must realize these

policies in the data plane.

Decomposing the IXP fabric into four tables: To forward traffic correctly, an

SDX must combine the inbound and outbound policies for all of the participants. Rep-

resenting the combination of policies in a single forwarding table, as in an OpenFlow

1.0 switch, would be extremely expensive. Some existing SDN controllers perform

this type of composition [70, 103]—essentially computing a cross product of the con-

stituent policies—and, in fact, earlier we followed followed this approach as presented

in Chapter 3. Computing the cross product leads to an explosion in the number of

rules, and significant recomputation whenever one of the participant policies changes.

Fortunately, modern switches have multiple stages of match-action tables, and

modern IXPs consist of multiple switches. The iSDX design capitalizes on this trend.

The main challenge is to determine how to most effectively map policies to the un-

derlying tables.

A strawman solution would be to use a two-table pipeline, where packets first

enter an outbound table implementing outbound policies for the participant where

the traffic originates, followed by an inbound table that applies inbound policies for

the participant that receives the traffic as it leaves the IXP fabric. Using only two

tables, however, would mean that some of these tables would need to be much larger;

for example, the outbound table would need to represent the cross product of all

input ports and outbound policies. Additionally, using only two tables makes it more

difficult to scale-out the iSDX as the number of participants grows.

110

As such, our design incorporates an input table, which handles all the incoming

traffic and tags it with a new source MAC address based on the packet’s incoming

port, so that packets can be multiplexed to the outbound table. As the packet leaves

the iSDX, it passes through an output table, which looks up the packet’s tag in

the destination MAC field and both performs the appropriate action and rewrites

the packet’s destination MAC address. Separate input and output tables provide a

cleaner separation of function between the modules that write to each table, avoid

cross-product explosion of policies, and facilitates scale-out by allowing the inbound

and outbound tables to reside on multiple physical switches in the IXP infrastructure.

(Such scale-out techniques are beyond of the scope of this paper.)

Figure 4.5 shows how the IXP fabric forwards a packet, while distributing the

compilation and compression of policies across separate tables. Based on the desti-

nation IP address of the packet, suppose that AS A’s controller selects a route to

the packet’s destination via AS D; this route will correspond to a next-hop IP ad-

dress. AS A’s controller will make a BGP announcement advertising this path. AS

A’s router will issue an ARP query for the advertised next-hop IP address, and then

AS A’s controller will respond via the ARP relay setting a virtual MAC address (in

Figure 4.5, “VMAC-1”) as the packet’s destination MAC address.

When the packet enters the IXP fabric, the input table matches on the packet’s

incoming port and rewrites the source MAC address to indicate that the packet

arrived from AS A (“SRC A”). If A has an outbound policy, the packet will match

on (“SRC A”), and the outbound table will apply an outbound policy. If A has

no outbound policy for this packet, the input table forwards the packet directly

to the inbound table without changing the destination MAC. This bypass is not

strictly necessary but avoids an additional lookup for packets that do not have a

corresponding outbound policy. A’s outbound policy thus overwrites default BGP

forwarding decision and modifies the destination MAC address to “C”. The inbound

111

table rewrites the tag to correspond to the final disposition of the packet (“C1” or

“C2”), which is implemented in the output table. The output table also rewrites the

tag to the receiver’s physical MAC address before forwarding.

Reducing ARP traffic overhead. Partitioning the FEC computation reduces

the number of FECs per participant, but may increase the total number of FECs

across all participants (i.e., the number of columns across all rule matrices). To

reduce the size of the forwarding tables, each data packet carries a tag (i.e., a virtual

MAC address) that identifies its FEC. The participant’s border router learns the

virtual MAC address through an ARP query on the BGP next-hop IP address of the

associated routes. The use of broadcast for ARP traffic, combined with the larger

number of next-hop IP addresses, could overwhelm the border routers and the IXP

fabric. In fact, today’s IXPs are already vulnerable to high ARP overheads [16].

Fortunately, we can easily reduce the overhead of ARP queries and responses,

because each participant needs to learn about only the virtual MAC addresses for its

own FECs. As such, the SDX can turn ARP traffic into unicast traffic by installing

the appropriate rules for handling ARP traffic in switches. In particular, each par-

ticipant’s controller broadcasts a gratuitous ARP response for every virtual next-hop

IP address it uses; rules in the IXP’s fabric recognize the gratuitous ARP broadcasts

and ensure that they are forwarded only to the relevant participant’s routers. Par-

ticipants’ routers can still issue ARP queries to map IP addresses to virtual MAC

addresses, but the fabric intercepts these queries and redirects them to an ARP relay

to avoid overwhelming other routers.

4.5 Decoupling SDN Policies from Routing

To ensure correctness, any SDX platform must combine SDN policies with dynamic

BGP state: which participants have routes to each prefix (i.e., valid next-hop ASes

112

for a packet with a given destination prefix), as well as the next-hop AS to use for

each prefix (i.e., the outcome of BGP decision process). The large number of prefixes

and participants creates scalability challenges with respect to forwarding table sizes

and update rates, before SDN policies even enter the equation.

4.5.1 Idea: Statically Encode Routing

To reduce the number of rules and updates, we develop a new encoding scheme that is

analogous to source routing: The IXP fabric matches on a tag that is provisioned by

a participant’s SDX controller. To implement this approach, we optimize the tag that

the fabric uses to forward traffic (as described in Section 4.4) to carry information

about both the next-hop AS for the packet (as determined by the best BGP route)

and the ASes who have advertised routes to the packet’s destination prefix. If no

SDN policy matches a packet, iSDX can simply match on the next-hop AS bits of the

tag to make a default forwarding decision. As before, the sender discovers this tag

via ARP.

To implement default forwarding, the IXP fabric maintains static entries for each

next-hop AS which forward to participants based upon the next-hop AS bits of the

tag. When the best BGP routes change, the entries need not change, rather the

next-hop AS bits of the tags change.

To account for changes in available routes, SDN policies that reroute to some

participant X confirm whether X has advertised a route before forwarding. The

method of checking for X in the tags is static, meaning that in contrast to our

previous design (Chapter 3), BGP updates induce zero updates in the IXP switch

data plane. Instead, BGP updates result in tag changes, and the participant’s border

router learns these dynamic tags via ARP.

113

Reachability Next Hop

VMAC

C D

Outbound Table

&& dPort=443

&& dPort=22

&& dPort=80 && sIP=10/24

&& dPort=80 && sIP=40/24

Match Modify DstMac

Output Table

Match Action

Fwd(C)

Fwd(D)

Fwd(E)

A's Border Router

P1

P2

P3

P4

P5

Prefix VMAC

IXP Fabric

Input
Table

Inbound
Table

Figure 4.6: How AS A’s controller uses reachability encoding to reduce the number
of flow rules.

4.5.2 Encoding Next-Hop and Reachability

We now describe how iSDX embeds both the next-hop AS (i.e., from the best BGP

route) and the reachability information (i.e., the set of ASes that advertise routes to

some prefix) into this tag.

Next-hop encoding

The next-hop information denotes the default next-hop AS for a packet, as deter-

mined by BGP. In the example from Section 4.2.1, A’s next-hop AS for traffic to P1

as determined by the best BGP route is D. iSDX allocates bits from the tag (i.e., the

virtual MAC, which is written into the destination MAC of the packet’s header) to

denote this next-hop. If no SDN policy overrides this default, iSDX applies a default

priority prefix-based match on these bits to direct traffic to the corresponding next-

hop.1 This approach reduces the forwarding table entries in a participant’s outbound

table, since additional entries for default BGP forwarding no longer need to be repre-

sented as distinct entries in the forwarding table. Encoding the next hop information

in this way requires lg(N) bits, where N is the number of IXP participants. At a

large IXP with up to 1024 participants, ten bits can encode information about default

next-hop ASes, leaving 37 bits.2

1The OpenFlow 1.3 standard supports this feature [79], which is already implemented in many
hardware switches (e.g., [78, 83]).

