
Leveraging Prefix Structure to Detect Volumetric DDoS Attack Signatures with
Programmable Switches

Chris Misa∗, Ramakrishnan Durairajan∗, Arpit Gupta†, Reza Rejaie∗, and Walter Willinger‡
∗University of Oregon †UCSB ‡NIKSUN, Inc.

Abstract—As increasingly complex and dynamic volumetric
DDoS attacks continue to wreak havoc on edge networks, two
recent developments promise to bolster DDoS defense at the
edge. First, programmable switches have emerged as promising
means for achieving scalable and cost-effective attack signature
detection. However, their practical application in edge net-
works remains a challenging open problem. Second, machine
learning (ML)-based solutions have demonstrated potential in
accurately detecting attack signatures based on per-flow traffic
features. Yet, their inability to effectively scale to the traffic vol-
umes and number of flows in actual production edge networks
has largely excluded them from practical considerations.

In this paper, we introduce ZAPDOS, a novel approach
to accurately, quickly, and scalably detect volumetric DDoS
attack signatures at the source prefix level. ZAPDOS is the
first to utilize a key characteristic of the observed structure
of measured attack and benign source prefixes (i.e., a pro-
nounced cluster-within-cluster property) and effectively apply
it in practice against modern attacks. ZAPDOS operates by
monitoring aggregate prefix-level features in switch hardware,
employing a learning model to identify prefixes suspected
of containing attack sources, and using several innovative
algorithmic methods to pinpoint attack sources efficiently. We
have built a hardware prototype of ZAPDOS and a packet-
level software simulator which achieve comparable accuracy
results. Since existing datasets are inadequate for training
and evaluating prefix-level models, we have developed a new
data-fusion methodology for training and evaluating ZAPDOS.
We use our prototype and simulator to show that ZAPDOS
can detect volumetric DDoS attack signatures with orders
of magnitude lower error rates than state-of-the-art under
comparable monitoring resource budgets and for a range of
different attack scenarios.

Index Terms—Network security and measurement, pro-
grammable switch hardware, DDoS defense

1. Introduction
Distributed Denial of Service (DDoS) attacks continue

to be one of the most pervasive threats to online services and
service providers alike. Of particular concern in the broader
class of DDoS are volumetric attacks that can render critical
services or entire networks unreachable through massive
floods of traffic (e.g., 3.5 Tbps [1]) using attack vectors

like DNS amplification/reflection [2]–[5] or botnets [6]–[8].
Such attacks can result in loss of customers and revenue for
the victims (e.g., financial institutions, universities, and local
governments) and waste valuable network resources due to
large volumes of unproductive traffic traversing the Internet.

The first critical step in defending against volumetric
DDoS is detecting attack signatures to separate attack from
benign traffic. For example, an attack signature could be
a list of source IP addresses observed in attack traffic
along with the particular attack vector(s) observed from
each source. Given increasingly massive traffic volumes,
systems that detect attack signatures must be highly resource
efficient and able to scale to high traffic rates as well as
large traffic complexities (e.g., number of distinct sources).
Furthermore, in addition to multiple attack vectors, modern
DDoS attacks leverage attack dynamics aimed at evading
simple signature detection methods (e.g., changing attack
vectors and/or sources over time in a single attack), implying
signature detection must be a dynamic and flexible process.

Recent efforts develop volumetric DDoS defenses for
large ISPs (e.g., AT&T) or CDNs (e.g., Cloudflare) but
fail to address signature detection requirements in a variety
of edge network scenarios (e.g., small- or medium-sized
enterprises) [9]. Such networks face tighter resource con-
straints (e.g., monitoring for attack signatures on only a few
border switches) and rely on upstream third-party mitiga-
tion (e.g., upstream cloud- or service-providers [10], [11],
IXPs [12], [13], or scrubbers [14], [15]) since their border
links may in fact be the DDoS target. On the one hand, ef-
forts that leverage programmable switch hardware [16]–[19]
can reduce the resource overheads by orders of magnitude,
but fail to produce actionable attack signatures (due to tight
binding of signature detection and mitigation actions) and
only implement simple heuristic- or threshold-based detec-
tion with limited accuracy [20]–[23]. On the other hand,
efforts to leverage machine learning (ML) techniques can
achieve high accuracy but rely on large vectors of features
computed for every traffic source or flow (attack as well as
benign), leading to infeasible resource overheads [24]–[27].

Rather than settling for limited accuracy or excessive
resource overheads, we propose to leverage a key yet under-
exploited insight in this work: observed IP addresses in
network traffic exhibit a pronounced cluster-within-cluster
behavior when viewed as hierarchical prefix trees, irrespec-
tive of whether the traffic is benign [28], [29] or associated

with attacks [30]. Whereas other recent volumetric DDoS
signature detection efforts tacitly assume a uniform distribu-
tion of attack and benign sources by applying sketch-based
approximation or classifying every possible source, we posit
instead that attack signatures should be constructed at prefix-
level to reflect and exploit inherent clustering of addresses.
In particular, prefix-level signatures are able to achieve the
same accuracy as source-level signatures while requiring
a fraction of the monitoring resources. As a result, when
working at prefix-level, larger feature vectors and more
complex ML-based modeling techniques can be applied over
fewer observations, thus reducing overheads.

Building on this insight, we combine efficient switch-
hardware-based feature gathering with accurate CPU-based
ML modeling in a novel prefix-level volumetric DDoS
attack signature detection approach called ZAPDOS.1 In
particular, ZAPDOS addresses the following challenges.
• Prefix aggregates inherently contain a distinctive blend of

attack and benign traffic features, which is not captured in
existing datasets and modeling approaches. We develop
a novel data-fusion method to generate a large number
of attack scenarios with realistic packet-level and prefix-
level distributions. We train classification models on these
scenarios using a prefix-length weighting method to tune
the model for improved performance (§ 4).

• Although switch hardware can only monitor a fixed num-
ber of traffic entities (due to limited TCAM and SRAM
entries), optimal prefix-level attack signatures require a
variable number of prefixes at variable lengths. ZAPDOS
develops a novel scheduling-based iterative refinement
algorithm that works in a windowed fashion, monitoring
a fixed number of prefixes in each time window, and
dynamically deciding the length of each prefix included in
the attack signature to avoid reporting prefixes containing
benign traffic (§ 5).

• Iterative refinement approaches must be robust against
changes in attack sources and vectors aimed at foiling
signature detection. ZAPDOS includes novel look-ahead
and look-back algorithmic components that respectively
increase the refinement speed and update the refinement
focus when attack traffic changes (§ 6).
We implement a prototype of ZAPDOS for Tofino-based

switches [18], which includes several solutions to reduce
latency overheads (§ 7). Using an independent test set of at-
tack scenarios generated with our data-fusion methodology,
we demonstrate our prototype can quickly generate accurate
attack signatures (e.g., detecting 99% of attack traffic in
less than 25 s). We also develop a packet-level simulator of
ZAPDOS for evaluating against a wider range of complex
and dynamic volumetric DDoS attacks. Using this simulator,
we show that ZAPDOS can accurately detect such complex
and dynamic attack traffic at scale. Specifically, compared
to state-of-the-art DDoS defenses such as Jaqen [20] or
Euclid [21], ZAPDOS achieves two to six orders of mag-
nitude better accuracy when attack sources are realistically
clustered in the IPv4 space (§ 8).

1. ZAPDOS stands for Zooming-in At Prefix-level DdOs Signatures.

To encourage further research in this area, we open-
source our packet-level simulator, examples of generated
attack traffic traces, and implementation of our data-fusion
method at https://onrg.gitlab.io/projects/zapdos/.

2. Background & Motivation
2.1. Setting

Edge networks such as enterprises, campuses, regional
ISPs, and other medium-to-small-sized ISPs (e.g., as shown
in Figure 1) suffer from volumetric DDoS attacks in three
distinct phases.

attack
benign

Protected
Server

Reflectors Bots

Upstream
ISPBorder

Switch

Border
Bottleneck

Access
Bottleneck

ZA
PD

O
S

Mitigation
as a Service

Attack
Signature
Detection

Traffic
Features

Attack Signatures

Internet
Edge Network

Collaborative, Signature-based Defense

Attacker

Figure 1: Example edge network showing two possible bot-
tleneck links that could be flooded by a volumetric DDoS.

Pre-attack phase. Based on risk assessment (e.g., planning
for a mission-critical event) edge networks typically make
preparations for dealing with DDoS attacks such as de-
ploying traffic monitoring systems, securing backup lines of
communication, and procuring options to deploy upstream
DDoS mitigation (e.g., block lists in upstream ISP).
Active-attack phase. During a volumetric DDoS attack,
an adversary sends a large volume of attack traffic which
immobilizes the edge network by flooding a bottleneck link
as shown in Figure 1. The edge network must quickly
generate a signature that identifies attack traffic and coor-
dinate the deployment of mitigation with upstream services
to reduce the volume of attack traffic and maintain network
connectivity.
Post-attack phase. After the attack event, edge networks
must analyze the event, including careful inspection of the
attack signature, in order to prepare for future attacks and to
understand any other malicious actions for which the attack
may have provided cover (e.g., infiltration, data exfiltration).

ZAPDOS primarily focuses on quickly and efficiently
detecting volumetric DDoS attack signatures during the
active-attack phase, though it relies on traffic monitoring
deployed in the pre-attack phase, and the signatures it gen-
erates may also be useful in the post-attack phase.

2.2. Requirements

The process of quickly generating a signature that can
effectively support mitigation of volumetric DDoS attacks
on edge networks implies the following three requirements.

2

https://onrg.gitlab.io/projects/zapdos/

R1: Accurate attack signatures. Attack signatures must
accurately separate volumetric DDoS attack traffic from
normal benign traffic. They must be expressed in a form
intelligible to network administrators and to upstream miti-
gation services (e.g., specifying attack sources, L3/L4 pro-
tocol of attack packets, etc.). In existing proposed switch
hardware DDoS defense systems [20], [21] it is hard if not
impossible for network administrators to gain visibility into
which subsets of traffic are affected by deployed mitigation.
R2: Scalable resource efficiency. Given limited traffic
processing resources in edge networks, volumetric DDoS
signature detection must remain highly resource efficient as
traffic volume and number of attack sources increase. Ex-
isting proposals which leverage programmable switch hard-
ware [20], [31] demonstrate orders of magnitude reduction
of overheads w.r.t. traffic volume, but can only implement
heuristic and approximate detection with limited accuracy.
Higher accuracy ML-based proposals [24]–[26] require in-
feasible traffic monitoring overheads to collect fine-grained
features for large numbers of flows. Edge networks must
carefully allocate limited resources (e.g., TCAM, SRAM)
for signature detection without compromising on signature
accuracy or flexibility.
R3: Robust against multiple vectors and dynamic at-
tacks. In addition to a large list of well-established vectors
for generating volumetric DDoS attack traffic (e.g., reflec-
tion [32]–[35] or botnets [7], [8], [36]), modern adversaries
also combine multiple vectors and dynamically change at-
tack traffic during attack episodes. As a result, signature
detection must be able to capture a wide variety of potential
attack vectors and to quickly update detected signatures as
the underlying attack traffic changes.

2.3. Related Work
As shown in Table 1, a number of recent research efforts

have addressed some of these requirements using sketch-
based switch hardware, flow-level ML models, or prefix-
level refinement algorithms, but none have succeeded in
simultaneously satisfying all requirements.

Key leverage Defense R1 R2 R3
(Accurate) (Scalable) (Robust)

Sketch, switch
hardware

Jaqen [20] ✓ partial
Euclid [21] ✓

Flow-based ML LUCID [24] ✓
Pfx. refinement RADAR [37] ✓
All of above ZAPDOS ✓ ✓ ✓

TABLE 1: Overview of how existing defenses compare
against the requirements set out in § 2.1.

Programmable switch hardware for resource efficiency.
Recent studies [20], [21], [23], [38]–[40] implement com-
bined attack signature detection and mitigation policies di-
rectly in switch hardware by using probabilistic data struc-
tures known as sketches [41], [42] (thus satisfying R2).
Some of these efforts (e.g., Jaqen [20] and Poseidon [38])
also partially satisfy R3 by developing libraries for detecting
a range of modern attack vectors. Other efforts rely on
behavioral assumptions that are easier for modern attacks

to circumvent (e.g., Euclid [21] assumes that attacks can
be identified by their contribution towards the entropy of
observed addresses).

