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Information leaks via side channels
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Information leaks via side channels
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Information leaks via side channels
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Information leaks via side channels
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Side-channels in computing
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Reading kernel memory from user space Exploiting speculative execution



Segment oracle side channel vulnerability 
int memcmp(s1, s2, n) 

CONST VOID *s1; CONST VOID *s2; size t n;
{

unsigned char u1, u2;
for ( ; n– ; s1++, s2++) {

u1 = * (unsigned char *) s1; 
u2 = * (unsigned char *) s2;
if ( u1 != u2) { return (u1-u2); } 

}
return 0;

} 
Xbox OS, HMAC signatures compared with memcmp.
Leads to side-channel vulnerability and exploit! 
Prefix attack: attacker reveals the secret input segment by segment 8



Segment oracle side-channel vulnerability
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Information leakage

● To model information leakage, classify inputs and outputs as 
Secret and Public

● Confidentiality: Information about Secret input values should not 
be leaked to Public output values

● In the literature security levels are typically referred as            
High (Secret) and Low (Public) 
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Non-interference

● Having no information leakage is characterized as non-
interference

Non-interference: High (Secret) input values should have no 
influence on Low (Public) output values
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Non-interference is not practical for many cases

In many cases some leakage is unavoidable: 

● Any password checker leaks some information about the 
password

● Another example: Consider an electronic voting application

○ the result of the vote is public and it does leak information 
about the votes

○ but individual votes should be private

● For many practical cases non-interference is simply not possible 
and some information leakage from High values to Low values is 
unavoidable
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Quantifying information leakage

● If leakage is unavoidable, then the question becomes:
○ “How much information is leaked?”

● For example
○ How much information about a password can be obtained by 

the attacker who can enter different password guesses to the 
program?

● If the amount leaked is very small, the program might be 
considered secure even though there is some information 
leakage
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Quantitative information flow

● The goal of quantitative information flow techniques is to 
quantify the amount of information leaked from a given program

● Quantitative information flow techniques can be used to detect 
the amount of information leaked from side channels
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Side Channels
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Secret input (H)  
program

Public input (L)  Output 
(L)



Side Channels

16

Observations 
(execution time, memory usage) (L)  

Secret input (H) 
program

Public input (L) Output 
(L)
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How do we quantify information?

● Shannon Entropy
○ a measure of uncertainty about a random variable X
○ expected value (average) of information gain (i.e., the 

expected amount of surprise) by observing the value of the 
random variable expressed in terms of bits

● Or

expected value of (average) number of bits required to transmit X
optimally 
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Entropy example:
Example:
● Seattle weather, always raining: prain = 1
● Entropy: H = 0

● Costa Rica weather, coin flip: prain= 0.5, psun= 0.5
● Entropy: H = 1

● Santa Barbara weather, almost always beautiful: 
prain= 0.1, psun= 0.9

● Entropy: H = 0.496
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Binary Entropy



How do we quantify information?

● Random variable: 
● Domain of the random variable:
● Probability that the random variable takes the value 

● Shannon Entropy:  

● Shannon entropy is the expected value of:  
21



How do we quantify information leakage?

● Now that we know how to quantify information, how can we 
quantify information leakage?

● First, let’s give a simple program model:

S is the secret input to the program. We will model it as a random 
variable.

O is the public output of the program. We will model it also as a 
random variable

f is a function from values of S to values of O we use to model a 
deterministic program 



Initial uncertainty

● What is the initial uncertainty for S? 
○ What is the amount of information that we need to learn about 

the secret?

● Assume that the probability distribution for the secret is uniform
○ so all values are equally likely
○ then, the amount of information that we need to learn is:



Partitioning the secret domain

● Given a program 

● The values we observe as the output of the program define an 
equivalence relation for the secret S

● So, by observing output of the program, we partition the secret 
values to equivalence classes



Partitioning the secret domain

● The number of equivalence classes in the partition are: 

● If the function is a constant function, where the output is constant, 
then 

○ and, there is a single equivalence class where



Non-interference

● So, if the output function is a constant function
○ the amount of information we need to learn remains the same

○ means there is no information leakage

● This correspond to non-interference!
○ If the output/observable remains constant for all values of the 

secret then there is no information leakage! 