2One of the 48 bits in the MAC header is reserved for multicast.

114

Reachability encoding

We now explain how to encode reachability information into the remaining 37 bits of

the destination MAC address. We first present a strawman approach that illustrates

the intuition before describing the scalable encoding.

Strawman encoding. Suppose that for a given tag, the i-th bit is 1 if that par-

ticipant learns a BGP route to the corresponding prefix (or prefixes) via next-hop

AS i. Such an encoding would allow the IXP fabric to efficiently determine whether

some participant could forward traffic to some next-hop AS i, for any i at the IXP.

Considering the example in Section 4.2.1, A’s outbound policies are:

dMac = XX1X...X ∧ dPort=443→ fwd(C)

dMac = XX1X...X ∧ dPort=22→ fwd(C)

dMac = XXX1X..X ∧ dPort=80 ∧ sIp=10/24→ fwd(D)

dMac = XXX1X..X ∧ dPort=80 ∧ sIp=40/24→ fwd(D)

where X stands for a wildcard match (0 or 1). This encoding ensures correct interop-

eration with BGP, yet we use just four forwarding table entries, which is fewer than

the 18 required using augmentation (from the original example in Section 4.2).

Figure 4.6 explains how this approach reduces the number of forwarding table

entries in the switch fabric. When a packet arrives, its virtual MAC encodes both

(1) which ASes have advertised a BGP route for the packet’s destination (“reachabil-

ity”) and (2) the next-hop participant corresponding to the best BGP route (“next

hop”). Suppose that a packet is destined for P1 from A; in this case, A’s border

router will affix the virtual MAC as shown. If that virtual MAC does not match any

forwarding table entries in the outbound table, the packet will simply be forwarded

to the appropriate default next hop (in this case, D) based on the next-hop encoding.

This process makes it possible for the switch to forward default BGP traffic without

installing any rules in the outbound table, significantly reducing the size of this table.

115

Hierarchical encoding. The approach consumes one bit per IXP participant, al-

lowing at most for only 37 IXP participants. To encode more participant ASes in

these 37 bits, we divide this bitspace hierarchically. Suppose that an IXP partici-

pant has SDN policies that refer to N other IXP participants (i.e., possible next-hop

ASes). Then, all of these N participants need to be efficiently encoded in the 37-bit

space, B. We aim to create W bitmasks {B1, B2, . . . , BW} that minimize the total

number of forwarding table entries, subject to the limitations of the total length of

the bitmask.

Given M prefixes and N IXP participants, we begin with M bitmasks, where

each bitmask encodes some set of participants that advertise routes to some prefix

pi. We greedily merge pairs of sets that have at least one common participant, and

we always merge two sets if one is a subset of the other. Iterating over all feasible

merges has worst-case complexity O(M2); and there may be as many as M −1 merge

actions in the worst case. Each merge has complexity O(N), which gives us an overall

worst-case running time complexity of O(M3N).

Given 37 spare bits in the destination MAC for reachability encoding, if a partic-

ipant has defined SDN policies for more that 37 participants who advertise the same

prefix, then the number of bits required to encode the reachability information will

exceed 37. Our analysis using a dataset from one of the largest IXPs in the world

found that the maximum number of participants advertising the same prefix was only

27, implying that largest bitmask that this encoding scheme would require is 27 bits.

There were 62 total bitmasks, meaning 6 bits are required to encode the ID of a

bitmask, requiring a total of 33 bits for the encoding. Using a different (or custom)

field in a packet header might also be possible if these numbers grow in the future.

116

IXP Fabric

Central Services

IXP Controller

BGP Relay

ARP Relay

Participant Controller

ARP Handler

BGP Handler

RIBs

Fabric Manager

BGP Updates

ARP Requests

Forwarding Table Entries

Update Handler

Policy Compression Library

Figure 4.7: Implementation of iSDX. It has five main modules: (1) IXP controller,
(2) participant SDN controller, (3) ARP relay, (4) BGP relay, and (5) fabric manager.

4.6 Implementation

We now describe an implementation of iSDX, as shown in Figure 4.7. Our Python-

based implementation has about 5, 000 lines of code. The source code is publicly

available on Github [48] along with tutorials describing how to run it. We have

also provided instructions describing how to deploy and test iSDX over hardware

switches [49]. About 300 students used an earlier version of iSDX in the Coursera

SDN course from Summer 2015 [22].

The fabric manager is based on Ryu [98]. It listens for forwarding table modifi-

cation instructions from the participant controllers and the IXP controller and installs

the changes in the switch fabric. The fabric manager abstracts the details of the un-

derlying switch hardware and OpenFlow messages from the participant and the IXP

controllers and also ensures isolation between participants.

The IXP controller installs forwarding table entries in the input and output

tables in the switch fabric via the fabric manager. Because all of these rules are

static, they are computed only at initialization. Moreover, the IXP controller handles

ARP queries and replies in the fabric and ensures that these messages are forwarded

to the respective participants’ controllers via ARP relay.

117

The BGP relay is based on ExaBGP [31] and is similar to a BGP route server in

terms of establishing peering sessions with the border routers. Unlike a route server,

it does not perform any route selection. Instead, it multiplexes all BGP routes to the

participant controllers.

Each participant SDN controller computes a compressed set of forwarding

table entries, which are installed into the inbound and outbound tables via the fabric

manager, and continuously updates the entries in response to the changes in SDN

policies and BGP updates. The participant controller receives BGP updates from the

BGP relay. It processes the incoming BGP updates by selecting the best route and

updating the RIBs. We developed APIs to use either of MongoDB [69], Cassandra [5]

and SQLite [104] for storing participants’ RIBs. We used the MongoDB (in-memory)

for the evaluation in Section 4.7. The participant controller also generates BGP

announcements destined to the border routers of this participant, which are sent to

the routers via the BGP relay.

Each participant controller’s update handler determines whether the inbound

and outbound tables need to be updated, as well as whether new gratuitous ARP

messages must be sent to the participant’s border routers to update any virtual des-

tination MAC addresses. The controller receives ARP requests from the participant’s

border routers via the ARP handler and determines the corresponding ARP reply.

The controller also receives SDN policy updates from the network operators in the

form of addition and removal lists. Both the update handler and the ARP handler

use a policy compression library that we implemented, which provides the mapping

between IP prefixes and virtual next-hop IPs (corresponding to best BGP routes),

and between virtual next-hop IPs and virtual destination MAC addresses (i.e., an

ARP table).

118

MDS NH Encoding Reachability Encoding
iSDX-D 3 7 7

iSDX-N 3 3 7

iSDX-R 7 3 3

Table 4.2: Three distributed SDX Controllers.

iSDX
Unoptimized Centralized MDS-SDX [42] iSDX-D iSDX-N iSDX-R

Number of Forwarding Table Entries 68,476,528 21,439,540 763,000 155,000 65,250
Policy Compression Time (s) N/A 297.493 0.0629 0.111 2.810

Table 4.3: Summary of evaluation results for iSDX with 500 IXP participants. Note
that compression times for iSDX are per-participant, since each participant can com-
pile policies in parallel; even normalizing by this parallelization still yields significant
gains.

4.7 Evaluation

We now demonstrate that iSDX can scale to the forwarding table size, data plane

update rate, and control plane computation requirements of an industrial-scale IXP.

Table 4.2 summarizes the three different iSDX designs that we compare to previous

approaches: iSDX-D applies the same MDS compression technique as in our previ-

ous work [42], but with tables distributed across participants; iSDX-N additionally

encodes the next-hop AS in the tag; and iSDX-R encodes both the next-hop AS and

BGP reachability information in the tag.