However, a key limitation of sketch-based efforts is
that they cannot report detailed attack signatures because
they do not keep track of flow keys, i.e., they fail to
satisfy R1. Even if one could extract the attack signature
from a sketch-based method (e.g., using “reversible” sketch
techniques [43]–[45]), the types of metrics and decisions
that can be made using sketch-based methods, as well as
the hard accuracy cliff imposed by the fixed number of
sketch counters limit the practical effectiveness of these
approaches. For example, on the realistic attack scenarios
considered in § 8, the approximate methods in Jaqen and
Euclid incur relatively high and unpredictable false-positive
rates (up to ∼50%). Moreover, these proposals suffer sharp
increases in FNR once the fixed resources allocated to the
sketch are exhausted (e.g., for a fixed-size LRU filter in
Jaqen the FNR can go from less than 0.3% to more than
30% as the attack sources increases from 5k to 50K).
Machine-learning models for signature accuracy. Other
recent efforts (e.g., LUCID [24]) leverage machine learning
(ML) techniques by casting detection of DDoS traffic as a
classification problem [24], [46]–[50]. By using large vec-
tors of traffic features computed for each potential attacker
(e.g., for each source address, for each flow), these efforts
are able to produce highly accurate attack signatures thereby
satisfying R1. However, such methods are currently not
feasible to deploy in edge networks because of the excessive
overheads of computing and communicating detailed fea-
tures for large numbers of flows. For example the MAWILab
traces used in § 8 contain millions of benign sources which
would have to be classified.

Several recent efforts [25], [27], [51], [52] develop ap-
proaches to implementing trained flow-level models directly
in switch hardware data planes which could be used to
run ML signature detection at line rate. However, these
approaches also face critical challenges to compute stateful
features for large numbers (e.g., millions) of flows in the
already-confined switch hardware resources. For example,
computing the features used in ZAPDOS for 1 M flows
would require ∼80 MB of register memory which quickly
surpasses the O(10 MB) of SRAM available in current
programmable switch ASICs.2

Prefix-level refinement. To address R2 and reduce the
resources required for DDoS signature detection, a body
of prior work considers prefix-level traffic monitoring
(e.g., [22], [37], [53]–[55]), but does not address the chal-
lenges imposed by modern attack methods. On the one
hand, studies such as [37], [54], [55] identify the potential
of prefix-level signatures to improve scalability, but their
proposed algorithms are not robust against modern multi-
vector and dynamic attacks (R3). On the other hand, recent
efforts like ACC-Turbo [22] propose using switch hardware
to accelerate refining prefixes, but the resource overheads

2. Note also that it is nontrivial to simply plug more SRAM into the
switch pipeline due to power considerations.

3

they entail to handle large numbers of attack sources and
attack vectors precludes their use in practice (e.g., ALUs
proportional to the number of prefixes). At the same time,
these prior works only consider simple count-based features
and struggle to compete with the accuracy of trained models.
More generic and not DDoS-specific techniques for prefix-
level iterative refinement are considered in studies such
as [56]–[61], and we discuss their relevance and limitations
for our work in § 5.

We note that several recent proposals use programmable
switch hardware [23], [62], [63] to develop approaches
to mitigating distributed link-flooding attacks [64], [65].
However, since these attacks target links in the network core
rather than at the network edge and because the proposed
methods require the participation of distributed switches
across the network, these proposals address problems that
are orthogonal to those considered by ZAPDOS.

2.4. Untapped Potential of Prefix-Level Signatures
Both sketch-based [20], [21], [38] and ML-based [24],

[46], [47] approaches to detecting DDoS attack signatures
are inherently limited by the tacit assumption that observed
network source addresses are distributed uniformly at ran-
dom across the IP space. For example, the use of pseudo-
uniform hash functions in sketch-based approaches implies
that approximation errors are uniformly distributed over the
address space; that is, allocating more hardware resources
has a uniform impact on all addresses. Similarly, collecting
features and evaluating the same trained model across all
addresses (or flows) in ML-based approaches also implies
that the impact of monitoring resources on detected signa-
ture accuracy is the same for all addresses or flows.

For attackers, on the other hand, the costs of launching
attacks from different parts of the address space are strongly
non-uniform. Consider attackers who do not spoof their
source addresses (e.g., by using reflectors or directly flood-
ing from bots). Prior work establishes that misconfigured
hosts (which can serve as reflectors or bots) tend to cluster
in prefixes associated with a few specific ASes [32], [33],
[35], [66], [67] implying that attackers face higher costs to
generate non-spoofed attacks from outside these prefixes due
to the lower density of vulnerable hosts (see Appendix A
for further justification). To quantify the impact of how
non-uniform costs lead to clustering of malicious addresses,
we determine the minimum number of prefixes required to
exactly separate attack sources from the Mirai botnet [68]
and benign sources from the MAWILab dataset [69]. We
compute the ratio between this minimum number of prefixes
and the total number of sources (attack and benign) for
independent samples of up to 50k attack sources. Figure 2a
shows that for the considered range of attack sources (x-
axis), the minimum number of prefixes required is less than
5% of the total number of sources.3

Alternatively, consider attackers who spoof their source
addresses. The most commonly considered approach to
spoofing is to select attack sources uniformly at random

3. See § 4.1 for details of the method used to generate these scenarios.

0.1

1.0

10.0

500 1K 2K 5K 10K20K50K
attack srcs

#p
fx

s
/ #

sr
cs

(%

)

(a) Mirai sources

0.1

1.0

10.0

500 1K 2K 5K 10K20K50K
attack srcs

#p
fx

s
/ #

sr
cs

(%

)

(b) Uniform random sources

Figure 2: Using prefix-level signatures can potentially satisfy
both R1 and R2 because the # of prefixes required for exact
separation of attack and benign sources is relatively low.

from the set of all possible IP addresses [20]. However,
Figure 2b shows that even under uniform spoofing, an
optimal prefix-level signature still only requires monitoring
a number of prefixes that is less than 5% of the number
of sources to achieve perfect separation. Note that this is a
result of the inherent clustering of benign addresses which
can be formally described by a class of mathematical models
known as multifractal measures [28]–[30]. Thus, to execute
effective spoofed attacks against a suitably-designed prefix-
level defense, attackers must invest additional cost to infer
source addresses closer to benign traffic. However, since
the cost for attackers to execute such inferences is largely
unknown, in this work, we develop a practical method of
generating attack sources which are closer to or farther from
a given sample of benign traffic. We refer to this method as
the cost-based method and formally introduce it in § 4.1.

Thus, the main focus of our work is on fully unlock-
ing the untapped potential of prefix-level volumetric DDoS
signature detection by integrating sketch and ML methods
with key methodological and algorithmic contributions. In
particular, by using ML techniques instead of simple count-
based thresholds, we improve the accuracy of prefix-level
detection (R1) and by developing novel algorithmic com-
ponents, we improve the refinement process against modern
dynamic attack scenarios (R3), all the while ensuring high
resource efficiency (R2).

3. Design and Overview of ZAPDOS
In this section, we first describe our threat model and

then provide a brief overview of ZAPDOS, highlighting its
key contributions and challenges.

3.1. Threat Model
Attacker’s metrics of success. We assume a rational at-
tacker whose goal during the active-attack phase is to inflict
maximum damage (i.e., loss) on the targeted network’s
benign traffic while minimizing the cost of launching the
attack.

If the victim network has no defense, damage is mea-
sured in how much benign traffic is lost due to attack-
induced congestion. Based on recent studies [33], [70], we
assume the attacker uses one of several reflection attack vec-
tors (e.g., DNS, NTP, SSDP) and/or botnets sending flooding
attacks (e.g., SYN, ICMP, UDP). To launch these attacks the
main cost for the attacker lies in acquiring sufficient attack
sources (e.g., bots) to maximize attack volume.

4

If the victim network deploys signature-based defenses,
the notion of damage as well as cost of attack is more
complex. First, effective signature-based defenses increase
the cost for the attacker since extra effort is required to evade
detection. In particular, the attacker can combine several
different attack vectors and change attack vectors and attack
sources dynamically.4 Second, signature-based defenses also
introduce an additional type of damage in that the reported
signatures may falsely include benign sources. The attacker
can potentially leverage this by intelligently selecting at-
tack sources to confuse or mislead signature detection. We
assume the adversary uses one of three methods to select
attack sources: (i) based on the actual IP address of the re-
flector5 or bot; (ii) based on a fixed uniform random sample
of the source address space; or (iii) based on proximity to
benign traffic through the cost-based method. In the later
case, we assume the adversary cannot guess exactly which
sources will appear in benign traffic, but can pay a higher
cost (in terms of effort during the pre-attack phase) to infer
attack sources that have longer prefix overlap with benign
sources.
Victim’s metrics of success. The goal of the victim is to
prevent as much attack-induced damage as possible, from
either flooding loss or false-positive signatures. We assume
the victim is able to detect when a volumetric DDoS attack
occurs but does not have any additional information about
the attack (i.e., the victim has no prior knowledge of the
attack vector or the attack sources). Anecdotal evidence
suggests that for small to medium scale edge networks,
volumetric DDoS attacks often cause spikes in packet and
bit rates which can be detected using simple counters
(e.g., on the border switch in Figure 1). A variety of other
volumetric DDoS occurrence metrics have been proposed
and implemented on switch hardware [21], [31] and could
be integrated with ZAPDOS . Finally, we assume the victim
has the ability to deploy traffic monitoring for signature
detection and the ability to mitigate detected attack traffic
(e.g., rate-limit, re-route through a scrubbing service).

Note that the assumptions made in our threat model
about the type of attacks and methods for detecting attack
occurrences are consistent with others (e.g., [20]–[22]).

3.2. Overview of ZAPDOS
As shown in Figure 3, ZAPDOS is a closed-loop hybrid

hardware-software approach to detecting prefix-level volu-
metric DDoS attack signatures. Operating during the active-
attack phase, ZAPDOS uses a fixed set of prefix monitor-
ing slots implemented in programmable switch hardware,
control software, and a set of operator-defined mitigation
policies. ZAPDOS uses the prefix monitoring slots to collect
features for a fixed number of prefixes at a time, reacts to the

4. Due to the overheads of precise clock synchronization (e.g., access to
GPS receivers) we assume a lower bound on how fast the adversary can
coordinate these changes across their bots (e.g., can only change attack
parameters once every second).

5. Note that, although reflection attacks do require bots to spoof source
addresses, the adversary is unable to spoof the addresses of reflectors which
are observed at the victim network.

results by updating which prefixes to monitor, and reports
attack prefixes as soon as they are known to be separate
from benign prefixes with sufficient confidence.

Upstream ISP

Border Switch

Prefix
Monitoring

Slots

C�: §�

C�: §�

C�: §�
Per-Prefix
Risk Model

Iterative Prefix
Refinement

Per-prefix
Features

Per-prefix
Susp. score

Training

Prefix
Queries

Detected
Attack

Source IP
Prefixes

Held-out
Prefixes

Edge Network

H

Benign-Proximity

R

F
f�

f�

fn

B

Data-fusion

Mitigation

attack
benign

Look-
ahead

Look-
back

Figure 3: Overview of ZAPDOS.

The key contributions which enable ZAPDOS to satisfy
R1-R3 are concrete and novel solutions to the following
challenges.
C1: How to determine if aggregate prefix-level traffic
contains an attack source? The per-source or per-flow
feature vectors used in prior ML-based approaches [24],
[25] supply detailed signals directly correlated to the traffic
entities to be classified. The per-prefix feature vectors con-
sidered in ZAPDOS, on the other hand, may contain signals
from a variety of attack and benign sources and ZAPDOS’s
model must be able to “see through” these ambiguous
prefixes in order to effectively refine and detect an accurate
attack signature.

ZAPDOS trains a classification model over prefix-level
features from a large number of scenarios with realistic
packet-level attack traffic as well as attack and benign source
address distributions, as described in § 4. In order to increase
the model’s ability to detect the presence of attack traffic in
ambiguous prefixes, we develop a prefix length weighting
method to explicitly bias the model’s FNR vs. FPR tradeoff
at different prefix lengths.
C2: How to use fixed switch resources to monitor a
variable number of variable-length prefixes? The simplest
iterative refinement approach simply zooms in or expands
any prefixes that appear to contain any amount of volumetric
DDoS attack traffic; however, this approach quickly leads to
a large and infeasible number of prefixes to monitor. Since
the total number and length of prefixes involved in an attack
signature is unknown in the pre-attack phase, prior work
which partitions the address space into a fixed number of
prefixes (e.g., DREAM [58]) is also insufficient.