Partitioning the secret domain

● Now, let us assume that the output values partition the secret 
domain to two equivalence classes with equal number of elements
○ I.e., there are two output values, half of the secret values map 

to one and the other half map to the other

● What is the remaining entropy?



Another example

f(S) { print S & 0xF; }

● Assume that S is a 32-bit unsigned integer
● 0xF is the hexadecimal constant corresponding to decimal 15, and 

& denotes bitwise “and” operation
○ So, the above code prints the last 4 bits of the secret

● The output partitions the secret domain to 16 equivalence classes, 
each of which has 228 values in it
○ So, the remaining entropy is 28 bits



How do we quantify information leakage?

● Now that we know how to quantify information, how can we 
quantify information leakage

● Here is what we would expect:

initial uncertainty = information leaked + remaining uncertainty

● Equivalently

information leaked = initial uncertainty - remaining uncertainty



How do we quantify the remaining uncertainty?

● Remaining uncertainty can be characterized as the conditional 
entropy 

● Conditional entropy: What is the uncertainty about S given O?



Conditional Entropy uses Conditional Probability



Mutual information

● Mutual information I(S;O) is the amount of information shared 
between S and O

● It is defined as:

● Mutual information is symmetric:



How do we quantify information leakage?

● So, the intuitive property  

information leaked = initial uncertainty - remaining uncertainty

● is formalized as



Examples

f(S) { print 10; } 0       = 32       - 32

f(S) { print S + 10; } 32     = 32       - 0

f(S) { print S & 0xF; } 4       = 32       - 28



What about side channels?

f(S) { sleep(S); }

f(S) { if (S % 2 == 0) sleep(1); else sleep (2); }

● These programs do not return any output or print any information. 
○ So, they do not leak information from the main channel of the 

program.
● However, they do have side channel leakage

○ They leak information from the execution time



What about side channels?

f(S) { sleep(S); } 32 = 32       - 0

f(S) { if (S % 2 == 0) 1    = 32       - 31

sleep(1); 

else 

sleep (2); }



Deterministic programs

● If we assume that the program is deterministic with only input S and 
only output O
○ then the value of O is determined only by the input S
○ which means H(O|S) = 0

Then, we have:

I(S;O) = I(O;S) = H(O) - H(O|S) = H(O)

● So, for deterministic programs with input S and output O, the 
information leaked is equivalent to the uncertainty of O



Outline

Information leakage and side channels

Quantifying information leakage

Side channel detection with probabilistic symbolic execution

Model counting

Attack synthesis

38



39

A 4-digit PIN Checker



Symbolic Execution of PIN Checker

40



Probabilistic symbolic execution

Can we determine the probability of executing a program path?
● Let PCi denote the path constraint for a program path
● Let |PCi| denote the number of possible solutions for PCi

● Let |D| denote the size of the input domain
● Assume uniform distribution over the input domain

● Then the probability of executing that program path is:

p(PCi) = |PCi| / |D| 
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Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

p(PCi) = |PCi| / |D| 
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Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256 

p(PCi) = |PCi| / |D| 
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Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

p(PCi) = |PCi| / |D| 
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Probabilistic Symbolic Execution of PIN Checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256 

Probability that an adversary can guess a prefix of length 
i in one guess is given by pi 45



Extending symbolic execution 

● We need to extend symbolic execution to keep track of 
observables 

● Implement listeners to collect time/memory costs for all explored 
(complete) paths

○ Costs corresponding to the “observables”
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Symbolic execution with observable tracking
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Timing side channel:
• Estimate the execution time 

using the number of instructions 
executed

• Estimate can be improved with 
profiling

We call this the ``observable’’

• For a space side channel the 
observable could be amount of 
memory allocated or size of a file



Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256 
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Information leakage

● H: Information leakage or the expected amount of information 
gain by the adversary 49



