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ABSTRACT

Several recent research efforts have proposed Machine Learning

(ML)-based solutions that can detect complex patterns in network

traffic for a wide range of network security problems. However,

without understanding how these black-box models are making their

decisions, network operators are reluctant to trust and deploy them

in their production settings. One key reason for this reluctance is that

these models are prone to the problem of underspecification, defined

here as the failure to specify a model in adequate detail. Not unique

to the network security domain, this problem manifests itself in ML

models that exhibit unexpectedly poor behavior when deployed in

real-world settings and has prompted growing interest in developing

interpretable ML solutions (e.g., decision trees) for “explaining” to

humans how a given black-box model makes its decisions. However,

synthesizing such explainable models that capture a given black-box

model’s decisions with high fidelity while also being practical (i.e.,

small enough in size for humans to comprehend) is challenging.

In this paper, we focus on synthesizing high-fidelity and low-

complexity decision trees to help network operators determine if

their ML models suffer from the problem of underspecification. To

this end, we present TRUSTEE, a framework that takes an existing

ML model and training dataset as input and generates a high-fidelity,

easy-to-interpret decision tree and associated trust report as out-

put. Using published ML models that are fully reproducible, we

show how practitioners can use TRUSTEE to identify three com-

mon instances of model underspecification; i.e., evidence of shortcut

learning, presence of spurious correlations, and vulnerability to out-

of-distribution samples.
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1 INTRODUCTION

In the last few years, we have witnessed a growing tension in the

network-security community. Recent research has demonstrated the

benefits of Artificial Intelligence (AI) and Machine Learning (ML)

models over simpler rule-based heuristics in identifying complex net-

work traffic patterns for a wide range of network security problems

(see recent survey articles such as [9, 46, 55, 62]). At the same time,

we have seen reluctance among network security researchers and

practitioners when it comes to adopting these ML-based research

artifacts in production settings (e.g., see [2, 4, 58]). The black-box

nature of most of these proposed solutions is the primary reason for

this cautionary attitude and overall hesitance. More concretely, the

inability to explain how and why these models make their decisions

renders them a hard sell compared to existing simpler but typically

less effective rule-based approaches.

This tension is not unique to network security problems but ap-

plies more generally to any learning models, especially when their

decision-making can have serious societal implications (e.g., health-

care, credit rating, job applications, and criminal justice system).

At the same time, this basic tension has also driven recent efforts

to “crack open” the black-box learning models, explaining why and

how they make their decisions (e.g., “interpretable ML” [51], “ex-

plainable AI (XAI)” [59], and “trustworthy AI” [12]). However, to

ensure that these efforts are of practical use in particular applica-

tion domains of AI/ML such as network security is challenging and

requires further qualifying notions such as (model) interpretability

or trust (in a model) [40] and also demands solving a number of

fundamental research problems in these new areas of AI/ML.

In this paper, we first provide such a qualification that is motivated

by the needs of the field of network security as application domain

of AI/ML and equates “an end user having trust in an AI/ML model”

with “an end user being comfortable with relinquishing control to

the model” [40]. Given this specific definition of what it means for

an AI/ML model to engender trust, we next address a number of

fundamental research challenges related to the problem of quantita-

tively deciding when an end user is comfortable with relinquishing

control to a given AI/ML model. To this end, a particular focus of

this paper is on determining whether or not a given AI/ML model

suffers from the problem of underspecification [17].

Here, the problem of underspecification in modern AI/ML refers

to determining whether the success of a trained model (e.g., high

accuracy) is indeed due to its innate ability to encode some essential

structure of the underlying system or data or is simply the result of

some inductive biases that the trained model happens to encode. In
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Figure 1: TRUSTEE overview.

practice, inductive biases typically manifest themselves in instances

of shortcut learning strategies [28], signs of spurious correlations [3],

or an inherent inability for out-of-distribution (o.o.d.) generalizations

(i.e., test data distribution is different from training data distribution).

The implication of such inductive biases is that their presence in

trained AI/ML models prevents these models from being credible or

trustworthy; that is, generalize as expected in deployment scenarios.

Thus, for establishing the specific type of trust in an ML model

considered in this paper, it is critical to be able to identify these

inductive biases, and this paper takes a first step towards achieving

this ambitious goal.

To detect underspecification issues in learning models for network

security problems, we develop TRUSTEE (TRUSt-oriented decision

TreE Extraction). This framework provides a means for carefully

inspecting black-box learning models for the presence of inductive

biases. Figure 1 shows how TRUSTEE augments the traditional ML

pipeline to examine the trustworthiness of a given ML model. Specif-

ically developed with the application domain of network security in

mind, TRUSTEE takes a given black-box model and the dataset that

has been used to train that model as input and outputs a “white-box”

model in the form of a high-quality decision tree (DT) explanation.

Importantly, in synthesizing this DT, TRUSTEE’s focus is first

and foremost on ensuring its practical use which, in turn, requires

leveraging domain-specific observations to strike a balance between

model fidelity (i.e., accuracy of the DT with respect to the black-box

model), model complexity, and model stability. Here, complexity

refers to both the size of the DT and to aspects of the tree’s branches.

In particular, when viewing the tree’s branches as decision rules,

we are concerned with their explicitness and intelligibility; that is,

we require these rules to be readily recognizable by domain experts

and be largely in agreement with the experts’ domain knowledge.

Model stability, on the other hand, is concerned with the correctness,

coverage and stability of the decision rules; that is, we require them

to correctly describe how the given black-box model makes a sig-

nificant number of its decisions and also want them to be largely

insensitive to the particular data samples that TRUSTEE used in

the process of selecting its final DT explanation. We achieve this

insensitivity or stability by implementing a heuristic method that

selects from among a number of different candidate DTs the one that

has the highest mean agreement. Here, the agreement between two

different DTs is a measure of how often the two DTs will make the

same decision for the same input data [30, 60]. In practical terms,

implementing this heuristic reduces the likelihood that TRUSTEE

outputs a misleading DT explanation.

TRUSTEE also outputs a trust report associated with the DT ex-

planation, which operators can consult to determine whether there is

evidence that the given black-box model suffers from the problem

of underspecification. If such evidence is found, the information

provided in the trust report can be used to identify components of

the traditional ML pipeline (e.g., training data and model selection)

that need to be modified in an effort to improve upon an ML model

that TRUSTEE has found to be untrustworthy.

While our work contributes to the rapidly growing ML literature

on model explainability/interpretability and is inspired by ongoing

developments in this area, our efforts and objectives differ from

existing approaches in a number of significant ways. For one,

given the inherent complexity of learning problems for network-

ing, existing approaches for replacing black-box models with

“white-box” models that are inherently explainable in the first place

(e.g., decisions trees) are in general impractical. Moreover, local

interpretability methods [31, 48, 53] are not suitable for examining

the various instances of the underspecification problem. At the same

time, although our effort is motivated by prior studies that focus

on global interpretability [6, 7, 37], these works are either only

applicable to a specific class of learning models (e.g., reinforcement

learning) or suffer from poor fidelity.

Through various case studies, we illustrate in Section 7 how oper-

ators can use TRUSTEE’s DTs and associated trust reports to detect

the presence of inductive biases. More specifically, we use published

ML models that are reproducible (i.e., code base and datasets are

publicly available) to show how network operators can use the infor-

mation provided by TRUSTEE to detect instances of shortcut learning

strategies, obtain evidence of overfitting and/or whether the model

relies on spurious correlations to make its decisions, or determine

the model’s inability to generalize to out-of-distribution data.

2 BACKGROUND AND RELATED WORK

The application domain of AI/ML considered in this paper is the

area of network security. In this section, we first discuss the unique

challenges that this area poses for utilizing the latest advances in

AI/ML. In particular, we focus on important recent AI/ML concepts

such as “interpretable ML” and “explainable AI” and discuss their

relevance for our work.

2.1 Challenges in ML for Network Security

Beyond the already-mentioned trust issue, there are a number of

other reasons why the area of network security is a particularly

challenging application domain for AI/ML. Networking-related

datasets in general and cybersecurity-specific datasets in particu-

lar typically contain information about what is being communicated

over a network (e.g., packet-level traffic traces) or provide insight

into how networks enable such information exchanges. As such, the

datasets often raise serious end user-specific privacy concerns or

reveal provider-specific details that many companies consider to be

proprietary in nature and are therefore unwilling to share. The result

is a general paucity of publicly available datasets. Moreover, the

datasets that are publicly available generally lack the complexity of

real-world settings, either because they have been synthetically gen-

erated, have been obtained from small-scale testbed environments,

or have been anonymized to the point where their general utility has

been severely curtailed.

The scarcity of carefully labeled data poses an even bigger prob-

lem. Networking or cybersecurity datasets do not come in the form

of images that humans can recognize but typically consist of seman-

tically rich content, and unpacking that content and properly labeling

it often requires substantial domain knowledge (e.g., network archi-

tecture, protocols, and standards). This need for domain knowledge

rules out labeling approaches that have been used successfully in

other domains and include crowdsourcing (e.g., for labeling images

that are part of open-source databases such as ImageNet [18]) or



outsourcing (e.g., for labeling datasets that have been curated and

open-sourced by commercial self-driving car companies for the

benefit of researchers [14, 15]).