ZAPDOS features a novel algorithm in § 5 to carefully
decide which prefixes are worth monitoring and when partic-
ular prefixes can be reported as sourcing attack-only traffic
with high confidence. The core idea of this algorithm is to
partition prefixes as they are zoomed in on between a fixed-
sized set of high priority prefixes to assign to monitoring
slots and a variable-size set of less suspicious “held-out”
prefixes. A recent snapshot of the structure of benign sources
from the pre-attack phase is used to determine when a

5

suspicious prefix has been zoomed in on enough to minimize
false positives.
C3: How to ensure the refinement process remains
robust when the adversary changes attack sources and
vectors? A key limitation of iterative refinement approaches,
including the base-line approach describe above, is that
they assume the attack signature does not change rapidly.
Modern DDoS attacks, on the other hand, may rapidly (e.g.,
every 30 s) change attack sources in order to confound such
approaches.

We introduce two key algorithmic components in § 6
which allow the refinement process to quickly adapt to
changes in the underlying attack traffic. First, ZAPDOS
implements a “look-ahead” method to detect which child
prefixes are active before allocating precious monitoring
resources in the next epoch. Second, ZAPDOS implements a
“look-back” method that keeps a low-overhead approximate
record of which non-monitored prefixes were active to guide
resource allocation in the next epoch when the attack sources
change.

4. Per-Prefix Risk Model
At the heart of ZAPDOS lies a per-prefix risk model

trained to report when a monitored prefix contains one or
more volumetric DDoS attack sources.
Why use machine learning (ML)? To understand why we
use an ML-based per-prefix risk model, consider a simpler
method that decides if a prefix is suspicious based on
applying a threshold to a single metric such as the difference
between DNS requests and DNS responses as proposed at
source-level in [20]. A key challenge with using a threshold
in prefix-level detection is that the baseline volume of traffic
changes drastically with prefix length and differently in
different prefixes (i.e., due to clustering [28]–[30]). A non-
linear model trained on features from a diverse range of
prefixes at different lengths as used in ZAPDOS, on the other
hand, can capture the complex correlation between prefix
length, traffic volume and other more descriptive features
(e.g., inter-packet gap statistics).
The challenge of appropriate data. As with other ML-
based methods, the success of ZAPDOS’s model depends
first and foremost on the availability of a large and rep-
resentative dataset of observed feature vectors and labels
from both classes. However, limited availability of appropri-
ate data is a persistent and well-established problem when
applying ML classification techniques to network security
tasks [71], [72]. In developing ZAPDOS, this problem is
particularly pronounced because the model must be trained
over observations that capture the realistic blending of attack
and benign features under prefix aggregation. Datasets and
methodologies used in prior efforts are insufficient because
they either contain no benign traffic [21], [35], [73], lack
high-confidence labels [70], [74], or do not provide realistic
address-space distributions [20], [75]. To illustrate, consider
for example the CIC datasets [75] used to both train and
evaluate several proposed approaches to classifying volu-
metric DDoS attack flows [24], [46]. When viewed at the
five-tuple flow level, these datasets are quite large, contain-

ing millions of flows. However, as shown in Table 2, when
viewed at the source address or source address prefix level,
their size quickly collapses to an extremely small number
of distinct observations. The largest (ISCX’12) contains 14
attack sources distributed in 6 /16 prefixes.

Dataset # Benign # Attack
/16 /24 /32 /16 /24 /32

CAIDA’07 [73] 0 0 0 4 k 8.7 k 9 k
ISCX’12 [76] 1590 2041 2129 6 9 14
CIC’17 [75] 922 2125 3432 1 1 1
CSECIC’18 [77] 1 6 446 4 10 10
Ours6 30 k 3.2 m 4.8 m 7 k 45 k 50 k

TABLE 2: Number of distinct attack and benign prefixes in
datasets used for training and testing in LUCID [24].

4.1. Data-fusion for Realistic Prefix-level Features
Given the insufficiency of existing datasets, we develop

a novel data-fusion approach to training and evaluating
ZAPDOS. As shown in Figure 4, our method involves
several real-life and synthetic data sources which provide
realistic attack address distributions as well as packet-level
data. This method allows us to generate multiple, indepen-
dent attack scenarios, each with realistic, disjoint sets of
attack and benign sources and hence representative blending
of features under prefix aggregation. In particular, we take
extra caution to ensure proper separation of prefix-level
features between training and testing sets to avoid model
overfitting. Overall we generate 84 distinct attacks with
varying numbers of sources and attack vectors, 42 training
scenarios and 42 test scenarios, using the following steps.

Attack Src. Sets
Mirai Botnet
Booters
Cost-based

Attack Pkt Sets
Refl./Amp.
Flood

Benign Traffic (pcap)
MAWILab ����
(~��� days)

Merge (pcap)

Gen. Features + Labels (csv)
Attack Traffic (pcap)

Model Training

Packet-level Testing

Train
split

Test
split

Train, Test

Train, Test

Train, Test

Data-fusion Modeling

St
ep

 �
St

ep
 �

St
ep

 �

Figure 4: Diagram of dataset preparation and modeling
methodology used in ZAPDOS.

Step 1: Generate attack source sets. We use three methods
of obtaining realistic sets of attack source addresses: Mirai
botnet [68] (∼18 M distinct sources), Booters dataset [35]
(∼18 K distinct sources), and a synthetic cost-based method.
For our training data, we extract disjoint sets with varying
numbers of sources from the Mirai data set (for simplicity
we use sets of 500, 1k, 2k, 5k, 10k, 20k, and 50k sources).
Booters sources are used in our evaluation to demonstrate
how ZAPDOS can generalize to entirely unseen source
distributions.

6. In particular, counts from one training attack scenario with 50k attack
sources sampled from the Mirai dataset [68] and benign traffic from
MAWILab [69] constructed using method described in § 4.1.

6

We also develop a cost-based method to understand how
ZAPDOS reacts when the adversary invests effort to infer
benign prefixes during the pre-attack phase and spoofs attack
sources to come from these prefixes. In particular, we define
cost for the attacker in terms of how many prefix bits ℓ
attack sources share with benign sources. Then, given a set
of benign sources, to generate attack sources for a particular
cost ℓ, we identify the set of /ℓ prefixes that share a /(ℓ−
1) prefix with a benign source, then select attack sources
uniformly at random in these identified prefixes. In this way
the clustering of attack sources is closer to (farther from)
benign sources for larger (smaller) values of ℓ.
Step 2: Generate attack traffic. Next, we generate packet-
level attack traffic for each enumerated attack source based
on attack vectors. Table 3 shows the six different attack vec-
tors as well as packet-level sources or parameters considered
in this work. We fix the target bit rate of the aggregate attack
traffic (e.g., 1 Gbps) and the number of attack sources to
compute the per-source bit rate which determines the arrival
time of attack packets. Here, an attack A1 with the same
target bit rate as A2, but with more attack sources, will have
lower per-source bit rates (and vice versa). To mimic a real
attack [35], each source generates packets at a constant bit
rate with a uniform ±1% variance around the target per-
source rate.

Type Attack Vector Packet Source/Type

Refl./Amp.
DNS “Booter1” [35]
NTP CIC DDoS “day two” [78]
SSDP Sucuri analysis [79]

Flood
SYN TCP with SYN flag set
ICMP ICMP Echo request
UDP UDP random payload

TABLE 3: Attack vectors generated for evaluation of
ZAPDOS and the sources or types of attack packets used.

Step 3: Merge attack and benign traffic. Finally, we
interleave the packets of each generated attack with benign
traffic from the 2019 MAWILab dataset [69] (preserving the
relative packet arrival times of both traces). The MAWILab
dataset provides packet-level data for a large number of
benign traffic excerpts allowing us to assign a unique excerpt
to each generated attack scenario. Although using a single
supplier of benign traffic does not allow us to reason about
a trained model’s ability to generalize to other network
settings, our data-fusion methodology can be replicated
with any other source of benign traffic in order to produce
datasets and models tailored for particular networks.

4.2. Modeling Setup
Feature selection. To train the classification model used in
ZAPDOS, we compute the features described in Table 4 for
each prefix in each of the training attack scenarios. At a high
level, we carefully selected features that on the one hand in-
tuitively capture differences in traffic patterns between attack
and benign behaviours and on the other can be computed
in switch hardware at line rate. Though similar features
have been used for flow-level attack classification [24], [50],
[80], [81], we reiterate that in ZAPDOS, all features are
aggregate over all traffic from the prefix being classified. As

a result, we only require maintaining feature state during
each epoch for a small, limited number of prefixes using
queries described in § 5 instead of over all flows as in prior
efforts.

Feature Description
Prefix length Number of leading bits defining prefix.

D
ir

ec
tio

na
l Bytes from Number of bytes from this prefix.

Bytes to Number of bytes to this prefix.
Packets from Number of packets from this prefix.
Packets to Number of packets to this prefix.

St
at

is
tic

al

min/max/ave. len. Minimum, maximum, and moving average of
length of packets from or to this prefix.

min/max/ave. IPG Minimum, maximum, and moving average of
time between consecutive packets from or to this
prefix.

Last active Number of epochs since any packets were last
observed from or to this prefix.

G
en

er
ic rrDiff Maximum (responses - requests) over a number

of known amplification protocols (e.g., DNS,
NTP, etc.), see Appendix B.

TABLE 4: List of features computed each epoch for each
monitored prefix for use in ZAPDOS’s model.

Model selection. We use a random forest (RF) model [82],
[83] with 500 trees and other defaults as set in [84] to predict
if a prefix sources attack traffic based on the observed
features. We chose to use RF due to its observed high
accuracy and fast training and classification times compared
to more complex methods like neural networks.
Weighted training. Initial experiments suggested that the
per-prefix false-negative and false-positive rates of our
model do not directly correspond to the error rates of
ZAPDOS’s end-to-end iterative refinement approach. In par-
ticular, we found that false-negative decisions made at
shorter prefix lengths had a disproportional impact on the
overall false-negative rate because they caused the refine-
ment process to miss large prefixes potentially containing
many attack sources. To counteract this effect, when train-
ing our model, we use a weighted sample of our training
set which contains more observations of attack prefixes at
shorter prefix lengths (e.g., less than /16) compared to longer
prefix lengths. This weighting of the training set causes the
model to be more suspicious (i.e., make more false-positive
decisions) at shorter prefix lengths, making it more likely
that ZAPDOS will continue zooming in and not miss large
regions that include attack sources.

5. Iterative Prefix Refinement
5.1. Baseline Approaches

In general, approaches to prefix-level iterative refine-
ment [57], [58] maintain a list of monitored prefixes F .
Packets are grouped by these prefixes and aggregate fea-
tures computed for each prefix (e.g., by submitting dataflow
queries [31], [85], [86]) during a monitoring window or
epoch (e.g., 1 s). Between epochs a set of decisions are
made about how to update F for the next epoch based on
features computed in the previous epoch. Typically these
decisions are to “zoom-in” on a particular prefix (e.g., re-
place 10.10.0.0/16 with 10.10.0.0/17 and 10.10.8.0/17) or to
“zoom-out” by combining two sibling prefixes. In the case

7

of volumetric DDoS signature detection, the goal is to zoom-
in on prefixes that contain attack sources and zoom-out on
benign prefixes.

Existing approaches to prefix-based refinement have
one of two undesirable properties. First, approaches like
MRT [57] use tree-like data structures to implement prefix
matching on CPUs and zoom-in on every suspected attack
prefix, leading to an exponential increase in the number of
prefixes whose features must be collected and processed
during each epoch. Second, approaches like DREAM [58]
use a fixed number of TCAM entries on programmable
switches and every time they zoom in on a prefix, they also
choose another pair of siblings to zoom out on.

Our initial experiments quickly confirmed that neither of
these approaches are sufficient for volumetric DDoS attack
signature detection. The MRT approach of zooming in on
every prefix classified as suspicious quickly exhausts the
limited number of TCAM slots. The proposed algorithms
in DREAM [58] also struggle to effectively zoom in to
sufficiently long prefix lengths. Consider the simple example
where there is only one attack prefix, 10.0.0.0/8. As shown
in Figure 5, DREAM requires monitoring eight other pre-
fixes even though they may be entirely empty.