A secure PIN checker

50

● Only two observables (just the main channel, no side channel): 
o0: does not match, o1: full match

● p(o0) = 15/16, p(o1) = 1/16
● Hsecure = 0.33729 



Secure vs. vulnerable PIN checker

● Given a PIN of length L where each PIN digit has K values
● Secure PIN checker 

○ KL guesses in the worst case

○ Example: 16 digit password where each digit is ASCII 

12816 tries in the worst case, which would take a lot of time!
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Secure vs. vulnerable PIN checker

● Vulnerable PIN checker

○ A prefix attack that determines each digit one by one starting 
with the leftmost digit

○ Example: 16 digit password where each digit is ASCII 

128×16 tries in the worst case, which would not take too much 
time

52
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Model Counting

● Model counting: Counting the number of satisfying solutions for a 
given formula

● Many variations of the problem:

○ Boolean logic

○ Integers

○ Strings

○ SMT
54



Model counting with BDDs

● As we discussed before, we can construct a BDD from a given 
Boolean logic formula 

● BDD is a directed acyclic graph, and it encodes all the satisfying 
solutions for the Boolean logic formula

○ Each path from the root node of the BDD to the “True” leaf 
node represents a unique satisfying solution to the Boolean 
logic formula

● Once you construct a BDD, you can count the number of models by 
counting paths of the BDD 

○ Count the paths that reach from the root to the “True” leaf node



Model counting with BDDs

● You need to take into account the variables that are not 
represented in the BDD 

○ they are removed as redundant tests but we need to keep track 
of them to count

● Count the number of paths that reach True 

○ keep track of missing (redundant) variables on a path, and add 
2k to the count for each path that has k missing variables

● Can compute the count in linear time by traversing the nodes from 
leaves towards the root node 



Model Counting with DPLL

● As we discussed DPLL is a decision procedure for satisfiability of 
Boolean formulas in conjunctive normal form (CNF-SAT).

● DPLL can be modified to do model counting

● Let us first give a recursive version of the DPLL algofrithm

57



DPLL

function DPLL (F: CNF formula): (returns true iff formula is satisfiable) 

1. if F is empty; return true (satisfiable)

2. if F contains an empty clause; return false

3. if there exists a pure literal l in F (l is s pure literal iff ¬l is not in F)

return DPLL(F ∧ l )

4. if F contains a unit clause {l} (unit propagation)

F1 = {C - {¬l}} | C ∈ F,  l ∉ C}

return DPLL(F1)

5. Choose a variable x of F (decide, tries both decisions recursively)

return DPLL(F ∧ x) ∨ DPLL(F ∧ ¬x) 58



Model Counting with DPLL

function CDPLL (F: CNF formula, n integer): (returns number of 
satisfying solutions) 

1. if F is empty; return 2n

2. if F contains an empty clause; return 0

3. if F contains a unit clause {l} (unit propagation)

F1 = {C - {¬l}} | C ∈ F  l ∉ C}

return CDPLL(F1, n-1)

4. Choose a variable x of F (decide, tries both decisions recursively)

F1 = {C - {¬x}} | C ∈ F  x ∉ C}

F2 = {C - {x}} | C ∈ F  ¬x ∉ C}

return CDPLL(F1, n - 1) + CDPLL(F2, n-1)
59



ABC: Model counting constraint solver

60

Automata-Based 
model Counting 
constraint solver

(ABC)

INPUT

formula:

!



ABC in a nutshell 

Automata-based constraint solving

Why?
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ABC in a nutshell 

Automata-based constraint solving

Basic idea:

Constructing an automaton for the set of solutions of a 
constraint reduces model counting problem to path 
counting!
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Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the 
constraint

ABC can handle both
string and integer constraints

Constraints over 
only string 
variables
(e.g., v = “abcd”)

Constraints over both 
string and integer 
variables
(e.g., length(v) = i)

Constraints over 
only integer 
variables
(e.g., i = 2×j)
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¬match(v, (ab)*)match(v, (ab)*)v = “ab”