2.2 Interpretable ML and Explainable AI

As the scientific community continues to develop sophisticated

AI/ML-based tools for high stakes decision-making throughout so-

ciety, there has been a growing awareness about their actual or

potential misuses and negative implications. As a result, calls for

starting to study “trustworthy AI”, “responsible AI”, “ethical AI”

and related topics have intensified in recent years and have identified

model interpretability/explainability as a critically important but also

highly elusive concept for facilitating these studies [40].

Interpretable ML: Ex-ante Interpretability. The application

of modern AI/ML has resulted in a myriad of different learning

models that are “black-box” in nature; that is, provide no insight

in or understanding about why the black-box model makes certain

decisions (and not some other decisions) or what decision-making

process gives rise to these decisions. This development has resulted

in a recent explosion of work on “Explainable AI,” where a second

(post-hoc) model is created to explain the originally obtained black-

box model [59]. This pursuit of explainable AI has been criticized in

the recent AI/ML literature and called “problematic” (see, for exam-

ple [51]), mainly because such post-hoc explanations are often not

reliable and can be misleading [29, 37]. An alternative approach that

has been advocated in [51] argues for using learning models such as

linear models or DTs that are inherently (i.e., ex-ante) interpretable.

Unfortunately, because of the rich semantic content of the data

in the network security domain, uncovering the types of patterns

in the data that matter has become increasingly the responsibility

of trained “black-box” models rather than painstakingly-designed

inherently explainable models. However, instead of considering this

development as being “problematic,” we view it as an unique oppor-

tunity to ultimately achieve the vision of interpretable ML, ensuring

that AI/ML models used for high stakes decision-making are fully

comprehensible by their end users and interested third parties.

Explainable AI: Post-hoc Interpretability. A commonly-made

argument in favor of using black-box models such as deep neural

networks or random forests is that they typically achieve higher

accuracy compared to their interpretable counterparts (e.g., DTs)

and are therefore often more desirable when used in practice. Al-

though this argument is not universally shared (e.g., see [51]), it

nevertheless has been a driving force behind the recent efforts on

the topic of “explainable AI.” Also referred to XAI [59], explainable

AI describes efforts where the development of a trained black-box

model is followed up with additional activities that are intended

to help “explain” the originally obtained black-box model. These

efforts can be divided into two disjoint categories, namely local

explainability and global explainability.

Methods for providing local explanations aim at illuminating

how a black-box model makes individual decisions (or decisions

in a local region near a particular data point) and include well-

known techniques such as LIME [48], SHAP [41], and LEMNA [31].

Since these methods limit their attention to only a subset of indi-

vidual decisions, they are prone to providing misleading explana-

tions [40, 45, 64], depending on the subset of samples analyzed.

Related methods such as Partial Dependence Plots (PDP) [26] and

Accumulated Local Effect (ALE) plots [1] suffer from similar short-

comings. As such, these methods are of limited use when we seek

explanations that we can trust in the sense that they accurately de-

scribe how a given black-box model makes decisions holistically.

In turn, methods that provide global explanations aim at

describing how a given black-box model makes its decisions “as

a whole” and not one data sample at a time. Extracted from the

black-box model in a second step (i.e., post-hoc), such explanations

typically take the form of an inherently interpretable model such as

a rule set or a DT [6, 38] and become the main vehicles for studying

the decision-making process of the original black-box model and

examining its properties. However, existing approaches for such

post-hoc extractions of global explanations are known to produce

at times too low of a fidelity to be useful in practice [6], target

only a very specific set of black-box models [7], be difficult to

reproduce [37, 38], and be possibly unreliable to the point of being

misleading [29, 37]. To achieve the level of explainability required

in high-stakes application domains such as network security, we

seek to generate high-fidelity global explanations that are capable

of accurately and faithfully describing a majority of the decisions

made by any given black-box model.

3 TRUSTEE OVERVIEW

Our focus in this paper is on post-hoc global model interpretability

for the application domain of network security problems. The idea of

using DTs for investigating global model interpretability for a given

black-box model is not novel. However, the set of requirements that

we impose on the DT explanations is non-standard and makes this a

challenging problem, which motivated us to develop TRUSTEE.

For one, we require that our new DT extraction method be model-

agnostic; that is, applicable to any given black-box model. Second,

we also demand that the method produces high-fidelity DT explana-

tions; that is, DTs whose expected predictive performance is similar

to that of the black-box model. To quantify the fidelity of DTs, we

rely on well-known metrics; for example, while for classification

problems we measure fidelity using the F1-score between classifica-

tions from the black-box model and the DT, for regression problems,

we measure fidelity in terms of the R-squared value between the pre-

dictions from the black-box and the DT. The third requirement we

impose is that the extraction method also results in low-complexity

DT explanations such that selected parts of the DTs are intelligible

and comprehensible (i.e., easy to understand by domain experts) and

accurately describe how the black-box model makes most of its deci-

sions. The fourth and last requirement concerns a stability property

that we want our new DT extraction method to have. In particular,

to reduce the chances that this output provides a misleading DT

explanation, we require that most of the final DT’s decisions should

be insensitive to the minute details of how this final DT explanation

has been determined.

For a DT that TRUSTEE extracts from a given black-box model

and satisfies this set of requirements, our next goal is to summa-

rize the pertinent aspects of this synthesized tree in a trust report.

This trust report is intended to help end users determine whether

the given black-box model suffers from the problem of underspec-

ification and cannot be trusted. To achieve this goal, we look for

ways to exploit the extracted DT explanation for the purpose of

enabling the end users to investigate the black-box model for likely

indications of the presence of inductive biases. In particular, in this

paper we consider the following three instances of inductive biases:

(i) instances of shortcut learning, (ii) signs of spurious correlations,

and (iii) problems with out-of-distribution samples.

Note that the presence of any of these inductive biases proves

that the given black-box model suffers from the underspecification

problem and cannot be trusted. At the same time, the absence of



these instances does not mean that the black-box model can be

trusted. In fact, while proving for an arbitrary black-box model that

the model does not suffer from the underspecification problem is

hard and remains an unsolved problem, showing that the model

does suffer from the underspecification problem only requires

demonstrating the presence of a single instance of an inductive

bias, and our design of TRUSTEE is an initial effort that simplifies

demonstrating that certain biases are present in a given model. After

describing TRUSTEE’s design in detail in Section 4, we illustrate

the end-to-end application of TRUSTEE, including the use of the

extracted DT explanation and resulting trust report with a number

of illustrative examples in Section 7.

4 EXTRACTING DECISION TREES

The first step to realize the agenda detailed in Section 3 consists

of generating high-fidelity and inherently interpretable (i.e., “white-

box”) counterparts for any given black-box model, regardless of the

learning method used by the black-box. To this end, we first discuss

existing approaches to this problem and their limitations. We then

present TRUSTEE, an original and practical framework that end users

can apply to extract high-fidelity DT explanations from an arbitrary

black-box learning model.

4.1 Existing approaches

Global white-box explanations extracted from a black-box model

can often describe in detail the reasoning behind the model’s

behavior, provided they achieve a good enough fidelity. Earlier

works [6, 7, 16, 43] have proposed different approaches to extracting

DT explanations from black-box models, but these DTs typically

do not satisfy all the above-listed requirements and are therefore

ill-suited for end users who want to gauge their level of trust in a

given black-box model. We list a number of relevant prior efforts

and their pertinent features in Table 1. Note that some of these exist-

ing methods [7, 43] are not model-agnostic but have been designed

for specific learning paradigms and models, such as Reinforcement

Learning. As such, they typically rely on assumptions that are spe-

cific to the learning paradigm or model that their designs focus on.

On the other hand, prior efforts that do propose model-agnostic ap-

proaches [6, 16] tend to produce DT explanations that don’t satisfy

the fidelity requirement that we demand for realizing our objective

(see our technical report [34] for empirical evidence).

Table 1: Existing approaches to extract decision trees.

Method
Optimization

Objective

Stopping

Criterion

Model

Agnostic

High

Fidelity

Domain-specific

Pruning

Trepan [16] Fidelity Max Nodes ✓ - -

dtextract [6] Accuracy Max Nodes ✓ - -

VIPER [7] RL Reward Max Iterations - - -

Metis [43] RL Reward Max Iterations - - -

TRUSTEE Fidelity Max Iterations ✓ ✓ ✓

Another important aspect of many of these existing efforts is the

stopping criterion they use to obtain their extracted DT explanations.

For example, prior efforts such as [6, 16] require specifying the max-

imum size (i.e., number of nodes) that the extracted DT can have

and use this input parameter as stopping criterion. Such approaches

are convenient for obtaining explanations that are guaranteed to be

of a certain size, but this convenience typically comes at the cost of

low fidelity, implying that important decision-making rules may be

missing from the resulting DT. Other methods such as [7] and [43]

extract DT explanations in an iterative fashion, require specifying

the maximum number of iterations, and use this user-specified input

parameter as stopping criterion. Even though these methods do not

explicitly optimize for fidelity, they typically produce high-fidelity

explanations, but at the cost of high complexity (i.e., the large size

of the resulting explanations makes interpreting cumbersome if not

impractical). To overcome this problem, the authors of [43] rely

on a commonly-used technique called Cost-Complexity Pruning

(CCP) [26]. Similar to other pruning methods [24], CCP succeeds in

striking a balance between the overall fidelity of the extracted DTs

and their size. However, from an interpretability perspective, CCP

tends to be oblivious to what role each decision-making rule plays as

part of the resulting DT explanations. Because of this observed trade-

off between model complexity and model interpretability, these meth-

ods are ill-suited for our purpose where we strive to shed light on the

decision-making rules that are key to interpreting black-box models

that arise in the context of solving network security-related problems.