128.0.0.0/1
64.0.0.0/2

32.0.0.0/3
16.0.0.0/40.0.0.0/5
12.0.0.0/68.0.0.0/7 11.0.0.0/810.0.0.0/8

Figure 5: Monitoring one attack prefix 10.0.0.0/8 in
DREAM [58] requires monitoring an additional 8 benign
or empty prefixes in order to maintain a complete cover of
the address space.

5.2. Scheduling Prefixes on Fixed Monitoring Slots

To address these algorithmic short-comings in the light
of volumetric DDoS attack signature detection, in ZAPDOS
we develop a novel approach based on the high-level idea
of scheduling which prefixes to monitor each epoch. We
augment the set of prefixes F with two other sets: R which
contains prefixes which have already been reported as part
of the attack signature, and H which contains non-scheduled
prefixes “held-out” in CPU memory for consideration in
future epochs. During each epoch, we use a fixed number
of prefix monitoring slots compiled into switch hardware
to compute features for prefixes in F (each slot computes
all features for a single prefix). Between epochs, we apply
a procedure called EPOCHUPDATE() to update all three
sets to zoom in on attack signatures. The key decisions of
our approach stem from two high-level scheduling policies,
children-first and never-zoom-out as illustrated in Figure 6.
Children-first. The children-first policy is based on the
intuition that if the model classifies a prefix as containing
attack traffic, it is more likely that a child of that prefix will
also contain attack traffic in the next epoch compared to any
other prefix. As a result, we schedule all newly-zoomed-in-
on children before any other prefixes under consideration.

Prev. Epoch EpochUpdate Next Epoch

f1'
f2'
f3'
f4'

f1

f2

f3

f4

h1

r1 r1

r2

h1

h2

Sw
itc

h
CP

U

Zoom-inRisk Model

Susp.,
low conf.

Susp.,
high conf.

Non-susp.

Time

F

R

H

F'

R'

H'

Figure 6: Iterative prefix refinement to zoom-in on suspi-
cious prefixes while using fixed monitoring resources.

Only once these child prefixes have been cleared as non-
suspicious, do we remove them from F to H .
Never-zoom-out. The never-zoom-out policy is based on
the intuition that even if a prefix does not look suspicious
in a particular epoch, it may still become suspicious in the
future (e.g., due to changes in attack source, or fluctuations
in benign traffic). As a result, instead of zooming out as
in DREAM, we collect all prefixes ever zoomed in on
in H . This way, even if the attack vectors or sources
change, ZAPDOS can quickly recall its previous progress
and continue zooming in where it left off, thus avoiding
the slow control loop vulnerability [22] associated with
approaches that do not maintain this kind of longer-term
state (e.g., Jaqen [20]).

Note that although F is constant in size, R ∪H grows
after most epochs during the active-attack phase. We leave
questions of how to interpret and ultimately reset F , R, and
H in the post-attack phase and/or how to optimally pre-
condition these sets in the pre-attack phase to future work.
Key parameters. ZAPDOS includes two key parame-
ters that effect the iterative refinement process. First,
prefixesPerEpoch determines the number of feature
monitoring slots available in switch hardware (i.e., an upper
bound on |F |). Increasing prefixesPerEpoch enables
ZAPDOS to observe a larger region of the address space each
epoch and can in some cases reduce the number of epochs to
reach an accurate attack signature, but increases ZAPDOS’s
hardware resource footprint. Second, bitsPerEpoch de-
termines how many bits are added to the length of pre-
fixes when ZAPDOS zooms in on them. Although intu-
itively larger value of bitsPerEpoch allow ZAPDOS
to zoom-in faster, since each zoom-in decision generates
2ˆbitsPerEpoch children, setting bitsPerEpoch too
high generates too many children to monitor and can ac-
tually cause ZAPDOS to zoom-in slower due to the limit
imposed by prefixesPerEpoch.

5.3. Deciding Length of Reported Prefixes
Given that prefix lengths increase monotonically in

ZAPDOS (by the never-zoom-out policy), a key consider-
ation is when a prefix flagged by the model as potentially
containing attack traffic should be reported in the attack
signature. On the one hand, reporting at too short of prefix

8

lengths leads to high false-positives. On the other hand,
reporting at too long of prefix lengths leads to wasting mon-
itoring resources and increase detection time. Ultimately, as
shown in Figure 7 optimal prefix-level partitions of attack
and benign sources require a wide range of prefix lengths
(e.g., /10 to /25).

10
15
20
25
30

500 1K 2K 5K 10K 20K 50K
attack srcs

pf
x.

 le
n

(a) Mirai sources

10
15
20
25
30

500 1K 2K 5K 10K 20K 50K
attack srcs

pf
x.

 le
n

(b) Uniform random sources

Figure 7: Distribution of lengths of prefixes used for optimal
separation between attack and benign traffic from Figure 2.

To better approximate these optimal prefix-level parti-
tions, ZAPDOS develops an “early stopping” method to
decide when prefixes that are flagged by the model should be
included in the report set R (and hence removed from active
consideration in F and H). Since the primary concern is to
avoid reporting prefixes that also contain benign sources,
ZAPDOS’s early stopping leverages a profile of benign
traffic collected during the pre-attack phase.

In particular, we define BENIGN-PROXIMITY(y, p) =
n/232−p for a given prefix y of length p where n is the num-
ber of benign sources observed in y during the pre-attack
phase. During the active-attack phase, if the model flags a
prefix f of length ℓf as suspicious, we report f and move it
to R if and only if BENIGN-PROXIMITY(f, ℓf) is less than
a threshold. Computing BENIGN-PROXIMITY(y, p) requires
monitoring distinct sources for the most recent m seconds
in the pre-attack phase. In our evaluation, we found that
m=120 s yields sufficiently accurate results while requiring
modest resources. For example, in our hardware prototype
we used a ∼131 KB Bloom filter.

6. Tuning Refinement for Dynamic Attacks
Although the children-first and never-zoom-out policies

are key to realizing ZAPDOS, they require additional algo-
rithmic components (beyond those described in § 5) to cope
with dynamic changes to attack sources observed in modern
volumetric DDoS attacks.

6.1. Look-Ahead to Avoid Empty Children
The children-first policy requires allocating monitoring

slots for all children of any prefix flagged by the model
as suspicious but not yet ready for reporting. However,
due to the relative sparsity of observed addresses, some of
these children almost always turn out to be inactive and
hence waste precious switch resources. For example, with
bitsPerEpoch = 4 and a parent prefix with only one
active child, ZAPDOS would waste 15/16 monitoring slots.

To address this problem, we develop a novel look-ahead
method that encodes information about which children are
active in the features gathered for each parent prefix. In
particular, as shown in Figure 8a we add a per-prefix “child
bitmap” where each bit represents a potentially active child.
When a packet matches prefix f of length ℓf , we extract the

ℓf + bitsPerEpoch bits of that packet’s source address
and use them as an index into f ’s child bitmap. During
EPOCHUPDATE(), if f is identified as suspicious by the
model, we then read f ’s child bitmap and only select the
children of f whose bits were set for monitoring in the next
epoch. The child bitmap requires adding an extra feature
with 2ˆbitsPerEpoch bits per prefix. For example, at
bitsPerEpoch = 4, this only adds 16 bits.

f1

1
0
1
0

Risk Model
Susp.

child bitmap f1'
f2'

Switch CPU

(a) Look-ahead increases zoom-
in rate by focusing on active
children.

f1
Risk Model

Lookup

Non-susp. f1'

h1 hnh2 ...

B

Switch CPU
h1'

(b) Look-back brings back ac-
tive hold-out prefixes when at-
tack changes.

Figure 8: Extensions to the scheme of Figure 6 to deal with
dynamic changes in the set of attack sources.

6.2. Look-Back to Catch Changes
Although the never-zoom-out policy ensures that

ZAPDOS can always make progress towards refining attack
signatures even when the attack sources change, a critical
consideration not addressed in § 5 is which prefixes from
H should be added to F when extra monitoring slots are
available. Again, due to relatively sparse population of the
observed address space, simplistic methods like taking the
first prefixesPerEpoch from H lead to wasting moni-
toring slots on empty prefixes.

To address this problem, we develop a look-back method
that casts a wide net over all regions of the address space
not monitored in F . Our key observation is that we do
not necessarily need to discover exact regions sourcing
new attack traffic, but only need to re-focus the refinement
process on currently active regions of the address space. In
particular, as shown in Figure 8b we use a simple Bloom
filter [87] B to build an (approximate) list of distinct sources
that don’t match prefixes in F . Then when extra monitoring
slots are available, we select prefixes from H based on their
membership in B.

7. ZAPDOS Prototype
We prototype ZAPDOS using a Tofino-enabled Wedge

100BF-32QS switch7. The switch ASIC runs a P4 [88] pro-
gram that computes per-prefix features in hardware registers
(Table 4), maintains look-ahead and look-back components
(§ 6), and classifies packets associated with reported attack
prefixes in R. Table 5 shows that ZAPDOS has a relatively
small footprint compared to the available hardware resources
for key resource types like SRAM and TCAM, comparable
to the footprint of Jaqen8.

7. https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=
181&id=770

8. Note that Jaqen only reports hardware resource usage of their detec-
tion module, but their mitigation modules, which actually generate source-
level attack signatures, require unknown additional resources.

9

https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=770
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=770

Crossbar SRAM TCAM VLIW Hash Bits ALU Gateways
6.70 % 7.29% 11.11% 9.38% 17.11% 26.04% 15.62%

TABLE 5: Switch hardware resources used by the ZAPDOS
data plane as percentage of total available on Tofino.

The switch CPU runs the ZAPDOS control plane, a
Haskell [89] program which evaluates the per-prefix clas-
sification model (§ 4) and refinement algorithm (§ 5), in-
teracting with the ASIC through the bfruntime gRPC
interface and ASIC’s CPU port. A key challenge in prototyp-
ing ZAPDOS in hardware is optimizing the communication
between ASIC registers and the switch’s CPU to minimize
the update time overhead. In addition to carefully multi-
threading the ZAPDOS control plane, we leverage two other
techniques to optimize this communication: (i) batch-round-
robin epochs and (ii) packet ferries.
Batch-Round-Robin Epochs. Naı̈vely reading the features
of all prefix monitoring slots in one shot at the end of each
epoch (as shown in Figure 9a) requires a significant amount
of time. For example, writing a new set of 1500 prefixes to
monitor in hardware takes ∼0.5 s, implying traffic would
only be monitored half of the time with 1-second epochs.
On the other hand, incremental updates that cycle through
prefixes in round-robin order (as shown in Figure 9b) cause
the iterative refinement process to fall behind due to the
constant overhead associated with each RPC. For example,
an RPC updating a single prefix takes ∼5 ms, implying one
cycle through all 1500 prefixes would take ∼7.5 s.

f1

f6

Time

...

per-prefix
overhead

constant
overhead

Epoch � Epoch �

(a) Sync. Epochs

Time

f1

f6

...

falls behind

Epoch � Epoch �

(b) Round-Robin

f1

f6

...

Time

Epoch � Epoch �

(c) Batch-Round-
Robin

Figure 9: Illustration of different possible approaches to
updating prefix monitoring slots in ZAPDOS.

In ZAPDOS, we develop an approach called batch-
round-robin which updates batches of prefixes in a single
RPC and cycles through batches in round-robin order as
shown in Figure 9c. This combines the benefits of syn-
chronous epochs and round-robin updates because the con-
stant overhead of each RPC is amortized over all prefixes in
a batch and each batch is much faster to update compared to
the entire set of monitoring slots. Updating a batch of 100
prefixes in our prototype takes ∼25 ms so the 15 batches
required to update all 1500 prefixes takes 375 ms implying
batch-round-robin can easily keep up with 1-second epochs.
Packet Ferries for Feature Collection. To implement the
modeling and iterative refinement methods, the ZAPDOS
control plane needs to read features of all 1500 prefix
monitoring slots back to the CPU each epoch, but a naı̈ve
batch-read RPC request takes ∼1.3 s. Instead, ZAPDOS
implements a technique called packet ferries, inspired by
in-band network telemetry [90], [91] and further developed

in [92]. As shown in Figure 10, packet ferries send specially-
marked request packets through the ZAPDOS data plane
using the switch CPU’s backplane port which bypasses
gRPC and driver layers allowing ZAPDOS to read all 1500
prefixes in ∼50 ms.

