
CS 267: Automated Verification

Lecture 1: Brief Introduction. Transition Systems.
Temporal Logic LTL.

Instructor: Tevfik Bultan

What do these people have in common?

2013 Leslie Lamport
2007 Clarke, Edmund M
2007 Emerson, E Allen
2007 Sifakis, Joseph
1996 Pnueli, Amir
1991 Milner, Robin
1980 Hoare, C. Antony R.
1978 Floyd, Robert W
1972 Dijkstra, E. W.

An influential automated verification technique:
Model Checking
• What is model checking?

– Automated verification technique
– Focuses on bug finding rather than proving correctness
– The basic idea is to exhaustively search for bugs in

software
– Has many flavors

• Explicit-state model checking
• Symbolic model checking
• Bounded model checking

Hardware to Software Model Checking

• In 90s model checking was mainly used in industry as a
technique for analyzing hardware designs
– Most hardware companies had their in house automated

verification tools
• In the last two decades promising results have been

obtained in verification of software
– Model checking device drivers in Microsoft
– Model checking tools found numerous bugs in Linux

code
– Automated verification techniques has been used in

industry for detecting security vulnerabilities

Is There More Research Left To Do?

• Verification techniques do not scale well

– To verify a program you need to investigate all possible

states (configurations) of the program somehow

– In theory: inifinite state Þ undecidable

– In practice: finite but large number of states Þ run out of

memory

• We look for ways to reduce the state space while showing

that properties we are interested are preserved in the

transformed system

– symbolic representations

– modularity

– abstraction

– symmetry reduction, etc.

Beyond Model Checking

• Promising results obtained in the model checking area
created a new interest in automated verification

• Nowadays, there is a wide spectrum of
verification/analysis/testing techniques with varying levels
of power and scalability
– Bounded verification using SAT solvers
– Symbolic execution using Satisfiability Modulo Theories

(SMT) solvers
– Dynamic symbolic execution (aka concolic execution)
– Various types of symbolic analysis: shape analysis,

string analysis, size analysis, etc.
• Taking this course should give you a better understanding

of all these techniques

What to Verify

• Before we start talking about automated verification
techniques, we need to identify what we want to verify

• It turns out that this is not a very simple question

• For the rest of this lecture we will discuss issues related to
this question

A Mutual Exclusion Protocol

Process 1:
while (true) {

out: a := true; turn := true;
wait: await (!b or !turn);
cs: a := false;

}
||
Process 2:
while (true) {

out: b := true; turn := false;
wait: await (!a or turn);
cs: b := false;

}

Two concurrently executing processes are trying to enter a
critical section without violating mutual exclusion

Reactive Systems: A Very Simple Model

• We will use a very simple model for reactive systems

• A reactive system generates a set of execution paths

• An execution path is a concatenation of the states
(configurations) of the system, starting from some initial
state

• There is a transition relation which specifies the next-state
relation, i.e., given a state what are the states that can
follow that state

State Space

• The state space of a program can be captured by the
valuations of the variables and the program counters

• For our example, we have
– two program counters: pc1, pc2

domains of the program counters: {out, wait, cs}
– three boolean variables: turn, a, b

boolean domain: {True, False}

• Each state of the program is a valuation of all the variables

State Space

• Each state can be written as a tuple
(pc1,pc2,turn,a,b)

• Initial states: {(o,o,F,F,F), (o,o,F,F,T),
(o,o,F,T,F), (o,o,F,T,T), (o,o,T,F,F),
(o,o,T,F,T), (o,o,T,T,F), (o,o,T,T,T)}
– initially: pc1=o and pc2=o

• How many states total?
3 * 3 * 2 * 2 * 2 = 72
exponential in the number of variables and the number of

concurrent components

Transition Relation

• Transition Relation specifies the next-state relation, i.e.,
given a state what are the states that can come
immediately after that state

• For example, given the initial state (o,o,F,F,F)
Process 1 can execute:
out: a := true; turn := true;
or Process 2 can execute:
out: b := true; turn := false;

• If process 1 executes, the next state is (w,o,T,T,F)
• If process 2 executes, the next state is (o,w,F,F,T)
• So the state pairs ((o,o,F,F,F),(w,o,T,T,F)) and
((o,o,F,F,F),(o,w,F,F,T)) are included in the
transition relation

Transition Relation

The transition relation is like a graph, edges represent the
next-state relation

(o,o,F,F,F)

