CS 267: Automated Verification

Lecture 1: Brief Introduction. Transition Systems. Temporal Logic LTL.

Instructor: Tevfik Bultan

What do these people have in common?

2013 Leslie Lamport 2007 Clarke, Edmund M 2007 Emerson, E Allen 2007 Sifakis, Joseph 1996 Pnueli, Amir 1991 Milner, Robin 1980 Hoare, C. Antony R. 1978 Floyd, Robert W 1972 Dijkstra, E. W.

An influential automated verification technique: Model Checking

- What is model checking?
 - Automated verification technique
 - Focuses on bug finding rather than proving correctness
 - The basic idea is to exhaustively search for bugs in software
 - Has many flavors
 - Explicit-state model checking
 - Symbolic model checking
 - Bounded model checking

Hardware to Software Model Checking

- In 90s model checking was mainly used in industry as a technique for analyzing hardware designs
 - Most hardware companies had their in house automated verification tools
- In the last two decades promising results have been obtained in verification of software
 - Model checking device drivers in Microsoft
 - Model checking tools found numerous bugs in Linux code
 - Automated verification techniques has been used in industry for detecting security vulnerabilities

Is There More Research Left To Do?

- Verification techniques do not scale well
 - To verify a program you need to investigate all possible states (configurations) of the program somehow
 - In theory: inifinite state \Rightarrow undecidable
 - In practice: finite but large number of states \Rightarrow run out of memory
- We look for ways to reduce the state space while showing that properties we are interested are preserved in the transformed system
 - symbolic representations
 - modularity
 - abstraction
 - symmetry reduction, etc.

Beyond Model Checking

- Promising results obtained in the model checking area created a new interest in automated verification
- Nowadays, there is a wide spectrum of verification/analysis/testing techniques with varying levels of power and scalability
 - Bounded verification using SAT solvers
 - Symbolic execution using Satisfiability Modulo Theories (SMT) solvers
 - Dynamic symbolic execution (aka concolic execution)
 - Various types of symbolic analysis: shape analysis, string analysis, size analysis, etc.
- Taking this course should give you a better understanding of all these techniques

What to Verify

- Before we start talking about automated verification techniques, we need to identify what we want to verify
- It turns out that this is not a very simple question
- For the rest of this lecture we will discuss issues related to this question

A Mutual Exclusion Protocol

Two concurrently executing processes are trying to enter a critical section without violating mutual exclusion

```
Process 1:
while (true) {
   out: a := true; turn := true;
   wait: await (!b or !turn);
   cs: a := false;
}
Process 2:
while (true) {
   out: b := true; turn := false;
   wait: await (!a or turn);
   cs: b := false;
}
```

Reactive Systems: A Very Simple Model

- We will use a very simple model for reactive systems
- A reactive system generates a set of *execution paths*
- An execution path is a concatenation of the states (configurations) of the system, starting from some *initial state*
- There is a *transition relation* which specifies the *next-state* relation, i.e., given a state what are the states that can follow that state

State Space

- The state space of a program can be captured by the valuations of the variables and the program counters
- For our example, we have
 - two program counters: pc1, pc2
 - domains of the program counters: {out, wait, cs}
 - three boolean variables: turn, a, b

boolean domain: {True, False}

• Each *state* of the program is a valuation of all the variables

State Space

- Each state can be written as a tuple (pc1,pc2,turn,a,b)
- Initial states: { (0,0,F,F,F), (0,0,F,F,T), (0,0,F,T,F), (0,0,F,T,T), (0,0,T,F,F), (0,0,T,F,F), (0,0,T,F,F), (0,0,T,F,F), (0,0,T,T,T) }
 initially: pc1=0 and pc2=0
- How many states total?

3 * 3 * 2 * 2 * 2 = 72

exponential in the number of variables and the number of concurrent components

Transition Relation

- Transition Relation specifies the next-state relation, i.e., given a state what are the states that can come immediately after that state
- For example, given the initial state (0,0,F,F,F)
 Process 1 can execute:

```
out: a := true; turn := true;
```

or Process 2 can execute:

```
out: b := true; turn := false;
```

- If process 1 executes, the next state is (w, o, T, T, F)
- If process 2 executes, the next state is (O, W, F, F, T)
- So the state pairs ((0,0,F,F,F), (w,0,T,T,F)) and ((0,0,F,F,F), (0,w,F,F,T)) are included in the transition relation

Transition Relation

The transition relation is like a graph, edges represent the next-state relation

Transition System

- A *transition system* T = (S, I, R) consists of
 - a set of states S
 - a set of initial states $I \subseteq S$
 - and a transition relation $R \subseteq S \times S$
- A common assumption in model checking
 - R is total, i.e., for all $s \in S$, there exists s' such that (s,s') $\in R$

Execution Paths

A *path* in T = (S, I, R) is an infinite sequence of states x = s₀, s₁, s₂, ... such that for all i ≥ 0, (s_i,s_{i+1}) ∈ R

Notation: For any path x x_i denotes the i' th state on the path (i.e., s_i) x^i denotes the i' th suffix of the path (i.e., s_i , s_{i+1} , s_{i+2} , ...)