Switch
ASIC

f1 fn
... Feature

Registers
ZAPDOS Data Plane

ZAPDOS Control Plane

Backplane

Switch CPU

Response
Pfx id = i
 f� ... fn

Request
Pfx id = i

Figure 10: Packet ferries enable fast reads by bypassing the
gRPC and driver layers.

8. Evaluation
We build a large dataset of realistic attack traces using

the methodology described in § 4.1 and use this dataset to
evaluate ZAPDOS. We show that ZAPDOS
• quickly detects attack signatures with high accuracy in

our hardware prototype implementation and we provide
a breakdown of the latency overhead (§ 8.2),

• accurately detects signatures of modern multiple-vector
and dynamic attacks with a single model (§ 8.3),

• maintains low error rates for changes to attack pa-
rameters (e.g., numbers of sources), system parame-
ters (e.g., prefixesPerEpoch), and loss scenarios
(e.g., flooded border links) (§ 8.4), and

• is robust against attackers who can spoof attack traffic to
come from the same prefixes as benign traffic maintaining
orders of magnitude lower error rates compared to prior
approaches when given comparable traffic monitoring
resources (§ 8.5).

8.1. Setup

Success metrics. The goal of ZAPDOS’s attack signatures
are to effectively reduce the amount of damage caused by an
attack regardless of how much effort the adversary spends
on the attack as described in § 3.1. To measure potential
damage, we measure the accuracy of given attack signatures
w.r.t. ground-truth in terms of per-byte false positive (FPR)
and false negative (FNR) rates. Smaller FPR and FNR indi-
cate more accurate attack signatures and in turn less damage
for the target network. To measure how fast an attack is
detected, we use the detection time metric that we define
to be the time difference between when an attack starts
and when ZAPDOS reports more than a certain fraction of
the attack prefixes. Note that we classify each packet as a
false-positive or false-negative based on the current value
of R when that packet arrived and compute aggregate FPR
and FNR over the entire attack scenario. As a result, these
metrics also reflect how quickly ZAPDOS was able to refine
accurate attack signatures (e.g., if ZAPDOS takes longer
to detect a particular attack prefix, it will make a larger
contribution to FNR). The shown error bars mark the 5th

percentile, the median, and the 95th percentile, respectively
over independent trials.

10

Other DDoS defense approaches. We compare ZAPDOS
with two state-of-the-art switch-based approaches to vol-
umetric DDoS defense in edge networks: (i) Euclid [21]
uses a sketch-based method to detect attack sources by
estimating their contributions towards the increase in the
entropy associated with the attack, and (ii) Jaqen [20] is a
library of sketch-based detection and mitigation primitives
that can be deployed on switch hardware with a CPU-based
controller. We use an exact heavy-hitter computation to
represent the best-case scenario for Jaqen, which originally
used universal sketching to estimate heavy hitters. We do not
compare with approaches like Poseidon [38] as it focuses
on local solutions with no clear separation of detection and
mitigation. We also do not compare with ML approaches
like LUCID [24] since their feature-gathering overheads are
infeasible for edge networks as described in § 2.3.
Default parameters. As discussed in § 5 and § 6,
the two main parameters controlling efficiency of itera-
tive refinement in ZAPDOS are prefixesPerEpoch,
and zoomInBits. Unless otherwise noted, we set
prefixesPerEpoch to 1500 and zoomInBits to 4
since these values yielded acceptably low error rates in
initial experiments and acceptably low overheads in our
hardware prototype. We use a Bloom filter with 220 bits
and a single hash function in our prototype for look-back.
We set a default epoch duration of one second. The pre-
attack phase lasts for 120 s to allow ZAPDOS to compute
the benign traffic profile described in § 5.3 and we set the
benign proximity threshold to 0. Unless otherwise noted,
the active-attack phase lasts for 120 s with an aggregate
attack rate of 1 Gbps (enough to flood an access link of a
small or medium-sized campus network) using 50k attack
sources from Mirai data [68] (distinct from the training
sources) comparable in size to real-world volumetric DDoS
attacks [35].

8.2. ZAPDOS Prototype Performance
To evaluate our prototype, we replay an independent

UDP-flood attack trace from the test partition of our dataset
containing a mix of attack and benign traffic.9 The prototype
is switched from collecting the benign traffic profile (§ 5.3)
to actively zooming in on attack prefixes when the trace
enters the active-attack phase at 120 s. We collect the list
of reported attack prefixes in a file which also includes a
timestamp of when each prefix was reported, then compute
per-byte FPR and FNR in each 1 s time window based on the
timing of these reports offset relative to the original trace.

Figure 11a shows the evolution of FPR and FNR in
our prototype over the duration of the attack in comparison
with simulated implementations of Euclid and Jaqen on the
same trace with similar resource budgets. In ZAPDOS, FNR
quickly drops below 1% after 25 s (going down to ∼0.05%
by 120 s) as more attack prefixes are correctly reported. FPR
remains low and stable around 0.2%. In comparison, Jaqen
deploys mitigation after 15 s due to overheads of installing

9. In particular, we use cost-based attack sources with attack cost ℓ =
16 combined with MAWILab 2019-02-05 benign traffic.

0.01
0.10
1.00

10.00

0 25 50 75 100

FP
R

 (%
)

0.1
1.0

10.0
100.0

0 25 50 75 100
Time (s)

FN
R

 (%
)

ZAPDOS Euclid Jaqen

(a) Timeseries of ZAPDOS prototype accuracy compared with
simulation results of Euclid and Jaqen on the same trace with
comparable resource budgets.

0.3
1.0
3.0

10.0
30.0

Total Update HW.
(gRPC)

Apply
Model

Collect
Features

OtherPe
r-B

at
ch

O

ve
rh

ea
d

(m

s)

(b) Characterization of the batch-round-robin update time overhead
with 100 prefixes per batch.

Figure 11: Performance of our ZAPDOS prototype on a
realistic attack scenario.

the particular mitigation module for UDP flood attacks, then
achieves higher FPR (∼4%) and FNR (∼1%). Euclid’s pure
data plane approach begins mitigating attack traffic within 1
s and identifies nearly all attack sources, but also produces
erratic FPR (up to 50%) indicating significant impact on
benign traffic. This result demonstrates that ZAPDOS not
only effectively detects volumetric DDoS attack signatures
in switch hardware, but also consistently achieves lower
error rates compared to best-case simulation performance
of Jaqen and Euclid.

We also measured the median absolute difference in
accuracy between our ZAPDOS prototype and ZAPDOS
simulator over all epochs considered in Figure 11a to be
∼4.1e-04% for FPR and ∼0.17% for FNR. We attribute
the slightly larger gap in FNR to inaccuracies outside of
ZAPDOS in the tool used to replay attack and benign attack
traffic.10 Given this close correspondence between prototype
and simulator, in the rest of this section we show results
from our simulation since it enables higher-confidence ac-
curacy computation and evaluation of multiple traces in
parallel.

Finally, we measure the latency overhead of our batch-
round-robin method (§ 7) with 100 prefixes per batch. Fig-
ure 11b shows the median total per-batch latency overhead
over all epochs of the attack scenario as well as break
down across three main operations. Latency overhead is
clearly dominated by hardware update time which could be
optimized using, for example, DMA rather than gRPC.

10. In particular we use tcpreplay which appears to fall behind
realtime during the active-attack phase leading to delayed timestamps from
the prototype which inflate FNR.

11

8.3. Performance Against Modern Attacks
8.3.1. Simple attacks: Single-vector and static. Modern
volumetric DDoS attacks leverage diverse vectors to gener-
ate large volumes (i.e., data rates) of attack traffic toward
their victims. To demonstrate ZAPDOS’s ability to identify
attack sources regardless of the attack vector used, we gen-
erate an independent single-attack scenario for each of the
attack vectors described in Table 3. For each attack we draw
a sample of 50k distinct attack sources from the Mirai [68]
dataset, the Booters [35] dataset, or “spoofed” sources from
a uniform random distribution (Rnd.). Due to iterative re-
finement in ZAPDOS, we report in Figure 12 FPR and FNR
of the attack signature detected by ZAPDOS for each attack
vector at three different points in time after the start of the
attack. For all attacks, FNR decreases down to ∼0.1% after
60 s as ZAPDOS reports more attack prefixes. FPR, on the
other hand, does not follow a clear trend beyond stabilizing
between 0.1% and 0.3% for all attacks. We attribute this
to the inherent burstiness of benign traffic which causes
burstiness in the FPR time series (e.g., see Figure 11a).
Practically, this result demonstrates that the single trained
model in ZAPDOS is able to generate highly-accurate attack
signatures for a wide range of modern volumetric DDoS
vectors within a couple minutes of the onset of that attack.

Mirai Booters Rnd.

0.03
0.10
0.30
1.00

FP
R

 (%
)

Mirai Booters Rnd.

dns icmp ntp ssdp syn udp udp syn
0.01
0.10
1.00

10.00

FN
R

 (%
)

after 10 s after 60 s after 120 s

Figure 12: Performance of ZAPDOS on different single-
vector, static attacks with 50k distinct sources.

8.3.2. Complex attacks: Multi-vector and dynamic. In
addition to using diverse attack vectors individually, modern
DDoS attacks are also known to combine multiple con-
current attack vectors and change them over time [20],
[23], [38], [64]. To demonstrate ZAPDOS’s ability to handle
such complex attacks, we generate multi-vector dynamic
attack scenarios by selecting nine distinct attack-vectors
from Table 3 and attack source sets from the Mirai dataset
(using the discrete set sizes described in § 4.1). During the
attack scenarios, at regular intervals the attacker randomly
selects three attack vector, attack source set pairs from
these nine and combines the traffic of all three against the
victim. We generate several such scenarios with different
intervals between attack changes, in particular 1 s (fast), 5
s (medium), and 10 s (slow). Figure 13 shows the evolution

of attack signatures generated by ZAPDOS during the first
120 s of each scenario. ZAPDOS is relatively slower to
refine attack signatures compared to previous experiments
because these attacks contain roughly three times the num-
ber of distinct sources. However, we note that the rate of
signature refinement remains the same regardless of how fast
the attack changes between attack sets. This illustrates the
effectiveness of both “look-ahead” and “look-back” methods
(§ 6) to quickly focus limited monitoring resource on target
prefixes and to switch prefixes when the underlying attack
changes.

Fast Medium Slow

At
ta

ck
 V

ol
.

(G
bp

s)
FP

R
(%

)
FN

R
(%

)
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

2.2
2.4
2.6

0
2
4
6

0
25
50
75

100

Time (s)
Figure 13: Performance of ZAPDOS in refining signatures
of multi-vector, dynamic attacks with varying numbers of
sources.

8.4. Sensitivity Analysis
To understand how ZAPDOS performs on a wider range

of parameter settings and attack scenarios, we evaluate
the impact of changing both the resources allocated to
ZAPDOS (i.e., prefixesPerEpoch) and attack param-
eters (i.e., the number of distinct attack sources at a fixed
aggregate attack rate). We also investigate the robustness
of ZAPDOS in scenarios where the edge network’s border
link is flooded. Due to space limitations, we describe the
details of these experiments in Appendix C and summarise
the key takeaways here. ZAPDOS is able to leverage larger
switch hardware state (via larger prefixesPerEpoch)
to reduce the false negative rate and detection time. On the
other hand, although larger numbers of sources sending a
fixed overall attack rate presents a harder challenge, for 1
Gbps attacks with up to 50 k sources ZAPDOS is still able
to achieve FPR < 0.5%, FNR < 5%, and to report 90%
of attack sources within 10 s. Finally, ZAPDOS is robust
against changes to feature distributions caused by a flooded
border link and reduces loss-induced damage to below 10%
in less than 10 s on average.

8.5. Impact of Proximity of Attack Sources
A fundamental concern with prefix-level attack signa-

tures as detected in ZAPDOS compared with source-level
signatures as detected in Euclid and Jaqen is that a resource-
ful adversary could spoof attack sources to fall into known

12

benign prefixes thereby triggering high false-positive rates.11

We evaluate this concern by generating 10 independent UDP
flooding attack scenarios. Each scenario uses cost-based at-
tack sources as described in § 4.1 at four different settings of
cost parameter ℓ and distinct benign traffic from MAWILab.
Recall that higher-cost attack sources are chosen to share
longer prefixes with benign traffic (e.g., for cost ℓ = 24 all
attack sources share a /24 prefix with at least one benign
source). We use these scenarios to empirically quantify
the impact of cases where attack sources are intentionally
crafted to induce high FPR and to compare this impact with
performance of Euclid and Jaqen on the same traces using
the same methodology as in § 8.2 above.