Table 4.3 summarizes our results: iSDX reduces the number of forwarding table

entries for an industrial-scale IXP by three orders of magnitude as compared to an

unoptimized, centralized SDX design; and by more than two orders of magnitude over

the state-of-the-art SDX design [42]. This section explains these results in detail.

4.7.1 Experiment Setup

We use data sets from one of the largest IXPs worldwide, which interconnects more

than 600 participants, who peer with one another via a BGP route server[94]. We had

access to the RIB table dump collected from the IXP’s route server on August 8, 2015

119

for 511 IXP participants. These datasets contain a total of 96.6 million peering (i.e.,

non-transit) routes for over 300,000 distinct prefixes. We also use a trace of 25,676

BGP update messages from these participants to the route server for the two hours

following the collection of this RIB table dump (the participants’ RIBs are naturally

not perfectly aligned, since dumping a BGP table of about 36 GB from the router

takes about fifteen minutes). Our data set does not contain any user data or any

personal information that identifies individual users. We run our experiments on a

server installed at this IXP configured with 16 physical cores at 3.4 GHz and 128 GB

of RAM.

This IXP does not use a programmable IXP fabric, so we assume how partic-

ipants might specify SDN policies, as described in Section 4.2.1. Specifically, each

participant has between one to four outbound policies for each of 10% of the total

participants. The number of policies and set of participants are chosen uniformly at

random. Our sensitivity analysis on this percentage shows that our results are influ-

enced in magnitude but the underlying trends remain. Note that this setup is more

taxing than the one in our previous work [42] where only 20% of the total participants

had any SDN policies at all. We also evaluate iSDX’s performance for smaller IXPs

by selecting random subsets of IXP participants (ranging from 100 to 500 ASes) and

considering only the RIB information and BGP updates for those participants. We

also repeated experiments using public RIB dumps and BGP updates collected by

RIPE’s RIS servers from 12 other IXPs [95]. As the observed workload was much

smaller in this case, we omit these results for brevity.

4.7.2 Steady-State Performance

We first evaluate the steady-state performance of iSDX. To do so, we use the RIB

dumps to initialize the SDX controller (multiple of them for the distributed case) and

120

100 200 300 400 500

Participants

0

150000

300000

450000

600000

750000

Fo
rw

ar
di

ng
Ta

bl
e

E
nt

rie
s iSDX-D

iSDX-N
iSDX-R

Figure 4.8: Number of forwarding table entries.

evaluate the overall performance in terms of the efficiency of data-plane compression,

and the time to compile policies and compress them into smaller forwarding tables.

Efficiency of compression. Figure 4.8 shows the number of forwarding table en-

tries for the three distributed controllers: iSDX-D, iSDX-N, and iSDX-R. The number

of forwarding table entries increases with the increasing number of IXP participants.

Each of our techniques progressively improves scalability. We observe that the num-

ber of forwarding table entries for iSDX-R is very close to the lower bound (i.e., best

case), where the number of forwarding table entries is equal to the number of SDN

policies.

We also explore the effects of distributing the control plane computation on the

ability of iSDX to perform MDS compression. The results are shown in Figure 4.9.

Given 500 participants, partitioning the control plane reduces the number of next hop

entries for the border router from 25,000 to 360. This reduction mitigates the load

on the border routers, since the number of virtual next hop IP addresses reflects the

number of ARP entries each participant’s border router must maintain.

121

100 200 300 400 500

Participants

100

101

102

103

104

105

N
um

be
ro

fN
ex

tH
op

s

Centralized Distributed

Figure 4.9: Number of virtual next-hop IP addresses for centralized and distributed
control planes. Results for distributed iSDX do not depend on encoding or compres-
sion approach.

100 200 300 400 500

Participants

100

101

102

103

104

105

106

Ti
m

e
(m

s)

MDS SDX-Central
iSDX-D

iSDX-N
iSDX-R

Figure 4.10: Time to perform policy compression.

Time to perform policy compression. Figure 4.10 shows the compression time

for each controller; this time dominates control-plane computation but only occurs at

initialization. The Centralized MDS-SDX operates on a large input rule matrix, and

thus requires nearly five minutes to compress policies. iSDX-D distributes the compu-

tation across participants, reducing compression time by three orders of magnitude.

122

103 104 105

Updated Flow Rules/s

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
Ti

m
e

Unoptimized MDS SDX-Central

Figure 4.11: Rate at which forwarding table entries are updated.

iSDX-R takes longer than iSDX-D and iSDX-N controllers. For 500 participants,

policy compression takes about three seconds.

4.7.3 Runtime Performance

After iSDX initializes, we replay a two-hour trace of BGP updates from one of the

largest IXPs in the world to evaluate the runtime performance of iSDX compared to

other SDX designs. We focus on how iSDX reduces the number of forwarding table

updates induced by BGP updates and policy changes, as well as the corresponding

increase in gratuitous ARP traffic, which is the cost we pay for increased forwarding

table stability.

Forwarding table updates in response to routing. Figure 4.11 shows the cu-

mulative distribution of the number of updated forwarding table entries per second

the SDX must process for a BGP update stream coming from all 511 participants

at the IXP. MDS compression, which is used in iSDX-D and iSDX-N, significantly

increases the rate of updates to the forwarding table in comparison to an unoptimized

SDX; this result makes sense because any change to forwarding is more likely to trig-

123

0.2 0.4 0.6 0.8 1.0

Fraction of Participants

0

4

8

12

16

20

Ti
m

e
(m

s)

(a) Compute time for increasing forward-
ing actions.

20 40 60 80 100

Update Rates

0

8

16

24

32

40

Ti
m

e
(m

s)

(b) Compute time for increasing sus-
tained rates of BGP updates.

Figure 4.12: Latency of iSDX-R updates in response to BGP update streams.

ger a change to one of the encoded forwarding table entries. With iSDX-R, there are

never updates to the forwarding table entries in response to BGP updates.

Update latency in response to BGP updates. We aim to understand how

quickly iSDX-R can update forwarding information when BGP updates arrive. For

iSDX-R, this update time effectively amounts to computing updated virtual next-

hop IP and MAC addresses, since iSDX-R never needs to update the IXP fabric

forwarding table entries in response to BGP updates. We evaluate update latency

with two experiments. First, we vary the fraction of IXP participants to which each

IXP participant forwards with SDN policies. For example, if the fraction is 1, each

participant has between one and four SDN forwarding policies (at random) for every

other SDN participant. Figure 4.12a shows this result; in all cases, the median update

latency in response to a BGP update is less than 10 ms, and the 95th percentile in

the worst case is less than 20 ms. Even when we perform simultaneous compilation

of all 511 participants on just three servers at the IXP, the median update time is

only 52 ms, well within practical requirements.

To understand how iSDX-R behaves when it receives larger update bursts, we

evaluate the update latency for increasing sizes of BGP update bursts. We vary the

number of BGP updates per second from 20 to 100 and send a constant stream of

124

100 101 102 103 104

Number of Gratuitous ARPs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
Ti

m
e

Distributed Centralized

Figure 4.13: Rate at which a participant’s border router receives gratuitous ARPs.

updates at this rate for five minutes, tracking the latency that the iSDX requires to

process the updates. (Although a table reset would presumably cause a very large

update burst, the fastest sustained BGP update rate we observed in the trace was

only about 35 BGP updates per second.) Figure 4.12b shows this result. For example,

for a rate of 100 BGP updates per second, the median update latency is about 8 ms

and the 95th percentile is percentile is about 45 ms.

Gratuitous ARP overhead. Recall that SDX relies on gratuitous ARP to update

virtual destination MAC addresses when forwarding behavior changes, often in lieu

of updating the forwarding table itself. A centralized SDX control plane sends this

ARP response to all IXP participants, but a distributed SDX can send this response

only to the border router whose route changed. Figure 4.13 shows the distribution

of the rate at which a participant’s border router receives gratuitous ARP messages

from the IXP controller in response to BGP routing changes, for both the centralized

design (i.e., centralized MDS) and the distributed one (i.e., iSDX); these rates are

independent of which encoding the iSDX uses.

