CS 267: Automated Verification

Lecture 12: Bounded Model Checking
Instructor: Tevfik Bultan

Remember Symbolic Model Checking

- Represent sets of states and the transition relation as Boolean logic formulas
- Fixpoint computation becomes formula manipulation
- pre-condition (EX) computation: Existential variable elimination
- conjunction (intersection), disjunction (union) and negation (set difference), and equivalence check
- Use an efficient data structure for boolean logic formulas
- Binary Decision Diagrams (BDDs)

An Extremely Simple Example

Variables: x, y : boolean
Set of states:
$S=\{(F, F),(F, T),(T, F),(T, T)\}$
$S \equiv$ True

Initial condition:
$\mathrm{I} \equiv \neg \mathrm{X} \wedge \neg \mathrm{y}$
Transition relation (negates one variable at a time):
$R \equiv x^{\prime}=\neg x \wedge y^{\prime}=y \vee x^{\prime}=x \wedge y^{\prime}=\neg y$
(= means \leftrightarrow)

An Extremely Simple Example

- Assume that we want to check if this transition system satisfies the property $\mathrm{AG}(\neg \mathrm{x} \vee \neg \mathrm{y})$
- Instead of checking $A G(\neg x \vee \neg y)$ we can check $E F(x \wedge y)$
- Since $A G(\neg x \vee \neg y) \equiv \neg E F(x \wedge y)$

$$
\mathrm{I} \subseteq \mathrm{AG}(\neg \mathrm{x} \vee \neg \mathrm{y}) \text { if and only if } \mathrm{I} \cap \mathrm{EF}(\mathrm{x} \wedge \mathrm{y})=\varnothing
$$

- If we find an initial state which satisfies $E F(x \wedge y)$ (i.e., there exists a path from an initial state where eventually x and y both become true at the same time)
- Then we conclude that the property $\mathrm{AG}(\neg \mathrm{x} \vee \neg \mathrm{y})$ does not hold for this transition system
- If there is no such initial state, then property $\mathrm{AG}(\neg \mathrm{x} \vee \neg \mathrm{y})$ holds for this transition system

An Extremely Simple Example

Given $p \equiv \mathrm{x} \wedge \mathrm{y}$, compute $\mathrm{EX}(\mathrm{p})$
$E X(p) \equiv \exists V^{\prime} R \wedge p\left[V^{\prime} / V\right]$

$\equiv \exists V^{\prime} R \wedge x^{\prime} \wedge y^{\prime}$
$\equiv \exists V^{\prime}\left(x^{\prime}=\neg x \wedge y^{\prime}=y \vee x^{\prime}=x \wedge y^{\prime}=\neg y\right) \wedge x^{\prime} \wedge y^{\prime}$
$\equiv \exists V^{\prime}\left(x^{\prime}=\neg x \wedge y^{\prime}=y\right) \wedge x^{\prime} \wedge y^{\prime} \vee\left(x^{\prime}=x \wedge y^{\prime}=\neg y\right) \wedge x^{\prime} \wedge y^{\prime}$
$\equiv \exists V^{\prime} \neg x \wedge y \wedge x^{\prime} \wedge y^{\prime} \vee x \wedge \neg y \wedge x^{\prime} \wedge y^{\prime}$
$\equiv \neg \mathrm{x} \wedge \mathrm{y} \vee \mathrm{x} \wedge \neg \mathrm{y}$
$E X(x \wedge y) \equiv \neg x \wedge y \vee x \wedge \neg y$ In other words $\operatorname{EX}(\{(\mathrm{T}, \mathrm{T})\}) \equiv\{(\mathrm{F}, \mathrm{T}),(\mathrm{T}, \mathrm{F})\}$

An Extremely Simple Example

Let's compute compute $\mathrm{EF}(\mathrm{x} \wedge \mathrm{y})$

The fixpoint sequence is

False, $x \wedge y, x \wedge y \vee E X(x \wedge y), x \wedge y \vee E X(x \wedge y \vee E X(x \wedge y)), \ldots$ If we do the EX computations, we get:
$\underbrace{\text { False }}_{0}$,

$E F(x \wedge y) \equiv \operatorname{True} \equiv\{(F, F),(F, T),(T, F),(T, T)\}$
This transition system violates the property $\mathrm{AG}(\neg \mathrm{x} \vee \neg \mathrm{y})$ since it has an initial state that satisfies the property $E F(x \wedge y)$