An execution path in T = (S, I, R) is a path x in T = (S, I, R) where x₀ ∈ I

Execution Paths

A possible execution path:

 $((0,0,F,F,F), (0,W,F,F,T), (0,C,F,F,T))^{\omega}$

(ω means repeat the above three states infinitely many times)

Temporal Logics

- Pnueli proposed using temporal logics for reasoning about the properties of reactive systems
- Temporal logics are a type of modal logics
 - Modal logics were developed to express modalities such as "necessity" or "possibility"
 - Temporal logics focus on the modality of temporal progression
- Temporal logics can be used to express, for example, that:
 - an assertion is an invariant (i.e., it is true all the time)
 - an assertion eventually becomes true (i.e., it will become true sometime in the future)

Temporal Logics

- We will assume that there is a set of basic (*atomic*) properties called AP
 - These are used to write the basic (non-temporal) assertions about the program
 - Examples: a=true, pc0=c, x=y+1
- We will use the usual boolean connectives: \neg , \land , \lor
- We will also use four *temporal operators*: Invariant p : G p (aka $\Box p$) (Globally) Eventually p : F p (aka $\diamondsuit p$) (Future) Next p : X p (aka $\bigcirc p$) (neXt) p Until q : $p \cup q$

Atomic Properties

 In order to define the semantics we will need a function L which evaluates the truth of atomic properties on states:

```
L: S \times AP \rightarrow \{True, False\}
```

```
L((o,o,F,F,F), pc1=o) = True
L((o,o,F,F,F), pc1=w) = False
L((o,o,F,F,F), turn) = False
L((o,o,F,F,F), turn=false) = True
```

Linear Time Temporal Logic (LTL) Semantics

Given a path x and LTL properties p and q

- $x \mid = p \qquad \quad \text{iff} \qquad L(x_0, \, p) = \text{True}, \, \text{where} \, p \in AP$
- $x \models \neg p$ iff not $x \models p$
- $x \mid = p \land q$ iff $x \mid = p$ and $x \mid = q$
- $x \mid = p \lor q$ iff $x \mid = p \text{ or } x \mid = q$
- x = X p iff x^1

iff

x |= G p

x |= F p

x = p U q

- x1 |= p
- iff for all $i \ge 0$, $x^i \models p$
 - there exists an $i \ge 0$ such that $x^i \models p$
 - $\begin{array}{ll} \text{iff} & \text{there exists an } i \geq 0 \text{ such that } x^i \mid = q \text{ and} \\ & \text{for all } 0 \leq j < i, \ x^j \mid = p \end{array}$

LTL Properties

Example Properties

mutual exclusion: G (\neg (pc1=c \land pc2=c)) starvation freedom:

 $G(\text{pc1=w} \Rightarrow F(\text{pc1=c})) \land G(\text{pc2=w} \Rightarrow F(\text{pc2=c}))$

Given the execution path:

```
\mathbf{X} = ((\circ, \circ, \mathsf{F}, \mathsf{F}, \mathsf{F}), (\circ, \mathsf{w}, \mathsf{F}, \mathsf{F}, \mathsf{T}), (\circ, \circ, \mathsf{F}, \mathsf{F}, \mathsf{T}))^{\omega}
```

$$\begin{array}{l} x \mid = pc1=o \\ x \mid = X \ (pc2=w) \\ x \mid = F \ (pc2=c) \\ x \mid = (\neg turn) \ U \ (pc2=c \land b) \\ x \mid = G \ (\neg (pc1=c \land pc2=c)) \\ x \mid = G(pc1=w \Rightarrow F(pc1=c)) \land G(pc2=w \Rightarrow F(pc2=c)) \end{array}$$

LTL Equivalences

We do not really need all four temporal operators

 X and U are enough (i.e., X, U, AP and boolean connectives form a basis for LTL)

F p = true U p

 $G p = \neg (F \neg p) = \neg (true U \neg p)$

LTL Model Checking

Given a transition system T and an LTL property p
 T |= p iff for all execution paths x in T, x |= p

For example:

T |=? G (
$$\neg$$
 (pc1=c \land pc2=c))
T |=? G(pc1=w \Rightarrow F(pc1=c)) \land G(pc2=w \Rightarrow F(pc2=c))

Model checking problem: Given a transition system T and an LTL property p, determine if T is a model for p (i.e., if T |=p)