4.2 Model-Agnostic Decision Tree Extraction

Given the absence of readily available model-agnostic methods for

extracting high-fidelity, low-complexity, and stable DTs from black-

box ML models, we present in the following TRUSTEE. Algorithm 1

describes the steps that TRUSTEE takes to achieve its objective.

At a high level, these steps are executed as part of an outer loop

(lines 4-16) that is executed a total of 𝑆 times. Each iteration of this

outer loop involves an inner loop (Lines 5-12) that is performed 𝑁

times. Here, this inner loop is designed to generate different high-

fidelity DT explanations, one per iteration. It does so by applying a

teacher-student dynamic derived from imitation learning [33] that

uses 𝜋∗ as an oracle in conjunction with a carefully curated dataset

D’ to guide the training of a surrogate “white-box” model in the

form of a DT that imitates the black-box’s decisions. In contrast, the

purpose of the outer loop is (i) to select from among the 𝑁 high-

fidelity DTs that have been generated in the process of executing

the inner loop the DT with the highest fidelity, (ii) to transform this

resulting DT into a high-fidelity and low-complexity DT by means

of a post-processing step that consists of applying a purposefully-

developed pruning method (see Section 5 for details), and (iii) to

consider all 𝑆 high-fidelity and low-complexity DTs that have been

generated in the process of executing the outer loop and output the

one that is the most stable in the sense of having the highest mean

agreement among these 𝑆 DTs.

Algorithm 1 takes as input a given black-box model 𝜋∗ that we

desire to explain and the original dataset D0 that was used to train

𝜋∗. Other parameters that the algorithm requires as input are the

number of iterations 𝑆 for the outer loop, the number of iterations 𝑁

for the inner loop, the number of samples 𝑀 to select fromD0 to use

when training the surrogate DTs as part of each iteration of the inner

loop, and a parameter 𝑘 that is required by the tree pruning method

used in Line 14 and is discussed in more detail in Section 5 below.

The algorithm starts by initializing the training dataset D (Line 2)

using the given black-box 𝜋∗ to predict the expected outcomes from

the given input dataD0. It then initializes a set of DTs (Line 3) from

which, at the end (Line 17), the most stable DT explanation will be

selected and returned as output by TRUSTEE (Line 18).

To execute the inner loop as part of an iteration of the outer loop,

the steps that the algorithm performs during the 𝑗-th (1 ≤ 𝑗 ≤ 𝑁 )

iteration of the inner loop consist of (i) selecting 𝑀 training samples

uniformly at random from the optimal prediction dataset D (Line

6) to initialize a training dataset D ′; (ii) splitting the dataset D ′ for

training and testing (Line 7); (iii) training a DT student 𝜋𝑖 onD ′𝑡𝑟𝑎𝑖𝑛
(Line 8) by using the well-known CART method [11]; (iv) testing the



DT explanation usingD ′𝑡𝑒𝑠𝑡 , collecting the samples that the DT clas-

sifier wrongly classifies into the set D ′𝑒 (Line 9), and querying the

black-box model for the expected results for D ′𝑒 (Line 7) to produce

a correction dataset D𝑗 (Line 10); and (v) augmenting the optimal

dataset D ′ with this correction dataset (Line 11) to reinforce the

correct decisions during the subsequent iterations of the inner loop.

The steps that the algorithm executes during the 𝑖-th (1 ≤ 𝑖 ≤ 𝑆)

iteration of the outer loop are (i) perform 𝑁 iterations of the inner

loop (Lines 6-11), (ii) select from among the 𝑁 generated different

student models the one DT explanation with the highest fidelity (Line

13), and (iii) apply a special pruning method to this highest-fidelity

DT to obtain a high-fidelity and low-complexity DT explanation

candidate. Finally, after 𝑆 iterations of this outer loop, the algorithm

selects from among the 𝑆 obtained different high-fidelity and low-

complexity DT explanation candidates the one that has the highest

mean agreement (i.e., is the most stable) and returns this “best of the

best” DT as final output of TRUSTEE.

In the following, we provide a more detailed description of the

main design choices we made for TRUSTEE and further evaluate

some of these design choices as part of an ablation study in Section 8.

Algorithm 1 Model agnostic decision tree explanation extraction.

1: procedure TRUSTEE(

𝜋∗: Black-box model,

D0: Initial training dataset,

𝑀 : Number of samples to train the decision tree,

𝑁 : Number of iterations of inner loop,

𝑆 : Number of iterations of outer loop,

𝑘: Parameter for Top-𝑘 Pruning),

2: Initialize dataset using black-box D ← 𝜋∗ (∀𝑥 ∈ D0)

3: Initialize stabilization set of DTs R ← ∅

4: for 𝑖 ← 1 . . . 𝑆 do

5: for 𝑗 ← 1 . . . 𝑁 do

6: Sample 𝑀 training cases uniformly from D

D′ ← {(𝑥, 𝑦)
i.i.d.
∼ 𝑈 (D) }

7: Split sampled dataset for training and testing

D′𝑡𝑟𝑎𝑖𝑛,D
′
𝑡𝑒𝑠𝑡 ← TRAINTESTSPLIT (D′)

8: Train DT

𝜋 𝑗 ← TRAINDECISIONTREE (D′𝑡𝑟𝑎𝑖𝑛)

9: Test and get samples DT misclassifies

D′𝑒 ← {∀(𝑥, 𝑦) ∈ D
′
𝑡𝑒𝑠𝑡 | 𝜋 𝑗 (𝑥) ≠ 𝜋∗ (𝑥)}

10: Get correct outcome from black-box

D𝑗 ← 𝜋∗ (∀𝑥 ∈ D′𝑒 )

11: Augment dataset D ← D ∪ D𝑗

12: end for

13: Select tree with highest fidelity

𝜋𝑚𝑎𝑥 ← 𝜋 ∈ {𝜋1, ..., 𝜋𝑁 }

14: Prune selected tree 𝜋𝑖 ← TOPKPRUNE(𝜋𝑚𝑎𝑥 , 𝑘)

15: Add tree to the stabilization set R ← R ∪ 𝜋𝑖
16: end for

17: Select tree with highest mean agreement with others

𝜋𝑎𝑔𝑟𝑒𝑒 ← 𝜋 ∈ R

18: return 𝜋𝑎𝑔𝑟𝑒𝑒
19: end procedure

Multiple iterations and uniform sub-sampling. The CART algo-

rithm that is traditionally used to train DT models relies on a greedy

approach for finding the best splits in the given training dataset.

This greedy approach ensures that for a given training dataset, the

resulting DT will be largely insensitive to the order in which the

input samples are processed. At the same time, this greedy approach

is prone to produce over-fitted DTs [10]. While using this approach

without further constraints (e.g., stopping criterion) to train a DT

results in perfect fidelity, being over-fitted makes the resulting DT

ill-suited for providing an intelligible explanation for how the given

black-box model makes its decisions. Instead, the resulting DT ex-

planation is largely an artifact of the method used to generate the

explanation. To overcome this problem, TRUSTEE implements an

iterative approach to train multiple student models on the expert

model predictions. This iterative approach is implemented as the

inner loop in Algorithm 1, where at each iteration, we select a frac-

tion 𝑀 of the input data by uniform sub-sampling from the original

training dataset (Lines 5-11). This approach differs from existing

efforts [7] in that by requiring the uniform sub-sampling step at

each iteration, we ensure that each DT explanation will have only a

limited view of the entire data, akin to a k-fold cross validation [52].

Incorporating this sub-sampling step allows us to stress-test how

different features and/or feature values contribute to the decision-

making of the black-box model and then select the ones that best

fit our overall objective. In practical terms, uniform sub-sampling

from the original training dataset assumes each sample has the same

probability of being selected (i.e., balanced dataset). While it is well

known that using imbalanced datasets to train ML models leads

to biases towards the majority classes, the existing ML literature

provides several approaches that resolve this problem through proper

pre-processing of the original training data [36].

Dataset augmentation. An important design choice for TRUSTEE

involves a dataset augmentation step (Line 9), where in each iteration

of the inner loop, the algorithm uses the optimal predictions from

the black-box model on the sampled dataset 𝐷 ′ to augment the

original training dataset 𝐷 . The purpose of this step is to over-correct

for data samples for which the student DT model makes wrong

decisions. Leveraging results from the existing literature on imitation

learning [7, 50], performing this step can not only increase the

overall accuracy of the trained student model but also reduce the

overall number of leaf nodes in the resulting tree.

Fidelity as objective function. When selecting from among the

different student models that TRUSTEE extracts from a given black-

box model, it uses model fidelity as objective function and picks

the student model with the highest fidelity (Line 11). This design

choice implies that while the final DT explanation produced by

TRUSTEE is not necessarily the most accurate DT for the given

classification problem, it is the DT that is the most faithful one in

terms of explaining how the black-box model makes its decisions.

