
CS 267: Automated Verification

Lectures 15-16: Quantitative Symbolic
Analysis

Instructor: Tevfik Bultan
1

Outline

Information leakage and side channels

Quantifying information leakage

Side channel detection with probabilistic symbolic execution

Model counting

Attack synthesis

2

Information leaks via side channels

3

Information leaks via side channels

4

Information leaks via side channels

5

Information leaks via side channels

6

Side-channels in computing

7

Reading kernel memory from user space Exploiting speculative execution

Segment oracle side channel vulnerability
int memcmp(s1, s2, n)

CONST VOID *s1; CONST VOID *s2; size t n;
{

unsigned char u1, u2;
for (; n– ; s1++, s2++) {

u1 = * (unsigned char *) s1;
u2 = * (unsigned char *) s2;
if (u1 != u2) { return (u1-u2); }

}
return 0;

}
Xbox OS, HMAC signatures compared with memcmp.
Leads to side-channel vulnerability and exploit!
Prefix attack: attacker reveals the secret input segment by segment 8

Segment oracle side-channel vulnerability

9

Information leakage

● To model information leakage, classify inputs and outputs as
Secret and Public

● Confidentiality: Information about Secret input values should not
be leaked to Public output values

● In the literature security levels are typically referred as
High (Secret) and Low (Public)

10

Non-interference

● Having no information leakage is characterized as non-
interference

Non-interference: High (Secret) input values should have no
influence on Low (Public) output values

11

Non-interference is not practical for many cases

In many cases some leakage is unavoidable:

● Any password checker leaks some information about the
password

● Another example: Consider an electronic voting application

○ the result of the vote is public and it does leak information
about the votes

○ but individual votes should be private

● For many practical cases non-interference is simply not possible
and some information leakage from High values to Low values is
unavoidable

12

Quantifying information leakage

● If leakage is unavoidable, then the question becomes:
○ “How much information is leaked?”

● For example
○ How much information about a password can be obtained by

the attacker who can enter different password guesses to the
program?

● If the amount leaked is very small, the program might be
considered secure even though there is some information
leakage

13

Quantitative information flow

● The goal of quantitative information flow techniques is to
quantify the amount of information leaked from a given program

● Quantitative information flow techniques can be used to detect
the amount of information leaked from side channels

14

Side Channels

15

Secret input (H)
program

Public input (L) Output
(L)

Side Channels

16

Observations
(execution time, memory usage) (L)

Secret input (H)
program

Public input (L) Output
(L)

Outline

Information leakage and side channels

Quantifying information leakage

Side channel detection with probabilistic symbolic execution

Model counting

Attack synthesis

17

How do we quantify information?

● Shannon Entropy
○ a measure of uncertainty about a random variable X
○ expected value (average) of information gain (i.e., the

expected amount of surprise) by observing the value of the
random variable expressed in terms of bits

● Or

expected value of (average) number of bits required to transmit X
optimally

18

Entropy example:
Example:
● Seattle weather, always raining: prain = 1
● Entropy: H = 0

● Costa Rica weather, coin flip: prain= 0.5, psun= 0.5
● Entropy: H = 1

● Santa Barbara weather, almost always beautiful:
prain= 0.1, psun= 0.9

● Entropy: H = 0.496

19

Binary Entropy

How do we quantify information?

● Random variable:
● Domain of the random variable:
● Probability that the random variable takes the value

● Shannon Entropy:

● Shannon entropy is the expected value of:
21

How do we quantify information leakage?

● Now that we know how to quantify information, how can we
quantify information leakage?

● First, let’s give a simple program model:

S is the secret input to the program. We will model it as a random
variable.

O is the public output of the program. We will model it also as a
random variable

f is a function from values of S to values of O we use to model a
deterministic program

Initial uncertainty

● What is the initial uncertainty for S?
○ What is the amount of information that we need to learn about

the secret?

● Assume that the probability distribution for the secret is uniform
○ so all values are equally likely
○ then, the amount of information that we need to learn is:

Partitioning the secret domain

● Given a program

● The values we observe as the output of the program define an
equivalence relation for the secret S

● So, by observing output of the program, we partition the secret
values to equivalence classes

Partitioning the secret domain

● The number of equivalence classes in the partition are:

● If the function is a constant function, where the output is constant,
then

○ and, there is a single equivalence class where

Non-interference

● So, if the output function is a constant function
○ the amount of information we need to learn remains the same

○ means there is no information leakage

● This correspond to non-interference!
○ If the output/observable remains constant for all values of the

secret then there is no information leakage!

Partitioning the secret domain

● Now, let us assume that the output values partition the secret
domain to two equivalence classes with equal number of elements
○ I.e., there are two output values, half of the secret values map

to one and the other half map to the other

● What is the remaining entropy?

Another example

f(S) { print S & 0xF; }

● Assume that S is a 32-bit unsigned integer
● 0xF is the hexadecimal constant corresponding to decimal 15, and

& denotes bitwise “and” operation
○ So, the above code prints the last 4 bits of the secret

● The output partitions the secret domain to 16 equivalence classes,
each of which has 228 values in it
○ So, the remaining entropy is 28 bits

How do we quantify information leakage?