Bounded Model Checking

- Represent sets of states and the transition relation as Boolean logic formulas
- Instead of computing the fixpoints, unroll the transition relation up to certain fixed bound and search for violations of the property within that bound
- Transform this search to a Boolean satisfiability problem and solve it using a SAT solver

Same Extremely Simple Example

Variables: x, y : boolean
Set of states:
$S=\{(F, F),(F, T),(T, F),(T, T)\}$
$S \equiv$ True

Initial condition:
$\mathrm{I}(\mathrm{x}, \mathrm{y}) \equiv \neg \mathrm{x} \wedge \neg \mathrm{y}$
Transition relation (negates one variable at a time):
$R\left(x, y, x^{\prime}, y^{\prime}\right) \equiv x^{\prime}=\neg x \wedge y^{\prime}=y \vee x^{\prime}=x \wedge y^{\prime}=\neg y \quad(=$ means $\leftrightarrow)$

Bounded Model Checking

- Assume that we like to check that if the initial states satisfy the formula $E F(x \wedge y)$
- Instead of computing a backward fixpoint, we will unroll the transition relation a fixed number of times starting from the initial states
- For each unrolling we will create a new set of variables:
- The initial states of the system will be characterized with the variables x_{0} and y_{0}
- The states of the system after executing one transition will be characterized with the variables x_{1} and y_{1}
- The states of the system after executing two transitions will be characterized with the variables x_{2} and y_{2}

Unrolling the Transition Relation

- Initial states: $\mathrm{I}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \equiv \neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0}$
- Unrolling the transition relation once (bound $\mathrm{k}=1$):

$$
\begin{aligned}
& \mathrm{I}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \wedge \mathrm{R}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{x}_{1}, \mathrm{y}_{1}\right) \\
& \equiv \neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge\left(\mathrm{x}_{1}=\neg \mathrm{x}_{0} \wedge \mathrm{y}_{1}=\mathrm{y}_{0} \vee \mathrm{x}_{1}=\mathrm{x}_{0} \wedge \mathrm{y}_{1}=\neg \mathrm{y}_{0}\right)
\end{aligned}
$$

- Unrolling the transition relation twice (bound $\mathrm{k}=2$):

$$
\begin{aligned}
& I\left(x_{0}, y_{0}\right) \wedge R\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \wedge R\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \\
& \equiv \neg x_{0} \wedge \neg y_{0} \wedge\left(x_{1}=\neg x_{0} \wedge y_{1}=y_{0} \vee x_{1}=x_{0} \wedge y_{1}=\neg y_{0}\right) \\
& \quad \wedge\left(x_{2}=\neg x_{1} \wedge y_{2}=y_{1} \vee x_{2}=x_{1} \wedge y_{2}=\neg y_{1}\right)
\end{aligned}
$$

- Unrolling the transition relation thrice (bound $\mathrm{k}=3$):

$$
\begin{aligned}
& I\left(x_{0}, y_{0}\right) \wedge R\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \wedge R\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \wedge R\left(x_{2}, y_{2}, x_{3}, y_{3}\right) \\
& \equiv \neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge\left(x_{1}=\neg x_{0} \wedge y_{1}=y_{0} \vee x_{1}=x_{0} \wedge y_{1}=\neg y_{0}\right) \\
& \wedge\left(x_{2}=\neg x_{1} \wedge y_{2}=y_{1} \vee x_{2}=x_{1} \wedge y_{2}=\neg y_{1}\right) \\
& \wedge\left(x_{3}=\neg x_{2} \wedge y_{3}=y_{2} \vee x_{3}=x_{2} \wedge y_{3}=\neg y_{2}\right)
\end{aligned}
$$

Expressing the Property

- How do we represent the property we wish to verify?
- Remember the property: We were interested in finding out if some initial state satisfies $\operatorname{EF}(x \wedge y)$
- This is equivalent to checking if $x \wedge y$ holds in some reachable state
- If we are doing bounded model checking with bound $\mathrm{k}=3$, we can express this property as:

$$
x_{0} \wedge y_{0} \vee x_{1} \wedge y_{1} \vee x_{2} \wedge y_{2} \vee x_{3} \wedge y_{3}
$$