125

4.8 Related Work

SDX Projects. Software-defined IXPs have been gaining momentum in the past

few years [124, 9, 64], and limited real-world deployments are beginning to emerge.

Yet, these existing deployments have focused on either smaller IXPs or on forwarding

traffic for a partial routing table. Our original SDX [42] work introduced mechanisms

for applying SDN policies to control interdomain traffic flow at an IXP and intro-

duced some simple mechanisms for forwarding table compression; yet its capability

for compressing and updating forwarding tables cannot meet either the scale or speed

demands of the largest industrial IXP. Google’s Cardigan SDX controller has been

deployed in a live Internet exchange in New Zealand [106, 10]. Cardigan does not

use any of the compression techniques that we use in either SDX or Sonata. As a

result, we expect that the size of Cardigan’s forwarding tables would be similar to the

“unoptimized” results that we present in Section 4.2—orders of magnitude too large

for use with hardware switches in large IXPs. Control Exchange Points [61] propose

to interconnect multiple SDN IXPs to provide QoS services to the participants and

is less concerned with the design of an individual SDN-based IXP.

Distributed SDN controllers. HyperFlow [110], Onix [59], and Devolved Con-

trollers [107] implement distributed SDN controllers that maintain eventually con-

sistent network state partitioning computation across multiple controllers such that

each operates on less state. Kandoo [44] distributes the control plane for scalabil-

ity, processing frequent events in highly replicated local control applications and

rare events in a central location. Several distributed controllers focus on fault-

tolerance [58, 18, 26]. In contrast to these systems, each participant controller in

Sonata operates independently and requires no state synchronization. Sonata’s par-

titioning is first and foremost intended to achieve more efficient compression of for-

126

warding table entries; other benefits, such as parallel computation and fault tolerance,

are incidental benefits.

Techniques for data-plane scalability. Other work seeks to address the problem

of small forwarding tables in hardware. Data-plane scaling involves (1) rule partition-

ing [127], where data plane rules are partitioned across multiple switches and incoming

traffic is steered to load balance across these switches; and (2) caching [99, 57], which

stores forwarding table entries for only a small number of flows in the data plane.

These techniques are orthogonal to the compression that Sonata uses. Labeling pack-

ets for FIB compression has been applied in various contexts, such as MPLS [25],

Fabric [19], LISP[33], and Shadow Macs [1]. These techniques all reduce the number

of forwarding table entries in certain routers, often by pushing complex policies to

the edge of the network. These techniques generally apply in the wide area, and

cannot be directly applied to an IXP topology, although some of the techniques are

analogous.

127

Chapter 5

Conclusion

5.1 Filling the Scalability and Flexibility Gap

The gap between flexibility and scalability exists for network-management systems as

there is a mismatch between the required and available compute and storage resources.

This gap widens as we try to support the limitless creativity of network operators

with the available network resources.

This dissertation shows how we can harness the power of programmable switches

to fill this gap. More concretely, it focuses on the design and implementation of two

systems, Sonata and SDX. Sonata is a network-monitoring system that opportunis-

tically uses stream processors and PISA switches to scale the execution of flexible

dataflow queries over packet stream for network monitoring. On the other hand,

SDX and iSDX, are network-control systems that use both the programmable switch

and fixed-function border routers to scale the execution of flexible control programs

expressed by IXP participants for flexible wide-area traffic delivery.

128

Sonata SDX

Abstractions Dataflow queries over packet fields Virtual switch abstraction

Algorithms
Query partitioning and refinement algo-
rithms

Compilation and attribute encoding al-
gorithms

Systems

• Prototype (9K lines of code)
with commodity switch (Barefoot
Tofino [112]) and stream processor
(Apache Spark [111]).

• Used by researchers and developers
at AT&T; and students enrolled for
the Advanced Networking course at
Princeton University [20].

• Prototype (5K lines of code) with
commodity switch (Quanta).

• Open-sourced with Open Networking
Foundation.

• Used by researchers and developers at
DE-CIX, IX-BR, IIX, NSA; and stu-
dents enrolled for the SDN Coursera
course [22, 21].

Table 5.1: Summary of contributions.

5.2 Summary of Contributions

Table 5.1 summarizes the contributions of this dissertation in terms of: (1) the ab-

stractions that make it easier for network operators to express flexible programs for

network monitoring and control, (2) the algorithms that make the best use of lim-

ited network resources, and (3) systems that glue the high-level abstractions to the

low-level algorithms.

Flexible and Scalable Network Monitoring with Sonata. Ensuring the secu-

rity and performance of networks requires continually collecting and analyzing data.

Sonata makes it easy to do so, by exposing a familiar, unified query interface to oper-

ators and building on advances in both stream processing and programmable switches

to implement these queries efficiently.

More concretely, the new query interface lets network operators express flexible

monitoring tasks as dataflow queries over packet stream. We developed new query-

planning algorithms for computing optimal query plans that make the best use of

available data-plane resources to minimize the bandwidth (compute) overhead, i.e.,

the amount of traffic sent by the switch to the stream processor.

129

We implemented an extensive and modular Sonata prototype that glues the high-

level query interface and the low-level query-planning algorithms together. Our pro-

totype, which is publicly available over Github [116], was only 9, 000 lines of code and

compiled to state-of-the-art Barefoot Tofino [112] (programmable switch) and Apache

Spark [111] (stream processor). Our evaluation shows that Sonata can support a wide

range of telemetry tasks while reducing the workload for the stream processor by as

much as seven orders of magnitude compared to existing monitoring systems.

Flexible and Scalable Network Control with SDX (iSDX). SDX breaks the

logjam on long-standing problems in interdomain routing by enabling fine-grained

control over packet handling. SDX supports programs that match and act on multiple

header fields and allow networks to have remote control over the traffic. It addresses

many of the challenges of an SDN-enabled IXP.

More concretely, the virtual-switch abstraction makes it easier for network oper-

ators to express their control programs without worrying about other networks at

the IXP. It also ensures isolation, guaranteeing that networks cannot see or control

aspects of interdomain routing outside of their purview. The compilation algorithms

allow the SDX controller to combine policies, resolving conflicts that arise between

participants, and ensuring that forwarding is consistent with BGP route advertise-

ments. The attribute-encoding algorithms help reduce the number of TCAM entries

for the programmable switches. These algorithms encode the reachability attribute

to the packets before they enter the IXP’s switching fabric using the fixed-function

border routers of IXP’s participants.

We implemented an SDX prototype that glues the virtual switch abstraction with

the compilation and attributes encoding algorithms. We released our prototype,

which was 5, 000 lines of code, as an open-source project with Open Networking

Foundation (ONF), and is publicly available over Github [48]. We also released tu-

130

torials and instructions that have helped catalyze early adoption. More specifically,

the Endeavour platform [109], developed by a consortium of researchers and network

operators in Europe [29], uses our prototype as the de-facto solution for developing

new SDX-based applications. Our evaluation shows that iSDX reduces both forward-

ing table size and the time to compute these entries by several orders of magnitude.

Using BGP routing updates from a route server at one of the world’s largest IXPs,

we showed that iSDX can support industry-scale operation.

5.3 Moving Forward from Lessons Learned

Given the exponential increase in the number of Internet-connected devices and appli-

cations, we expect the complexity of network management to keep growing. Network

operators have responded to fill the gap between flexibility and scalability by beefing

up the available network resources. Unfortunately, given the trends, this approach

will get prohibitively expensive over time, and network operators will fall back to less

flexible network-management systems, compromising the security and performance

of their networks.