● Now that we know how to quantify information, how can we
quantify information leakage

● Here is what we would expect:

initial uncertainty = information leaked + remaining uncertainty

● Equivalently

information leaked = initial uncertainty - remaining uncertainty

How do we quantify the remaining uncertainty?

● Remaining uncertainty can be characterized as the conditional
entropy

● Conditional entropy: What is the uncertainty about S given O?

Conditional Entropy uses Conditional Probability

Mutual information

● Mutual information I(S;O) is the amount of information shared
between S and O

● It is defined as:

● Mutual information is symmetric:

How do we quantify information leakage?

● So, the intuitive property

information leaked = initial uncertainty - remaining uncertainty

● is formalized as

Examples

f(S) { print 10; } 0 = 32 - 32

f(S) { print S + 10; } 32 = 32 - 0

f(S) { print S & 0xF; } 4 = 32 - 28

What about side channels?

f(S) { sleep(S); }

f(S) { if (S % 2 == 0) sleep(1); else sleep (2); }

● These programs do not return any output or print any information.
○ So, they do not leak information from the main channel of the

program.
● However, they do have side channel leakage

○ They leak information from the execution time

What about side channels?

f(S) { sleep(S); } 32 = 32 - 0

f(S) { if (S % 2 == 0) 1 = 32 - 31

sleep(1);

else

sleep (2); }

Deterministic programs

● If we assume that the program is deterministic with only input S and
only output O
○ then the value of O is determined only by the input S
○ which means H(O|S) = 0

Then, we have:

I(S;O) = I(O;S) = H(O) - H(O|S) = H(O)

● So, for deterministic programs with input S and output O, the
information leaked is equivalent to the uncertainty of O

Outline

Information leakage and side channels

Quantifying information leakage

Side channel detection with probabilistic symbolic execution

Model counting

Attack synthesis

38

39

A 4-digit PIN Checker

Symbolic Execution of PIN Checker

40

Probabilistic symbolic execution

Can we determine the probability of executing a program path?
● Let PCi denote the path constraint for a program path
● Let |PCi| denote the number of possible solutions for PCi

● Let |D| denote the size of the input domain
● Assume uniform distribution over the input domain

● Then the probability of executing that program path is:

p(PCi) = |PCi| / |D|

41

Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

p(PCi) = |PCi| / |D|

42

Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

p(PCi) = |PCi| / |D|

43

Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

p(PCi) = |PCi| / |D|

44

Probabilistic Symbolic Execution of PIN Checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

Probability that an adversary can guess a prefix of length
i in one guess is given by pi 45

Extending symbolic execution

● We need to extend symbolic execution to keep track of
observables

● Implement listeners to collect time/memory costs for all explored
(complete) paths

○ Costs corresponding to the “observables”

46

Symbolic execution with observable tracking

47

Timing side channel:
• Estimate the execution time

using the number of instructions
executed

• Estimate can be improved with
profiling

We call this the ``observable’’

• For a space side channel the
observable could be amount of
memory allocated or size of a file

Probabilistic symbolic execution of PIN checker

● Assume binary 4 digit PIN, P and G each have 4 bits
|D| = 28 = 256

48

Information leakage

● H: Information leakage or the expected amount of information
gain by the adversary 49

A secure PIN checker

50

● Only two observables (just the main channel, no side channel):
o0: does not match, o1: full match

● p(o0) = 15/16, p(o1) = 1/16
● Hsecure = 0.33729

Secure vs. vulnerable PIN checker

● Given a PIN of length L where each PIN digit has K values
● Secure PIN checker

○ KL guesses in the worst case

○ Example: 16 digit password where each digit is ASCII

12816 tries in the worst case, which would take a lot of time!

51

Secure vs. vulnerable PIN checker

● Vulnerable PIN checker

○ A prefix attack that determines each digit one by one starting
with the leftmost digit

○ Example: 16 digit password where each digit is ASCII

128×16 tries in the worst case, which would not take too much
time

52

Outline

Information leakage and side channels

Quantifying information leakage

Side channel detection with probabilistic symbolic execution

Model counting

Attack synthesis

53

Model Counting

● Model counting: Counting the number of satisfying solutions for a
given formula

● Many variations of the problem:

○ Boolean logic

○ Integers

○ Strings

○ SMT
54

Model counting with BDDs

● As we discussed before, we can construct a BDD from a given
Boolean logic formula

● BDD is a directed acyclic graph, and it encodes all the satisfying
solutions for the Boolean logic formula

○ Each path from the root node of the BDD to the “True” leaf
node represents a unique satisfying solution to the Boolean
logic formula

● Once you construct a BDD, you can count the number of models by
counting paths of the BDD

○ Count the paths that reach from the root to the “True” leaf node

Model counting with BDDs

● You need to take into account the variables that are not
represented in the BDD

○ they are removed as redundant tests but we need to keep track
of them to count

● Count the number of paths that reach True

○ keep track of missing (redundant) variables on a path, and add
2k to the count for each path that has k missing variables

● Can compute the count in linear time by traversing the nodes from
leaves towards the root node

Model Counting with DPLL

● As we discussed DPLL is a decision procedure for satisfiability of
Boolean formulas in conjunctive normal form (CNF-SAT).