Intuitively, it is by insisting on this high-fidelity aspect of the DTs

that TRUSTEE considers that we are able to post-process the resulting

DT explanation in ways that will help end users with varying degrees

of domain knowledge to gauge their trust in the given black-box

model. We provide evidence in support of this intuition in Section 5

where we describe the type of post-processing that we perform as

part of TRUSTEE so the final DT explanation it outputs can serve as

an inherently practical means for faithfully explaining most of the

given black-box model’s decisions.

Model stability. Since the inner loop of Algorithm 1 (Lines 6-11)

uses a different random subset of the entire dataset each time it trains

a DT explanation, it is possible for TRUSTEE to output a misleading

explanation because of the particular subset of data that was used

to train that final DT explanation. To minimize the chances for such

scenarios to occur, we add an outer loop in Algorithm 1 (Lines 4-16).

This addition results in the extraction of 𝑆 different high-quality

DT explanations from the given black-box model and allows us to

measure the agreement among these 𝑆 different DT explanations.

The agreement of DTs is a well-known measure of how often a pair



of DTs will make the same decisions for the same input data and is a

metric that has been used in previous studies that concern assessing

the stability of different DTs [30, 60]. Here, to select the final DT

explanation that is returned as output of TRUSTEE (Line 18), Line 17

in Algorithm 1 computes the pair-wise agreement among all 𝑆 DT ex-

planations and selects the one with highest mean agreement. While

implementing this outer loop prevents TRUSTEE from generating

obviously misleading explanations and gives domain experts confi-

dence that they can trust the explanations produced by TRUSTEE’s

output, rigorously proving that a “white-box” model extracted from

a given black-box model does not provide misleading explanations

is an active area of current research [37].

5 PROCESSING DECISION TREES

When using TRUSTEE to synthesize a high-fidelity DT explanation

for a given black-box model, realizing the agenda outlined in Section

3 requires performing an additional step in Algorithm 1 (Line 14)

each time 𝑁 iterations of the inner loop have completed and the algo-

rithm has selected the highest-fidelity DT from among the resulting

𝑁 different high-fidelity DT candidates (Line 13). The purpose of

this step is to transform this selected highest-fidelity DT into a DT

explanation for the given black-box model that is inherently practical

in the sense of having low complexity and at the same time high

fidelity. Here, low complexity of a DT explanation refers to small

trees but also, and more importantly, trees whose main branches

(i.e., decision rules ranked by number of input samples they classify)

explicitly, intelligibly, and accurately describe how the black-box

model makes most of its decision. Effectively, when generating this

low-complexity and high-fidelity DT explanation as a result of this

post-processing step, we tolerate some loss of fidelity in return for

achieving low complexity. In the following, we examine different as-

pects of this fidelity-complexity trade-off and introduce a simple tree

pruning method that we call Top-𝑘 Pruning and that comprises the

required post-processing step. We design this method for the explicit

purpose of ensuring that any final DT explanation that TRUSTEE

outputs can be readily processed and understood by domain experts.

5.1 Decision Tree Pruning: Trade-offs

One of the main disadvantages of CART models is that CART’s

greedy algorithm is known to be prone to overfitting, often produc-

ing high-fidelity DTs that can have thousands of nodes [24]. Clearly,

such large trees are detrimental to our ultimate goal; that is, present-

ing end users with inherently practical explanations that they can

readily inspect and understand with their available domain knowl-

edge. In designing TRUSTEE, we similarly focused on first obtaining

largely unconstrained DT explanations with the best possible fidelity

(Line 13). However, our reasoning for doing so is that we explicitly

require that any DT explanation that TRUSTEE outputs will have un-

dergone a post-processing phase for the purpose of making this final

DT explanation intelligible and comprehensible for end users. Our

intuition behind obtaining a high-fidelity DT explanation first and

addressing its complexity later is that manipulating a high-fidelity ex-

planation with an eye towards reducing its complexity is more likely

to result in explanations that, while experiencing some decrease in

their fidelity, still will have higher fidelity than their counterparts

that had lower fidelity to start with.

A commonly-used approach to transforming large DTs into trees

of smaller sizes is pruning, and the existing literature describes

several pruning methods for DTs [24, 26], many of which are highly

effective in obtaining DTs that have small complexity, at least as far

as the sizes of the trees are concerned. Among the most widely-used

approaches to pruning are (i) pre-pruning which limits either the total

number of nodes or the overall depth of the tree and (ii) post-pruning,

such as Cost-Complexity Pruning (CCP) [26]. On the one hand, by

explicitly constraining either the number of tree nodes or the tree’s

depth, the pre-pruning approaches allow for direct control over the

size of the resulting DT. However, this control over tree size typically

comes at the cost of reduced fidelity, mainly because the obtained

small trees run the risk of missing important decision branches as

they prevent the consideration of any further decision branches once

the stopping criterion is reached. On the other hand, using post-

pruning such as CCP often results in a better trade-off between

fidelity and size. However, this better trade-off comes at the cost of

reduced interpretability, mainly because CCP relies on a parameter

that is indirectly responsible for how many nodes of a tree get pruned.

Lack of a more direct control makes it difficult to decide which tree

branches to include in the pruned tree and which to exclude.

5.2 Top-𝑘 Pruning Method

Each branch in any of the highest-fidelity DTs that are selected in

the process of executing an iteration of Algorithm 1’s outer loop

(i.e., Line 13) represents a decision “rule”; that is, a combination

of individual decisions on features that results in labeling the input

data as belonging to a specific class (e.g., malware vs. benign). Since

each of these “rules” accounts for a certain percentage of all samples

in the input dataset, the different rules also contribute differently to

the overall model fidelity, and as the complexity of the DT grows

(i.e., larger number of branches), so does the DT’s fidelity.

The idea behind our Top-𝑘 Pruning method is that to detect signs

of the presence of inductive biases in a given black-box model, it

often suffices to carefully scrutinize only the top-𝑘 branches of an

extracted high-fidelity DT, ranked by the number of input samples a

branch classifies, especially in cases where the branches intelligibly

describe how the black-box makes most of its decisions. In particular,

we argue that the “tail” end of the branches of an extracted high-

fidelity DT (i.e., branches that are not in the top-𝑘 for some large

value of 𝑘) often reflects specific decisions of the black-box model

that are overfitted to the training dataset and can, for all practical

purposes, be ignored when trying to explain the most important

decisions of the black-box model. However, since the trade-offs

between model fidelity and model complexity are typically model

dependent,Top-𝑘 Pruning requires a parameter 𝑘, and specifying a

value for 𝑘 gives end users complete control over how many branches

they want to consider in their attempt to understand the trade-offs

for a given model. Also note that even though selecting smaller 𝑘

values can possibly result in poor fidelity, it does not mean that we

cannot draw potentially important conclusions from the resulting

explanation. For instance, one specific branch can sometimes cover

most samples of a particular class, resulting in an apparent poor

overall fidelity but still indicating a potential underspecification issue

related to that specific class. In short, the user-specified parameter 𝑘

determines the complexity of the final DT explanation that TRUSTEE

presents to the end user. If, at any point, a user wants to inspect more

branches of the tree, they can simply choose a larger 𝑘 and rerun

our algorithm. Note, however, that due to its probabilistic nature,

re-running our algorithm will typically result in applying the Top-𝑘

Pruning method to a high-fidelity DT explanation that differs from

the original one. We leave a careful investigation of this aspect

of TRUSTEE and its deeper implications for detecting instances of

inductive biases in a given black-box model for future work.



5.3 Generating Trust Reports

We use the DT explanation that TRUSTEE outputs as basis for popu-

lating a trust report that simplifies the task of end users of a given

black-box model to gauge their trust in that model. In the following,

we provide details on how we build this trust report so it helps end

users spot signs that point to possible instances of inductive biases

in the given black-box model. If upon further scrutiny of these signs

the presence of such an inductive bias is confirmed, it would be

proof for the end users that they cannot trust the given model. To

this end, we leverage the fact that any DT explanation that TRUSTEE

outputs has been pruned with the help of our Top-𝑘 Pruning method

and is therefore typically a small tree comprised of 𝑘 branches. As

part of the trust report, we present the details of the generated small

DT to the end users so they can examine these details with an eye

towards three common ways an underspecified ML model can be

recognized. More precisely, we intend the trust report to be the main

source of information that end users can consult when checking for

inductive biases that manifest themselves as instances of shortcut

learning strategies, through the presence of spurious correlations, or

in an inability to generalize for realistic out-of-distribution data.

Importantly, by itself, the information contained in the trust report

is in general insufficient to diagnose underspecification issues; in-

stead, it points to potentially attention-worthy aspects of the model or

the data that require further attention. As such, detecting and diagnos-

ing underspecification issues is not a task that is currently automated

but requires domain knowledge and great familiarity with the learn-

ing problem at hand. Consequently, the effort demands a (human) do-

main expert to actively inspect and check if the trust report-provided

information points to possible problems in the data or in the model,

or indicates that there are no problems with either the model or the

data. In the following, we briefly describe how the generated trust

report helps with checking for each of these three inductive biases.