Converting to Satisfiability

- We end up with the following formula for bound $k=3$:

$$
\begin{aligned}
F \equiv & l\left(x_{0}, y_{0}\right) \wedge R\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \wedge R\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \wedge R\left(x_{2}, y_{2}, x_{3}, y_{3}\right) \\
& \wedge \\
\equiv & \left.x_{0} \wedge y_{0} \vee x_{1} \wedge y_{1} \vee x_{2} \wedge y_{2} \vee x_{3} \wedge y_{3}\right) \\
\equiv & \neg x_{0} \wedge \neg y_{0} \wedge\left(x_{1}=\neg x_{0} \wedge y_{1}=y_{0} \vee x_{1}=x_{0} \wedge y_{1}=\neg y_{0}\right) \\
& \wedge\left(x_{2}=\neg x_{1} \wedge y_{2}=y_{1} \vee x_{2}=x_{1} \wedge y_{2}=\neg y_{1}\right) \\
& \wedge\left(x_{3}=\neg x_{2} \wedge y_{3}=y_{2} \vee x_{3}=x_{2} \wedge y_{3}=\neg y_{2}\right) \\
& \wedge\left(x_{0} \wedge y_{0} \vee x_{1} \wedge y_{1} \vee x_{2} \wedge y_{2} \vee x_{3} \wedge y_{3}\right)
\end{aligned}
$$

- Here is the main observation: if F is a satisfiable formula then there exists an initial state which satisfies $E F(x \wedge y)$
- A satisfying assignment to the boolean variables in F corresponds to a counter-example for $\mathrm{AG}(\neg \mathrm{x} \vee \neg \mathrm{y})$ (i.e., a witness for $E F(x \wedge y))$

The Result

$F \equiv$
$\neg \mathrm{x}_{0} \wedge \neg \mathrm{y}_{0} \wedge\left(\mathrm{x}_{1}=\neg \mathrm{x}_{0} \wedge \mathrm{y}_{1}=\mathrm{y}_{0} \vee \mathrm{x}_{1}=\mathrm{x}_{0} \wedge \mathrm{y}_{1}=\neg \mathrm{y}_{0}\right)$
$\wedge\left(x_{2}=\neg x_{1} \wedge y_{2}=y_{1} \vee x_{2}=x_{1} \wedge y_{2}=\neg y_{1}\right)$

$\wedge\left(x_{3}=\neg x_{2} \wedge y_{3}=y_{2} \vee x_{3}=x_{2} \wedge y_{3}=\neg y_{2}\right)$
$\wedge\left(x_{0} \wedge y_{0} \vee x_{1} \wedge y_{1} \vee x_{2} \wedge y_{2} \vee x_{3} \wedge y_{3}\right)$

Here is a satisfying assignment:
$x_{0}=F, y_{0}=F, x_{1}=F, y_{1}=T, x_{2}=T, y_{2}=T, x_{3}=F, y_{3}=T$
which corresponds to the (bounded) path:
(FF), (FIT), (T,T), (FT)

What Can We Guarantee?

- We converted checking property $\mathrm{AG}(\mathrm{p})$ to Boolean SAT solving by looking for bounded paths that satisfy $\mathrm{EF}(\neg \mathrm{p})$
- Note that we are checking only for bounded paths (paths which have at most $k+1$ distinct states)
- So if the property is violated by only paths with more than $\mathrm{k}+1$ distinct states, we would not find a counterexample using bounded model checking
- Hence if we do not find a counter-example using bounded model checking we are not sure that the property holds
- However, if we find a counter-example, then we are sure that the property is violated since the generated counterexample is never spurious (i.e., it is always a concrete counter-example)

Bounded Model Checking for LTL

- It is possible to extend the basic ideas we discussed for verifying properties of the form $\mathrm{AG}(\mathrm{p})$ to all LTL (and even ACTL*) properties.
- The basic observation is that we can define a bounded semantics for LTL properties so that if a path satisfies an LTL property based on the bounded semantics, then it satisfies the property based on the unbounded semantics
- This is why a counter-example found on a bounded path is guaranteed to be a real counter-example
- However, this does not guarantee correctness

Bounded Model Checking: Proving Correctness

- One can also show that given an LTL property f, if $\mathrm{E} f$ holds for a finite state transition system, then E f also holds for that transition system using bounded semantics for some bound k
- So if we keep increasing the bound, then we are guaranteed to find a path that satisfies the formula
- And, if we do not find a path that satisfies the formula, then we decide that the formula is not satisfied by the transition system
- Is there a problem here?

Proving Correctness

- We can modify the bounded model checking algorithm as follows:
- Start from an initial bound.
- If no counter-examples are found using the current bound, increment the bound and try again.
- The problem is: We do not know when to stop

Proving Correctness

- If we can find a way to figure out when we should stop then we would be able to provide guarantee of correctness.
- There is a way to define a diameter of a transition system so that a property holds for the transition system if and only if it is not violated on a path bounded by the diameter.
- So if we do bounded model checking using the diameter of the system as our bound, then we can guarantee correctness if no counter-example is found.