● DPLL can be modified to do model counting

● Let us first give a recursive version of the DPLL algofrithm

57

DPLL

function DPLL (F: CNF formula): (returns true iff formula is satisfiable)

1. if F is empty; return true (satisfiable)

2. if F contains an empty clause; return false

3. if there exists a pure literal l in F (l is s pure literal iff ¬l is not in F)

return DPLL(F ∧ l)

4. if F contains a unit clause {l} (unit propagation)

F1 = {C - {¬l}} | C ∈ F, l ∉ C}

return DPLL(F1)

5. Choose a variable x of F (decide, tries both decisions recursively)

return DPLL(F ∧ x) ∨ DPLL(F ∧ ¬x) 58

Model Counting with DPLL

function CDPLL (F: CNF formula, n integer): (returns number of
satisfying solutions)

1. if F is empty; return 2n

2. if F contains an empty clause; return 0

3. if F contains a unit clause {l} (unit propagation)

F1 = {C - {¬l}} | C ∈ F l ∉ C}

return CDPLL(F1, n-1)

4. Choose a variable x of F (decide, tries both decisions recursively)

F1 = {C - {¬x}} | C ∈ F x ∉ C}

F2 = {C - {x}} | C ∈ F ¬x ∉ C}

return CDPLL(F1, n - 1) + CDPLL(F2, n-1)
59

ABC: Model counting constraint solver

60

Automata-Based
model Counting
constraint solver

(ABC)

INPUT

formula:

!

ABC in a nutshell

Automata-based constraint solving

Why?

61

ABC in a nutshell

Automata-based constraint solving

Basic idea:

Constructing an automaton for the set of solutions of a
constraint reduces model counting problem to path
counting!

62

Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the
constraint

ABC can handle both
string and integer constraints

Constraints over
only string
variables
(e.g., v = “abcd”)

Constraints over both
string and integer
variables
(e.g., length(v) = i)

Constraints over
only integer
variables
(e.g., i = 2×j)

63

¬match(v, (ab)*)match(v, (ab)*)v = “ab”

Automata-based constraint solving: expr, ¬

automata
complement

Basic string constraints are directly mapped to automata

64

Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

automata
product

More complex constraints are solved by creating automata for
subformulae then combining their results

65

Automata-based constraint solving: expr, ¬, ∧, ∨

¬match(v, (ab)*) ⋀ length(v) = 2

More complex constraints are solved by creating automata for
subformulae then combining their results

automata
product 66

Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each
variable

v = t ⋀ v ≠ tv = t v ≠ t

67

Automata-based constraint solving: relational

For multi-variable constraints, generate an automaton for each
variable

v = t ⋀ v ≠ tv = t v ≠ t

Satisfiable!
68

Automata-based constraint solving: relational

Single track automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying
solutions

Use multi-track automata

69

Multi-track automata

Multi-track automaton = DFA accepting tuples of strings

Each track represents the values of a single variable

v = t v = t

Preserves relations
among variables! 70

v ≠ t

Padding symbol λ ∉ Σ
used to align tracks of
different length (appears
at the end)

Multi-track automata

v = t ⋀ v ≠ t

Correctly encodes
the constraint

v = t

automata
product

71

Multi-track automata

Multi-track automata can also represent Presburger arithmetic
constraints

● Each track represents a single numeric variable

● Encoded as binary integers in 2’s complement form
i = j i ≠ j i = 2⨯j

72

i = 2⨯j ∧ length(v) = i ∧ match(v, (a | b)*)

Constraint Solving: Example

automaton for numeric variables
(vl auxiliary variable encoding length of v)

automaton for string variables

a,b

a,b

ABC: Model counting constraint solver

74

Automata-based
model counting

constraint solver
(ABC)

INPUT

formula:

!

Automata-based model counting

75

Can you count the paths Will Hunting?

76

Path Counting via Matrix Exponentiation

77

T: adjacency
matrix for the
automaton

(i,j): number of
edges from i to j

Counting Paths via Generating Functions

78

Counting Paths via Generating Functions

79

Good job Will Hunting!

80

ABC DEMO

http://drum.cs.ucsb.edu

81

http://drum.cs.ucsb.edu/

Automata-based model counting extensions

● In order to scale the automata-based model counting, it is
necessary to cache the prior results

● Many constraints generated from programs are equivalent
○ By normalizing constraints we can identify many equivalent

constraints

● 87X improvement for the Kaluza big data set

82

Kaluza Dataset:
1,342 big constraints and 17,554 small constraints

83

1,342 big constraints are reduced
to 34 equivalent constraints after
normalization

17,554 small constraints are reduced
to 360 equivalent constraints after
normalization

Outline

Information leakage and side channels

Quantifying information leakage

Side channel detection with probabilistic symbolic execution

Model counting

Attack synthesis

84

Can we automate attack synthesis?

● Which public input values would allow us to learn the secret
as fast as possible?

85

Observations
(execution time, memory usage)

Secret input
program

Public input
Output

A Simple Function

86

public int comparison(int i) {

if(s <= i)
do something simple; // 1 milisecond

else
do something complex; // 2

miliseconds

return 0;
}

A Simple Function

87

observations

O = 1 ⇒ s ≤ i

O = 2 ⇒ s > i

public int comparison(int i) {

if(s <= i)
do something simple; // 1 milisecond

else
do something complex; // 2 miliseconds

return 0;
}

88

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0 1 254 255

89

Attacker’s input and observation partitions domain of S

i = 220

0 1 220 221 ... 255

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

O = 1 ⇒ s ≤ 220 O = 2 ⇒ s > 220

S 0 1 254 255

90

How should the attacker
choose the inputs

to reveal the secret
as fast as possible?