Shortcut learning. Presenting a visual depiction of the small DT

explanation that forms the output of TRUSTEE and annotating it

with pertinent information (e.g., features used, splitting conditions

or clauses present at the different nodes of the tree, number of input

samples associated with each branch segment) allows for quick

and intelligible perusing and inspection of the tree. In particular,

observing that less than a handful of input features are required to

accurately classify most of the input data (or a specific class of input

samples) is often a strong indication of a shortcut that the black-box

model learned and that can in general quickly be confirmed with

readily available domain knowledge. Note however that a small

number of features in the output of TRUSTEE may also indicate that

the learning problem for which the black-box was designed for in

the first place is in fact simple and may not require any ML at all.

Spurious correlations. A more involved investigation of the

information provided in the trust report concerns studying the im-

pact of removing the identified most important feature(s) from the

provided dataset. Upon removing such feature(s), we can then re-

train the black-box model using this altered dataset, proceed to use

TRUSTEE to extract a new DT explanation, and repeat this process

a number of different times. In general, the impact of removing im-

portant features from the training dataset is that the accuracy of the

black-box model decreases. However, especially in situations where

the data include a large number of features, it is often the case that

the black-box model is able to find alternative features so that remov-

ing the most important feature(s) leaves the overall model accuracy

essentially unchanged. We take this as a strong indication of the

presence of spurious correlations in the data that can subsequently

be easily confirmed via an analysis of the original feature set.

Out-of-distribution samples. The annotated version of the out-

put of TRUSTEE that is shown as part of the trust report can also be

used to uncover the individual features in each of the most impor-

tant tree branches, allowing us to plot the distribution of the values

that each of those features can take in the provided dataset. Inspect-

ing the resulting distributions affords end users an opportunity to

reason whether or not the observed distributions of feature values

are consistent with those encountered in data collected from actual

production settings. Such an inspection is especially informative

when the provided datasets consist of network traffic measurements,

where feature value distributions are typically dictated by the domi-

nant protocols in use, where artifacts can often be easily identified

(e.g., due to simple testbed experimentations), and where generating

meaningful out-of-distribution samples is in general feasible because

the expected behavior across the full TCP/IP protocol stack is either

known or well documented.

6 USING TRUSTEE IN PRACTICE

The following step-by-step instructions are intended to help end

users who want to use TRUSTEE and associated trust reports to

check if a given trained ML model is credible or not by inspecting it

for possible underspecification issues.

Step 1 (Getting started): Select the ML model that needs to

be analyzed and the dataset of the input samples that is used to

examine the model’s decisions and decision-making process. The

only requirement for the selected ML model is that it provides a

predict interface that TRUSTEE can use to query the model for

its prediction for a given input sample. As for the input dataset,

TRUSTEE also accepts datasets that differ from the dataset used to

train the ML model, but we recommend using the training dataset

for a basic analysis of the selected ML model.

Step 2 (Selecting hyperparameters): TRUSTEE requires select-

ing values for four hyperparameters: 𝑆 and 𝑁 (number of iterations

of the outer loop and inner loop in Algorithm 1, respectively), 𝑀

(sampling rate), and 𝑘 (number of branches to keep as part of our Top-

𝑘 Pruning method). Although highly model- and data-dependent,

we found that in the context of the different use cases we analyzed,

choosing 𝑆 = 10, 𝑁 = 50, 𝑀 = 30% of the input dataset, and 𝑘 = 10 is

a good starting point and allows for subsequent modifications should

the need arise. In general, we recommend selecting suitable values

for 𝑀 , 𝑆 ,and 𝑁 by qualitatively comparing the learning curves [52,

Section 18.3.3] and checking the DT fidelity between training and

test data for different hyperparameter values, but more quantitative

methods such as grid search [8] or Bayesian Optimization [57] could

be used as well. However, the number of samples 𝑀 is highly depen-

dant on the size and type of the available data; setting a sampling

rate too high increases the risk of over-fitting, setting the sampling

rate too low increases the risk of under-fitting and is likely to require

a higher number 𝑆 of iterations of the outer loop of Algorithm 1.

In turn, selecting the parameter 𝑘 (i.e., number of top-𝑘 branches)

depends first and foremost on the amount of information a domain

expert is willing to analyze when presented with TRUSTEE’s output.

Step 3 (Detecting underspecification issues): Identifying the

presence and/or nature of underspecification issues in a model cur-

rently requires manual inspection by a domain expert. The main

vehicle for performing this manual task is the DT explanation pro-

duced by TRUSTEE in conjunction with the information provided in

the corresponding trust report. Relying on basic trust report-provided

information can often point to potential biases, but it typically invites

further scrutiny at the level of individual decision rules (i.e., tree

branches) where, for example, certain deficiencies in the training



dataset (e.g., missing samples of real-world patterns or behavior)

can be identified.

Step 4 (Validating DT explanations): Validating a DT explana-

tion that forms the output of TRUSTEE typically requires tinkering

with the ML model itself, with the feature engineering as part of

the model’s design, or with the provided dataset. Unfortunately, a

general inability to easily collect new or different data severely limits

the validation efforts that require modified data. In such cases, we

found that tampering with the original data (e.g., removing certain

features or artificially modifying packet headers in a trace) can be a

viable option but has to be done with care to ensure that the tampered

dataset consists of realistic input samples that the ML model ought

to be able to handle.

7 RESULTS

In this section, we illustrate with different use cases how TRUSTEE

can be used in practice. Each use case concerns a recently published

black-box model that has been developed for a particular network

security-related problem and is accompanied by open-sourced arti-

facts (e.g., code base, dataset) that are required for reproducing the

reported findings and assessing whether the ML model is credible.

7.1 Summary

Table 2 summarizes the use cases we analyze. The first use case

(§7.2) illustrates how an apparently high-performant neural network

learns simple shortcuts to distinguish between two types of traf-

fic (VPN vs. Non-VPN). It highlights the importance of having

an in-depth understanding of the data used to train a model. The

second use case (§7.3) analyzes a black-box model (i.e., random for-

est) trained using the popular synthetic dataset CIC-IDS-2017 [54]

and shows that the developed model is vulnerable to o.o.d. sam-

ples. This use case cautions against an over-reliance on synthetic

datasets that often include measurement artifacts that commonly-

considered black-box models exploit to achieve high accuracy. The

third use case (§7.4) analyzes a recent approach that advocates using

bit-level feature representations of the input data instead of care-

fully engineered and semantically meaningful features [32]. This use

case warns against the indiscriminate use of the high-dimensional

feature spaces that result from such representations because they

allow black-box models to identify and exploit spurious correla-

tions between features to achieve high accuracy. The fourth use case

(§7.5) concerns the application of a complex ensemble of neural net-

works [44] to perform traffic anomaly detection (e.g., Mirai attack).

By showing that this model is also vulnerable to o.o.d. samples,

we corroborate previously-reported criticism of this model [4] and

support it with further evidence. The remaining use cases listed in

Table 2 are analyzed in a technical report [34]. All datasets, models,

and results for all seven use cases are available at [35].

7.2 Detecting VPN vs. non-VPN Traffic

Problem setup. We consider the paper [61], which presents an

AI/ML-based framework for encrypted traffic classification that

integrates feature design, feature extraction, and feature selection. It

uses one-dimensional convolutional neural networks (1D-CNN) to

automatically learn the relationships between raw packets and the

output labels. For classifying VPN vs. Non-VPN traffic, the authors

train a 1D-CNN learning model with the PCAPs of the ISCX VPN-

nonVPN dataset [20], treating the packets of each session as a 2D

image of size 28x28. As a result, the proposed model views the

input traffic samples as discrete byte streams of fixed length (i.e.,

784 bytes) and treats each byte as a “feature.” The paper [61] reports

outstanding performance (i.e., 100% (99.9%) precision and 99.9%

(100%) recall for Non-VPN (VPN) traffic). All AI/ML research

artifacts [61] and datasets [20] are available online, allowing full

reproducibility of the described models and reported findings.

Explanation. We first reproduced the black-box model (i.e., 1D-

CNN) and the results presented in [61, Table VI] for classifying

VPN vs. Non-VPN traffic. Next, we used TRUSTEE to extract a DT

from the black-box 1D-CNN model (Figure 2) and note that due

to the small tree sizes, there was no need for TRUSTEE to apply

the Top-𝑘 Pruning method. To assess how well the extracted DT

reproduces the black-box model, we used it to classify the test cases

from [61] and compared the results with the classification from

the black-box, measuring precision, recall, and F1. To our surprise,

this simple and small white-box model accurately reproduced all

black-box decisions, achieving a perfect F1-score.

FalseTrue B49 ≤ 17

VPNNon VPN Non VPN VPN

B47 ≤ 251B43 ≤ 1
33% 67%

66% 1%32%1%

Figure 2: Decision tree for 1D-CNN model. The percentage of

samples that follow each branch is presented above each node.

Line widths are proportional to the percentage of samples.

Correctly interpreting this extracted DT requires understanding

the structure of the input data. Because the DT makes a decision

based only on three bytes in the initial segment of each input sample

(i.e., bytes 𝐵49, 𝐵43, and 𝐵47), we analyzed samples of VPN and Non-

VPN test cases to uncover the “meaning” of those bytes. Figure 3

shows a schematic view of the first 80 bytes of actual input data used

in [61]. We notice that each input sample consists of an initial set of

bytes representing PCAP metadata, Ethernet header, and IP header.