Automata-based constraint solving: expr, ¬

automata 
complement

Basic string constraints are directly mapped to automata
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Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

automata 
product

More complex constraints are solved by creating automata for 
subformulae then combining their results
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Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

More complex constraints are solved by creating automata for 
subformulae then combining their results

automata 
product 66



Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each 
variable

v = t ⋀ v ≠ tv = t v ≠ t
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Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each 
variable

v = t ⋀ v ≠ tv = t v ≠ t

Satisfiable!
68



Automata-based constraint solving: relational

Single track automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying 
solutions

Use multi-track automata
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Multi-track automata

Multi-track automaton = DFA accepting tuples of strings

Each track represents the values of a single variable

v = t v = t

Preserves relations 
among variables! 70



v ≠ t

Padding symbol λ ∉ Σ 
used to align tracks of 
different length (appears 
at the end)

Multi-track automata

v = t ⋀ v ≠ t

Correctly encodes 
the constraint

v = t

automata 
product
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Multi-track automata

Multi-track automata can also represent Presburger arithmetic 
constraints

● Each track represents a single numeric variable

● Encoded as binary integers in 2’s complement form
i = j i ≠ j i = 2⨯j

72



i = 2⨯j ∧ length(v) = i ∧ match(v, (a | b)*) 

Constraint Solving: Example

automaton for numeric variables
(vl auxiliary variable encoding length of v)

automaton for string variables

a,b

a,b



ABC: Model counting constraint solver
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Automata-based 
model counting 

constraint solver
(ABC)

INPUT

formula:

!



Automata-based model counting
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Can you count the paths Will Hunting?
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Path Counting via Matrix Exponentiation
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T: adjacency 
matrix for the 
automaton

(i,j): number of 
edges from i to j



Counting Paths via Generating Functions
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Counting Paths via Generating Functions
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Good job Will Hunting!
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ABC DEMO

http://drum.cs.ucsb.edu

81

http://drum.cs.ucsb.edu/


Automata-based model counting extensions

● In order to scale the automata-based model counting, it is 
necessary to cache the prior results 

● Many constraints generated from programs are equivalent
○ By normalizing constraints we can identify many equivalent 

constraints

● 87X improvement for the Kaluza big data set
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Kaluza Dataset: 
1,342 big constraints and 17,554 small constraints

83

1,342 big constraints are reduced 
to 34 equivalent constraints after
normalization

17,554 small constraints are reduced 
to 360 equivalent constraints after
normalization
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Can we automate attack synthesis?

● Which public input values would allow us to learn the secret 
as fast as possible?

85

Observations 
(execution time, memory usage)  

Secret input 
program

Public input 
Output



A Simple Function

86

public int comparison(int i) {

if(s <= i)
do something simple; // 1 milisecond

else
do something complex; // 2 

miliseconds 

return 0;
}



A Simple Function
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observations

O = 1 ⇒ s ≤ i

O = 2 ⇒ s > i

public int comparison(int i) {

if(s <= i)
do something simple; // 1 milisecond

else
do something complex; // 2 miliseconds 

return 0;
}
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O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0      1   ...    ...    ...    ...    ...     254    255
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Attacker’s input and observation partitions domain of S

i = 220

0       1    ...    ...    ...     220      221  ...  255

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

O = 1 ⇒ s ≤ 220 O = 2 ⇒ s > 220

S 0      1   ...    ...    ...    ...    ...     254    255
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How should the attacker 
choose the inputs 

to reveal the secret 
as fast as possible?



91

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0      1   ...    ...    ...    ...    ...     254    255
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i = 254

0       1    ...    ...    ...    ...    ...   254    255

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

O = 1 ⇒ s ≤ 253 O = 2 ⇒ s > 254

S 0      1   ...    ...    ...    ...    ...     254    255
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i = 254

0       1    ...    ...    ...    ...    ...   254    255

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

O = 1 ⇒ s ≤ 254 O = 2 ⇒ s > 254

S 0      1   ...    ...    ...    ...    ...     254    255

i = 253

0       1    ...    ...    ...    ...    253    254   255

O = 1 ⇒ s ≤ 253 O = 2 ⇒ s > 253
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Worst case :

number of inputs = domain size = 28 = 256

Imbalanced partitions
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O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0      1   ...    ...    ...    ...    ...     254    255
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i = 127