91

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0 1 254 255

92

i = 254

0 1 254 255

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

O = 1 ⇒ s ≤ 253 O = 2 ⇒ s > 254

S 0 1 254 255

93

i = 254

0 1 254 255

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

O = 1 ⇒ s ≤ 254 O = 2 ⇒ s > 254

S 0 1 254 255

i = 253

0 1 253 254 255

O = 1 ⇒ s ≤ 253 O = 2 ⇒ s > 253

94

Worst case :

number of inputs = domain size = 28 = 256

Imbalanced partitions

95

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0 1 254 255

96

i = 127

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0 1 254 255

O = 1 ⇒ s ≤ 127

0 1 254 255

O = 2 ⇒ s > 128

97

i = 127

i = 63

O = 1 O = 2

i = 191

O = 1 O = 2

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0 1 254 255

O = 1 ⇒ s ≤ 127

0 1 254 255

O = 2 ⇒ s > 128

0 1 254 255

98

i = 127

i = 63

O = 1 O = 2

i = 191

O = 1 O = 2

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

S 0 1 254 255

O = 1 ⇒ s ≤ 127

0 1 254 255

O = 2 ⇒ s > 128

0 1 254 255

i = 31

0 255

i = 95 i = 159 i = 223

99

Worst case :

number of inputs = log2(256) = 8

Balanced partitions

100

101

O1

O2

102

O1

O2

103

O1

O2

104

105

Maximizes information gain

Balanced partitions

Objective Function

Objective Function

106

Maximize information gain ⇒ Binary Search

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

Objective Function

107

Programs in general

Maximize information gain ⇒ Binary Search

Maximize information gain ⇒ Optimal Search

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

Objective Function

108

Programs in general

Maximize information gain ⇒ Binary Search

Maximize information gain ⇒ Optimal Attack

O = 1 ⇒ s ≤ i
O = 2 ⇒ s > i

109

Shannon Entropy

information gain

Objective Function

Attack synthesis summary

110

Probabilistic
Symbolic
Execution

Model
Counting EntropyProgram

Path
Constraints

Probability
Distribution
for Observables

Information
Leakage

Maximize
Entropy

Attack
Inputs

● The attacks that are synthesized are adaptive attacks
○ Each attack step depends on the results of previous steps

● How to find the input value that maximizes the entropy?
○ Use meta-heuristics such as simulated annealing or genetic

algorithm

Attack synthesis extensions: Online attack synthesis

● Generating the full attack tree is expensive
● A full attack tree provides all public input sequences for all

possible secret values
○ Full attack tree can be computed offline
○ Exponential blow up with attack depth

● Use online attack synthesis
○ Compute the attack on the fly for a single secret

111

Attack synthesis extensions: Noise modeling

● Use profiling to model the noise
○ Use a witness (a satisfying solution) for each path constraint

to profile the observable distribution
○ Generate a noise distribution using smooth kernel density

estimation

112

Attack synthesis extensions: Online attack synthesis

● During attack synthesis, use a probability distribution to model the
current belief about the secret

● Use Bayesian inference to update the probability distribution for
the secret based on the observations and the noise model

113

Automatically generated prefix attack against a
vulnerable password checker

114

Secret is “ciqa”
Matching characters are shown in bold

A case study from DARPA STAC Program: LawDB

• A web service with a law enforcement database that contains
○ Restricted (secret) & unrestricted (public) employee IDs

• Supports SEARCH & INSERT queries

○ Restricted IDs are not visible during SEARCH and INSERT queries

• Question: Is there a side channel in time that a third party can
determine the value of a single restricted ID in the database?

115

Code Inspection

• Using code inspection we identified that the SEARCH and INSERT
operations are implemented in:

class UDPServerHandler

method channelRead0

switch case 1: INSERT

switch case 8: SEARCH

116

Symbolic Path Finder Driver
public class Driver {

public static void main(String[] args){
BTree tree = new BTree(10);
CheckRestrictedID checker = new CheckRestrictedID();
// create two concrete unrestricted ids
int id1 = 64, id2 = 85;
tree.add(id1, null, false);
tree.add(id2, null, false);
// create one symbolic restricted id
int h = Debug.makeSymbolicInteger("h");
Debug.assume(h!=id1 && h!=id2);
tree.add(h, null, false);
checker.add(h);
UDPServerHandler handler = new

UDPServerHandler(tree,checker);
int key = Debug.makeSymbolicInteger("key");
handler.channelRead0(8,key); // send a search query with

} // with search range 50 to 100
}

117

SPF Output
>>>>> There are 5 path conditions and 5 observables
cost: 9059
(assert (<= h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 15

cost: 8713
(assert (<= h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 20

cost: 7916
(assert (> h 100))
(assert (> h 85))
(assert (> h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 923

cost: 8701
(assert (>= h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 14

cost: 7951
(assert (< h 50))
(assert (<= h 64))
(assert (not (= h 85)))
(assert (not (= h 64)))
Count = 50