Importantly, none of these initial bytes say anything about actual

VPN or Non-VPN traffic.
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Figure 3: First 80 bytes from the training dataset.

Upon further scrutiny of the public dataset [20], we noticed that

Non-VPN traffic samples always contain Ethernet headers while

roughly 90% of the VPN traffic samples do not (Figure 3). Thus,

if 𝐵𝑘 denotes the byte in position 𝑘, then for 𝑘 ≥ 40, there is a

misalignment in the features of the two types of traffic, resulting

in completely different semantics for the byte 𝑘. In Figure 2, we

see that the DT uses feature 𝐵49 as the splitting criterion at the root

node. Due to the feature misalignment, 𝐵49 is the IPv4 protocol field

in VPN samples or the fourth byte of the Ethernet source address

in Non-VPN samples. Because the VPN traffic in the dataset uses

either UDP (𝐵49 = 17) or TCP (𝐵49 = 6), the root node of the DT

splits almost all the samples by comparing the IP protocol field in

the VPN traffic with a random byte of the Ethernet addresses of



Table 2: Case Studies.

Analyzed in Problem Dataset(s) Model(s) Trustee Fidelity Type of inferred inductive bias

Section 7.2 Detect VPN traffic Public VPN dataset [20] 1-D CNN [61] 1.00 Shortcut learning
Section 7.3 Detect Heartbleed traffic CIC-IDS-2017 [54] RF Classifier [54] 0.99 Out-of-distribution samples
Section 7.4 Detect Malicious traffic (IDS) CIC-IDS-2017 [54], Campus dataset nPrintML [32] 0.99 Spurious correlations
Section 7.5 Anomaly Detection Mirai dataset [44] Kitsune [44] 0.99 Out-of-distribution samples

Tech Report [34] OS Fingerprinting CIC-IDS-2017 [54] nPrintML [32] 0.99 Potential out-of-distribution samples
Tech Report [34] IoT Device Fingerprinting UNSW-IoT [56] Iisy [63] 0.99 Likely shortcut learning
Tech Report [34] Adaptive Bit-rate HSDPA Norway [49] Pensieve [42] 0.99 Potential out-of-distribution samples

the machines used to generate the Non-VPN traffic trace, making

feature 𝐵49 a classical “shortcut” to classify the traffic. However, the

split is not perfect because, coincidentally, two machines used for

generating Non-VPN traces had the fourth byte of their Ethernet

source addresses less than or equal to 17 (54:9f:35:0d:e9:c2

and 2c:44:fd:02:16:ef).

The left branch of the DT classifies most samples as VPNs. How-

ever, to weed out a few remaining samples of Non-VPN traffic, the

DT uses feature 𝐵43. In this case, 𝐵43 corresponds to the Total Length

IP field in most VPN samples or the fourth byte of the Ethernet des-

tination address in Non-VPN samples. Once again, the black-box

model takes a shortcut to distinguish between the two classes. A

similar analysis applies to the right branch, which classifies most

samples as Non-VPN and uses 𝐵47 (Fragment Offset in Non-VPN

vs. second byte of Ethernet source address in VPN) to weed out the

few VPN samples.

Validation. Even though the DT extracted by TRUSTEE is a high-

fidelity proxy for the 1D-CNN black-box model, it is unreasonable

to expect that a simple 3-node structure encompasses the model’s en-

tire decision-making process. We verify this intuition by generating

a tampered validation dataset for the black-box model. In particular,

we changed bytes 43, 47, and 49 in the VPN samples to mimic

random Non-VPN samples. By following the logic of the decision

tree branches, the black-box model would mis-classify all VPN sam-

ples. The first two rows of Table 3 give the average precision, recall,

and F1-score for both classes (VPN vs. Non-VPN) for original and

tampered datasets. The results show that tampering with only these

three features out of 748 had no significant impact on the classifi-

cation accuracy of the black-box model. However, by performing

detective work similar to the one described above, we observed that

the black-box model succeeds in finding alternative “shortcuts” that

are as easy to identify and explain as the one we described earlier.

Table 3: Accuracy of black-box classifier.

Validation dataset Avg. Precision Avg. Recall Avg. F1

Untampered 0.959 0.956 0.955

Tampered-43-47-49 0.959 0.956 0.955

Tampered-32-to-63 0.889 0.861 0.856

Tampered-0-to-63 0.831 0.757 0.734

Tampered-0-to-127 0.753 0.555 0.398

To further demonstrate that the black-box model described in [61]

and claimed to be highly successful in learning to classify encrypted

VPN and Non-VPN traffic is not a credible predictor, we tampered

with entire ranges of bytes instead of individual bytes. As Table 3

shows, tampering with byte ranges of 32-64, 0-64, and 0-128 makes

it increasingly more difficult for the black-box model to identify

alternative shortcut predictors, and not surprisingly, the model’s

performance (i.e., accuracy) gets worse and quickly reaches the

point where, without being able to resort to shortcut learning (i.e.,

randomly altering the first 128 bytes, which is less than 18% of the

features), the model’s performance becomes comparable to that of

flipping a fair coin.

7.3 Detecting Heartbleed Traffic

Problem Setup. We consider the paper [54], which presents

the public dataset CIC-IDS-2017 with labeled attack traces and

lists publications that rely on this dataset to propose ML-based

intrusion detection systems. The dataset contains traces of benign

background traffic and 13 different attacks, such as Heartbleed,

DDoS, and PortScans. The dataset also includes 78 pre-computed

flow features, such as flow duration and mean Inter Arrival Time

(IAT). Several research efforts report excellent classification results

(e.g., average precision and recall above 99% for all classes) of

learning models trained on the pre-computed features of this

dataset [13, 19, 22, 54, 64].

Explanation. We again started by reproducing the reported clas-

sification results using the pre-computed features from the dataset

to train a multi-class Random Forest Classifier to identify the 13

attacks and benign traffic, with a 75%-25% train-test split of the

data. We could reproduce the excellent results reported by several

publications, but, in doing so, we noticed that the dataset in question

is highly imbalanced, having as few as 3 Heartbleed samples and

as many as 680,000 DDoS samples in the 25% test split. Hence,

we used a Random Over Sampler [36, 39] to produce a balanced

training dataset to re-train the Random Forest Classifier and then

used TRUSTEE to extract a DT explanation. Without applying our

Top-𝑘 pruning method, the high-fidelity DT extracted by TRUSTEE

from the classifier contained 899 nodes, making it largely impossible

to understand the decision-making process of the black-box model.

However, when running TRUSTEE with the Top-𝑘 Pruning method

and setting 𝑘 = 3, we obtain the small-sized and therefore inherently

manageable DT shown in Figure 4.
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Figure 4: Decision tree for Random Forest Classifier.

Despite the likely shortcut the model takes by using TCP ports

to classify SSH and FTP-Patator attacks, the root node of Figure 4

shows that the black-box model correctly classifies all samples of

Heartbleed attacks based only on the maximum packet size of the

victim server responses (i.e., “Bwd Packet Length Max”). In Heart-

bleed, an attacker sends a TLS heartbeat message with a value in

the size field that is bigger than the message. A vulnerable server re-

sponds with a message with a size equal to the value specified in the



size field and reviews information stored locally in its memory [21].

Prompted by this observation, we further inspect the DT to identify

other features that appear as the most dominant features after we

remove the “Bwd Packet Length Max” feature from the dataset. The

results showed that the total backward inter-arrival time (i.e., “Bwd

IAT Total”) also almost perfectly splits all Heartbleed samples. The

distributions displayed in the trust report for both features (Figure

5) reveal a very telling pattern. To understand this behavior, we in-

spected the PCAP files and noticed that the TCP connections of the

Heartbleed attacks were never closed between heartbeat messages,

resulting in high values for the features “Bwd IAT Total” and “Bwd

Packet Length Max”.
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Figure 5: Data distribution of feature “Bwd Packet Length Max”

(top) and “Bwd IAT Total” (bottom) comparing values in the

Heartbleed class to all Others.

Validation. Considering that the dataset contained just one ob-

vious pattern for the Heartbleed attack, it is not surprising that

classifiers trained on this dataset have high accuracy when tested

with i.i.d. samples. However, to demonstrate that a model is credible

and generalizes as expected in deployment scenarios, we need to

validate it with alternate but realistic test cases, i.e., o.o.d. samples.

We generated 1,000 new test cases of Heartbleed attacks using the

same tool described in [54], but we closed the connection after the

heartbeat request triggered a response with compromised data. This

change resulted in Heartbleed flows with much smaller backward

total IAT but with similar backward maximum packet length, as we

use the same packet sizes as for the original trace. We then evaluated

the Random Forest Classifier using the newly generated Heartbleed

flows as test data. Table 4 shows that with just a simple change in

the attack pattern, the classifier could not correctly classify a single

one of the 1,000 new Heartbleed attacks, resulting in an F1-score

of 0. This experiment demonstrates that the considered black-box

learning model overfits on the i.i.d. cases, is not a credible predictor

of realistic o.o.d. cases, and does not learn anything that reflects

what readily available domain knowledge tells us about Heartbleed

attacks.

Table 4: Black-box classifier’s accuracy.