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0      1   ...    ...    ...    ...    ...     254    255

O = 1 ⇒ s ≤ 127

0      1   ...    ...           ...    ...     254    255

O = 2 ⇒ s > 128
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i = 127

i = 63

O = 1 O = 2

i = 191  

O = 1 O = 2

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0      1   ...    ...    ...    ...    ...     254    255

O = 1 ⇒ s ≤ 127

0      1   ...    ...           ...    ...     254    255

O = 2 ⇒ s > 128

0   1   ...    ...    ...       ...    ...    ...  254  255
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i = 127

i = 63

O = 1 O = 2

i = 191  

O = 1 O = 2

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0      1   ...    ...    ...    ...    ...     254    255

O = 1 ⇒ s ≤ 127

0      1   ...    ...           ...    ...     254    255

O = 2 ⇒ s > 128

0   1   ...    ...    ...       ...    ...    ...  254  255

i = 31

0      ...    ...    ...      ...    ...  .  ...       255

i = 95 i = 159 i = 223
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Worst case :

number of inputs = log2(256) = 8

Balanced partitions
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101

O1

O2



102

O1

O2
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O1

O2
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Maximizes information gain

Balanced partitions

Objective Function



Objective Function
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Maximize information gain ⇒ Binary Search

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i



Objective Function

107

Programs in general

Maximize information gain ⇒ Binary Search

Maximize information gain ⇒ Optimal Search 

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i



Objective Function
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Programs in general

Maximize information gain ⇒ Binary Search

Maximize information gain ⇒ Optimal Attack 

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i
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Shannon Entropy 

information gain

Objective Function



Attack synthesis summary

110

Probabilistic
Symbolic 
Execution

Model 
Counting EntropyProgram

Path 
Constraints

Probability
Distribution
for Observables

Information 
Leakage

Maximize 
Entropy

Attack 
Inputs

● The attacks that are synthesized are adaptive attacks
○ Each attack step depends on the results of previous steps

● How to find the input value that maximizes the entropy?
○ Use meta-heuristics such as simulated annealing or genetic 

algorithm



Attack synthesis extensions: Online attack synthesis 

● Generating the full attack tree is expensive
● A full attack tree provides all public input sequences for all 

possible secret values
○ Full attack tree can be computed offline
○ Exponential blow up with attack depth 

● Use online attack synthesis
○ Compute the attack on the fly for a single secret
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Attack synthesis extensions: Noise modeling 

● Use profiling to model the noise
○ Use a witness (a satisfying solution) for each path constraint 

to profile the observable distribution
○ Generate a noise distribution using smooth kernel density 

estimation
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Attack synthesis extensions: Online attack synthesis

● During attack synthesis, use a probability distribution to model the 
current belief about the secret

● Use Bayesian inference to update the probability distribution for 
the secret based on the observations and the noise model

113



Automatically generated prefix attack against a 
vulnerable password checker

114

Secret is “ciqa”
Matching characters are shown in bold



A case study from DARPA STAC Program: LawDB

• A web service with a law enforcement database that contains 
○ Restricted (secret) & unrestricted (public) employee IDs

• Supports SEARCH & INSERT queries

○ Restricted IDs are not visible during SEARCH and INSERT queries

• Question: Is there a side channel in time that a third party can 
determine the value of a single restricted ID in the database?