**
PC equivalence class model counting results.
**
Cost: 9059 Count: 15 Probability: 0.014677
Cost: 8713 Count: 20 Probability: 0.019569
Cost: 7916 Count: 923 Probability: 0.903131
Cost: 8701 Count: 14 Probability: 0.013699
Cost: 7951 Count: 50 Probability: 0.048924

Domain Size: 1022
Single Run Leakage: 0.6309758112933285 118

Observation & Proposed Attack

● SEARCH operation:

takes longer when the secret is within the search range (9059,
8713, 8701 byte code instructions)

as opposed to the case when the secret is out of the search range
(7916, 7951 byte code instructions)

● Proposed attack: Measure the time it takes for the search
operation to figure out if there is a secret within the search range

119

Proposed Attack

• Binary search on the ranges of the IDs

• Send two search queries at a time and compare their execution time

• Refine the search range based on the result

120

Attack
Running [0, 40000000] at 0.
Comparing 467821 vs 612252...
Running [20000000, 40000000] at 2.
Comparing 400377 vs 333665...
Running [20000000, 30000000] at 4.
Comparing 200603 vs 237025...
Running [25000000, 30000000] at 6.
Comparing 163564 vs 115072...
Running [25000000, 27500000] at 8.
Comparing 95736 vs 37388...
Running [25000000, 26250000] at 10.
Comparing 85305 vs 30118...
Running [25000000, 25625000] at 12.
Comparing 22765 vs 72958...
Running [25312500, 25625000] at 14.
Comparing 2147483647 vs 19353...
Running [25312500, 25468750] at 16.
Comparing 517 vs 2147483647...
Running [25390625, 25468750] at 18.
Comparing 317 vs 2147483647...
Running [25429687, 25468750] at 20.
Comparing 2147483647 vs 302...
Running [25429687, 25449218] at 22.
Comparing 2147483647 vs 287...
Running [25429687, 25439452] at 24.
Comparing 336 vs 2147483647...

Running [25434569, 25439452] at 26.
Comparing 300 vs 2147483647...
Running [25437010, 25439452] at 28.
Comparing 2147483647 vs 265...
Running [25437010, 25438231] at 30.
Comparing 2147483647 vs 328...
Running [25437010, 25437620] at 32.
Comparing 280 vs 2147483647...
Running [25437315, 25437620] at 34.
Comparing 293 vs 2147483647...
Running [25437467, 25437620] at 36.
Comparing 2147483647 vs 281...
Running [25437467, 25437543] at 38.
Comparing 2147483647 vs 613...
Running [25437467, 25437505] at 40.
Comparing 2147483647 vs 258...
Running [25437467, 25437486] at 42.
Comparing 2147483647 vs 291...
Running [25437467, 25437476] at 44.
Comparing 362 vs 2147483647...
Running [25437471, 25437476] at 46.
Comparing 311 vs 2147483647...
Running [25437473, 25437476] at 48.
Comparing 2147483647 vs 2147483647...
Checking oracle for: 25437474... true
Checking oracle for: 25437475... false

121

Automatically generated attack against LawDB

122

Automatically generated attack against LawDB

123

Automatically generated attack against LawDB

124

Automatically generated attack against LawDB

125

Automatically generated attack against LawDB

126

Automatically generated attack against LawDB

127

Automatically generated attack against LawDB

128

Automatically generated attack against LawDB

129

Automatically generated attack against LawDB

130

Automatically generated attack against LawDB

131

Automatically generated attack against LawDB

132

Automatically generated attack against LawDB

133

Automatically generated attack against LawDB

134

Automatically generated attack against LawDB

135

Automatically generated attack against LawDB

136

Automatically generated attack against LawDB

137

Automatically generated attack against LawDB

138

Automatically generated attack against LawDB

139

Automatically generated attack against LawDB

140

Automatically generated attack against LawDB

141

Automatically generated attack against LawDB

142

Automatically generated attack against LawDB

143

Automatically generated attack against LawDB

144

Automatically generated attack against LawDB

145

Automatically generated attack against LawDB

146

VLab papers on side channel analysis & model counting

● Tegan Brennan, Seemanta Saha, and Tevfik Bultan: JVM Fuzzing for JIT-Induced Side-
Channel Detection. ICSE 2020

● Tegan Brennan, Nicolás Rosner, and Tevfik Bultan: JIT Leaks: Inducing Timing Side
Channels through Just-In-Time Compilation. IEEE S&P 2020

● Ismet Burak Kadron, Nicolás Rosner, Tevfik Bultan: Feedback-driven side-channel analysis
for networked applications. ISSTA 2020: 260-271

● Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, Tevfik Bultan: Profit: Detecting and
Quantifying Side Channels in Networked Applications. NDSS 2019

● Seemanta Saha, William Eiers, Ismet Burak Kadron, Lucas Bang, Tevfik Bultan: Incremental
Adaptive Attack Synthesis. JPF Workshop 2019

● Seemanta Saha, Ismet Burak Kadron, William Eiers, Lucas Bang, Tevfik Bultan: Attack
Synthesis for Strings using Meta-Heuristics. JPF Workshop 2018

● Nestan Tsiskaridze, Lucas Bang, Joseph McMahan, Tevfik Bultan, Timothy Sherwood:

Information Leakage in Arbiter Protocols. ATVA 2018: 404-421

● Lucas Bang, Nicolás Rosner, Tevfik Bultan: Online Synthesis of Adaptive Side-Channel
Attacks Based On Noisy Observations. EuroS&P 2018: 307-322

● Tegan Brennan, Seemanta Saha, Tevfik Bultan, Corina S. Pasareanu: Symbolic path cost
analysis for side-channel detection. ISSTA 2018: 27-37

147

VLab papers on side channel analysis & model counting

● William Eiers, Seemanta Saha, Tegan Brennan, Tevfik Bultan: Subformula Caching for
Model Counting and Quantitative Program Analysis. ASE 2019: 453-464

● Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik Bultan,
Fang Yu: Parameterized model counting for string and numeric constraints.
ESEC/SIGSOFT FSE 2018: 400-410

● Tevfik Bultan, Fang Yu, Muath Alkhalaf, Abdulbaki Aydin: String Analysis for Software
Verification and Security. Springer 2017, ISBN 978-3-319-68668-4, pp. 1-166

● Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, Tevfik Bultan:
Synthesis of Adaptive Side-Channel Attacks. CSF 2017: 328-342

● Tegan Brennan, Nestan Tsiskaridze, Nicolás Rosner, Abdulbaki Aydin, Tevfik Bultan:
Constraint normalization and parameterized caching for quantitative program analysis.
ESEC/SIGSOFT FSE 2017: 535-546

● Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, Tevfik Bultan: String
analysis for side channels with segmented oracles. SIGSOFT FSE 2016: 193-204

● Abdulbaki Aydin, Lucas Bang, Tevfik Bultan: Automata-Based Model Counting for String
Constraints. CAV (1) 2015: 255-272

148

BIBLIOGRAPHY: Quantitative Information Flow
● Geoffrey Smith. On the Foundations of Quantitative Information Flow. FOSSACS 2009: 288-302

● Geoffrey Smith. Quantifying Information Flow Using Min-Entropy. QEST 2011: 159-167
● Pasquale Malacaria. Assessing security threats of looping constructs. POPL 2007: 225-235

● David Clark, Sebastian Hunt, Pasquale Malacaria. A static analysis for quantifying information flow in a simple imperative language.

Journal of Computer Security 15(3): 321-371 (2007) Alternate link

● Michael Backes, Boris Köpf, Andrey Rybalchenko. Automatic Discovery and Quantification of Information Leaks. IEEE Symposium

on Security and Privacy 2009: 141-153

● Jonathan Heusser, Pasquale Malacaria. Quantifying information leaks in software. ACSAC 2010: 261-269

● Quantitative Security Analysis for Programs with Low Input and Noisy Output. Tri Minh Ngo, Marieke Huisman.

● Quantitative information flow under generic leakage functions and adaptive adversaries M. Boreale, Francesca Pampaloni.
● Measuring Information Leakage Using Generalized Gain Functions Mario S. Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi,

Geoffrey Smith.

● Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, Corina S. Pasareanu. Symbolic quantitative information flow. ACM

SIGSOFT Software Engineering Notes 37(6): 1-5 (2012)

● Quoc-Sang Phan, Pasquale Malacaria, Corina S. Pasareanu, Marcelo d'Amorim. Quantifying information leaks using reliability

analysis. SPIN 2014: 105-108

● Stephen McCamant, Michael D. Ernst. Quantitative information flow as network flow capacity. PLDI 2008: 193-205

● Stephen McCamant, Michael D. Ernst. Quantitative information flow tracking for C and related languages. MIT-CSAIL-TR-2006-076

● On the relation between Differential Privacy and Quantitative Information Flow. Mario S. Alvim, Miguel E. Andres.
● Ian Sweet, José Manuel Calderón Trilla, Chad Scherrer, Michael Hicks, Stephen Magill. What's the Over/Under? Probabilistic

Bounds on Information Leakage. POST 2018: 3-27

● Piotr Mardziel, Mário S. Alvim, Michael W. Hicks, Michael R. Clarkson. Quantifying Information Flow for Dynamic Secrets. IEEE

Symposium on Security and Privacy 2014: 540-555
● Giovanni Cherubin, Konstantinos Chatzikokolakis, Catuscia Palamidessi: F-BLEAU: Fast Black-box Leakage Estimation. CoRR

abs/1902.01350 (2019)
149

http://link.springer.com/chapter/10.1007%2F978-3-642-00596-1_21
https://ieeexplore.ieee.org/document/6041599
http://dl.acm.org/citation.cfm?doid=1190216.1190251
http://content.iospress.com/articles/journal-of-computer-security/jcs286
http://openaccess.city.ac.uk/195/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5207642
http://dl.acm.org/citation.cfm?doid=1920261.1920300
http://link.springer.com/chapter/10.1007%2F978-3-319-04897-0_6
http://arxiv.org/pdf/1507.05766v2.pdf
http://users.cis.fiu.edu/~smithg/papers/csf12.pdf
http://dl.acm.org/citation.cfm?doid=2382756.2382791
http://dl.acm.org/citation.cfm?doid=2632362.2632367
http://dl.acm.org/citation.cfm?doid=1375581.1375606
http://dspace.mit.edu/handle/1721.1/34892
https://arxiv.org/pdf/1109.6761v1.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-89722-6_1
https://ieeexplore.ieee.org/document/6956586
https://arxiv.org/abs/1902.01350

BIBLIOGRAPHY: Side-Channel Analysis
● Timing Analysis of Keystrokes and Timing Attacks on SSH. Dawn Xiaodong Song, David Wagner, Xuqing Tian.