1e-04
1e-02
1e+00

8 16 20 24
Attack cost ℓ (bits)

FP
R

 (%
)

1e-04

1e-01

1e+02

8 16 20 24
Attack cost ℓ (bits)

FN
R

 (%
)

ZAPDOS Euclid Jaqen

Figure 14: Aggregate performance comparison over 10 inde-
pendent attacks. Higher attack cost ℓ indicates longer prefix
overlap between attack and benign sources.

Figure 14 shows FPR and FNR over all 10 attacks at
each setting of cost parameter ℓ. Performance of ZAPDOS
does depends on attack cost, with cheaper attacks yielding
lower error rates (e.g., median FPR of ∼ 8 · 10−6% at
ℓ = 8 bits compared to 0.06% at ℓ = 24 bits). However,
we note that this trend is concave-down and there is no
apparent breakdown of ZAPDOS’s prefix-level signatures
even up to ℓ = 24. Although the FPR of Euclid and
Jaqen are not impacted by attack cost, they are orders of
magnitude higher (∼9% and ∼6% respectively) compared
to ZAPDOS’s prefix-level signatures.

Interestingly, we observe that attack cost also has an
impact on ZAPDOS’s FNR which ranges from ∼0.07% to
∼17% as ℓ increases. This is a result of longer detection
time required by higher-cost attacks as discussed below. In
comparison, Jaqen achieves relatively constant FNR around
13% and Euclid’s FNR is highly dependent on characteris-
tics (e.g., entropy) of each trace though uncorrelated with
attack cost.

0
10
20
30

8 16 20 24
Attack cost ℓ (bits)

D
et

ec
tio

n
Ti

m
e

(s
)

FNR <= 90%

FNR <= 50%

FNR <= 10%

Figure 15: Detection time of ZAPDOS’s attack signature
coverage.

11. Note that since Euclid and many of the mitigation primitives in Jaqen
are still source-level, cases where attack and benign traffic comes from the
same source, e.g., due to NAT, are a common problem across all these
methods.

Intuitively, due to ZAPDOS’s benign-proximity method
for deciding the length of reported attack prefixes (see § 5.3),
when attack sources are closer to benign sources, ZAPDOS
must zoom-in to longer prefix lengths requiring more itera-
tions. Figure 15 quantifies this effect by showing the time
between the beginning of the attack and when ZAPDOS’s
FNR line falls below 10%, 50%, and 90%—in other words,
the detection time from when the attack starts until when
ZAPDOS’s attack signature matches 10%, 50%, and 90%
of all attack traffic each time window. For the lowest cost
attacks ZAPDOS detects 90% of attack traffic within the first
1 s epoch. However, since for higher-cost attacks, attack and
benign sources share longer prefixes, ZAPDOS takes longer
(up to 24 s in the worst case) to produce sufficiently refined
attack signatures. The key takeaway is that if the attacker
expends extra effort to place attack sources closer to benign
sources, ZAPDOS does not falsely block benign sources, but
drills down deeper into the prefix tree to maintain low FPR
at the cost of increased signature detection time.

9. Adversarial Considerations
In addition to attackers who intelligently spoof source

addresses to fall within benign prefixes as considered in
§ 8.5, several other aspects of ZAPDOS could potentially
result in vulnerabilities which attackers could exploit to
thwart detection. We raise several possibilities and note that
the severity of each depends on details of a production
deployment of ZAPDOS.
Securing communication in ZAPDOS. Since ZAPDOS
uses the switch data plane to collect feature results, an
attacker could potentially spoof these request or response
packets and jeopardize the accuracy of ZAPDOS’s features.
ZAPDOS’s data plane could be modified to include distinct
signatures on all result packets (e.g., adding a secret writ-
ten only through the PCIe channel) allowing the ZAPDOS
control plane to verify all received feature results.
Timing-based attacks. A skilled attacker could use knowl-
edge about the epoch duration used in ZAPDOS to craft
attacks that inhibit iterative refinement (e.g., by changing
attack sources faster than ZAPDOS’s epoch duration). In ad-
dition to keeping actual parameters used in ZAPDOS private,
production deployments of ZAPDOS could also dynamically
adjust epoch duration following cryptographically-secure
random patterns to mitigate the effectiveness of such attacks.
Model-based attacks. Attackers with detailed knowledge of
the data used to train the inference model used in ZAPDOS
could discover ways to trick the model into making false
positive or false negative decisions. In addition to keeping
training data used in production private, the models used in
ZAPDOS could be periodically re-trained based on the most
recent features of benign traffic observed on the victim’s
network to reduce the opportunity for such model-based
attacks.

10. Summary
In this work, we developed ZAPDOS, a novel approach

to detecting volumetric DDoS attack signatures in edge

13

networks using programmable switch hardware. We demon-
strated how ZAPDOS’s prefix-level approach requires mod-
est hardware resource overheads, can detect 99% of attack
traffic in less than 25 s with low false-positives, improves
efficiency of DDoS defense compared to state-of-the-art by
reducing error rates by two to six orders of magnitude, and
defends against modern multi-vector and dynamic attacks.
ZAPDOS enables effective in-network collaborative defense
by allowing edge networks to quickly and efficiently gener-
ate accurate attack signatures for reporting to upstream ISP
or edge-local mitigation.

Acknowledgment
We thank our anonymous shepherd and reviewers for

their constructive feedback. This work is supported by the
National Science Foundation through OAC-2126281, SaTC-
2132651, CICI-2319944, CNS-2212590, CNS-2003257, and
OAC-2126327, a grant from Verizon Innovation LLC., a
Ripple faculty fellowship, and a Ripple graduate fellowship.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of NSF, Verizon, or Ripple.

References

[1] A. Toh, A. Vij, and S. Pasha, “Azue DDoS protection—2021 Q3
and Q4 DDoS attack trends,” https://tinyurl.com/45uwpjem, accessed:
2022.

[2] L. Rudman and B. Irwin, “Characterization and analysis of ntp
amplification based ddos attacks,” in 2015 Information Security for
South Africa (ISSA). IEEE, 2015, pp. 1–5.

[3] C. Rossow, “Amplification hell: Revisiting network protocols for ddos
abuse.” in NDSS, 2014, pp. 1–15.

[4] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a
handshake: Abusing TCP for reflective amplification DDoS attacks,”
in 8th USENIX Workshop on Offensive Technologies, 2014.

[5] ——, “Exit from hell? reducing the impact of Amplification DDoS
attacks,” in 23rd USENIX Security Symposium, 2014, pp. 111–125.

[6] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring Pay-
per-Install: The commoditization of malware distribution,” in 20th
USENIX Security Symposium, 2011.

[7] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delving into internet
ddos attacks by botnets: characterization and analysis,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2843–2855, 2018.

[8] A. Wang, A. Mohaisen, and S. Chen, “An adversary-centric behavior
modeling of ddos attacks,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2017, pp.
1126–1136.

[9] “DDoS attacks: a big problem for small business,” https://www.
ratcliff.it/news/ddos-attacks-a-big-problem-for-small-business,
accessed: 2023-12-06.

[10] “Reactive DDoS defense services,” https://www.business.att.com/
products/ddos-protection.html, accessed: 2022.

[11] “Cloudflare DDoS protection & mitigation,” https://www.cloudflare.
com/ddos-hub/, accessed: 2022.

[12] “Blackholing advanced - optimize your response to DDoS at-
tacks,” https://www.de-cix.net/en/services/blackholing-advanced, ac-
cessed: 2022.

[13] M. Wichtlhuber, E. Strehle, D. Kopp, L. Prepens, S. Stegmueller,
A. Rubina, C. Dietzel, and O. Hohlfeld, “Ixp scrubber: learning
from blackholing traffic for ml-driven ddos detection at scale,” in
Proceedings of the ACM SIGCOMM Conference, 2022, pp. 707–722.

[14] “DDoS protection solutions - ddos attack mitigation,” https://www.
netscout.com/solutions/ddos-protection, accessed: 2022.

[15] “DDoS services: Cloud security products and solutions,” https://www.
radware.com/products/cloud-ddos-services/, accessed: 2022.

[16] “P416 portable switch architecture (PSA): Version 1.1,” https://p4.
org/p4-spec/docs/PSA-v1.1.0.html, 2018, accessed: 2022.

[17] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” ACM
SIGCOMM CCR, vol. 43, no. 4, pp. 99–110, 2013.

[18] “Intel Tofino,” https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch.html, accessed: 2022.

[19] “Trident4 / BCM56880 series,” https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56880-series, accessed:
2022.

[20] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in 30th USENIX Security Symposium, 2021.

[21] A. da Silveira Ilha, Â. C. Lapolli, J. A. Marques, and L. P. Gaspary,
“Euclid: A fully in-network, p4-based approach for real-time ddos
attack detection and mitigation,” IEEE Transactions on Network and
Service Management, 2020.

[22] A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever, “Aggregate-
based congestion control for pulse-wave ddos defense,” in Proceed-
ings of the ACM SIGCOMM Conference, 2022, pp. 693–706.

[23] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decen-
tralized link-flooding defense against adaptive adversaries,” in 30th
USENIX Security Symposium, 2021.

[24] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-del Rin-
con, and D. Siracusa, “Lucid: A practical, lightweight deep learning
solution for ddos attack detection,” IEEE Transactions on Network
and Service Management, vol. 17, no. 2, pp. 876–889, 2020.

[25] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for
ml-based network security applications.” in NDSS, 2021.

[26] A. T.-J. Akem, M. Gucciardo, M. Fiore et al., “Flowrest: Practical
flow-level inference in programmable switches with random forests,”
in IEEE International Conference on Computer Communications,
2023.

[27] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika:
Enable general in-network intelligence in programmable switches
by knowledge distillation,” in IEEE International Conference on
Computer Communications, 2022.

[28] E. Kohler, J. Li, V. Paxson, and S. Shenker, “Observed structure of
addresses in ip traffic,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, 2002, pp. 253–266.

[29] ——, “Observed structure of addresses in ip traffic,” IEEE/ACM
Transactions on Networking, vol. 14, no. 6, pp. 1207–1218, 2006.

[30] P. Barford, R. Nowak, R. Willett, and V. Yegneswaran, “Toward a
model for source addresses of internet background radiation,” in Proc.
of the Passive and Active Measurement Conference, 2006.

[31] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,”
in Proceedings of the ACM SIGCOMM Conference, 2018, pp. 357–
371.

[32] M. Karami and D. McCoy, “Understanding the emerging threat
of DDoS-as-a-Service,” in 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET 13), 2013.

14

https://tinyurl.com/45uwpjem
https://www.ratcliff.it/news/ddos-attacks-a-big-problem-for-small-business
https://www.ratcliff.it/news/ddos-attacks-a-big-problem-for-small-business
https://www.business.att.com/products/ddos-protection.html
https://www.business.att.com/products/ddos-protection.html
https://www.cloudflare.com/ddos-hub/
https://www.cloudflare.com/ddos-hub/
https://www.de-cix.net/en/services/blackholing-advanced
https://www.netscout.com/solutions/ddos-protection
https://www.netscout.com/solutions/ddos-protection
https://www.radware.com/products/cloud-ddos-services/
https://www.radware.com/products/cloud-ddos-services/
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series

[33] M. Karami, Y. Park, and D. McCoy, “Stress testing the booters:
Understanding and undermining the business of ddos services,” in
Proceedings of the 25th International Conference on World Wide Web,
2016, pp. 1033–1043.

[34] M. Anagnostopoulos, S. Lagos, and G. Kambourakis, “Large-scale
empirical evaluation of dns and ssdp amplification attacks,” Journal
of Information Security and Applications, vol. 66, p. 103168, 2022.

[35] J. J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto,
M. Wierbosch, L. Z. Granville, and A. Pras, “Booters—an analy-
sis of ddos-as-a-service attacks,” in 2015 IFIP/IEEE International
Symposium on Integrated Network Management. IEEE, 2015, pp.
243–251.

[36] A. Welzel, C. Rossow, and H. Bos, “On measuring the impact of
ddos botnets,” in Proceedings of the Seventh European Workshop on
System Security, 2014, pp. 1–6.

[37] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Yau, and J. Wu, “Realtime ddos
defense using cots sdn switches via adaptive correlation analysis,”
IEEE Transactions on Information Forensics and Security, vol. 13,
no. 7, pp. 1838–1853, 2018.