In this dissertation, we demonstrated that it is possible to fill the flexibility and

scalability gap for network monitoring and control with limited available network

resources. We learned how to design modular systems that are capable of pooling

resources from a heterogeneous set of network devices, and how deploying these sys-

tems at strategic locations (e.g., IXPs) enables incremental deployability. However,

we argue that so far we have only scratched the surface. Below, we discuss how we

can leverage the lessons learned from this dissertation to move forward and build

network-management systems that are not only more flexible and scalable but also

intelligent.

131

5.3.1 Developing Intelligent Network-Monitoring System

Intelligent network-monitoring systems should be capable of detecting network events

by themselves. Currently, network operators either utilize existing learning models

or train new ones to infer various network events. Network-monitoring systems like

Sonata determine the execution plans for queries representing these learning models.

Currently, the learning algorithms, which are designed to run over general-purpose

CPUs, focus only on training learning models that maximize detection accuracy. At

the same time, network-monitoring systems’ query-planning algorithms solely con-

centrate on minimizing the execution cost for queries that represent these learning

models. This disconnect between the learning and query-planning algorithms often

results in very accurate yet prohibitively expensive learning models that are not de-

ployable in production networks.

To design an intelligent network-monitoring system, we need to co-design the

learning and query-planning algorithms. This new algorithm determines the learning

model as well as the query plan by modifying the optimization problem that most

state-of-the-art learning algorithms solve by using the query execution cost as a metric

to be minimized, and by adding various resource constraints (e.g., limited memory in

the data plane). This new algorithm can replace the query-planning algorithms used

by the query-planning module of the existing network-monitoring systems. Here,

modularization ensures that the system can evolve with time as we develop more

efficient algorithms (computing both the learning models and query plans) over time.

5.3.2 Expanding Networking-Monitoring Footprint

Sonata only focuses on detecting network events observable at a single location, e.g.,

border router for large ISPs, or an IXP switch. Though such centralized deployments

provide broader visibility with limited overhead, they miss detecting several network-

wide events, such as port scanning, or end-to-end performance for specific web ap-

132

plications (e.g., Netflix, CNN, etc.) in a region. These insights, are either available

at multiple vantage points within a network or the edge of the Internet (e.g., home

routers, web browsers, etc.), outside the administrative domain of network operators.

To expand the network-monitoring footprint network-monitoring systems should be

capable of detecting network-wide events by combining insights extracted from multi-

ple vantage points. For the cases, where monitoring systems need to extract insights

from locations outside the network operator’s administrative domain, they need to

balance fundamental friction between data producers and consumers. Here, the data

consumers (i.e., network-monitoring systems) are trying to get as much information

as possible, and the data producers (e.g., owners of remote home routers) are trying

to preserve their privacy. Thus, the design of such a decentralized network-monitoring

system needs to execute queries in a privacy-preserving manner.

To design a privacy-preserving distributed network-monitoring system, we need

to extend the query interface to support additional meta fields, such as path, to

the packet tuple, design a new coordination algorithm that synchronizes information

collected at different locations in a privacy-preserving manner, and design new query-

planning algorithms that make the best use of limited network-wide storage and

compute resources.

5.3.3 Closing the Network Monitoring and Control Loop

So far, this dissertation focusses on building flexible and scalable systems for network

monitoring (Sonata) and network control (SDX). Though the output of network moni-

toring drives network control, both these systems still require human operators first to

express the queries to infer various network events and then express control programs

for reactive actions, i.e., these existing systems require humans in the loop. This

approach works for relatively simpler monitoring tasks. However, as the complex-

ity and frequency of network events increases, the overhead of manually reacting to

133

network events will get impractical. In the future, we envision network-management

systems that can take the human operators out of this control loop, determining

which queries to execute, when to run them, and how to react to various network

events, all by themselves—closing the loop between network monitoring and control.

To close the loop between network monitoring and control, we need to develop

new algorithms that can learn how to model the relationship between the observed

network events and reactive control actions. To develop such learning algorithms, we

require labeled training data. We can collect this data from the information logged by

various network devices. For example, we can use logs of network-monitoring queries

ran by the network operators to detect a network event and the related control actions

to address the problem.

5.4 Concluding Remarks

This dissertation developed two flexible and scalable systems for network monitor-

ing and control, respectively. The network-monitoring system, Sonata, collects and

analyzes raw network data at scale to infer various network events, such as DDoS

attacks or link failures, in real time. The network-control system, SDX, applies fine-

grained reactive control actions without disrupting the routing protocols in today’s

Internet. The design of these systems focused on: (i) the abstractions that allows

network operators to express flexible programs for monitoring and control; (ii) the

algorithms that make the best use of limited compute and storage resources in the

network; and (iii) the systems that form the glue between the high-level abstractions

and the low-level algorithms.

As the complexity of network management keeps increasing with the explosion in

the number of Internet-connected devices and applications, we expect that network

management needs to be more sophisticated and less reliant on human operators. We

134

believe that one should be able to apply the lessons learned from this dissertation to

develop network management systems that are more intelligent, can extract insights

from multiple vantage points, and can close the loop between monitoring and control

without any human intervention. We argue that by building the two systems in a

modular fashion, they facilitate embedding intelligence over time, and in that sense,

they can serve as building blocks for next-generation network-management systems.

135

Bibliography

[1] Kanak Agarwal, Colin Dixon, Eric Rozner, and John Carter. Shadow MACs:
Scalable Label-switching for Commodity Ethernet. In ACM SIGCOMM Work-
shop on Hot Topics in Software-defined Networking, 2014.

[2] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve Uhlig,
and Walter Willinger. Anatomy of a Large European IXP. In ACM SIGCOMM,
2012.

[3] AMS Internet Exchange. https://www.ams-ix.net/

ams-ix-route-servers/, 2013.

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, and
Michalis Kallitsis. Understanding the Mirai botnet. In USENIX Security Sym-
posium, 2017.

[5] Apache Cassandra. http://cassandra.apache.org/.

[6] Apache Thrift API. https://thrift.apache.org/.

[7] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. SNAP: Stateful network-wide abstractions for packet pro-
cessing. In ACM SIGCOMM, 2016.

[8] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, and Ali Ghodsi.
Spark SQL: Relational Data Processing in Spark. In ACM SIGMOD/PODS
International Conference on Management of Data, 2015.

[9] AtlanticWave-SDX. https://itnews.fiu.edu/wp-content/uploads/sites/

8/2015/04/AtlanticWaveSDX-Press-Release_FinalDraft.pdf.

[10] Josh Bailey, Dean Pemberton, Andy Linton, Cristel Pelsser, and Randy Bush.
Enforcing rpki-based routing policy on the data plane at an internet exchange.
ACM SIGCOMM Workshop on Hot Topics in Software-defined Networking,
2014.

136

https://www.ams-ix.net/ams-ix-route-servers/
https://www.ams-ix.net/ams-ix-route-servers/
http://cassandra.apache.org/
https://thrift.apache.org/
https://itnews.fiu.edu/wp-content/uploads/sites/8/2015/04/AtlanticWaveSDX-Press-Release_FinalDraft.pdf
https://itnews.fiu.edu/wp-content/uploads/sites/8/2015/04/AtlanticWaveSDX-Press-Release_FinalDraft.pdf

[11] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPO-
SURE: Finding Malicious Domains Using Passive DNS Analysis. In Network
and Distributed System Security Symposium, 2011.

[12] BIRD. http://bird.network.cz/.

[13] Kevin Borders, Jonathan Springer, and Matthew Burnside. Chimera: A declar-
ative language for streaming network traffic analysis. In USENIX Security Sym-
posium, 2012.

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming Protocol-independent Packet Processors.
ACM SIGCOMM Computer Communication Review, 2014.

[15] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing in Hardware for SDN. In
ACM SIGCOMM, 2013.