Class Precision Recall F1

Heartbleed (i.i.d.) 1.000 1.000 1.000

Heartbleed (o.o.d.) 0.000 0.000 0.000

7.4 Inferring Malicious Traffic for IDS

Problem setup. We consider the paper [32], which proposes nPrint

and the stable bit-level representation of network packets for auto-

matically training learning models using AutoML [23]. The idea is

to use a sequence of ordered features with values -1, 0, or 1 where

each feature represents a bit of a set of pre-established protocol

headers. The value -1 represents bits that are not present in a packet,

while the values 1 and 0 are the actual values of present bits. The

paper shows excellent results for an AutoML IDS model (called

nPrintML) with 4,480 features trained using raw PCAP files from

the CIC-IDS-2017 dataset [54].

Explanation. We successfully reproduced the reported results

using the same configurations as those used in [32], obtaining a

model with a 0.999 F1-score. To investigate this high-performance

model, we used TRUSTEE (with 𝑘 = 4 for our Top-𝑘 Pruning method)

to extract a high-fidelity (0.999) DT and show the top-4 branches

in Figure 6. We can see that the top nodes rely on bits of the IP

TTL field of the packets to separate the Benign class from the others.

To understand the reason behind this observation, we inspect the

description of the setup used to generate the CIC-IDS-2017 dataset.

While all attacks were generated using hosts outside of the network

in which the dataset was collected, the benign traffic was from hosts

inside the network, creating a strong correlation between the packets’

TTL value and traffic type. Also, most attacks were generated by a

host running Kali Linux, which sets the initial value for TTL to 64

(i.e., 00100000). Similarly, the DDoS attack traffic was generated

using a host running Windows 8.1, which sets the initial TTL value

to 128 (i.e., 01000000). This setup where the traffic was generated

makes it easy for the model to separate all DDoS attacks using only

the second and third most significant bits of the TTL field.
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Figure 6: Decision tree for nPrintML IDS model.

We used the extracted DT to further investigate the model’s be-

havior. We iteratively removed (assigned -1 to) the bits of the TTL

field and other prominent features from the nPrint representation

and retrained the model on the same dataset until the single tcp_opt

field remained, representing bits of options of the TCP header. Given

only these bits, the black-box nPrintML model still separates the

attacks in the CIC-IDS-2017 dataset almost perfectly, reaching a

F1-score of 0.990. In these cases, the DT explanations produced by

TRUSTEE showed that the model still used single bits of packets to

divide the traffic perfectly. These experiments demonstrate that the

model succeeds in exploiting spurious correlations in the dataset,

finding shortcuts due to the vast feature space where each bit is a fea-

ture. This issue is also known as the “curse of dimensionality” [52]

and concerns cases where a model faces a high-dimensional feature

space (e.g., 4,480 features per sample in the case of nPrintML IDS)

and not a diverse and dense enough data distribution to avoid occur-

rences of spurious correlations, which in turn a model can exploit to

learn various shortcuts.



Validation. To examine the ability of the nPrintML IDS model

to generalize to other deployment environments, we deployed the

Suricata Intrusion Detection System [25] in the UCSB campus net-

work and mirrored all the traffic before the firewall to produce a

real-world dataset of network attacks. We captured about 12 hours

of user traffic and the associated Suricata IDS alerts (see technical

report [34] for details). We found 1,344 flows of DoS attempts. Also,

we randomly sampled 1,366 port scan flows (out of 9 million) and

1,337 flows that didn’t trigger any alert, which we labeled as benign

traffic. Finally, we used nPrint to create a test dataset from that traffic

to validate the trained model of [32]. Table 5 shows the classification

results of the model for the trace of our campus network.

Table 5: Accuracy for black-box model trained in [32] and tested

with traffic captured in our campus network.

Class Precision Recall F1

Benign 0.653 0.806 0.722

DoS 0.000 0.000 0.000

Port Scan 0.120 0.143 0.130

Average 0.256 0.315 0.282

We notice that the model classified most of the traffic as benign,

a few samples as port-scan attacks, and none as DoS attacks. While

we did not expect the model to generalize to real-world settings, we

were intrigued that it correctly classified some port scans. Inspecting

the decision presented in Figure 6, we can see that the ancestor

of the Port Scan node splits most port scan attacks by checking

𝑝𝑘𝑡_1_𝑖𝑝𝑣4_𝑜𝑝𝑡_9 ≤ −0.5. Since the nPrintML model builds its

feature vector using the first five packets of a flow (896 features

for each packet and 4,480 in total), when a flow has fewer than

five packets, it fills the remaining features with -1 values. Hence, to

identify port scan attacks, the nPrintML model simply recognizes the

absence of the second packet of the flow. To confirm this hypothesis,

we carefully investigated the dataset published by the authors of

nPrint [32] and noticed that most of the port scans in their dataset

have only 1 SYN packet from the attacker to the target (differently

from the original PCAPs in [54]). Thus the simple rule that the

second packet of a flow is missing would be enough to find all port

scans. However, in the case of our campus network traffic, most

port-scan attacks also contain a second packet, which prevented the

black-box model from classifying this type of traffic. This second

packet is a TCP RST packet that attackers send to prevent the target

from triggering the TCP SYN Cookie protection used to deal with

TCP SYN flooding attacks.

7.5 Anomaly Detection for Mirai Attacks

Problem setup. We analyzed the paper [44], where the authors

present Kitsune, an unsupervised ML classifier for anomaly detec-

tion. Kitsune comprises an ensemble of auto-encoders and neural

networks and solves a regression problem in practice. It receives a

set of 115 statistical features (e.g., mean and standard deviation),

calculated incrementally for a stream of packets for different levels

of aggregation (e.g., by source MAC and IP addresses). It outputs

the Root Mean Squared Error (RMSE) as an anomaly score by re-

constructing the input features from the ensemble output. Kitsune is

trained for some time under normal traffic conditions before moving

to an execution phase to detect anomalies. The larger the RMSE,

the bigger the anomaly detected by Kitsune. Hence, the authors

propose that operators use a threshold-based approach calculated on

the training data to detect an anomaly.

Kitsune relies on dampened incremental statistics over time win-

dows, where all features are calculated based on weights. The weight

feature corresponds to the current packet count multiplied by a de-

cay factor so that the weight of older features decreases over time,

akin to a sliding window. Kitsune uses a set with five different time

windows (100ms, 500ms, 1.5sec, 10sec, and 1min, represented by

a variable 𝜆 = 5, 3, 1, 0.1, 0.01, respectively) for which the same

23 features are calculated for each time window, resulting in 115

features. While the work described in [44] applies Kitsune to several

anomaly detection use cases, a recent study [4] pointed out potential

problems with one of these use cases (i.e., the Mirai attack) and

prompted us to use TRUSTEE to scrutinize Kitsune’s proposed ML

model for the Mirai attack.

Explanation. We first executed the Mirai attack-specific exper-

iments described in [44] and were able to reproduce the results

reported [44]. The Mirai trace that Kitsune uses for training and

evaluation consists of 120 minutes (≈760k packets) of a syntheti-

cally generated attack in a network with nine IoT devices, in which

the first 70 minutes (≈120k packets) consist of benign traffic and

the remaining 50 minutes (≈640k packets) have anomalous traffic.

Kitsune is trained on the first 50 minutes of the trace and evaluated

on the remainder of traffic. For benign traffic, the largest RMSE

computed by Kitsune was approximately 6.9, but for anomalous

traffic, this value went up to 14 RMSE. We generated a balanced

subset of 300k packets, split between benign and anomalous packets,

and used TRUSTEE to extract a high-fidelity (0.99) DT from Kitsune.

As Kitsune works as a regression problem, we measure fidelity for

this use case as the R-squared value between Kitsune’s predictions

and those obtained by the DT explanation. Using TRUSTEE with its

built-in Top-𝑘 Pruning method and setting 𝑘 = 3 results in the small

DT explanation that is shown in Figure 7 and achieves 0.94 fidelity

compared to Kitsune.
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Figure 7: Decision tree for Kitsune Mirai model.

The resulting DT explanation shows that the most prominent

features Kitsune uses to determine an anomaly are the weights, ag-

gregated by source MAC and IP addresses and associated with two

different time windows: 0.01 (1min) and 1 (1.5sec). That is, Kitsune

relies mainly on the volume of packets per time frame to determine

if an attack is underway. An infected device suffering from a Mi-

rai attack [27] exhibits three main traffic behaviors: (i) scanning

the network for other vulnerable IoT devices; (ii) communicating

with the Command and Control (C&C) server, and (iii) launching

a volumetric DDoS attack from the IoT devices to a target server

(usually outside of the infected network). However, the Mirai attack

in the synthetic trace used in Kitsune mixes two of these behaviors:

a volumetric scan of the infected IoT network with a flood of ARP

requests (about 6x times the amount of packets per second compared

to the benign traffic, as shown by top-left plot in Figure 8) and a

DDoS attack to the target server. This pronounced difference in vol-

ume between benign and attack traffic makes it easy for Kitsune to

detect anomalous behavior based on traffic volume alone and corrob-

orates the findings in [4] where a simple Boxplot method is shown



to achieve a performance very similar to that of the complex Kitsune.

However, as pointed out [4], this difference between malicious and

benign traffic for this portion of the Mirai attack is unlikely to be

this pronounced in traces collected from real-world networks.