(o,w,F,F,T) (w,o,T,T,F)

(o,c,F,F,T) (w,w,T,T,T)

Transition System

• A transition system T = (S, I, R) consists of
– a set of states S
– a set of initial states I Í S
– and a transition relation R Í S ´ S

• A common assumption in model checking
– R is total, i.e., for all s Î S, there exists s’ such

that (s,s’) Î R

Execution Paths

• A path in T = (S, I, R) is an infinite sequence of states
x = s0, s1, s2, ...
such that for all i ³ 0, (si,si+1) Î R

Notation: For any path x
xi denotes the i’th state on the path (i.e., si)
xi denotes the i’th suffix of the path (i.e., si, si+1, si+2, ...)

• An execution path in T = (S, I, R) is a path x in T = (S, I, R)
where x0 Î I

Execution Paths

A possible execution path:
((o,o,F,F,F), (o,w,F,F,T), (o,c,F,F,T))w

(w means repeat the above three states infinitely many times)

(o,o,F,F,F)

(o,w,F,F,T) (w,o,T,T,F)

(o,c,F,F,T) (w,w,T,T,T)

Temporal Logics

• Pnueli proposed using temporal logics for reasoning about
the properties of reactive systems

• Temporal logics are a type of modal logics
– Modal logics were developed to express modalities such

as “necessity” or “possibility”
– Temporal logics focus on the modality of temporal

progression

• Temporal logics can be used to express, for example, that:
– an assertion is an invariant (i.e., it is true all the time)
– an assertion eventually becomes true (i.e., it will become

true sometime in the future)

Temporal Logics

• We will assume that there is a set of basic (atomic)
properties called AP
– These are used to write the basic (non-temporal)

assertions about the program
– Examples: a=true, pc0=c, x=y+1

• We will use the usual boolean connectives: ¬ , Ù , Ú

• We will also use four temporal operators:
Invariant p : G p (aka p) (Globally)
Eventually p : F p (aka p) (Future)
Next p : X p (aka p) (neXt)
p Until q : p U q

Atomic Properties

• In order to define the semantics we will need a function L
which evaluates the truth of atomic properties on states:

L : S ´ AP ® {True, False}

L((o,o,F,F,F), pc1=o) = True
L((o,o,F,F,F), pc1=w) = False
L((o,o,F,F,F), turn) = False
L((o,o,F,F,F), turn=false) = True

Linear Time Temporal Logic (LTL) Semantics

Given a path x and LTL properties p and q

x |= p iff L(x0, p) = True, where p Î AP
x |= ¬p iff not x |= p
x |= p Ù q iff x |= p and x |= q
x |= p Ú q iff x |= p or x |= q

x |= X p iff x1 |= p
x |= G p iff for all i ³ 0, xi |= p
x |= F p iff there exists an i ³ 0 such that xi |= p
x |= p U q iff there exists an i ³ 0 such that xi |= q and

for all 0 £ j < i, xj |= p

LTL Properties

p
. . .

pp p p p p
. . .

p
. . .

pp p p q
. . .

X p

G p

F p

p U q

Example Properties

mutual exclusion: G (¬ (pc1=c Ù pc2=c))
starvation freedom:

G(pc1=w Þ F(pc1=c)) Ù G(pc2=w Þ F(pc2=c))

Given the execution path:
x =((o,o,F,F,F), (o,w,F,F,T), (o,c,F,F,T))w

x |= pc1=o
x |= X (pc2=w)
x |= F (pc2=c)
x |= (¬turn) U (pc2=c Ù b)
x |= G (¬ (pc1=c Ù pc2=c))
x |= G(pc1=w Þ F(pc1=c)) Ù G(pc2=w Þ F(pc2=c))

LTL Equivalences

• We do not really need all four temporal operators
– X and U are enough (i.e., X, U, AP and boolean

connectives form a basis for LTL)

F p = true U p

G p = ¬ (F¬p) = ¬ (true U ¬p)

LTL Model Checking

• Given a transition system T and an LTL property p

T |= p iff for all execution paths x in T, x |= p

For example:

T |=? G (¬ (pc1=c Ù pc2=c))

T |=? G(pc1=w Þ F(pc1=c)) Ù G(pc2=w Þ F(pc2=c))

Model checking problem: Given a transition system T and

an LTL property p, determine if T is a model for p (i.e., if

T |=p)