[16] Victor Boteanu, Hanieh Bagheri, and Martin Pels. Minimizing ARP traffic in
the AMS-IX switching platform using OpenFlow. 2013.

[17] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman
Shaikh, and Jacobus van der Merwe. Design and implementation of a routing
control platform. In USENIX NSDI, 2005.

[18] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A Distributed
and Robust SDN Control Plane for Transactional Network Updates. In IEEE
INFOCOM, 2015.

[19] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fab-
ric: A Retrospective on Evolving SDN. In ACM SIGCOMM Workshop on Hot
Topics in Software-defined Networking, 2012.

[20] COS 561: Advanced Computer Networks, Princeton University, Fall 2017.
http://www.cs.princeton.edu/courses/archive/fall17/cos561/.

[21] Coursera SDN Course. class.coursera.org/sdn-002/.

[22] Coursera SDN Course, 2015. https://www.coursera.org/course/sdn1.

[23] Chuck Cranor, Theodore Johnson, Oliver Spatschek, and Vladislav
Shkapenyuk. Gigascope: A Stream Database for Network Applications. In ACM
SIGMOD/PODS International Conference on Management of Data, 2003.

[24] The CAIDA UCSD Anonymized Internet Traces 2016-09. http://www.caida.
org/data/passive/passive_2016_dataset.xml.

137

http://bird.network.cz/
http://www.cs.princeton.edu/courses/archive/fall17/cos561/
class.coursera.org/sdn-002/
https://www.coursera.org/course/sdn1
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml

[25] Bruce S. Davie and Yakov Rekhter. MPLS: technology and applications. San
Francisco, 2000.

[26] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kom-
pella. Towards an Elastic Distributed SDN Controller. In ACM SIGCOMM
Workshop on Hot Topics in Software-defined Networking, 2013.

[27] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. Moongen: A scriptable high-speed packet generator. In ACM
Internet Measurement Conference, 2015.

[28] Endance packet capture cards. https://www.endace.com/

endace-dag-high-speed-packet-capture-cards.html.

[29] ENDEAVOUR: Towards a flexible software-defined network ecosystem. https:
//www.h2020-endeavour.eu/.

[30] Cristian Estan, Stefan Savage, and George Varghese. Automatically Inferring
Patterns of Resource Consumption in Network Traffic. In ACM SIGCOMM,
2003.

[31] ExaBGP. https://github.com/Exa-Networks/exabgp.

[32] Jinliang Fan, Jun Xu, Mostafa H. Ammar, and Sue B. Moon. Prefix-preserving
IP address anonymization: Measurement-based security evaluation and a new
cryptography-based scheme. Computer Networks, 2004.

[33] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID Separation
Protocol (LISP). Internet Requests for Comments, January 2013. http://www.
rfc-editor.org/rfc/rfc6830.txt.

[34] Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, Ron Hutchins,
Dave Levin, and Josh Bailey. SDX: A Software Defined Internet Exchange.
2013.

[35] Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J Freedman,
Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Jennifer Rexford,
Cole Schlesinger, Alec Story, and David Walker. Languages for software-defined
networks. IEEE Communications Magazine, 2013.

[36] Thomer M Gil and Massimiliano Poletto. MULTOPS: A data-structure for
bandwidth attack detection. In USENIX Security Symposium, 2001.

[37] Ramesh Govindan, Cengiz Alaettinoglu, Kannan Varadhan, and Deborah Es-
trin. Route servers for inter-domain routing. In Computer Networks and ISDN
Systems, 1998.

[38] Arpit Gupta, Rudiger Birkner, Marco Canini, Nick Feamster, Chris MacStoker,
and Walter Willinger. Network Monitoring as a Streaming Analytics Problem.
In ACM SIGCOMM Workshop on Hot Topics in Networking, 2016.

138

https://www.endace.com/endace-dag-high-speed-packet-capture-cards.html
https://www.endace.com/endace-dag-high-speed-packet-capture-cards.html
https://www.h2020-endeavour.eu/
https://www.h2020-endeavour.eu/
https://github.com/Exa-Networks/exabgp
http://www.rfc-editor.org/rfc/rfc6830.txt
http://www.rfc-editor.org/rfc/rfc6830.txt

[39] Arpit Gupta, Rob Harrison, Rüdiger Birkner, Ankita Pawar, Marco Canini,
Nick Feamster, Jennifer Rexford, and Walter Willinger. Sonata: Query-Driven
Network Telemetry. Arxiv, 2017.

[40] Arpit Gupta, Robert MacDavid, Rudiger Birkner, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Laurent Vanbever. An industrial-scale software
defined internet exchange point. In USENIX NSDI, 2016.

[41] Arpit Gupta, Muhammad Shahbaz, Laurent Vanbever, Hyojoon Kim, Russ
Clark, Nick Feamster, Jennifer Rexford, and Scott Shenker. SDX: A Software
Defined Internet Exchange. Technical Report, 2013.

[42] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean Patrick Donovan,
Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark,
and Ethan Katz-Bassett. SDX: A Software Defined Internet Exchange. In
SIGCOMM, 2014.

[43] Gurobi Solver. http://www.gurobi.com/.

[44] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications. In ACM SIGCOMM Workshop
on Hot Topics in Software-defined Networking, 2012.

[45] Brandon Heller, Nikhil Handigol, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. Reproducible Network Experiments using Container Based Emula-
tion. In CoNEXT, 2012.

[46] Mukesh Hira and L. J. Wobker. Improving Network Monitoring and Man-
agement with Programmable Data Planes. Blog posting, http://p4.org/p4/
inband-network-telemetry/, September 2015.

[47] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. Achieving high utilization with software-
driven WAN. In ACM SIGCOMM, 2013.

[48] iSDX Gihub Repo. https://github.com/sdn-ixp/iSDX.

[49] iSDX HW Test Instructions. https://github.com/sdn-ixp/iSDX/tree/

master/examples/test-ms/ofdpa.

[50] Martin Izzard. The Programmable Switch Chip Consigns Legacy Fixed-
Function Chips to the History Books. https://goo.gl/JKWnQc, September
2016.

[51] Sushant Jain, Alok Kumar, Subhashree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, J. Zolla,
Urs Hölzle, S. Stuart, and Amin Vahdat. B4: Experience with a globally-
deployed software defined WAN. In ACM SIGCOMM, 2013.

139

http://www.gurobi.com/
http://p4.org/p4/inband-network-telemetry/
http://p4.org/p4/inband-network-telemetry/
https://github.com/sdn-ixp/iSDX
https://github.com/sdn-ixp/iSDX/tree/master/examples/test-ms/ofdpa
https://github.com/sdn-ixp/iSDX/tree/master/examples/test-ms/ofdpa
https://goo.gl/JKWnQc

[52] E. Jasinska, N. Hilliard, R. Raszuk, and N. Bakker. Internet Exchange Route
Server. IETF, 2013.

[53] Mobin Javed and Vern Paxson. Detecting stealthy, distributed SSH brute-
forcing. In ACM SIGSAC Conference on Computer & Communications Secu-
rity, pages 85–96, 2013.

[54] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling
packet programs to reconfigurable switches. In USENIX NSDI, 2015.

[55] Lavanya Jose, Minlan Yu, and Jennifer Rexford. Online Measurement of Large
Traffic Aggregates on Commodity Switches. In Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services, 2011.

[56] Jaeyeon Jung, Vern Paxson, Arthur W Berger, and Hari Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In IEEE Symposium on
Security and Privacy, pages 211–225. IEEE, 2004.

[57] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
Cacheflow: Dependency-aware rule-caching for software-defined networks. In
ACM Symposium on SDN Research, 2016.

[58] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. Ravana:
Controller fault-tolerance in software-defined networking. In ACM Symposium
on SDN Research, 2015.

[59] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. Onix: A distributed control platform
for large-scale production networks. 2010.