Figure 8: Packets per second for original Mirai trace from Kit-

sune and tampered trace. Blue segments represent benign traffic

and red segments represent traffic with malicious activities (i.e.,

benign plus attack).

Validation. To validate the DT explanation that TRUSTEE gen-

erated, we tampered with the original Mirai trace used in [44]. We

modified the attack portion of the original trace by spacing out ARP

requests from the Mirai-infected devices so that the number of pack-

ets per second (pps) would not cross a random threshold from a given

range of specified limits. In particular, by considering the ranges (i)

from 10 to 50 pps; (ii) from 30 to 70 pps and (iii) from 50 to 90 pps,

we obtained three distinct tampered traces with different volumes of

attack traffic (Figure 8 shows the original and one tampered trace).

We changed neither the order in which the packets appeared nor

the timestamps of ARP responses to avoid interfering with estab-

lished RTTs. We ran Kitsune for each of these traces, using the same

amount of training samples. Figure 9 (left) shows the results for each

of the traces’ first 200k packets in the execution phase of Kitsune.

On the right side of Figure 9, we also compare the expected RMSE

(produced by Kitsune in the original trace) and the predicted RMSE

for each tampered trace. The diagonal line (in red) represents the

optimal outcome between expected and predicted RMSE. Hence,

the more dots are closer to the line, the less impact our tampering

had on the predicted outcome.

Figure 9: Kitsune execution-phase predicted RMSE results for

first 200k packets from original and tampered traces.

The results clearly show that the RMSE values produced by Kit-

sune depend highly on the volume of the attack traffic encountered,

diminishing as the volume decreases, all the way within the values

generated for the benign traffic. However, we did notice that our

tampering with the original traces made Kitsune produce outliers

of RMSE for otherwise benign traffic. While we cannot be sure of

the reason for these outliers, since all features calculated by Kitsune

depend on the weight for each time window, we believe that the

changes we made to the attack traffic affected the feature values

for the underlying benign traffic. This experiment demonstrates that

the Mirai use case from Kitsune is vulnerable to o.o.d. samples,

similar to the Heartbleed use case (Section 7.3). A simple but re-

alistic change to the Mirai attack pattern made it impossible for

Kitsune to accurately detect anomalous behavior. Finally, while our

observations point to problems with Kitsune’s ability to detect Mirai

attacks, they do not imply that Kitsune is unable or unfit to detect

other attacks and problems if it uses training data of representative

real-world scenarios.

8 ABLATION STUDY

In this section, we evaluate key design choices we made for

TRUSTEE and that we motivated in Section 4.2.

Data augmentation and optimizing for fidelity. We first assess

the impact of data augmentation (Line 11 in Algorithm 1) on the

size and fidelity of the DT explanations generated by TRUSTEE and

at the same time consider the impact of using accuracy (i.e., how

well the DT classifies the data) rather than fidelity (i.e., how well

the DT mimics black-box classifications) as the optimization goal

for TRUSTEE. To this end, for the first three use cases described

in Section 7, we use TRUSTEE to extract DT explanations for four

different settings (i.e., with and without data augmentation, using

either accuracy or fidelity), with all four settings using the same set

of hyperparameter values. The results are shown in Figure 10 where

the top plot depicts the (normalized) DT size and the bottom plot

shows fidelity. We observe that in cases of small-sized extracted

DTs (e.g., maximum tree size for VPN vs. NonVPN and nPrintML

IDS is 7 nodes and 47 nodes, respectively), data augmentation is not

necessary. However, for extracted DTs that are more complex (e.g.,

maximum tree size for Heartbleed is 1,491 nodes), the data augmen-

tation step results in a significant reduction in DT size (roughly 20%,

and especially for imbalanced datasets) and also improves the DT’s

fidelity (although only slightly, about 2-3%). In terms of optimiz-

ing for fidelity vs. accuracy, we observe no significant differences,

mainly because all the analyzed use cases have excellent accuracy

to start with. However, we expect that for models that have lower

accuracy, optimizing for fidelity may help end users identify reasons

for why the model accuracy is low.

Figure 10: Ablation study results for data augmentation and

optimization for fidelity/accuracy.

Pruning methods. We next evaluate and compare the trade-

offs between fidelity and complexity of the DT explanations that

TRUSTEE generates when using a tree pruning method other than our



proposed Top-𝑘 Pruning method (Line 14 in Algorithm 1). In particu-

lar, we consider the three pruning methods mentioned in Section 5.1:

Max Leaves (pre-pruning), Max Depth (pre-pruning) and CCP (post-

pruning). Figure 11 (top) depicts the results for the Heartbleed use

case and shows the number of branches (x-axis) and fidelity (y-axis)

that are achievable by each of these three methods as well as by our

Top-𝑘 Pruning method. We observe that except for the Max Depth

method, all other methods show similar performance, with the two

post-pruning methods (i.e., CCP and Top-𝑘 Pruning) outperform-

ing the competitive pre-pruning method Max Leaves, especially for

high-fidelity DTs (e.g., fidelity of 0.9 and above). In view of such

minimal differences in their overall performance, choosing between

CCP and Top-𝑘 Pruning boils down to practical considerations. In

particular, while the CCP method relies on an implicit parameter 𝛼 to

determine how much post-pruning is necessary, our Top-𝑘 Pruning

method gives end users direct control by means of the parameter 𝑘

that explicitly reflects the amount of effort an end user is willing or

capable to spend inspecting and analyzing TRUSTEE’s output.

Figure 11: Ablation study results: pruning methods for Heart-

bleed use case (top), and model stability for Heartbleed use case

with Top-10 Pruning (bottom)

Model stability. The last design choice we evaluate concerns the

inclusion of an outer loop as part of Algorithm 1 (Lines 4-16). Given

that TRUSTEE only analyzes a subset of the input data to generate

its output in the form of a DT explanation, it is fully expected

that running TRUSTEE under identical conditions (i.e., same set

of hyperparameter values) multiple times will result in different

DT explanations. However, for an end user to trust the output of

TRUSTEE, it should be the case that the different DT explanations are

stable in the sense that they make in general identical decisions when

presented with the same input samples. We quantify this stability

aspect of the output of TRUSTEE by using the notion of agreement

between DTs that measures how often the DTs will make the same

decision for the same input data. To examine this aspect of TRUSTEE,

we consider the Heartbleed use case and ran TRUSTEE (with 𝑆=1,

thus effectively disabling the outer loop; number of samples 𝑀 =

593, 123 (i.e., 30% of 𝐷0); 𝑁 = 50; and 𝑘 = 10) a total of 50 different

times. The results are presented in Figure 11 (bottom) and show an

overall high mean agreement and fidelity for each of the resulting 50

different DT explanations. However, in a few cases (e.g., iterations

16, 28, 31), the mean agreement of the obtained DT explanations

is as low as about 80%. This observation motivated us to include

the outer loop in Algorithm 1 that ensures that TRUSTEE outputs a

DT explanation that has been selected so as to avoid obviously “bad”

(i.e., low mean agreement) and possibly misleading DT explanations

for the given black-box model.

9 CONCLUSIONS AND DISCUSSIONS

In this paper, we present TRUSTEE, a new framework that enables

end users of ML-based solutions to gauge their trust in the black-box

models that underlie these solutions. To demonstrate how TRUSTEE

works in practice, we consider several use cases of published ML-

based solutions from the existing literature, examine whether end

users can trust them, and discuss our findings and lessons learned.

First, we emphasize that our TRUSTEE-based analyses of the

considered use cases rely critically on the work of researchers who

have made their ML-related artifacts publicly available. In recent

years, the scientific community and the network research community,

in particular, have argued strongly for more reproducibility [5, 47],

and we second this effort. However, for the time being, network

security researchers interested in using ML have to accept the lack

of open-source datasets and a general reluctance for widespread data

sharing due to privacy concerns as faits accomplis.

Second, given that the vast majority of published ML models

that have been developed for a range of different network security

problems are not fully reproducible, our reported findings based

on a handful of use cases that are fully reproducible are in no way

representative of the existing literature on applications of ML in the

field of network security. However, the problematic nature of our

findings for the few analyzed use cases should serve as a cautionary

tale as far as the popular use of standard ML pipelines in the field is

concerned. In this sense, our work contributes to existing efforts that

argue for looking at developments in this area with a critical eye (e.g.,

see [2, 4, 58] and references therein) and identifies specific pitfalls

that prevent end users from trusting proposed ML-based solutions

and deploying them in production networks.

Last but not least, we purposefully designed TRUSTEE to aid

end users’ efforts to check whether a given black-box model suffers

from the problem of underspecification and can therefore not be

trusted. While underspecification is a known and common problem

in modern ML pipelines [17], this paper takes a first step towards

detecting the presence and identifying the type of underspecification

in a given black-box model. However, in the context of TRUSTEE,

these detection and identification tasks are currently not automated

and depend critically on the help of domain experts who can use

TRUSTEE as-is to assert if a given black-box model makes decisions

in accordance with existing domain knowledge or is even capable

of teaching the domain experts new decision-making strategies. To

realize the goal of automating these tasks, much work remains. In

particular, we need to involve network operators and security experts

in carefully designed user studies for quantitatively assessing their

level of trust in a given black-box ML model that drives a proposed

ML-based solution for a specific network security problem.
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