[38] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks
with programmable switches,” in the 27th Network and Distributed
System Security Symposium, 2020.

[39] A. Febro, H. Xiao, and J. Spring, “Distributed sip ddos defense
with p4,” in 2019 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2019, pp. 1–8.

[40] X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S. Kang, “Dida: Dis-
tributed in-network defense architecture against amplified reflection
ddos attacks,” in 2020 6th IEEE Conference on Network Softwariza-
tion (NetSoft), 2020, pp. 277–281.

[41] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algo-
rithms, vol. 55, no. 1, pp. 58–75, 2005.

[42] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013, pp.
29–42.

[43] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: Relieving user burdens
in approximate measurement with automated statistical inference,” in
Proceedings of the ACM SIGCOMM Conference, 2018, pp. 576–590.

[44] X. Jing, J. Zhao, Q. Zheng, Z. Yan, and W. Pedrycz, “A reversible
sketch-based method for detecting and mitigating amplification at-
tacks,” Journal of Network and Computer Applications, vol. 142, pp.
15–24, 2019.

[45] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. A.
Dinda, M.-Y. Kao, and G. Memik, “Reversible sketches: enabling
monitoring and analysis over high-speed data streams,” IEEE/ACM
Transactions on Networking, vol. 15, no. 5, pp. 1059–1072, 2007.

[46] M. Asad, M. Asim, T. Javed, M. O. Beg, H. Mujtaba, and S. Abbas,
“Deepdetect: detection of distributed denial of service attacks using
deep learning,” The Computer Journal, vol. 63, no. 7, pp. 983–994,
2020.

[47] X. Yuan, C. Li, and X. Li, “Deepdefense: identifying ddos attack
via deep learning,” in 2017 IEEE international conference on smart
computing (SMARTCOMP), 2017, pp. 1–8.

[48] T. A. Tuan, H. V. Long, L. H. Son, R. Kumar, I. Priyadarshini, and
N. T. K. Son, “Performance evaluation of botnet ddos attack detection
using machine learning,” Evolutionary Intelligence, vol. 13, no. 2, pp.
283–294, 2020.

[49] Y. Feng and J. Li, “Toward explainable and adaptable detection and
classification of distributed denial-of-service attacks,” in International
Workshop on Deployable Machine Learning for Security Defense.
Springer, 2020, pp. 105–121.

[50] I. L. Meitei, K. J. Singh, and T. De, “Detection of ddos dns am-
plification attack using classification algorithm,” in Proceedings of
the International Conference on Informatics and Analytics, 2016, pp.
1–6.

[51] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in 32nd USENIX Security Symposium,
2023.

[52] T. Swamy, A. Rucker, M. Shahbaz, I. Gaur, and K. Olukotun, “Taurus:
a data plane architecture for per-packet ml,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 1099–
1114.

[53] T. M. Gil and M. Poletto, “MULTOPS: A data-structure for bandwidth
attack detection,” in USENIX Security Symposium, 2001.

[54] F. Soldo, A. Markopoulou, and K. Argyraki, “Optimal filtering of
source address prefixes: Models and algorithms,” in IEEE INFOCOM,
2009, pp. 2446–2454.

[55] G. Pack, J. Yoon, E. Collins, and C. Estan, “On filtering of ddos
attacks based on source address prefixes,” in 2006 Securecomm and
Workshops. IEEE, 2006, pp. 1–12.

[56] C. Estan, S. Savage, and G. Varghese, “Automatically inferring
patterns of resource consumption in network traffic,” in ACM SIG-
COMM, 2003.

[57] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” IEEE/ACM Transactions on Net-
working, vol. 19, no. 1, pp. 115–128, 2011.

[58] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dy-
namic resource allocation for software-defined measurement,” ACM
SIGCOMM CCR, vol. 44, no. 4, pp. 419–430, 2014.

[59] ——, “Scream: Sketch resource allocation for software-defined mea-
surement,” in ACM CoNEXT, 2015.

[60] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
ACM SIGCOMM CCR, vol. 32, no. 3, pp. 62–73, 2002.

[61] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Workshop on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks and
Services, Mar. 2011.

[62] M. S. Kang, V. D. Gligor, V. Sekar et al., “Spiffy: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks.” in NDSS,
vol. 1, 2016, pp. 53–55.

[63] H. Zhou, S. Hong, Y. Liu, X. Luo, W. Li, and G. Gu, “Mew: Enabling
large-scale and dynamic link-flooding defenses on programmable
switches,” in IEEE Symposium on Security and Privacy, 2023, pp.
3178–3192.

[64] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
IEEE symposium on security and privacy, 2013, pp. 127–141.

[65] A. Studer and A. Perrig, “The coremelt attack,” in European Sympo-
sium on Research in Computer Security. Springer, 2009, pp. 37–52.

[66] B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and E. Kirda,
“Fire: Finding rogue networks,” in 2009 Annual Computer Security
Applications Conference. IEEE, 2009, pp. 231–240.

[67] “DROP - don’t route or peer lists - the spamhaus project,” https:
//www.spamhaus.org/drop/, accessed: 2022.

[68] “FRGP (www.frgp.net) continuous flow dataset, IMPACT ID: USC-
LANDER/Mirai-FRGP-scanning-20160908/rev10326,” provided by
the USC/LANDER project (http://www.isi.edu/ant/lander), traces
taken 2016-09-08 to 2016-10-31.

[69] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab:
Combining Diverse Anomaly Detectors for Automated Anomaly La-
beling and Performance Benchmarking,” in Proceedings of the ACM
Conference on emerging Networking EXperiments and Technologies,
2010.

15

https://www.spamhaus.org/drop/
https://www.spamhaus.org/drop/
www.frgp.net
http://www.isi.edu/ant/lander

[70] D. Wagner, D. Kopp, M. Wichtlhuber, C. Dietzel, O. Hohlfeld,
G. Smaragdakis, and A. Feldmann, “United we stand: Collaborative
detection and mitigation of amplification ddos attacks at scale,” in
Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security, 2021, pp. 970–987.

[71] R. Sommer and V. Paxson, “Outside the closed world: On using ma-
chine learning for network intrusion detection,” in IEEE symposium
on security and privacy, 2010, pp. 305–316.

[72] Y. Lavinia, R. Durairajan, R. Rejaie, and W. Willinger, “Challenges
in using ml for networking research: How to label if you must,” in
Proceedings of the Workshop on Network Meets AI & ML, 2020, pp.
21–27.

[73] “The CAIDA UCSD ”DDoS attack 2007” dataset,” http://www.caida.
org/data/passive/ddos-20070804 dataset.xml, accessed: 2022.

[74] Z. Xu, S. Ramanathan, A. Rush, J. Mirkovic, and M. Yu, “Xatu:
boosting existing ddos detection systems using auxiliary signals,”
in Proceedings of the 18th International Conference on emerging
Networking EXperiments and Technologies, 2022, pp. 1–17.

[75] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward gener-
ating a new intrusion detection dataset and intrusion traffic charac-
terization.” ICISSp, vol. 1, pp. 108–116, 2018.

[76] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–
374, 2012.

[77] “IDS 2018,” https://www.unb.ca/cic/datasets/ids-2018.html, accessed:
2023-06-22.

[78] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2019, pp. 1–8.

[79] R. Montoro, “Quick analysis of a DDoS attack using ssdp,” https://
blog.sucuri.net/2014/09/quick-analysis-of-a-ddos-attack-using-ssdp.
html, 2022.

[80] T. A. Tuan, H. V. Long, R. Kumar, I. Priyadarshini, N. T. K. Son
et al., “Performance evaluation of botnet ddos attack detection using
machine learning,” Evolutionary Intelligence, pp. 1–12, 2019.

[81] D. Stiawan, M. Y. B. Idris, A. M. Bamhdi, R. Budiarto et al., “Cicids-
2017 dataset feature analysis with information gain for anomaly
detection,” IEEE Access, vol. 8, pp. 132 911–132 921, 2020.

[82] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[83] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” in
Ensemble machine learning. Springer, 2012, pp. 157–175.

[84] “randomForest: Breiman and cutler’s random forests for clas-
sification and regression,” https://cran.r-project.org/web/packages/
randomForest/randomForest.pdf, accessed: 2022.

[85] Y. Zhou, D. Zhang, K. Gao, C. Sun, J. Cao, Y. Wang, M. Xu,
and J. Wu, “Newton: Intent-driven network traffic monitoring,” in
Proceedings of the ACM Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2020, pp. 295–308.

[86] C. Misa, W. O’Connor, R. Durairajan, R. Rejaie, and W. Walter,
“Dynamic scheduling of approximate telemetry queries,” in Proceed-
ings of the USENIX Symposium on Networked Systems Design and
Implementation, 2022, pp. 701–717.

[87] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[88] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
CCR, vol. 44, no. 3, pp. 87–95, 2014.

[89] “Haskell language,” https://www.haskell.org/, accessed 2023-12-05.

[90] “In-band network telemetry (int) dataplane specification,” https://p4.
org/p4-spec/docs/INT v2 1.pdf, accessed 2023-12-05.

[91] D. Bernier, “Rfc 9378: In situ operations, administration, and main-
tenance (ioam) deployment,” 2023.

[92] C. Shou, R. Bhatia, A. Gupta, R. Harrison, D. Lokshtanov, and
W. Willinger, “Query planning for robust and scalable hybrid network
telemetry systems,” Proceedings of the ACM on Networking, vol. 2,
pp. 1–27, 2024.

[93] L. Ablon, M. C. Libicki, and A. A. Golay, Markets for cybercrime
tools and stolen data: Hackers’ bazaar. Rand Corporation, 2014.

[94] Z. Li and Q. Liao, “Toward a monopoly botnet market,” Information
Security Journal: A Global Perspective, vol. 23, no. 4-6, pp. 159–171,
2014.

[95] “Dark web price index 2022,” https://www.privacyaffairs.com/
dark-web-price-index-2022/, accessed: 2022.

[96] V. Segura and J. Lahuerta, “Modeling the economic incentives of ddos
attacks: Femtocell case study,” in Economics of information security
and privacy. Springer, 2010, pp. 107–119.

Appendix A.
Prefix-Level Attack Signatures

The methods developed in ZAPDOS are based on obser-
vations that both attack and benign sources are not uniformly
distributed in the source address space, but tend to cluster
in distinctive prefix-level structures formally described by
multifractal models [28]–[30]. While preliminary evidence
of multifractal clustering of benign Internet traffic has been
reported in [28], [29], in this section we provide concrete
arguments for why certain types of volumetric DDoS attack
traffic exhibit a similar clustering and the implications for
attack signature detection. In particular, we consider the two
most common volumetric DDoS attack scenarios: reflection-
based attacks (§ A.1) and botnet-based attacks (§ A.2).

A.1. Reflection-Based Attacks
The first common approach to generating large amounts

of traffic for a volumetric DDoS attack uses a set of publicly
accessible servers, known as reflectors or amplifiers, to
reflect and amplify attack traffic towards a victim [3]. In
particular, the attacker sends requests to these servers with
the source address of the request set to the address of the
victim so that the server’s response, which is typically much
larger than the attacker’s request, is forwarded to the victim.
Note that in reflection attacks, the victim sees traffic coming
the addresses of the servers used as reflectors and does not
directly observe the addresses responsible for launching the
attack.
Clustering of effective reflectors. Our first observation is
that, while attackers can freely choose which reflectors to
use, they cannot choose the IP addresses of particular reflec-
tors. Intuitively, since effective reflectors are typically mis-
configured servers with high-bandwidth connections and
stable up-time [33], reflectors can be expected to cluster in
address regions associated with networks that have a partic-
ular type of policy (e.g., lax policies about updates/patches
coupled with high-bandwidth connections to the rest of the
Internet). For example, Figure A.1 shows a scenario where
an attacker has identified DNS servers to use for reflection

16

http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://www.unb.ca/cic/datasets/ids-2018.html
https://blog.sucuri.net/2014/09/quick-analysis-of-a-ddos-attack-using-ssdp.html
https://blog.sucuri.net/2014/09/quick-analysis-of-a-ddos-attack-using-ssdp.html
https://blog.sucuri.net/2014/09/quick-analysis-of-a-ddos-attack-using-ssdp.html
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://www.haskell.org/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://www.privacyaffairs.com/dark-web-price-index-2022/
https://www.privacyaffairs.com/dark-web-price-index-2022/

in 10.30.0.0/16 and 10.20.0.0/16 (i.e., the “−” partition
of the address space where it is easy to launch attacks
from). However, a majority of the defender’s clients are in
10.10.0.0/16 (i.e., the “+” partition of the address space)
with only one client co-located in a prefix abused by the
attacker (10.20.0.0/16). Clearly an optimal defense in this
scenario would seek to focus resources on separating the
mix of benign and attack traffic from 10.20.0.0/16 rather
than treating each prefix uniformly.