[60] Vasileios Kotronis, Xenofontas Dimitropoulos, and Bernhard Ager. Outsourcing
the routing control logic: Better Internet routing based on SDN principles. In
ACM SIGCOMM Workshop on Hot Topics in Networking, 2012.

[61] Vasileios Kotronis, Xenofontas Dimitropoulos, Rowan Klöti, Bernhard Ager,
Panagiotis Georgopoulos, and Stefan Schmid. Control Exchange Points: Pro-
viding QoS-enabled End-to-End Services via SDN-based Inter-domain Routing
Orchestration. 2014.

[62] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. Exit
from Hell? Reducing the Impact of Amplification DDoS Attacks. In USENIX
Security Symposium, 2014.

[63] Karthik Lakshminarayanan, Ion Stoica, and Scott Shenker. Routing as a Ser-
vice. Technical Report UCB/CSD-04-1327, UC Berkeley, 2004.

[64] LightReading. Pica8 Powers French TOUIX SDN-Driven Internet Exchange,
June 2015. http://ubm.io/1Vc0SLE.

140

http://ubm.io/1Vc0SLE

[65] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. One sketch to rule them all: Rethinking network flow monitoring
with UnivMon. In ACM SIGCOMM, 2016.

[66] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TAG: A Tiny Aggregation Service for Ad-hoc Sensor Networks. In USENIX
OSDI, 2002.

[67] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM
Transaction on Database System, 2005.

[68] Joe Mambretti. Software-defined network exchanges (SDXs) and software-
defined infrastructure (SDI), 2014. Workshop on Prototyping and Deploying
Experimental Software Defined Exchanges.

[69] mongoDB. https://www.mongodb.org/.

[70] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software defined networks. In USENIX NSDI, 2013.

[71] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Dream:
Dynamic resource allocation for software-defined measurement. In ACM SIG-
COMM, 2015.

[72] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Scream:
Sketch resource allocation for software-defined measurement. In CoNEXT, 2015.

[73] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Trumpet:
Timely and precise triggers in data centers. In ACM SIGCOMM, 2016.

[74] James K. Mullin. Optimal semijoins for distributed database systems. IEEE
Transactions on Software Engineering, 1990.

[75] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and David
Walker. Compiling path queries. In USENIX NSDI, 2016.

[76] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal,
Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. Language-directed Hardware Design for Network Performance Monitor-
ing. In ACM SIGCOMM, 2017.

[77] Noviflow. http://noviflow.com/.

[78] NoviSwitch 1132. http://noviflow.com/wp-content/uploads/2014/09/

NoviSwitch-1132-Datasheet.pdf.

[79] Openflow 1.3 specifications. http://bit.ly/1eyrkxY.

141

https://www.mongodb.org/
http://noviflow.com/
http://noviflow.com/wp-content/uploads/2014/09/NoviSwitch-1132-Datasheet.pdf
http://noviflow.com/wp-content/uploads/2014/09/NoviSwitch-1132-Datasheet.pdf
http://bit.ly/1eyrkxY

[80] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. IoTPOT: Analysing the rise of IoT
compromises. In USENIX Workshop on Offensive Technology, 2015.

[81] Orestis Polychroniou, Rajkumar Sen, and Kenneth A Ross. Track Join: Dis-
tributed joins with minimal network traffic. In ACM SIGMOD/PODS Inter-
national Conference on Management of Data, 2014.

[82] Quagga. http://www.nongnu.org/quagga/.

[83] QuantaMesh BMS T3048-LY2. http://www.qct.io/Product/Networking/

Bare-Metal-Switch/QuantaMesh-BMS-T3048-LY2-p55c77c75c159.

[84] DNS Amplification Attacks Alert, March 2013. https://www.us-cert.gov/

ncas/alerts/TA13-088A.

[85] An update on the Memcached/Redis benchmark. http://oldblog.antirez.

com/post/update-on-memcached-redis-benchmark.html.

[86] Apache Flink. http://flink.apache.org/.

[87] Benchmarking Apache Kafka: 2 Million Writes Per Second (On
Three Cheap Machines). https://engineering.linkedin.com/kafka/

benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines.

[88] Deepfield Defender. http://deepfield.com/products/

deepfield-defender/.

[89] Jitin Thomas, Petr Lapukhov Tracking Packets’ Paths and Latency via
INT. https://schd.ws/hosted_files/2016p4workshop/1d/FB%20BFN%2C%

20INT-PLT_Talk_May_2016-v1.1-1.pdf.

[90] OpenSOC. http://opensoc.github.io/.

[91] OpenSOC Scalability. https://goo.gl/CX2jWr.

[92] The CAIDA Anonymized Internet Traces 2016 Dataset. https://www.caida.

org/data/passive/passive_2016_dataset.xml.

[93] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP routing stability
of popular destinations. In Internet Measurment Workshop, pages 197–202.
ACM, 2002.

[94] Philipp Richter, Georgios Smaragdakis, Anja Feldmann, Nikolaos Chatzis, Jan
Boettger, and Walter Willinger. Peering at Peerings: On the Role of IXP Route
Servers. In Internet Measurement Conference, 2014.

[95] RIPE. RIS Raw Data, 2015. https://www.ripe.net/analyse/

internet-measurements/routing-information-service-ris/

ris-raw-data.

142

http://www.nongnu.org/quagga/
http://www.qct.io/Product/Networking/Bare-Metal-Switch/QuantaMesh-BMS-T3048-LY2-p55c77c75c159
http://www.qct.io/Product/Networking/Bare-Metal-Switch/QuantaMesh-BMS-T3048-LY2-p55c77c75c159
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://flink.apache.org/
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://deepfield.com/products/deepfield-defender/
http://deepfield.com/products/deepfield-defender/
https://schd.ws/hosted_files/2016p4workshop/1d/FB%20BFN%2C%20INT-PLT_Talk_May_2016-v1.1-1.pdf
https://schd.ws/hosted_files/2016p4workshop/1d/FB%20BFN%2C%20INT-PLT_Talk_May_2016-v1.1-1.pdf
http://opensoc.github.io/
https://goo.gl/CX2jWr
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data

[96] RIPE Routing Information Service (RIS). http://www.ripe.net/ris.

[97] Christian Esteve Rothenberg, Marcelo Ribeiro Nascimento, Marcos Rogerio
Salvador, Carlos Nilton Araujo Corrêa, Sidney Cunha de Lucena, and Robert
Raszuk. Revisiting routing control platforms with the eyes and muscles of
software-defined networking. In ACM SIGCOMM Workshop on Hot Topics in
Software-defined Networking, 2012.

[98] Ryu SDN Framework. http://osrg.github.io/ryu/.

[99] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang.
Leveraging Zipf’s Law for Traffic Offloading. ACM SIGCOMM Computer Com-
munication Review, 2012.

[100] SDX Controller. https://github.com/sdn-ixp/sdx-platform.

[101] Big Monitoring Fabric. http://www.slideshare.net/bigswitchnetworks/

big-monitoring-fabric-58389045.

[102] Slowloris HTTP DoS. https://web.archive.org/web/20150426090206/

http://ha.ckers.org/slowloris, June 2009.

[103] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. A fast
compiler for netkat. In ICFP, 2015.

[104] SQLite. https://www.sqlite.org/.

[105] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator place-
ment for in-network stream query processing. In Symposium on Principles of
Database Systems, 2005.

[106] J. Stringer, D. Pemberton, Qiang Fu, C. Lorier, R. Nelson, J. Bailey, C.N.A.
Correa, and C. Esteve Rothenberg. Cardigan: SDN distributed routing fabric
going live at an Internet exchange. In Symposium on Computers and Commu-
nication, 2014.

[107] Adrian S-W Tam, Kang Xi, and H. Jonathan Chao. Use of devolved controllers
in data center networks. arXiv preprint arXiv:1103.5586, 2011.