115



Code Inspection

• Using code inspection we identified that the SEARCH and INSERT 
operations are implemented in:

class UDPServerHandler

method channelRead0

switch case 1: INSERT

switch case 8: SEARCH

116



Symbolic Path Finder Driver
public class Driver {

public static void main(String[] args){
BTree tree = new BTree(10);
CheckRestrictedID checker = new CheckRestrictedID();
// create two concrete unrestricted ids
int id1 = 64, id2 = 85;
tree.add(id1, null, false);
tree.add(id2, null, false);
// create one symbolic restricted id
int h = Debug.makeSymbolicInteger("h");
Debug.assume(h!=id1 && h!=id2);
tree.add(h, null, false);
checker.add(h);
UDPServerHandler handler = new 

UDPServerHandler(tree,checker);
int key = Debug.makeSymbolicInteger("key");
handler.channelRead0(8,key);  // send a search query with

}                           // with search range 50 to 100
}

117



SPF Output
>>>>> There are 5 path conditions and 5 observables 
cost: 9059
(assert (<= h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 15
-----------------------
cost: 8713
(assert (<= h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 20
-----------------------
cost: 7916
(assert (> h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 923
-----------------------

cost: 8701
(assert (>= h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 14
-----------------------
cost: 7951
(assert (< h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 50
-----------------------
**********************************************************
PC equivalence class model counting results.
**********************************************************
Cost: 9059      Count:        15  Probability:  0.014677
Cost: 8713      Count:        20  Probability:  0.019569
Cost: 7916      Count:       923  Probability:  0.903131
Cost: 8701      Count:        14  Probability:  0.013699
Cost: 7951      Count:        50  Probability:  0.048924

Domain Size: 1022
Single Run Leakage: 0.6309758112933285 118



Observation & Proposed Attack

● SEARCH operation: 

takes longer when the secret is within the search range (9059, 
8713, 8701 byte code instructions) 

as opposed to the case when the secret is out of the search range 
(7916, 7951 byte code instructions)

● Proposed attack: Measure the time it takes for the search 
operation to figure out if there is a secret within the search range

119



Proposed Attack

• Binary search on the ranges of the IDs

• Send two search queries at a time and compare their execution time 

• Refine the search range based on the result

120



Attack 
Running [0, 40000000] at 0.
Comparing 467821 vs 612252...
Running [20000000, 40000000] at 2.
Comparing 400377 vs 333665...
Running [20000000, 30000000] at 4.
Comparing 200603 vs 237025...
Running [25000000, 30000000] at 6.
Comparing 163564 vs 115072...
Running [25000000, 27500000] at 8.
Comparing 95736 vs 37388...
Running [25000000, 26250000] at 10.
Comparing 85305 vs 30118...
Running [25000000, 25625000] at 12.
Comparing 22765 vs 72958...
Running [25312500, 25625000] at 14.
Comparing 2147483647 vs 19353...
Running [25312500, 25468750] at 16.
Comparing 517 vs 2147483647...
Running [25390625, 25468750] at 18.
Comparing 317 vs 2147483647...
Running [25429687, 25468750] at 20.
Comparing 2147483647 vs 302...
Running [25429687, 25449218] at 22.
Comparing 2147483647 vs 287...
Running [25429687, 25439452] at 24.
Comparing 336 vs 2147483647...

Running [25434569, 25439452] at 26.
Comparing 300 vs 2147483647...
Running [25437010, 25439452] at 28.
Comparing 2147483647 vs 265...
Running [25437010, 25438231] at 30.
Comparing 2147483647 vs 328...
Running [25437010, 25437620] at 32.
Comparing 280 vs 2147483647...
Running [25437315, 25437620] at 34.
Comparing 293 vs 2147483647...
Running [25437467, 25437620] at 36.
Comparing 2147483647 vs 281...
Running [25437467, 25437543] at 38.
Comparing 2147483647 vs 613...
Running [25437467, 25437505] at 40.
Comparing 2147483647 vs 258...
Running [25437467, 25437486] at 42.
Comparing 2147483647 vs 291...
Running [25437467, 25437476] at 44.
Comparing 362 vs 2147483647...
Running [25437471, 25437476] at 46.
Comparing 311 vs 2147483647...
Running [25437473, 25437476] at 48.
Comparing 2147483647 vs 2147483647...
Checking oracle for: 25437474... true
Checking oracle for: 25437475... false
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VLab papers on side channel analysis & model counting

● Tegan Brennan, Seemanta Saha, and Tevfik Bultan: JVM Fuzzing for JIT-Induced Side-
Channel Detection. ICSE 2020 