Bounded Model Checking

- What are the differences between bounded model checking and BDD-based symbolic model checking?
- In bounded model checking we are using a SAT solver instead of a BDD library
- In symbolic model checking we do not unroll the transition relation as in bounded model checking
- In bounded model checking we do not compute the fixpoint as in symbolic model checking
- In symbolic model checking for finite state systems both verification and falsification results are guaranteed
- In bounded model checking we can only guarantee the falsification results, in order to guarantee the verification results we need to know the diameter of the system

Bounded Model Checking

- Boolean satisfiability problem (SAT) is an NP-complete problem
- A bounded model checker needs an efficient SAT solver
- zChaff SAT solver is one of the most commonly used ones
- However, in the worst case any SAT solver we know will take exponential time
- Most SAT solvers require their input to be in Conjunctive Normal Form (CNF)
- So the final formula has to be converted to CNF

Bounded Model Checking

- Similar to BDD-based symbolic model checking, bounded model checking was also first used for hardware verification
- Later on, it was applied to software verification

Bounded Model Checking for Software

CBMC is a bounded model checker for ANSI-C programs

- Handles function calls using inlining
- Unwinds the loops a fixed number of times
- Allows user input to be modeled using non-determinism
- So that a program can be checked for a set of inputs rather than a single input
- Allows specification of assertions which are checked using the bounded model checking

Loops

- Unwind the loop n times by duplicating the loop body n times
- Each copy is guarded using an if statement that checks the loop condition
- At the end of the n repetitions an unwinding assertion is added which is the negation of the loop condition
- Hence if the loop iterates more than n times in some execution, the unwinding assertion will be violated and we know that we need to increase the bound in order to guarantee correctness
- A similar strategy is used for recursive function calls
- The recursion is unwound up to a certain bound and then an assertion is generated stating that the recursion does not go any deeper

A Simple Loop Example

Original code

```
x=0;
while (x < 2) {
    y=y+x;
    x++;
}
```

Unwinding the loop 3 times

```
X=0;
if (x < 2) {
    y=y+x;
    x++;
}
if (x < 2) {
    y=y+x;
    X++;
}
if (x < 2) {
    y=y+x;
    x++;
}
```

Unwinding

```
\longrightarrow \operatorname { a s s e r t ~ ( ! ~ ( x ~ < ~ 2 ) ) }
``` assertion:

\section*{From Code to SAT}
- After eliminating loops and recursion, CBMC converts the input program to the static single assignment (SSA) form
- In SSA each variable appears at the left hand side of an assignment only once
- This is a standard program transformation that is performed by creating new variables
- In the resulting program each variable is assigned a value only once and all the branches are forward branches (there is no backward edge in the control flow graph)
- CBMC generates a Boolean logic formula from the program using bit vectors to represent variables

\section*{Another Simple Example}

Original code
```

x=x+y;
if (x!=1)
x=2;
else
x++;
assert (x<=3);

```

Convert to static single assignment
\[
\begin{aligned}
& x_{1}=x_{0}+y_{0} ; \\
& \text { if }\left(x_{1}!=1\right) \\
& \quad x_{2}=2 ; \\
& \text { else } \\
& \quad x_{3}=x_{1}+1 ; \\
& x_{4}=\left(x_{1}!=1\right) ? x_{2}: x_{3} ; \\
& \operatorname{assert}\left(x_{4}<=3\right) ;
\end{aligned}
\]

Generate constraints
\(C \equiv x_{1}=x_{0}+y_{0} \wedge x_{2}=2 \wedge x_{3}=x_{1}+1 \wedge\left(x_{1}!=1 \wedge x_{4}=x_{2} \vee x_{1}=1 \wedge x_{4}=x_{3}\right)\)
\(\mathrm{P} \equiv \mathrm{x}_{4}<=3\)
Check if \(\mathrm{C} \wedge \neg \mathrm{P}\) is satisfiable, if it is then the assertion is violated
\(\mathrm{C} \wedge \neg \mathrm{P}\) is converted to boolean logic using a bit vector representation for the integer variables \(y_{0}, x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\)

\section*{Bounded Verification Approaches}
- What we have discussed above is bounded verification by bounding the number of steps of the execution.
- For this approach to work, the variable domains also need to be bounded, otherwise we cannot convert the problems to boolean SAT
- Bounding the execution steps and bounding the data domain are two orthogonal approaches.
- When people say bounded verification it may refer to either of these
- When people say bounded model checking, it typically refers to bounding the execution steps```