[108] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Simplifying datacenter
network debugging with PathDump. In USENIX OSDI, 2016.

[109] The ENDEAVOUR platform. https://www.h2020-endeavour.eu/.

[110] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control plane
for openflow. In Workshop on Internet Network Management, 2010.

[111] Apache Spark. http://spark.apache.org/.

[112] Barefoot’s Tofino. https://www.barefootnetworks.com/technology/.

143

http://www.ripe.net/ris
http://osrg.github.io/ryu/
https://github.com/sdn-ixp/sdx-platform
http://www.slideshare.net/bigswitchnetworks/big-monitoring-fabric-58389045
http://www.slideshare.net/bigswitchnetworks/big-monitoring-fabric-58389045
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
https://web.archive.org/web/20150426090206/http://ha.ckers.org/slowloris
https://www.sqlite.org/
https://www.h2020-endeavour.eu/
http://spark.apache.org/
https://www.barefootnetworks.com/technology/

[113] Kentik. https://www.kentik.com.

[114] P4 software switch. https://github.com/p4lang/behavioral-model.

[115] Scapy: Python-based interactive packet manipulation program. https://

github.com/secdev/scapy/.

[116] Sonata Github. https://github.com/Sonata-Princeton/SONATA-DEV.

[117] Sonata Queries. https://github.com/sonata-queries/sonata-queries.

[118] Velocidata. http://velocidata.com/.

[119] Vytautas Valancius, Nick Feamster, Jennifer Rexford, and Akihiro Nakao.
Wide-area route control for distributed services. 2010.

[120] Bapi Vinnakota. P4 with the Netronome Server Networking Platform. https:
//goo.gl/PKQtC7, May 2016.

[121] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A language for
high-level reactive network control. In ACM SIGCOMM Workshop on Hot
Topics in Software-defined Networking, 2012.

[122] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based server
load balancing gone wild. In HotICE Workshop, March 2011.

[123] Scott Whyte. Project CARDIGAN An SDN Controlled Exchange Fabric.
https://www.nanog.org/meetings/nanog57/presentations/Wednesday/

wed.lightning3.whyte.sdn.controlled.exchange.fabric.pdf, 2012.

[124] Workshop on Prototyping and Deploying Experimental Software De-
fined Exchanges. https://www.nitrd.gov/nitrdgroups/images/4/4d/SDX_

Workshop_Proceedings.pdf.

[125] Q. Wu, J. Strassner, A. Farrel, and L. Zhang. Network telemetry and big data
analysis. Network Working Group Internet-Draft, 2016 (Expired).

[126] Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement
with OpenSketch. In USENIX NSDI, 2013.

[127] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable
Flow-based Networking with DIFANE. ACM SIGCOMM, 2010.

[128] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapatra. Progme: Towards
programmable network measurement. In ACM SIGCOMM, 2007.

[129] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and
Boon Thau Loo. Quantitative Network Monitoring with NetQRE. In ACM
SIGCOMM, 2017.

144

https://www.kentik.com
https://github.com/p4lang/behavioral-model
https://github.com/secdev/scapy/
https://github.com/secdev/scapy/
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/sonata-queries/sonata-queries
http://velocidata.com/
https://goo.gl/PKQtC7
https://goo.gl/PKQtC7
https://www.nanog.org/meetings/nanog57/presentations/Wednesday/wed.lightning3.whyte.sdn.controlled.exchange.fabric.pdf
https://www.nanog.org/meetings/nanog57/presentations/Wednesday/wed.lightning3.whyte.sdn.controlled.exchange.fabric.pdf
https://www.nitrd.gov/nitrdgroups/images/4/4d/SDX_Workshop_Proceedings.pdf
https://www.nitrd.gov/nitrdgroups/images/4/4d/SDX_Workshop_Proceedings.pdf

[130] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized Streams: Fault-tolerant Streaming Computation at
Scale. In ACM SOSP, 2013.

[131] Beichuan Zhang, Vamsi Kambhampati, Mohit Lad, Daniel Massey, and Lixia
Zhang. Identifying BGP routing table transfer. In SIGCOMM MineNet Work-
shop, August 2005.

[132] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Ma-
hajan, Dave Maltz, Lihua Yuan, Ming Zhang, and Ben Y. Zhao. Packet-level
telemetry in large datacenter networks. In ACM SIGCOMM, 2015.

145

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Bibliographic Notes
	1 Introduction
	1.1 Network Management
	1.1.1 Flexibility Requirements
	1.1.2 Available Network Resources
	1.1.3 Flexibility and Scalability Gap

	1.2 Network Monitoring with Sonata
	1.2.1 Problem
	1.2.2 Observations
	1.2.3 Contributions

	1.3 Network Control with SDX
	1.3.1 Problem
	1.3.2 Observations
	1.3.3 Contributions

	1.4 Lessons Learned
	1.4.1 Pooling Heterogeneous Resources
	1.4.2 Designing Modular and Extensible Systems
	1.4.3 Selecting Strategic Locations for Deployment

	1.5 Dissertation Outline

	2 Network Monitoring with Sonata
	2.1 Overview
	2.2 Background and Motivation
	2.3 Unified Query Interface
	2.3.1 Dataflow Queries on Tuples
	2.3.2 Example Network-Monitoring Queries

	2.4 Query Partitioning
	2.4.1 Data Reduction on the Switch
	2.4.2 Data-Plane Resource Constraints
	2.4.3 Computing Query-Partitioning Plans

	2.5 Algorithm: Dynamic Query Refinement
	2.5.1 Modifying Queries for Refinement
	2.5.2 Computing Refinement Plans

	2.6 Implementation
	2.7 Evaluation
	2.7.1 Setup
	2.7.2 Load on the Stream Processor
	2.7.3 Case Study: Tofino Switch

	2.8 Related Work

	3 Network Control with SDX
	3.1 Overview
	3.2 Background and Motivation
	3.2.1 Conventional IXP Architecture
	3.2.2 Wide-Area Traffic Delivery

	3.3 Abstraction: Virtual SDX Switch
	3.3.1 Virtual SDX Switch Abstraction
	3.3.2 Integration with Interdomain Routing

	3.4 Efficient Compilation
	3.4.1 Compilation by Policy Transformation
	3.4.2 Reducing Data-Plane State
	3.4.3 Reducing Control-Plane Computation

	3.5 Implementation and Deployment
	3.5.1 Implementation
	3.5.2 Deployment

	3.6 Performance Evaluation
	3.6.1 Experimental Setup
	3.6.2 Forwarding-Table Space
	3.6.3 Compilation Time

	3.7 Related Work

	4 Network Control with iSDX
	4.1 Overview
	4.2 SDX: Scaling Challenges
	4.2.1 Example Operation
	4.2.2 Existing SDX Designs Do Not Scale

	4.3 Design of an Industrial-Scale SDX
	4.3.1 Partition Control-Plane Computation
	4.3.2 Decouple BGP and SDN Forwarding

	4.4 Partitioning Control-Plane Computation
	4.4.1 Partitioning the FEC Computation
	4.4.2 Distributing Forwarding Rules and Tags

	4.5 Decoupling SDN Policies from Routing
	4.5.1 Idea: Statically Encode Routing
	4.5.2 Encoding Next-Hop and Reachability

	4.6 Implementation
	4.7 Evaluation
	4.7.1 Experiment Setup
	4.7.2 Steady-State Performance
	4.7.3 Runtime Performance

	4.8 Related Work

	5 Conclusion
	5.1 Filling the Scalability and Flexibility Gap
	5.2 Summary of Contributions
	5.3 Moving Forward from Lessons Learned
	5.3.1 Developing Intelligent Network-Monitoring System
	5.3.2 Expanding Networking-Monitoring Footprint
	5.3.3 Closing the Network Monitoring and Control Loop

	5.4 Concluding Remarks

	Bibliography