● Tegan Brennan, Nicolás Rosner, and Tevfik Bultan: JIT Leaks: Inducing Timing Side 
Channels through Just-In-Time Compilation. IEEE S&P 2020

● Ismet Burak Kadron, Nicolás Rosner, Tevfik Bultan: Feedback-driven side-channel analysis 
for networked applications. ISSTA 2020: 260-271

● Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, Tevfik Bultan: Profit: Detecting and 
Quantifying Side Channels in Networked Applications. NDSS 2019

● Seemanta Saha, William Eiers, Ismet Burak Kadron, Lucas Bang, Tevfik Bultan: Incremental 
Adaptive Attack Synthesis. JPF Workshop 2019

● Seemanta Saha, Ismet Burak Kadron, William Eiers, Lucas Bang, Tevfik Bultan: Attack 
Synthesis for Strings using Meta-Heuristics. JPF Workshop 2018

● Nestan Tsiskaridze, Lucas Bang, Joseph McMahan, Tevfik Bultan, Timothy Sherwood: 

Information Leakage in Arbiter Protocols. ATVA 2018: 404-421

● Lucas Bang, Nicolás Rosner, Tevfik Bultan: Online Synthesis of Adaptive Side-Channel 
Attacks Based On Noisy Observations. EuroS&P 2018: 307-322

● Tegan Brennan, Seemanta Saha, Tevfik Bultan, Corina S. Pasareanu: Symbolic path cost 
analysis for side-channel detection. ISSTA 2018: 27-37
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VLab papers on side channel analysis & model counting

● William Eiers, Seemanta Saha, Tegan Brennan, Tevfik Bultan: Subformula Caching for 
Model Counting and Quantitative Program Analysis. ASE 2019: 453-464

● Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik Bultan, 
Fang Yu: Parameterized model counting for string and numeric constraints. 
ESEC/SIGSOFT FSE 2018: 400-410

● Tevfik Bultan, Fang Yu, Muath Alkhalaf, Abdulbaki Aydin: String Analysis for Software 
Verification and Security. Springer 2017, ISBN 978-3-319-68668-4, pp. 1-166

● Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, Tevfik Bultan: 
Synthesis of Adaptive Side-Channel Attacks. CSF 2017: 328-342

● Tegan Brennan, Nestan Tsiskaridze, Nicolás Rosner, Abdulbaki Aydin, Tevfik Bultan: 
Constraint normalization and parameterized caching for quantitative program analysis. 
ESEC/SIGSOFT FSE 2017: 535-546

● Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, Tevfik Bultan: String 
analysis for side channels with segmented oracles. SIGSOFT FSE 2016: 193-204

● Abdulbaki Aydin, Lucas Bang, Tevfik Bultan: Automata-Based Model Counting for String 
Constraints. CAV (1) 2015: 255-272
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BIBLIOGRAPHY: Quantitative Information Flow
● Geoffrey Smith. On the Foundations of Quantitative Information Flow. FOSSACS 2009: 288-302

● Geoffrey Smith. Quantifying Information Flow Using Min-Entropy. QEST 2011: 159-167
● Pasquale Malacaria. Assessing security threats of looping constructs. POPL 2007: 225-235

● David Clark, Sebastian Hunt, Pasquale Malacaria. A static analysis for quantifying information flow in a simple imperative language. 

Journal of Computer Security 15(3): 321-371 (2007) Alternate link

● Michael Backes, Boris Köpf, Andrey Rybalchenko. Automatic Discovery and Quantification of Information Leaks. IEEE Symposium 

on Security and Privacy 2009: 141-153

● Jonathan Heusser, Pasquale Malacaria. Quantifying information leaks in software. ACSAC 2010: 261-269

● Quantitative Security Analysis for Programs with Low Input and Noisy Output. Tri Minh Ngo, Marieke Huisman.

● Quantitative information flow under generic leakage functions and adaptive adversaries M. Boreale, Francesca Pampaloni.
● Measuring Information Leakage Using Generalized Gain Functions Mario S. Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, 

Geoffrey Smith.

● Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, Corina S. Pasareanu. Symbolic quantitative information flow. ACM 

SIGSOFT Software Engineering Notes 37(6): 1-5 (2012)

● Quoc-Sang Phan, Pasquale Malacaria, Corina S. Pasareanu, Marcelo d'Amorim. Quantifying information leaks using reliability 

analysis. SPIN 2014: 105-108

● Stephen McCamant, Michael D. Ernst. Quantitative information flow as network flow capacity. PLDI 2008: 193-205

● Stephen McCamant, Michael D. Ernst. Quantitative information flow tracking for C and related languages. MIT-CSAIL-TR-2006-076

● On the relation between Differential Privacy and Quantitative Information Flow. Mario S. Alvim, Miguel E. Andres.
● Ian Sweet, José Manuel Calderón Trilla, Chad Scherrer, Michael Hicks, Stephen Magill. What's the Over/Under? Probabilistic 

Bounds on Information Leakage. POST 2018: 3-27

● Piotr Mardziel, Mário S. Alvim, Michael W. Hicks, Michael R. Clarkson. Quantifying Information Flow for Dynamic Secrets. IEEE 

Symposium on Security and Privacy 2014: 540-555
● Giovanni Cherubin, Konstantinos Chatzikokolakis, Catuscia Palamidessi: F-BLEAU: Fast Black-box Leakage Estimation. CoRR 

abs/1902.01350 (2019)
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BIBLIOGRAPHY: Side-Channel Analysis
● Timing Analysis of Keystrokes and Timing Attacks on SSH. Dawn Xiaodong Song, David Wagner, Xuqing Tian.

● An information-theoretic model for adaptive side-channel attacks. Boris Köpf, David Basin.

● Automatically deriving information-theoretic bounds for adaptive side-channel attacks. Boris Köpf, David Basin.

● Shuo Chen, Rui Wang, XiaoFeng Wang, Kehuan Zhang. Side-Channel Leaks in Web Applications: A Reality Today, a Challenge 

Tomorrow. IEEE Symposium on Security and Privacy 2010: 191-206

● Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, Jan Reineke. CacheAudit: A Tool for the Static Analysis of Cache 

Side Channels. USENIX Security 2013: 431-446

● Multi-run Side-Channel Analysis Using Symbolic Execution and Max-SMT. Corina S. Pasareanu, Quoc-Sang Phan, Pasquale 

Malacaria.

● SMT-Based Verification of Software Countermeasures against Side-Channel Attacks. Hassan Eldib, Chao Wang, Patrick 

Schaumont.

● Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, Tevfik Bultan. String analysis for side channels with 

segmented oracles. SIGSOFT FSE 2016: 193-204

● Pasquale Malacaria, M. H. R. Khouzani, Corina S. Pasareanu, Quoc-Sang Phan, Kasper Søe Luckow. Symbolic Side-Channel 
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● Tom Chothia, Yusuke Kawamoto, Chris Novakovic. LeakWatch: Estimating Information Leakage from Java Programs. ESORICS (2) 

2014: 219-236

● Tom Chothia, Yusuke Kawamoto, Chris Novakovic. A Tool for Estimating Information Leakage. CAV 2013: 690-695

● Tom Chothia, Yusuke Kawamoto, Chris Novakovic, David Parker. Probabilistic Point-to-Point Information Leakage. CSF 2013: 193-
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● Shengjian Guo, Meng Wu, Chao Wang: Adversarial symbolic execution for detecting concurrency-related cache timing leaks. 
ESEC/SIGSOFT FSE 2018: 377-388
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Execution for Cache Timing Leak Detection. CoRR abs/1911.00507 (2019)

● Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, Abhik Roychoudhury: KLEESPECTRE: Detecting 
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● Sudipta Chattopadhyay, Abhik Roychoudhury: Symbolic Verification of Cache Side-Channel Freedom. IEEE Trans. on CAD of 
Integrated Circuits and Systems 37(11): 2812-2823 (2018)

151

https://arxiv.org/abs/1811.07005


BIBLIOGRAPHY: Model Counting
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