DNS DNS
10.30.0.0/16
-

DNSClient
10.20.0.0/16

-
Client Client
10.10.0.0/16 +

defender's
network Attacker

Figure A.1: Example of “+” and “−” partitions of the source
address space in a DNS reflection attack.

The existence of networks whose policies support abus-
able services (like the DNS servers of 10.20.0.0/16 and
10.30.0.0/16 in Figure A.1) is unfortunately widely ac-
cepted [66], [67] and several works analyzing actual DDoS
attacks purchased from booters services [35], as well as
leaked operation data bases of booters [32], [33] confirm that
reflectors actually used by such services do tend to cluster
in a few specific ASes. For example, [33] found that a single
AS was responsible for ∼20% of all SSDP amplifiers used
by a particular booter service.
Relationship to benign traffic. Because most publicly-
available datasets contain only anonymized IP addresses, it
is hard to estimate the degree to which the clustering of
benign traffic might overlap with the clustering of effective
reflectors used for DDoS attacks (i.e., the prevalence of
prefixes like 10.20.0.0/16 from Figure A.1). However, we
argue that it is unlikely for the types of networks that host
large numbers of effective collectors to overlap significantly
with networks that host the benign clients of enterprise or
campus networks.

A.2. Botnet-Based Attacks
The second common approach for launching volumetric

DDoS attacks is to leverage a large set of infected hosts
known as a botnet to directly send a flood of traffic to-
wards the victim [7], [36]. Since bots are infected hosts
in otherwise non-malicious networks, we assume they do
not spoof their source addresses, an assumption confirmed
by several empirical studies of botnets used for launching
DDoS attacks [7], [8]. As a result, we assume the victim
sees traffic coming directly from bot addresses.
Different costs for different regions. The simplest and
most common means for an attacker to gain access to a
sufficiently large botnet is to simply purchase access through
a pay-per-install (PPI) market place [6], [93]. However,
due to strong free-market competition [93], [94], prices for
bots in different regions of the IP address space can vary
drastically. For example, Figure A.2 shows a scenario where
the cost for the attacker to access a bot in 10.50.0.0/16 or

10.40.0.0/16 (i.e., the “+” partition of the address space)
is far greater than the cost to access a bit in 10.60.0.0/16
(i.e., the “−” partition of the address space). An optimal
defense in this scenario would focus resources on separating
attack and benign traffic coming from 10.40.0.0/16 and
10.50.0.0/16 and would simply block 10.60.0.0/16 with a
single TCAM entry.

$Bot $Bot
10.60.0.0/16
-$$$BotClient

10.50.0.0/16

+

Client Client
$$$Bot

10.40.0.0/16 +
defender's
network

Attacker

Figure A.2: Example of “+” and “−” partitions of the source
address space in a botnet-based attack.

Differing prices based on region are commonly used to
distinguish between service tiers in the PPI market place.
For example, [95]12 and [6] both report a roughly order
of magnitude difference between location-agnostic installs
and installs in US-based regions. Moreover, there is strong
reason to believe that such price differentiation is a natural
and persistent result of the economic model of the PPI mar-
ket place [94], [96] (intuitively, strong competition between
different PPI providers fosters service differentiation and
pricing by region is a commonly implement form of such
differentiation).

Appendix B.
Generic Reflection Attack Features

In this section we describe the generic rrDiff feature
which summarises multiple well-known signatures at the
prefix-level. Intuitively, rrDiff captures patterns where
attack traffic tends to have a larger number of packets
of one class (e.g., responses) compared to another class
(e.g., requests). (Note that we will refer to these two classes
as “responses” and “requests” in the following.)

In particular, for each prefix p and each attack vector v,
we compute the total number of request packets (reqp,v) and
the total number of response packets (respp,v), respectively.
Table B.1 shows the set of response and request entries
for the attack vectors considered in this work along with
details about how we classify packets as being requests or
responses for each vector. Given these sums that the switch
hardware computes for a given prefix p, we consider the
feature rrDiffp that summarizes the degree of response-
request imbalance in that prefix and is defined as

rrDiffp = max
v

(respp,v − reqp,v)

Intuitively, the value of rrDiffp will be high if p sources
attack traffic and close to zero if p sources only benign
traffic.

12. Though absolute prices have increased, the difference between re-
gions over the last three years of the dark web price index [95] have
remained relatively constant.

13. Note that SYN floods are not technically a reflection attack, but
we can still capture their asymmetry with our response/request difference
feature.

17

Protocol Request Response
DNS refl. UDP to port 53 UDP from port 53
NTP refl. UDP to port 123 UDP from port 123

SSDP refl. UDP to port 1900 UDP from port 1900
SYN flood13 TCP, SYN+ACK set TCP, only SYN set

TABLE B.1: List of currently considered reflection vectors.

Appendix C.
Extended Evaluation

Since ZAPDOS uses a limited amount of switch hard-
ware memory to monitor attack prefixes, we evaluate how
changes to the amount of memory used and to the number of
distinct attack sources impact performance. We repeat these
evaluations over all 6 attack vectors from Table 3 and show
the minimum, median, and maximum values in Figure C.3.

0.2
0.3
0.4
0.5
0.6

2K 4K 6K 8K

FP
R

 (%
)

0

5

10

2K 4K 6K 8K

FN
R

 (%
)

10
15
20
25

2K 4K 6K 8K
prefixesPerEpoch

FN
R

 <
=

10
%

 (s
)

(a) Varying resources.

0.0
0.5
1.0
1.5

1K 3K 10K 30K

FP
R

 (%
)

0
2
4

1K 3K 10K 30K

FN
R

 (%
)

5
6
7
8
9

10

1K 3K 10K 30K
sources

FN
R

 <
=

10
%

 (s
)

(b) Varying attack parameter.

Figure C.3: Performance of ZAPDOS while varying
prefixesPerEpoch (left) and the number of distinct
attack sources (right).

Impact of resource constraints. In Figure C.3a, we
vary prefixesPerEpoch while keeping the num-
ber of attack sources constant at 50 k. In all cases,
ZAPDOS achieves low FPR (0.3% to 0.4%) independent
of prefixesPerEpoch. On the other hand, FNR as
well as time until FNR is less than 10% decreases as
prefixesPerEpoch increases since monitoring more
prefixes each epoch enables faster progress towards iden-
tifying all attack sources.
Impact of attack sources. In Figure C.3b, we vary the
number of distinct sources in attack traffic while keeping
prefixesPerEpoch at 8 k. ZAPDOS achieves consis-
tently low error rates (∼ 0.5% FPR and ∼3.5% FNR) for
a wide range of number of sources (500 through 10 k).
However, as the number of sources increases, both total
FNR and the time until per-epoch FNR drops below 10%
begin increasing. We recall that the total attack traffic rate
is held constant across these scenarios so that with more
sources, the per-source attack rate is significantly reduced.
As reflected in Figure C.3b, this decrease in per-source
attack rate makes the detection problem harder by reducing
the relative strength of the attack signals compared to benign
traffic hence increasing ZAPDOS’s latency and FNR.

Handling Flooded Border Links A volumetric DDoS at-
tack against a small enterprise or campus network at the
edge of the Internet can flood the network’s main border
link, rendering in-network mitigation methods (e.g., Jaqen,
Euclid) ineffective and degrading the accuracy of traffic
monitoring performed at the edge network. To demonstrate
the utility of ZAPDOS’s attack signatures in this scenario,
we simulate a 1 Gbps border link inserted in front of
where ZAPDOS performs its traffic monitoring computations
(using a simulated 100 KB FIFO queue). We generate DNS
reflection attacks using random samples of 10k sources14

from the Booters [35] dataset and varying the per-source
attack data rate so that the overall attack rate varies from 500
to 2000 Mbps. We simulate upstream mitigation by dropping
all packets matching ZAPDOS’s reported attack signature.

1
10

100

0.5 1 1.5 2
Attack volume (Gbps)%

 b
en

ig
n

by
te

s
lo

st No Defense ZAPDOS

(a) Total bytes of benign traffic lost
with and without ZAPDOS.

10

20

0.5 1 1.5 2
Attack volume (Gbps)

tim
e

till
 <

10
%

 lo
ss

(s
)

(b) Time till benign bytes
lost drops below 10%.

Figure C.4: Impact of DNS refl. attack volume on de-
fense performance given a 1 Gbps upstream bottleneck link.
ZAPDOS reduces benign traffic loss to less than 10% in less
than 10 s for the strongest attack (2 Gbps).

Figure C.4 shows the performance of ZAPDOS over 10
independent attacks at each attack volume in terms of total
damage (volume of benign traffic dropped by the flooded
link) and the time it takes before ZAPDOS reduces per-
epoch damage to below 10%. We observe that with no
defense, the volume of dropped benign traffic increases
consistently with increasing attack volume. On the other
hand, Figure C.4a shows that signature-based upstream mit-
igation enabled by ZAPDOS reduces flooding-induced loss
to below 10% (median over 10 attacks), even for the largest
attack volume (which is 2× the border link’s throughput and
incurs ∼85% loss without defense). For all attack volumes,
ZAPDOS reduces benign loss more than 10×.

Figure C.4b shows that larger attacks require longer re-
finement time before the attack signature is specific enough
to reduce loss to below 10%. We observe a similar trend for
other percentages of benign traffic loss. This is due to the
fact that even though ZAPDOS refines signatures at a similar
rate for all attack volumes, in larger attacks, individual
attack sources send larger volumes of attack traffic so that
a larger number of sources must be blocked before the
overall reduction in attack traffic (and hence damage to
benign traffic) reaches the same level as for smaller attacks.
Nonetheless, even for the 2 Gbps attack, ZAPDOS reduces
loss to below 10% in less than 10 s on average.

14. Note that we use a smaller number of sources compared to, e.g., Fig-
ure 12 due to the smaller number of sources available in the Booters dataset.

18

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper presents ZAPDOS, a system that targets
detection of DDoS attack signatures with a unique dual
hardware-software approach. For scalable and efficient de-
tection, ZAPDOS monitors source prefixes in high-speed
programmable switches, and uses signature-based ML clas-
sification with other heuristics to identify and pinpoint sus-
picious prefixes.

D.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) This paper addresses a long-known issue. Defend-
ing against DDoS attacks remains a challenge to-
day, and this paper offers a novel defense paradigm
targeted for small to mid-sized enterprises with
reduced resource capacity, which is important and
practical.

2) This paper provides a valuable step forward in an
established field. It presents a fresh perspective on
DDoS detection by considering non-uniform traffic
distributions, and validates the practicality of the
defense on a programmable switch.

19

	Introduction
	Background & Motivation
	Setting
	Requirements
	Related Work
	Untapped Potential of Prefix-Level Signatures

	Design and Overview of ZAPDOS@汥瑀瑯步渠
	Threat Model
	Overview of ZAPDOS@汥瑀瑯步渠

	Per-Prefix Risk Model
	Data-fusion for Realistic Prefix-level Features
	Modeling Setup

	Iterative Prefix Refinement
	Baseline Approaches
	Scheduling Prefixes on Fixed Monitoring Slots
	Deciding Length of Reported Prefixes

	Tuning Refinement for Dynamic Attacks
	Look-Ahead to Avoid Empty Children
	Look-Back to Catch Changes

	ZAPDOS@汥瑀瑯步渠 Prototype
	Evaluation
	Setup
	ZAPDOS@汥瑀瑯步渠 Prototype Performance
	Performance Against Modern Attacks
	Simple attacks: Single-vector and static
	Complex attacks: Multi-vector and dynamic

	Sensitivity Analysis
	Impact of Proximity of Attack Sources

	Adversarial Considerations
	Summary
	References
	Appendix A: Prefix-Level Attack Signatures
	Reflection-Based Attacks
	Botnet-Based Attacks

	Appendix B: Generic Reflection Attack Features
	Appendix C: Extended Evaluation
	Appendix D: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