● An information-theoretic model for adaptive side-channel attacks. Boris Köpf, David Basin.

● Automatically deriving information-theoretic bounds for adaptive side-channel attacks. Boris Köpf, David Basin.

● Shuo Chen, Rui Wang, XiaoFeng Wang, Kehuan Zhang. Side-Channel Leaks in Web Applications: A Reality Today, a Challenge

Tomorrow. IEEE Symposium on Security and Privacy 2010: 191-206

● Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, Jan Reineke. CacheAudit: A Tool for the Static Analysis of Cache

Side Channels. USENIX Security 2013: 431-446

● Multi-run Side-Channel Analysis Using Symbolic Execution and Max-SMT. Corina S. Pasareanu, Quoc-Sang Phan, Pasquale

Malacaria.

● SMT-Based Verification of Software Countermeasures against Side-Channel Attacks. Hassan Eldib, Chao Wang, Patrick

Schaumont.

● Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, Tevfik Bultan. String analysis for side channels with

segmented oracles. SIGSOFT FSE 2016: 193-204

● Pasquale Malacaria, M. H. R. Khouzani, Corina S. Pasareanu, Quoc-Sang Phan, Kasper Søe Luckow. Symbolic Side-Channel

Analysis for Probabilistic Programs. CSF 2018: 313-327

● Tom Chothia, Yusuke Kawamoto, Chris Novakovic. LeakWatch: Estimating Information Leakage from Java Programs. ESORICS (2)

2014: 219-236

● Tom Chothia, Yusuke Kawamoto, Chris Novakovic. A Tool for Estimating Information Leakage. CAV 2013: 690-695

● Tom Chothia, Yusuke Kawamoto, Chris Novakovic, David Parker. Probabilistic Point-to-Point Information Leakage. CSF 2013: 193-

205 2012

● Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi Wei. Decomposition instead of self-

composition for proving the absence of timing channels. In ACM SIGPLAN Notices, volume 52, pages 362–375. ACM, 2017.

● Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vulnerabilities using quantitative cartesian hoare logic. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 875–890. ACM, 2017.

● Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S Pasareanu. Symbolic Path cost analysis for side-channel detection. In

Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 27–37. ACM, 2018. 150

https://people.eecs.berkeley.edu/~daw/papers/ssh-use01.pdf
http://dl.acm.org/citation.cfm?doid=1315245.1315282
https://www.inf.ethz.ch/personal/basin/pubs/jcs11.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5504714
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
http://ieeexplore.ieee.org/document/7536389/?arnumber=7536389
http://link.springer.com/chapter/10.1007/978-3-642-54862-8_5
https://dl.acm.org/citation.cfm?doid=2950290.2950362
https://sites.cs.ucsb.edu/~bultan/courses/292/
https://link.springer.com/chapter/10.1007%2F978-3-319-11212-1_13
https://link.springer.com/chapter/10.1007%2F978-3-642-39799-8_47
https://ieeexplore.ieee.org/document/6595829
https://dl.acm.org/citation.cfm?doid=3062341.3062378
https://dl.acm.org/citation.cfm?doid=3133956.3134058
https://dl.acm.org/citation.cfm?doid=3213846.3213867

BIBLIOGRAPHY: Side-Channel Analysis, Continued

● Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. Diffuzz: Differential fuzzing for side-channel analysis. arXiv preprint
arXiv:1811.07005, 2018

● Shengjian Guo, Meng Wu, Chao Wang: Adversarial symbolic execution for detecting concurrency-related cache timing leaks.
ESEC/SIGSOFT FSE 2018: 377-388

● Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu, Zhiqiang Zuo: SpecuSym: Speculative Symbolic
Execution for Cache Timing Leak Detection. CoRR abs/1911.00507 (2019)

● Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, Abhik Roychoudhury: KLEESPECTRE: Detecting
Information Leakage through Speculative Cache Attacks via Symbolic Execution. CoRR abs/1909.00647 (2019)

● Sudipta Chattopadhyay, Abhik Roychoudhury: Symbolic Verification of Cache Side-Channel Freedom. IEEE Trans. on CAD of
Integrated Circuits and Systems 37(11): 2812-2823 (2018)

151

https://arxiv.org/abs/1811.07005

BIBLIOGRAPHY: Model Counting
● A Model Counter For Constraints Over Unbounded Strings. Loi Luu, Shweta Shinde, Prateek Saxena.
● Abdulbaki Aydin, Lucas Bang, Tevfik Bultan. Automata-Based Model Counting for String Constraints. CAV (1) 2015: 255-272
● Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik Bultan, Fang Yu. Parameterized model

counting for string and numeric constraints. ESEC/SIGSOFT FSE 2018: 400-410
● The good old Davis-Putnam procedure helps counting models. Elazar Birnbaum, Eliezer L. Lozinskii.
● Satisfiability modulo counting: a new approach for analyzing privacy properties. Matthew Fredrikson, Somesh Jha.
● Symbolic Polytopes for Quantitative Interpolation and Verification. Klaus v. Gleissenthall1, Boris Kopf, and Andrey Rybalchenko.
● An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas. Erin Parker, Siddhartha Chatterjee.
● Abstract model counting: a novel approach for quantification of information leaks. Quoc-Sang Phan, Pasquale Malacaria.
● A Polynomial Time Algorithm for Counting Integral Points in Polyhedra When the Dimension Is Fixed. Alexander I. Barvinok.
● Effective lattice point counting in rational convex polytopes. Jesús A. De Loerab, Raymond Hemmeckeb, Jeremiah Tauzera, Ruriko

Yoshidab.
● Distribution-Aware Sampling and Weighted Model Counting for SAT. Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel,

Sanjit A. Seshia, Moshe Y. Vardi.
● From Weighted to Unweighted Model Counting. Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, Moshe Y. Vardi.
● Algorithmic Improvements in Approximate Counting for Probabilistic Inference: From Linear to Logarithmic SAT Calls Supratik

Chakraborty, Kuldeep S. Meel, Moshe Y. Vardi.
● Approximate Probabilistic Inference via Word-Level Counting. Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, Moshe Y.

Vardi.
● Mateus Borges, Quoc-Sang Phan, Antonio Filieri, Corina S. Pasareanu. Model-Counting Approaches for Nonlinear Numerical

Constraints. NFM 2017: 131-138
● Antonio Filieri, Marcelo F. Frias, Corina S. Pasareanu, Willem Visser. Model Counting for Complex Data Structures. SPIN 2015:

222-241
● Minh-Thai Trinh, Duc-Hiep Chu, Joxan Jaffar. Model Counting for Recursively-Defined Strings. CAV (2) 2017: 399-418
● Dmitry Chistikov, Rayna Dimitrova, Rupak Majumdar: Approximate Counting in SMT and Value Estimation for Probabilistic

Programs. TACAS 2015: 320-334
● Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model Counting
● Seonmo Kim, Stephen McCamant: Bit-Vector Model Counting Using Statistical Estimation. TACAS (1) 2018: 133-151

152

http://plrg.eecs.uci.edu/publications/modelcount.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-21690-4_15
https://dl.acm.org/citation.cfm?doid=3236024.3236064
https://arxiv.org/pdf/1106.0218v1.pdf
http://dl.acm.org/citation.cfm?id=2603097
https://www7.in.tum.de/~gleissen/papers/symb-polytopes-tech.pdf
http://link.springer.com/chapter/10.1007%2F978-3-540-24723-4_8
http://dl.acm.org/citation.cfm?id=2590328
http://www.jstor.org/stable/3690312
http://www.sciencedirect.com/science/article/pii/S0747717104000422
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://ijcai.org/Abstract/15/103
http://www.ijcai.org/Abstract/16/503
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11945
https://link.springer.com/chapter/10.1007%2F978-3-319-57288-8_9
https://link.springer.com/chapter/10.1007%2F978-3-319-23404-5_15
https://link.springer.com/chapter/10.1007%2F978-3-319-63390-9_21
https://link.springer.com/chapter/10.1007%2F978-3-662-46681-0_26
http://www.cs.cornell.edu/~sabhar/chapters/ModelCounting-SAT-Handbook-prelim.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-89960-2_8

BIBLIOGRAPHY: Probabilistic Symbolic Execution

● Jaco Geldenhuys, Matthew B. Dwyer, Willem Visser. Probabilistic symbolic execution. ISSTA 2012: 166-176
● Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Geldenhuys, Peter C. Mehlitz, Neha Rungta. Symbolic PathFinder:

integrating symbolic execution with model checking for Java bytecode analysis. Autom. Softw. Eng. 20(3): 391-425 (2013) Alternate
link

● Antonio Filieri, Corina S. Pasareanu, Willem Visser. Reliability analysis in symbolic pathfinder. ICSE 2013: 622-631
● Mateus Borges, Antonio Filieri, Marcelo d'Amorim, Corina S. Pasareanu, Willem Visser. Compositional solution space quantification

for probabilistic software analysis. PLDI 2014: 15

153

https://dl.acm.org/citation.cfm?doid=2338965.2336773
http://link.springer.com/article/10.1007%2Fs10515-013-0122-2
http://ti.arc.nasa.gov/publications/5269/download/
http://dl.acm.org/citation.cfm?id=2486870
http://dl.acm.org/citation.cfm?doid=2594291.2594329

BIBLIOGRAPHY: Attack Synthesis

● Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, Tevfik Bultan. Synthesis of Adaptive Side-Channel
Attacks. CSF 2017: 328-342

● Lucas Bang, Nicolás Rosner, Tevfik Bultan. Online Synthesis of Adaptive Side-Channel Attacks Based On Noisy Observations.
EuroS&P 2018: 307-322

● Seemanta Saha, Ismet Burak Kadron, William Eiers, Lucas Bang, Tevfik Bultan. Attack Synthesis for Strings using Meta-Heuristics.
ACM SIGSOFT Software Engineering Notes 43(4): 56 (2018)

154

https://ieeexplore.ieee.org/document/8049730
https://ieeexplore.ieee.org/document/8406607
https://dl.acm.org/citation.cfm?doid=3282517.3302422

